EP0252137B1 - Installation for harnessing thermal energy - Google Patents

Installation for harnessing thermal energy Download PDF

Info

Publication number
EP0252137B1
EP0252137B1 EP19870900725 EP87900725A EP0252137B1 EP 0252137 B1 EP0252137 B1 EP 0252137B1 EP 19870900725 EP19870900725 EP 19870900725 EP 87900725 A EP87900725 A EP 87900725A EP 0252137 B1 EP0252137 B1 EP 0252137B1
Authority
EP
European Patent Office
Prior art keywords
piston engine
connection
working
engine unit
units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19870900725
Other languages
German (de)
French (fr)
Other versions
EP0252137A1 (en
Inventor
Christian Schneider
Hans Peter Doetsch
Helmut Krauss
Hans HÖFER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0252137A1 publication Critical patent/EP0252137A1/en
Application granted granted Critical
Publication of EP0252137B1 publication Critical patent/EP0252137B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/044Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines having at least two working members, e.g. pistons, delivering power output
    • F02G1/0445Engine plants with combined cycles, e.g. Vuilleumier
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2250/00Special cycles or special engines
    • F02G2250/18Vuilleumier cycles

Definitions

  • the present invention is based on a device with the features listed in the preamble of claims 1, 7 and 8.
  • Such a device is known from document DE-A-32 37 841 (Eder).
  • the known device is a thermally operated heat pump, which consists of two identical units, each with a high and low temperature working cylinder with corresponding displacement pistons, the periodic stroke movement of which is phase-shifted by 90 o with respect to one another, while the phases of the corresponding displacement pistons in both units change by 180 o distinguish from each other.
  • Both units each contain an externally hermetically sealed constant volume, which is filled with compressed gas, and both high-temperature cylinders are supplied with heat at a relatively high temperature, the low-temperature cylinders with a much greater heat at low temperature, and the waste heat from all four cylinders is taken as useful heat .
  • a counterflow heat exchanger is provided for the high-temperature cylinders, the two pipe systems of which connect the upper to the lower work rooms.
  • the working spaces of the two low-temperature cylinders, which are separated from the displacers, are connected to each other by the separate pipe systems of a second heat exchanger.
  • a temperature difference along the cylinders must be maintained so that thermal insulation problems arise.
  • the present invention is accordingly based on the object of specifying a device for utilizing thermal energy by changing the state of a working fluid, which works isochorously, theoretically does not require a drive for the piston engine units and avoids heat losses and costly thermal insulation measures.
  • the present invention thus relates to a heat converter in which, in a first part of a work cycle, a heat transfer fluid from a first room to a second room in which a higher temperature prevails than in the first, is displaced and the working fluid is displaced from the second room back to the first in a second part of the working cycle, the working fluid being supplied with thermal energy during the transition from the first to the second room and thermal energy during the transition from the second to the first room is withdrawn.
  • two first working spaces lying at the higher temperature and two second working spaces lying at the lower temperature are provided, which are formed by corresponding volume-variable working spaces of coupled, phase-shifted piston machine units.
  • the working spaces of the piston machine units are each connected to one another by fluid lines in such a way that the working fluid is displaced from a reducing working space of a relatively high temperature of a first piston machine unit through a first pipeline into an increasing working space of a relatively low temperature of a second piston machine unit and at the same time working fluid from a reducing one Low-temperature work space is displaced by a second fluid line into an increasing work space of higher temperature and that the two fluid lines are thermally coupled by a heat exchanger.
  • This device essentially works with the proposed cyclical process.
  • the piston machine units each have a housing which operates essentially at the same temperature level everywhere and contains a rotary or reciprocating piston which forms at least two working spaces with the housing and in which the temperatures are essentially the same.
  • Preferred embodiments of the invention include four synchronous piston engine units, one operating at the high temperature and one at the relatively low temperature and two at the medium temperature.
  • the invention makes it possible to implement devices which operate as a heat pump and / or heat transformer and, if appropriate, also supply and / or take up mechanical work.
  • both reciprocating machine units with a reciprocating piston mounted tightly and displaceably in a cylinder can be used, such as pumps, compressors, etc. in manifold forms Are use.
  • the mechanical design is therefore only discussed to the extent that it is important for the present invention.
  • the piston machine units which are used in the devices according to the invention and which in principle each take on part of the function of a displacer there is generally no significant mechanical compression of the working fluid and no appreciable expansion of the working fluid which does the external work , takes place.
  • FIG. 1 A construction of a rotary piston machine which is well suited for realizing the invention and which is shown in a highly simplified manner in FIG. 1 contains a housing with a cylindrical inner wall, the one Forms rotor chamber in which a rotor with a cylindrical outside is arranged coaxially, which forms an intermediate space with the inner wall of the housing.
  • the space has essentially constant radial dimensions.
  • the rotors have sliders or "knives" which, for. B. can each consist of a strip-like projection of the rotor outside, which is connected to the rotor, extends axially with its longitudinal direction and extends radially to the housing inner wall, with respect to which is sealed by sealing strips or the like.
  • the required, with respect to the housing, stationary seal between the rotor and the housing can then consist of a sealing slide which is mounted in a radially displaceable manner in the inner wall of the housing, lies sealingly against the cylindrical outside of the rotor and, by means of a bevelled edge of the strip-like projection, essentially corresponds with the Housing inner wall aligned position is pressed when the strip-like projection passes this seal.
  • rotary piston machine designs can also be used which contain a rotary piston which is not circular in cross section.
  • the embodiment of the invention shown schematically in FIG. 1 can be referred to as a rotary lobe heat converter and contains four rotary lobe machine units 10, 12, 14 and 16.
  • Unit 10 operates in a typical heat pump operating mode of the device in a relatively high temperature range H, unit 16 in a relatively low temperature range L and the units 12 and 14 in an intermediate temperature range M.
  • the rotary lobe machine units can each contain separate, essentially cylindrical housings which can be provided on the outside with ribs or the like and / or on the inside with heat exchanger channels in order to provide a to form a large heat transfer surface and to ensure good heat transfer with an appropriate external heat transfer fluid.
  • the housings each contain a rotor chamber with a rotor.
  • the rotors of the units (10) to (16) can sit on a common shaft or can be driven synchronously in another way.
  • the units 10 and 16 are thermally insulated as far as possible from the units 12 and 14.
  • the units 12 and 14 can be accommodated in a common housing if they work at the same temperature, but the working spaces (rotor chambers) of the two units are separated in this case too.
  • each unit has a rotor with two diametrically arranged sliders or knives 13 represented by a radial line and a stationary seal 11, indicated by a black wedge and attached to the housing inner wall, between the housing inner wall and the rotor outer surface.
  • Each rotary lobe machine unit has three connections for corresponding channels or pipelines carrying a gaseous working fluid, namely a connection 10a, 12a, 14a or 16a, which is located diametrically opposite the respective stationary seal, and also a connection 10b, 12b, 14b or 16b which is located immediately in front of the seal 13 when the rotors rotate in the clockwise direction, and finally a connection 10c, 12c, 14c or 16c which is located immediately behind the seal 11 in the direction of rotation located.
  • the slider or knife 13 of the rotors are with respect to the adjacent to the stationary seal 11 openings, for. B. 10b, 10c dimensioned so that they simultaneously close these openings when sweeping.
  • a branching pipeline 18 connects the connections 10a, 14b and 16c.
  • a branching pipeline 20 connects the connections 10b, 12c and 16a.
  • a branching pipeline 22 connects the connections 10c, 12b and 14a.
  • a branching pipeline 24 connects the connections 12a, 14c and 16b.
  • the parts of the lines 18 and 20 adjacent to the connections 10a and 16a cannot lead through the heat exchangers 26 and 28, but can be thermally coupled to one another by a separate heat exchanger 29.
  • a heat exchanger 30 and 32 are respectively between the part of the pipeline 24 adjacent to the connection 12a and the part of the pipeline 18 adjacent to the branching or between the part adjacent to the connection 14a the pipeline 22 and the part of the pipeline 20 adjacent to the branching.
  • the work spaces formed by the rotary piston machine units and the pipelines contain a gaseous working fluid, such as helium.
  • a gaseous working fluid such as helium.
  • the rotors of the units are driven synchronously in the clockwise direction.
  • the unit 10 will be high quality High-temperature heat energy H supplied, the unit 16 receives low-temperature heat energy L, while the units 12 and 14 emit medium-temperature heat energy M, which is the useful heat when operating as a heat pump and generally waste heat when operating as a refrigerator.
  • the working space occupied by the working fluid of the "basic" system S20 is successively smaller, so that the working fluid flows through the connection 10b, through the heat exchanger 26 and the connection 12c into the unit 12, where adjacent to the connection 12c accordingly enlarging work space is formed.
  • working fluid of the "blue" system S22 is displaced from the unit 12 through the connection 12b, the heat exchanger 26 and the connection 10c into the unit 10, in which a correspondingly enlarging working space is formed adjacent to the connection 10c.
  • the working fluid of the system S20 displaced from the unit 10 into the unit 12 releases heat in the heat exchanger 26 to the working fluid of the system S22 displaced from the unit 12 into the unit 10.
  • working fluid of the "red” system S18 is displaced from the unit 14 through the heat exchanger 28 into the unit 16
  • working fluid of the "yellow” system S24 is displaced from the unit 16 through the heat exchanger 28 into the unit 14, so that a corresponding heat exchange can take place in the heat exchanger 28 here too.
  • Fig. 3 shows the pressure changes that take place in the individual systems if one assumes practical values for the temperatures of the units 10, 12 + 14 and 16.
  • the pressure in the system S18 decreases between t0 and t1 corresponding to the transition from FIG. 1A to FIG. 1C in that working fluid of medium temperature M from the medium temperature M working Unit 14 is displaced into unit 16, in which a relatively low temperature L prevails.
  • the pressure drops relatively sharply, since during the transition from FIG. 1C to FIG. 1E, the working fluid is displaced from the unit 10, which operates at the relatively high temperature H, into the unit 12 lying at the medium temperature M, whereby a larger temperature change takes place than in the transition between 14 and 16.
  • the temperature changes between t2 and t3 and between t3 and t4 correspond to the working phases between Fig. 1E and 1G or between Fig. 1G and Fig. 1A.
  • the pressure curve in the other systems is represented by the curves provided with two, three or four arrows and the system name.
  • FIG. 4 analogously to FIG. 3, the changes in the working volumes formed by the units 10 to 16 for the systems S18 to S24 are shown. It can be seen that the sum of the working volumes formed by the four units 10 to 16 is constant over time for each system.
  • thermodynamic cycle processes running in the device according to FIG. 1 differ from the proposed process and from the so-called Vuilleumier process in that the amount of heat supplied or taken from a regenerator in a way from x to y during the backflow of y after x no longer the total mass m, but a partial mass of m is added or removed.
  • the above-mentioned devices can serve as a heat pump or cooling machine.
  • the rotors rotate clockwise, heat is supplied to the units 10 and 16 operating at high H and low L temperatures, and heat is removed from the units 12 and 14 operating at medium temperature M.
  • the units 12 and 14 can also be operated at different temperatures T3 and T2, where T3 can be larger or smaller than T2 without changing anything in principle in the operation of the device as a heat pump or refrigerator.
  • the devices according to FIG. 1 can also be operated in a different way than heat pumps (refrigeration machines) and also as a heat transformer or as a heat pump transformer.
  • a total of eight operating modes are possible, which are shown in Table I below.
  • a plus sign (+) means that thermal energy is added to the unit indicated in the first column
  • a minus sign (-) means that thermal energy is dissipated or taken from the unit in question.
  • T3 can be greater than, equal to or smaller than T2.
  • T4 is larger than T3 and T2 and these are larger than T1.
  • Particularly advantageous heat pump or refrigerator operating modes are also 1 and 3, since in operating mode or type 1 useful heat is released at two different temperature levels T4 and T3, while in operating mode 3 cold can be generated at a relatively low level T1 and a somewhat higher level .
  • the operating mode 8 represents a heat transformer.
  • the device works as a heat pump transformer.
  • the heat pump transformers are particularly suitable for heat recovery during condensation processes. The condensation heat released when a substance is condensed is fed to the heat pump transformer and transformed up to a temperature above the condensation temperature so that it can be used for the evaporation of the substance in question.
  • the device according to. Fig. 1 supplemented by a compression machine KM and / or an expansion machine EM.
  • the expansion machine EM is turned on at line 10a in line 18 and it can, for. B. can be used to supply the drive energy required to drive the rotors of the units 10 to 16.
  • the compression machine KM is switched on at line 16a in line 20 and allows additional energy to be supplied to the system by mechanical work.
  • Compression or expansion machines result in the 22 types or operating modes listed in Table II, with a plus sign in the line W meaning that work is being supplied to the system via a compression machine KM, while a minus sign in this line means the removal of energy from the system means by an expansion machine EM.
  • FIG. 5 shows an exemplary embodiment of the present device with which thermal energy can be converted into mechanical work, in particular shaft power from a turbine.
  • the device according to FIG. 5 contains two rotary piston machine units 710 and 712, which can be constructed essentially as it was explained in connection with FIG. 1.
  • the units each contain three rotor chamber connections 710a, 710b and 710c or 712a, 712b and 712c, which are arranged as explained for the corresponding connections in FIG. 1.
  • the connections 710a and 712a are connected via a line 717, which is a work-performing expansion machine, e.g. B. contains a turbine 719.
  • Terminal 710b is connected to terminal 712c via line 721.
  • Terminal 712b is connected to terminal 710c via line 723.
  • the lines 721 and 723 lead through a heat exchanger 726. Furthermore, the lines 717 and 723 can be thermally coupled by a heat exchanger 728. If necessary, all or part of the gaseous working fluid flowing through line 717 can be passed through heat exchanger 726, as indicated by dashed lines.
  • the unit 710 receives heat energy of a relatively high temperature T H and the unit 712 takes heat energy of a relatively low temperature T L.
  • the rotors of the units 710 and 712 are seated on a common shaft or are driven synchronously in some other way, whereby essentially only the mechanical friction losses need to be covered here as well, since the torques resulting from pressure differences in the units are compensated for.
  • 5A to 5H show different operating states during one revolution of the rotors of the units 710 and 712.
  • four thermodynamic gas cycle processes which are phase-shifted with respect to one another take place. It is characteristic of the device according to FIG. 5 that a certain volume of the working gas only oscillates back and forth between the units 710 and 712, while another part of the volume of this "pendulum volume" is conveyed by the turbine 719 and mechanical there Does work.
  • the working gas located in the left half of the unit 712d between the knife 712d and the seal 712e. As the rotors rotate clockwise, the gas is displaced from the relatively cold unit 712 through line 723 into the relatively hot unit 710.
  • a device of the type shown in Figure 5 can be built very compact, you can the rotary piston machines and the turbine in one and the same, for.
  • the embodiment according to FIG. 6 contains four reciprocating piston units 810, 812, 814, 816, each of which contains a cylinder and a piston K which is displaceably mounted in the cylinder.
  • the pistons are sealed with respect to the inner wall of the respective cylinder, e.g. B. by O-rings, since a pressure difference occurs on them during operation of the device.
  • the pistons of the units 810 and 812 as well as the pistons of the units 814 and 816 are each rigidly coupled to one another via a gear unit G, so that they execute synchronous lifting movements in the respective cylinders.
  • the unit 810 works at a relatively high temperature level (H), the units 812 and 814 work at medium temperature levels M1 or M2, which can be the same or slightly different.
  • Unit 816 operates at a relatively low temperature level L.
  • a first working fluid line 818 connects ports 810a, 812d on the opposite "outer” ends of the cylinders of the units 810 and 812 and ports 814b, 816a on the facing “inner” ends of the cylinders of the units 814 and 816, respectively connects a second working fluid line 820 connections 810b, 812a on the opposite, “inner” ends of the units 810, 812 and connections 814a, 816b on the opposite, “outer” ends of the units 814 and 816.
  • the connections 810a and 812b and the connections 810b and parts 812a connecting the lines 818, 820 are thermally coupled to one another by a heat exchanger 826.
  • the parts of the working fluid lines 818, 820 running between the connections 814b and 816a and the connections 814a and 816b are thermally coupled to one another by a heat exchanger 828.
  • the working spaces connected by the line 818 in the cylinders of the units 810 to 816 form a first working medium system.
  • the working spaces connected by the line 820 in the cylinders of the units 810 to 816 form a second working fluid system which is fluidly separated from the first.
  • the working fluid e.g. B. a gas such as helium
  • the first system occupied work spaces are shown in dotted lines in Fig. 6.
  • the working spaces occupied by the working fluid of the other system are shown in white in FIG. 6.
  • the pistons are hatched at an angle.
  • the piston preferably execute intermittent movements, ie, that they in each case during a crankshaft rotation of 90 o to run and remain in the reached at the end of the previous stroke movement extreme position during the next 90 ° of crankshaft rotation in the cylinder a hub, with the pistons of one pair of units 810, 812 each move while the pistons of the other pair of units 814, 816 are at rest and vice versa. If you accept a certain reduction in efficiency, you can also work with a sinusoidal stroke movement of the pistons.
  • the device according to FIG. 6 operates as a heat pump or cooling machine.
  • Unit 810 is supplied with relatively high temperature heat
  • unit 816 receives relatively low temperature heat (cooling heat or heat to be pumped up).
  • the units 812, 814 emit medium-temperature heat (heating or waste heat).
  • FIG. 6 can also be supplemented by a rotary machine analogous to FIG. B. is connected between the terminals 810a and 816b.
  • a rotary machine analogous to FIG. B. is connected between the terminals 810a and 816b.
  • Tables I and II also apply accordingly.
  • FIG. 7 shows an embodiment of the invention corresponding to FIG. 5, which can be used to generate mechanical work.
  • the unit 910 contains a piston K1 which, with the housing of the unit, has two working spaces forms, which work at a relatively high temperature level H.
  • the second unit 912 contains a piston K2, which also forms two working spaces with the housing of this machine, but which operate at a relatively low temperature L.
  • the pistons K1 and K2 are mechanically coupled to one another so that they each move synchronously towards a first (upper in FIG. 7) end of the associated housing or a second (lower in FIG. 7) end of the associated housing.
  • the drive device can produce an intermittent movement, as was explained with reference to FIG. 6, but one can also work with a simus-shaped or other lifting movement.
  • the upper, first end of the first unit 910 is via a connection 910aa and a working fluid line 921 with a connection 912ba connected to the second, lower end of the unit 912. Furthermore, the second, lower end of the unit 910 is connected via a connection 910ba via a working fluid line 923 to a connection 912aa at the first, upper end of the unit 912.
  • the lines 921, 923 can be thermally coupled to one another by a heat exchanger 926.
  • first end of the first unit 910 is connected via a connection 910ab and a third working fluid line 917, which connects a working machine, such as an expansion machine, e.g. B. includes a turbine 931, connected to a port 912ba at the first end of the unit 912 and / or the second, lower end of the first unit 910 is via a port 910bb and a working fluid line 919, which a second work machine, such as an expansion machine, e.g. . B. includes a turbine 933, coupled to a port 912bb at the second end of the unit 912. Shaft power can be extracted from the turbines, i.e. 7 can serve as a motor. Otherwise, the statements made with regard to FIG. 5 apply.
  • phase-shifted processing devices according to FIG. 7 are lined up in a row, a more uniform run can be achieved if desired.
  • the corresponding turbines of the coupled, phase-shifted devices can then sit on a common shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

In an installation for harnessing thermal energy, a working fluid is forced during the first part of a working cycle out of a first chamber into a second chamber in which prevails a higher temperature than in the first one, and during a second part of the working cycle the working fluid is again forced back from the second chamber into the first one. Thermal energy is supplied to the working fluid during its passage from the first to the second chamber and removed during its passage from the second to the first chamber. The chambers are formed by the variable volume working chambers of piston engine units (10, 12, 14, 16) coupled to each other, working out-of-phase, which are linked to each other by fluid ducts (18, 20, 22, 24) in such a way that working fluid is forced out of a shrinking working chamber with a relatively high temperature through a first duct into an expanding working chamber with a lower temperature and at the same time working fluid is forced out of a shrinking working chamber with a lower temperature through a second duct into an expanding chamber with a higher temperature. The piston engine units work as a whole at a specific temperature level, this avoiding the occurrence of thermal insulation problems.

Description

Die vorliegende Erfindung geht aus von einer Einrichtung mit den im Oberbegriff der Patentansprüche 1, 7 und 8 aufgeführten Merkmalen.The present invention is based on a device with the features listed in the preamble of claims 1, 7 and 8.

Eine solche Einrichtung ist aus dem Dokument DE-A-32 37 841 (Eder) bekannt. Die bekannte Einrichtung ist eine thermisch betriebene Wärmepumpe, die aus zwei identischen Aggregaten mit je einem Hoch- und Niedertemperatur-Arbeitszylinder mit entsprechenden Verdrängerkolben besteht, deren periodische Hubbewegung um 90o gegeneinander phasenverschoben ist, wahrend sich die Phasen der entsprechenden Verdrängerkolben in beiden Aggregaten um 180o voneinander unterscheiden. Beide Aggregate schließen je ein nach außen hermetisch abgeschlossenes konstantes Volumen ein, das mit Druckgas gefüllt ist, und beiden Hochtemperaturzylindern wird Wärme bei einer relativ hohen Temperatur, den Niedertemperaturzylindern eine viel größere Wärme bei niedriger Temperatur zugeführt und die Abwärmen aller vier Zylinder wird als Nutzwärme entnommen. Für die Hochtemperaturzylinder ist ein Gegenstromwärmetauscher vorgesehen, dessen beiden Rohrsysteme die oberen mit den unteren Arbeitsräumen verbinden. Die von den Verdrängern abgetrennten Arbeitsräume der beiden Niedertemperaturzylinder sind durch die getrennten Rohrsysteme eines zweiten Wärmetauschers miteinander verbunden. Bei dieser bekannten Einrichtung muß jedoch eine Temperaturdifferenz längs der Zylinder aufrechterhalten werden, so daß Probleme bezüglich der thermischen Isolierung auftreten.Such a device is known from document DE-A-32 37 841 (Eder). The known device is a thermally operated heat pump, which consists of two identical units, each with a high and low temperature working cylinder with corresponding displacement pistons, the periodic stroke movement of which is phase-shifted by 90 o with respect to one another, while the phases of the corresponding displacement pistons in both units change by 180 o distinguish from each other. Both units each contain an externally hermetically sealed constant volume, which is filled with compressed gas, and both high-temperature cylinders are supplied with heat at a relatively high temperature, the low-temperature cylinders with a much greater heat at low temperature, and the waste heat from all four cylinders is taken as useful heat . A counterflow heat exchanger is provided for the high-temperature cylinders, the two pipe systems of which connect the upper to the lower work rooms. The working spaces of the two low-temperature cylinders, which are separated from the displacers, are connected to each other by the separate pipe systems of a second heat exchanger. In this known device, however, a temperature difference along the cylinders must be maintained so that thermal insulation problems arise.

Aus dem Dokument US-A-3,115,014 (Hogan) ist zwar auch schon eine Einrichtung bekannt, die als Kältemaschiene ausgebildet werden kann und drei Kammern aufweist, die jeweils einen Kolben enthalten und auf einer einheitlichen Temperatur arbeiten. Diese Einrichtung arbeitet jedoch nicht isochor (volumenkonstant), sodaß Arbeit für den Antrieb der Kolben aufgewendet werden muß.From the document US-A-3,115,014 (Hogan) is also already known a device that can be designed as a refrigerator and has three chambers, each contain a piston and work at a uniform temperature. However, this device does not work isochorously (constant volume), so work must be done to drive the pistons.

Der vorliegenden Erfindung liegt dementsprechend die Aufgabe zugrunde, eine Einrichtung zur Nutzbarmachung von Wärmeenergie durch Zustandsänderungen eines Arbeitsfluids anzugeben, die isochor arbeitet, theoretisch ohne Antrieb für die Kolbenmaschineneinheiten auskommt und Wärmeverluste sowie aufwendige Wärmeisolationsmaßnahmen vermeidet.The present invention is accordingly based on the object of specifying a device for utilizing thermal energy by changing the state of a working fluid, which works isochorously, theoretically does not require a drive for the piston engine units and avoids heat losses and costly thermal insulation measures.

Diese Aufgabe wird durch die in den Patentansprüchen gekennzeichnete Erfindung gelöst. Die vorliegende Erfindung betrifft also einen Wärmewandler, bei welchem in einem ersten Teil eines Arbeitszyklus ein Wärmeträgerfluid aus einem ersten Raum in einen zweiten Raum, in dem eine höhere Temperatur herrscht als im ersten, verdrängt wird und das Arbeitsfluid in einem zweiten Teil des Arbeitszyklus wieder vom zweiten Raum zurück in den ersten verdrängt wird, wobei dem Arbeitsfluid beim Übergang vom ersten in den zweiten Raum Wärmeenergie zugeführt und beim Übergang vom zweiten in den ersten Raum Wärmeenergie entzogen wird. Bei einer Ausführungsform der Erfindung sind jeweils zwei auf der höheren Temperatur liegende erste Arbeitsräume und zwei auf der niedrigeren Temperatur liegende zweite Arbeitsräume vorgesehen, die durch entsprechende volumenveränderliche Arbeitsräume von miteinander gekoppelten, phasenverschoben arbeitenden Kolbenmaschineneinheiten gebildet werden. Die Arbeitsräume der Kolbenmaschineneinheiten sind durch Fluidleitungen jeweils derart miteinander verbunden, daß das Arbeitsfluid aus einem sich verkleinernden Arbeitsraum relativ hoher Temperatur einer ersten Kolbenmaschineneinheit durch eine erste Rohrleitung in einen sich vergrößernden Arbeitsraum relativ niedriger Temperatur einer zweiten Kolbenmaschineneinheit verdrängt wird und gleichzeitig Arbeitsfluid aus einem sich verkleinernden Arbeitsraum niedriger Temperatur durch eine zweite Fluidleitung in einen sich vergrößernden Arbeitsraum höherer Temperatur verdrängt wird und daß die beiden Fluidleitungen durch einen Wärmetauscher thermisch gekoppelt sind. Diese Einrichtung arbeitet im wesentlichen mit dem vorgeschlagenen zyklischen Prozeß. Die Kolbenmaschineneinheiten weisen erfindungsgemäß jeweils ein Gehäuse auf, das überall im wesentlichen auf dem gleichen Temperaturniveau arbeitet und einen Dreh- oder Hubkolben enthält, welcher mit dem Gehäuse mindestens zwei Arbeitsräume bildet, in denen im wesentlichen gleiche Temperaturen herrschen.This object is achieved by the invention characterized in the claims. The present invention thus relates to a heat converter in which, in a first part of a work cycle, a heat transfer fluid from a first room to a second room in which a higher temperature prevails than in the first, is displaced and the working fluid is displaced from the second room back to the first in a second part of the working cycle, the working fluid being supplied with thermal energy during the transition from the first to the second room and thermal energy during the transition from the second to the first room is withdrawn. In one embodiment of the invention, two first working spaces lying at the higher temperature and two second working spaces lying at the lower temperature are provided, which are formed by corresponding volume-variable working spaces of coupled, phase-shifted piston machine units. The working spaces of the piston machine units are each connected to one another by fluid lines in such a way that the working fluid is displaced from a reducing working space of a relatively high temperature of a first piston machine unit through a first pipeline into an increasing working space of a relatively low temperature of a second piston machine unit and at the same time working fluid from a reducing one Low-temperature work space is displaced by a second fluid line into an increasing work space of higher temperature and that the two fluid lines are thermally coupled by a heat exchanger. This device essentially works with the proposed cyclical process. According to the invention, the piston machine units each have a housing which operates essentially at the same temperature level everywhere and contains a rotary or reciprocating piston which forms at least two working spaces with the housing and in which the temperatures are essentially the same.

Bevorzugte Ausführungsformen der Erfindung enthalten vier synchron arbeitende Kolbenmaschineneinheiten, von denen eine auf der hohen Temperatur und eine auf der relativ niedrigen Temperatur und zwei auf der mittleren Temperatur arbeiten. Mit der Erfindung lassen sich Einrichtungen realisieren, die als Wärmepumpe und/oder Wärmetransformator arbeiten und gegebenenfalls auch mechanische Arbeit liefern und/oder aufnehmen.Preferred embodiments of the invention include four synchronous piston engine units, one operating at the high temperature and one at the relatively low temperature and two at the medium temperature. The invention makes it possible to implement devices which operate as a heat pump and / or heat transformer and, if appropriate, also supply and / or take up mechanical work.

Im folgenden werden Ausführungsbeispiele der Erfindung unter Bezugnahme auf die Zeichnungen näher erläutert, dabei werden noch weitere Merkmale und Vorteile der Erfindung zur Sprache kommen.In the following, embodiments of the invention are described with reference explained in more detail on the drawings, while other features and advantages of the invention will be discussed.

Es zeigen:

Fig. 1
bestehend aus Fig. 1A bis 1H schematische Darstellungen von acht Arbeitsphasen einer ersten Ausführungsform der Erfindung in Form eines Drehkolben-Wärmewandlers, welche mit vier mechanisch und thermisch gekoppelten thermodynamischen Gas-Kreisprozessen arbeitet;
Fig. 2
schematische Darstellungen einiger entsprechender Arbeitsphasen des erwähnten, vorgeschlagenen Wärmewandlers,
Fig. 3 und 4
ein Druck-Zeit-Diagramm bzw. ein Volumen-Zeit-Diagramm, auf die bei der Erläuterung der Arbeitsweise des Wärmewandlers gemäß Fig. 1 Bezug genommen wird;
Fig. 5
bestehend aus Fig. 5A bis 5H Darstellungen einer als Motor verwendbaren Ausführungsform der Erfindung in verschiedenen Betriebszuständen;
Fig. 6
bestehend aus Fig. 6a bis 6h schematische Darstellungen von Arbeitsphasen einer bevorzugten, mit Hubkolbeneinheiten arbeitenden Ausführungsform der Erfindung;
Fig. 7
bestehend aus Fig. 7A bis 7C eine vereinfachte Darstellung einer Ausführungsform der Erfindung, die als Motor verwendet werden kann.
Show it:
Fig. 1
1A to 1H schematic representations of eight working phases of a first embodiment of the invention in the form of a rotary piston heat converter, which works with four mechanically and thermally coupled thermodynamic gas cycle processes;
Fig. 2
schematic representations of some corresponding working phases of the mentioned, proposed heat converter,
3 and 4
a pressure-time diagram or a volume-time diagram, to which reference is made in the explanation of the operation of the heat converter according to FIG. 1;
Fig. 5
5A to 5H representations of an embodiment of the invention that can be used as a motor in various operating states;
Fig. 6
6a to 6h show schematic representations of working phases of a preferred embodiment of the invention working with reciprocating piston units;
Fig. 7
7A to 7C, a simplified representation of an embodiment of the invention that can be used as a motor.

Bei der Realisierung der Erfindung können sowohl Hubkolbenmaschineneinheiten mit einem in einem Zylinder dicht und verschiebbar gelagerten Hubkolben als auch irgendwelche bekannten Verdränger-Drehkolbenmaschinenkonstruktionen (worunter auch Drehschieber-Maschinen verstanden werden sollen) verwendet werden, wie sie in mannigfacher Form als Pumpen, Verdichter usw. im Gebrauch sind. Auf die mechanische Konstruktion wird daher nur so weit eingegangen, als es für die vorliegende Erfindung von Bedeutung ist. Erwähnt sei jedoch, daß in den Kolbenmaschineneinheiten, die in den Einrichtungen gemäß der Erfindung verwendet werden und die im Prinzip jeweils einen Teil der Funktion eines Verdrängers übernehmen, im allgemeinen keine nennenswerte mechanische Verdichtung des Arbeitsfluids und keine nennenswerte Expansion des Arbeitsfluids, die äußere Arbeit leistet, stattfindet. An den Kolbenkönnen jedoch Druckdifferenzen auftreten, so daß der Kolben bezüglich des zugehörigen Zylinders oder Gehäuses durch Kolbenringe, Dichtleisten und dergleichen abgedichtet sein muß. Die Kräfte, die auf einen Kolben wegen des Druckunterschiedes wirken, können jedoch dadurch einfach kompensiert werden, daß man jeweils die Kolben zweier synchron arbeitender Einheiten mechanisch miteinander koppelt.In the implementation of the invention, both reciprocating machine units with a reciprocating piston mounted tightly and displaceably in a cylinder, as well as any known positive displacement rotary piston machine constructions (which should also be understood to include rotary vane machines) can be used, such as pumps, compressors, etc. in manifold forms Are use. The mechanical design is therefore only discussed to the extent that it is important for the present invention. However, it should be mentioned that in the piston machine units which are used in the devices according to the invention and which in principle each take on part of the function of a displacer, there is generally no significant mechanical compression of the working fluid and no appreciable expansion of the working fluid which does the external work , takes place. However, pressure differences can occur on the pistons, so that the piston must be sealed with respect to the associated cylinder or housing by piston rings, sealing strips and the like. The forces acting on a piston due to the pressure difference can, however, be easily compensated for by mechanically coupling the pistons of two synchronously operating units.

Eine für die Realisierung der Erfindung gut geeignete Konstruktion einer Drehkolbenmaschine, die in Fig. 1 stark vereinfacht dargestellt ist, enthält ein Gehäuse mit einer zylindrischen Innenwand, die eine Rotorkammer bildet, in der ein Rotor mit zylindrischer Außenseite koaxial angeordnet ist, die mit der Gehäuseinnenwand einen Zwischenraum bildet. Der Zwischenraum hat im wesentlichen konstante radiale Abmessungen. Die Rotoren haben Schieber oder "Messer", welche z. B. jeweils aus einem leistenartigen Vorsprung der Rotoraußenseite bestehen können, welcher mit dem Rotor verbunden ist, mit seiner Längsrichtung axial verläuft und sich radial zur Gehäuseinnenwand erstreckt, bezüglich der durch Dichtleisten oder dergl. abgedichtet ist. Die erforderliche, bezüglich des Gehäuses stationäre Abdichtung zwischen Rotor und Gehäuse kann dann aus einem Abdichtschieber bestehen, der radial verschiebbar in der Gehäuseinnenwand gelagert ist, abdichtend an der zylindrischen Außenseite des Rotors anliegt und durch eine abgeschrägte Kante des leistenartigen Vorsprungs in eine im wesentlichen mit der Gehäuseinnenwand fluchtende Stellung gedrückt wird, wenn der leistenartige Vorsprung an dieser Abdichtung vorbeiläuft. Es können jedoch auch Drehkolbenmaschinenkonstruktionen verwendet werden, die einen im Querschnitt nicht kreisförmigen Drehkolben enthalten.A construction of a rotary piston machine which is well suited for realizing the invention and which is shown in a highly simplified manner in FIG. 1 contains a housing with a cylindrical inner wall, the one Forms rotor chamber in which a rotor with a cylindrical outside is arranged coaxially, which forms an intermediate space with the inner wall of the housing. The space has essentially constant radial dimensions. The rotors have sliders or "knives" which, for. B. can each consist of a strip-like projection of the rotor outside, which is connected to the rotor, extends axially with its longitudinal direction and extends radially to the housing inner wall, with respect to which is sealed by sealing strips or the like. The required, with respect to the housing, stationary seal between the rotor and the housing can then consist of a sealing slide which is mounted in a radially displaceable manner in the inner wall of the housing, lies sealingly against the cylindrical outside of the rotor and, by means of a bevelled edge of the strip-like projection, essentially corresponds with the Housing inner wall aligned position is pressed when the strip-like projection passes this seal. However, rotary piston machine designs can also be used which contain a rotary piston which is not circular in cross section.

Die in Fig. 1 schematisch dargestellte Ausführungsform der Erfindung kann als Drehkolben-Wärmewandler bezeichnet werden und enthält vier Drehkolbenmaschineneinheiten 10, 12, 14 und 16. Die Einheit 10 arbeitet bei einer typischen Wärmepumpenbetriebsart der Einrichtung in einem relativ hohen Temperaturbereich H, die Einheit 16 in einem relativ niedrigen Temperaturbereich L und die Einheiten 12 und 14 in einem zwischen diesen liegenden mittleren Temperaturbereich M. Die Drehkolbenmaschineneinheiten können jeweils getrennte, im wesentlichen zylindrische Gehäuse enthalten, die außen mit Rippen oder dergleichen und/oder innen mit Wärmetauscherkanälen versehen sein können, um eine große Wärmeübergangsfläche zu bilden und einen guten Wärmeübergang mit einem entsprechenden äußeren Wärmeträgerfluid zu gewährleisten. Die Gehäuse enthalten jeweils eine Rotorkammer mit einem Rotor. Die Rotoren der Einheiten (10) bis (16) können auf einer gemeinsamen Welle sitzen oder auf andere Weise synchron angetrieben werden. Die Einheiten 10 und 16 sind thermisch möglichst weitgehend gegen die Einheiten 12 und 14 isoliert. Die Einheiten 12 und 14 können in einem gemeinsamen Gehäuse untergebracht werden, wenn sie auf der gleichen Temperatur arbeiten, die Arbeitsräume (Rotorkammern) der beiden Einheiten sind jedoch auch in diesem Fall getrennt.The embodiment of the invention shown schematically in FIG. 1 can be referred to as a rotary lobe heat converter and contains four rotary lobe machine units 10, 12, 14 and 16. Unit 10 operates in a typical heat pump operating mode of the device in a relatively high temperature range H, unit 16 in a relatively low temperature range L and the units 12 and 14 in an intermediate temperature range M. The rotary lobe machine units can each contain separate, essentially cylindrical housings which can be provided on the outside with ribs or the like and / or on the inside with heat exchanger channels in order to provide a to form a large heat transfer surface and to ensure good heat transfer with an appropriate external heat transfer fluid. The housings each contain a rotor chamber with a rotor. The rotors of the units (10) to (16) can sit on a common shaft or can be driven synchronously in another way. The units 10 and 16 are thermally insulated as far as possible from the units 12 and 14. The units 12 and 14 can be accommodated in a common housing if they work at the same temperature, but the working spaces (rotor chambers) of the two units are separated in this case too.

Bei der Ausführungsform gemäß Fig. 1 hat jede Einheit einen Rotor mit zwei durch einen radialen Strich dargestellten diametral angeordneten Schiebern oder Messern 13 und eine durch einen schwarzen Keil angedeutete, an der Gehäuseinnenwand angebrachte stationäre Abdichtung 11 zwischen Gehäuseinnenwand und Rotoraußenfläche.In the embodiment according to FIG. 1, each unit has a rotor with two diametrically arranged sliders or knives 13 represented by a radial line and a stationary seal 11, indicated by a black wedge and attached to the housing inner wall, between the housing inner wall and the rotor outer surface.

Jede Drehkolbenmaschineneinheit hat drei Anschlüsse für entsprechende, ein gasförmiges Arbeitsfluid führende Kanäle oder Rohrleitungen und zwar einen Anschluß 10a, 12a, 14a bzw. 16a, der sich diametral gegenüber der jeweiligen stationären Abdichtung befindet, ferner jeweils einen Anschluß 10b, 12b, 14b bzw. 16b der sich bei Drehung der Rotoren in Uhrzeigerrichtung unmittelbar vor der Abdichtung 13 befindet, und schließlich einen Anschluß 10c, 12c, 14c bzw. 16c, der sich in Drehrichtung unmittelbar hinter der Abdichtung 11 befindet. Die Schieber oder Messer 13 der Rotoren sind bezüglich der der stationären Abdichtung 11 benachbarten Öffnungen, z. B. 10b, 10c so bemessen, daß sie diese Öffnungen beim Überstreichen gleichzeitig verschließen.Each rotary lobe machine unit has three connections for corresponding channels or pipelines carrying a gaseous working fluid, namely a connection 10a, 12a, 14a or 16a, which is located diametrically opposite the respective stationary seal, and also a connection 10b, 12b, 14b or 16b which is located immediately in front of the seal 13 when the rotors rotate in the clockwise direction, and finally a connection 10c, 12c, 14c or 16c which is located immediately behind the seal 11 in the direction of rotation located. The slider or knife 13 of the rotors are with respect to the adjacent to the stationary seal 11 openings, for. B. 10b, 10c dimensioned so that they simultaneously close these openings when sweeping.

Eine sich verzweigende Rohrleitung 18 verbindet die Anschlüsse 10a, 14b und 16c. Eine sich verzweigende Rohrleitung 20 verbindet die Anschlüsse 10b, 12c und 16a. Eine sich verzweigende Rohrleitung 22 verbindet die Anschlüsse 10c, 12b und 14a. Eine sich verzweigende Rohrleitung 24 verbindet die Anschlüsse 12a, 14c und 16b.A branching pipeline 18 connects the connections 10a, 14b and 16c. A branching pipeline 20 connects the connections 10b, 12c and 16a. A branching pipeline 22 connects the connections 10c, 12b and 14a. A branching pipeline 24 connects the connections 12a, 14c and 16b.

Der dem Anschluß 10a benachbarte Teil der Rohrleitung 18 und die von den jeweiligen Verzweigungen zu den Anschlüssen 10b und 10c führenden Teile der Rohrleitungen 20 und 22 führen durch einen ersten Wärmetauscher 26. Der dem Anschluß 16a benachbarte Teil der Rohrleitung 20 und die von der Verzweigung zu den Anschlüssen 16b und 16c führenden Teile der Rohrleitungen 18 und 24 führen durch einen zweiten Wärmetauscher 28.The part of the pipeline 18 adjacent to the connection 10a and the parts of the pipelines 20 and 22 leading from the respective branches to the connections 10b and 10c lead through a first heat exchanger 26. The part of the pipeline 20 adjacent to the connection 16a and that leading from the branch Parts of the pipelines 18 and 24 which carry the connections 16b and 16c lead through a second heat exchanger 28.

Alternativ können die den Anschlüssen 10a bzw. 16a benachbarten Teile der Leitungen 18 und 20 nicht durch die Wärmetauscher 26 bzw. 28 führen, sondern durch einen eigenen Wärmetauscher 29 thermisch miteinander gekoppelt sein.Alternatively, the parts of the lines 18 and 20 adjacent to the connections 10a and 16a cannot lead through the heat exchangers 26 and 28, but can be thermally coupled to one another by a separate heat exchanger 29.

Vorzugsweise sind ferner, wie durch gestrichelte Rechtecke 30 bzw. 32 angedeutet ist, jeweils ein Wärmetauscher 30 bzw. 32 zwischen dem dem Anschluß 12a benachbarten Teil der Rohrleitung 24 und dem der Verzweigung benachbarten Teil der Rohrleitung 18 bzw. zwischen dem dem Anschluß 14a benachbarten Teil der Rohrleitung 22 und dem der Verzweigung benachbarten Teil der Rohrleitung 20 vorgesehen.Preferably, as indicated by dashed rectangles 30 and 32, a heat exchanger 30 and 32 are respectively between the part of the pipeline 24 adjacent to the connection 12a and the part of the pipeline 18 adjacent to the branching or between the part adjacent to the connection 14a the pipeline 22 and the part of the pipeline 20 adjacent to the branching.

Die durch die Drehkolbenmaschineneinheiten gebildeten Arbeitsräume und die Rohrleitungen enthalten ein gasförmiges Arbeitsfluid, wie Helium. Bei einer typischen Betriebsweise der Einrichtung gemäß Fig. 1 als Wärmepumpe oder Kältemaschine werden die Rotoren der Einheiten synchron in Uhrzeigerrichtung angetrieben. Der Einheit 10 wird hochwertige Wärmeenergie hoher Temperatur H zugeführt, die Einheit 16 nimmt Wärmeenergie niedriger Temperatur L auf, während die Einheiten 12 und 14 Wärmeenergie mittlerer Temperatur M abgeben, die beim Betrieb als Wärmepumpe die Nutzwärme und beim Betrieb als Kältemaschine im allgemeinen Abwärme darstellt.The work spaces formed by the rotary piston machine units and the pipelines contain a gaseous working fluid, such as helium. In a typical mode of operation of the device according to FIG. 1 as a heat pump or chiller, the rotors of the units are driven synchronously in the clockwise direction. The unit 10 will be high quality High-temperature heat energy H supplied, the unit 16 receives low-temperature heat energy L, while the units 12 and 14 emit medium-temperature heat energy M, which is the useful heat when operating as a heat pump and generally waste heat when operating as a refrigerator.

Der Wärmewandler gemäß Fig. 1 enthält vier gasmäßig getrennte Systeme, in denen vier gegeneinander phasenverschobene thermodynamische Gas-Kreisprozesse ablaufen. In den durch die jeweiligen Rohrleitungen 18, 20, 22 bzw. 24 verbundenen Arbeitsräumen der verschiedenen Systeme herrscht jeweils im wesentlichen der gleiche, zeitveränderliche Druck. Von System zu System ist der Druck jedoch im allgemeinen verschieden. Im folgenden werden die Systeme jeweils der Einfachheit halber durch "S" mit Zusatz der betreffenden Leitungsnummer bezeichnet. In Fig. 1 sind die voneinander getrennten Arbeitsfluidmassen der verschiedenen Systeme durch unterschiedliche Schraffierungen dargestellt, und zwar

  • das Arbeitsfluid des der Rohrleitung 18 zugeordneten Systems S18 durch senkrechte Schraffur ("rot");
  • das Arbeitsfluid des der Rohrleitung 20 zugeordneten Systems S20 durch rechts-schräge Schraffur ("grün");
  • das Arbeitsfluid des der Rohrleitung 22 zugeordneten Systems S22 durch waagerechte Schraffur ("blau") und
  • das Arbeitsfluid des der Rohrleitung 24 zugeordneten Systems S24 durch unterbrochene Kreuzschraffur ("gelb").
The heat converter according to FIG. 1 contains four gas-separated systems in which four thermodynamic gas cycle processes are shifted in relation to one another. The pressure in the different systems connected by the respective pipelines 18, 20, 22 and 24 is essentially the same, time-varying pressure. However, the pressure generally varies from system to system. In the following, the systems are each designated for simplicity by "S" with the addition of the relevant line number. In Fig. 1, the separate working fluid masses of the different systems are shown by different hatching, namely
  • the working fluid of system S18 associated with pipeline 18 by vertical hatching ("red");
  • the working fluid of system S20 associated with pipeline 20 by right-angled hatching ("green");
  • the working fluid of the system S22 assigned to the pipeline 22 by horizontal hatching ("blue") and
  • the working fluid of the system S24 assigned to the pipeline 24 by interrupted cross hatching ("yellow").

In der in Fig. 1A dargestellten Phase befinden sich die Arbeitsfluide der verschiedenen Systeme jeweils im wesentlichen in nur zwei Einheiten (das in den Leitungen befindliche Arbeitsfluid wird im folgenden vernachlässigt):

  • S18 in den Einheiten 10 und 14 ;
  • S20 in den Einheiten 10 und 16 ;
  • S22 in den Einheiten 12 und 14 ;
  • S24 in den Einheiten 12 und 16 .
In the phase shown in FIG. 1A, the working fluids of the various systems are essentially only in two units (the working fluid in the lines is neglected in the following):
  • S18 in units 10 and 14;
  • S20 in units 10 and 16;
  • S22 in units 12 and 14;
  • S24 in units 12 and 16.

Bei einem Wärmewandler, wie er in der oben erwähnten älteren Patentanmeldung vorgeschlagen worden ist, würde der Zustand der Systeme den in Fig. 2 dargestellten Stellungen der durch ein schräges Kreuz versinnbildlichten Verdränger-Regeneratoren entsprechen und zwar
- S18 der Stellung I; - S20 der Stellung II;
- S22 der Stellung IV und - S24 der Stellung III.
In the case of a heat converter, as was proposed in the earlier patent application mentioned above, the state of the systems would correspond to the positions shown in FIG. 2 of the displacement regenerators symbolized by an oblique cross
- S18 of position I; - S20 of position II;
- S22 of position IV and - S24 of position III.

Fig. 1B zeigt den Zustand der Systeme, wenn sich die Rotoren um etwa 45o in Uhrzeigerrichtung gedreht haben. Ein Teil der Arbeitsraumvolumina bleibt während der ersten 180o der Umdrehung unverändert, und zwar

  • der Arbeitsraum von S18 in der Einheit 10 ;
  • der Arbeitsraum von S20 in der Einheit 16 ;
  • der Arbeitsraum von S22 in der Einheit 14 und
  • der Arbeitsraum von S24 in der Einheit 12 .
Fig. 1B shows the state of the systems when the rotors have rotated clockwise about 45 o . Part of the working space volume remains unchanged during the first 180 o of the rotation, namely
  • the workspace of S18 in unit 10;
  • the workspace of S20 in unit 16;
  • the working area of S22 in unit 14 and
  • the working room of S24 in unit 12.

In der Einheit 10 wird der vom Arbeitsfluid des "gründen" Systems S20 eingenommene Arbeitsraum sukzessive kleiner, so daß das Arbeitsfluid durch den Anschluß 10b, durch den Wärmetauscher 26 und den Anschluß 12c in die Einheit 12 strömt, wo angrenzend an den Anschluß 12c ein sich entsprechend vergrößernder Arbeitsraum gebildet wird. Gleichzeitig wird aus der Einheit 12 Arbeitsfluid des "blauen" Systems S22 durch den Anschluß 12b, den Wärmetauscher 26 und den Anschluß 10c in die Einheit 10 verdrängt, in der angrenzend an den Anschluß 10c ein sich entsprechend vergrößernder Arbeitsraum gebildet wird. Das aus der Einheit 10 in die Einheit 12 verdrängte Arbeitsfluid des Systems S20 gibt dabei im Wärmetauscher 26 Wärme an das von der Einheit 12 in die Einheit 10 verdrängte Arbeitsfluid des Systems S22 ab.In the unit 10, the working space occupied by the working fluid of the "basic" system S20 is successively smaller, so that the working fluid flows through the connection 10b, through the heat exchanger 26 and the connection 12c into the unit 12, where adjacent to the connection 12c accordingly enlarging work space is formed. At the same time, working fluid of the "blue" system S22 is displaced from the unit 12 through the connection 12b, the heat exchanger 26 and the connection 10c into the unit 10, in which a correspondingly enlarging working space is formed adjacent to the connection 10c. The working fluid of the system S20 displaced from the unit 10 into the unit 12 releases heat in the heat exchanger 26 to the working fluid of the system S22 displaced from the unit 12 into the unit 10.

In entsprechender Weise wird Arbeitsfluid des "roten" Systems S18 aus der Einheit 14 durch den Wärmetauscher 28 in die Einheit 16 verdrängt, während gleichzeitig Arbeitsfluid des "gelben" Systems S24 aus der Einheit 16 durch den Wärmetauscher 28 in die Einheit 14 verdrängt wird, so daß auch hier ein entsprechender Wärmetausch im Wärmetauscher 28 stattfinden kann.In a corresponding manner, working fluid of the "red" system S18 is displaced from the unit 14 through the heat exchanger 28 into the unit 16, while at the same time working fluid of the "yellow" system S24 is displaced from the unit 16 through the heat exchanger 28 into the unit 14, so that a corresponding heat exchange can take place in the heat exchanger 28 here too.

Da sich die Temperatur des jeweils verdrängten Arbeitsfluids ändert, ändert sich auch der Druck in dem betreffenden System und es wird dementsprechend auch etwas Arbeitsfluid durch die betreffende Leitung in die Einheit hinein oder aus dieser herausströmen, in der sich das Volumen des Arbeitsraumes des betreffenden Systems nicht ändert.As the temperature of the displaced working fluid changes, the pressure in the system in question also changes and, accordingly, some working fluid will flow into or out of the unit through the line in question, in which the volume of the working space of the system in question does not change.

Der weitere Verlauf des Arbeitszyklus dürfte aufgrund der vorstehenden Erklärung bei Betrachtung der Figuren 1C bis 1H ohne weiteres verständlich sein. Am Schluß ist wieder der Zustand gemäß Fig. 1A erreicht.The further course of the working cycle should be readily understandable on the basis of the above explanation when looking at FIGS. 1C to 1H. At the end the state according to FIG. 1A is reached again.

Fig. 3 zeigt die Druckänderungen, die in den einzelnen Systemen stattfinden, wenn man für die Temperaturen der Einheiten 10, 12 + 14 und 16 praktische Werte annimmt. Der Druck im System S18, dessen Verlauf durch die dick ausgezogene Kurve mit einem Pfeil dargestellt ist, sinkt zwischen t₀ und t₁ entsprechend dem Übergang von Fig. 1A nach Fig. 1C dadurch ab, daß Arbeitsfluid mittlerer Temperatur M aus der auf mittlerer Temperatur M arbeitenden Einheit 14 in die Einheit 16 verdrängt wird, in der eine relativ tiefe Temperatur L herrscht. Zwischen t₁ und t₂ sinkt der Druck verhältnismäßig stark ab, da beim Übergang von Fig. 1C nach Fig. 1E das Arbeitsfluid aus der Einheit 10, die bei der relativ hohen Temperatur H arbeitet, in die auf mittlerer Temperatur M liegende Einheit 12 verdrängt wird, wobei eine größere Temperaturänderung stattfindet, als beim Übergang zwischen 14 und 16. Die Temperaturänderungen zwischen t₂ und t₃ sowie zwischen t₃ und t₄ entsprechen den Arbeitsphasen zwischen Fig. 1E und 1G bzw. zwischen Fig. 1G und Fig. 1A. Der Druckverlauf in den anderen Systemen ist durch die mit zwei, drei bzw. vier Pfeilen und der Systembezeichnung versehenen Kurven dargestellt.Fig. 3 shows the pressure changes that take place in the individual systems if one assumes practical values for the temperatures of the units 10, 12 + 14 and 16. The pressure in the system S18, the course of which is shown by the solid curve with an arrow, decreases between t₀ and t₁ corresponding to the transition from FIG. 1A to FIG. 1C in that working fluid of medium temperature M from the medium temperature M working Unit 14 is displaced into unit 16, in which a relatively low temperature L prevails. Between t 1 and t 2, the pressure drops relatively sharply, since during the transition from FIG. 1C to FIG. 1E, the working fluid is displaced from the unit 10, which operates at the relatively high temperature H, into the unit 12 lying at the medium temperature M, whereby a larger temperature change takes place than in the transition between 14 and 16. The temperature changes between t₂ and t₃ and between t₃ and t₄ correspond to the working phases between Fig. 1E and 1G or between Fig. 1G and Fig. 1A. The pressure curve in the other systems is represented by the curves provided with two, three or four arrows and the system name.

In Fig. 4 sind analog zu Fig. 3 die Änderungen der durch die Einheiten 10 bis 16 gebildeten Arbeitsvolumina für die Systeme S18 bis S24 dargestellt. Man sieht, daß die Summe der von den vier Einheiten 10 bis 16 gebildeten Arbeitsvolumina für jedes System zeitlich konstant ist.In FIG. 4, analogously to FIG. 3, the changes in the working volumes formed by the units 10 to 16 for the systems S18 to S24 are shown. It can be seen that the sum of the working volumes formed by the four units 10 to 16 is constant over time for each system.

Die in der Einrichtung gemäß Fig. 1 ablaufenden thermodynamischen Kreisprozesse unterscheiden sich von dem vorgeschlagenen Prozeß und vom sog. Vuilleumier-Prozeß dadurch wesentlich, daß die einer Gasmasse im auf einem Weg von x nach y von einem Regenerator zugeführte oder entnommene Wärmemenge beim Rückströmen von y nach x nicht mehr der Gesamtmasse m, sondern einer Teilmasse von m zugeführt bzw. entnommen wird.The thermodynamic cycle processes running in the device according to FIG. 1 differ from the proposed process and from the so-called Vuilleumier process in that the amount of heat supplied or taken from a regenerator in a way from x to y during the backflow of y after x no longer the total mass m, but a partial mass of m is added or removed.

Da bei den vorliegenden Einrichtungen praktisch keine mechanische Kompression des Arbeitsgases stattfindet, ist für den Antrieb der Rotoren praktisch nur diejenige Leistung erforderlich, die zur Überwindung der Reibungsverluste und eventueller, thermisch bedingter Druckunterschiede erforderlich ist.Since there is practically no mechanical compression of the working gas in the present devices, the drive required for the rotors is practically only that power which is necessary to overcome the frictional losses and any thermal differences in pressure.

Wie oben bereits in Verbindung mit Fig. 1 erwähnt worden ist, können die obengenannten Einrichtungen als Wärmepumpe bzw. Kältemaschine dienen. Bei einer typischen Betriebsart laufen die Rotoren dabei in Uhrzeigerrichtung um, den auf hoher H bzw. niedriger L Temperatur arbeitenden Einheiten 10 bzw. 16 wird Wärme zugeführt und von den auf mittlerer Temperatur M arbeitenden Einheiten 12 und 14 wird Wärme abgeführt. Die Einheiten 12 und 14 können jedoch auch mit verschiedenen Temperaturen T3 bzw. T2 betrieben werden, wobei T3 größer oder kleiner als T2 sein kann, ohne daß sich am Betrieb der Einrichtung als Wärmepumpe bzw. Kältemaschine etwas Prinzipielles ändert.As has already been mentioned above in connection with FIG. 1, the above-mentioned devices can serve as a heat pump or cooling machine. In a typical operating mode, the rotors rotate clockwise, heat is supplied to the units 10 and 16 operating at high H and low L temperatures, and heat is removed from the units 12 and 14 operating at medium temperature M. However, the units 12 and 14 can also be operated at different temperatures T3 and T2, where T3 can be larger or smaller than T2 without changing anything in principle in the operation of the device as a heat pump or refrigerator.

Die Einrichtungen gemäß Fig. 1 können jedoch auch auf andere Weise als Wärmepumpen (Kältemaschinen) und außerdem als Wärmetransformator oder als Wärmepumpentransformator betrieben werden. Insgesamt sind acht Betriebsarten möglich, die in der folgenden Tabelle I dargestellt sind. Ein Pluszeichen (+) bedeutet, daß der in der ersten Spalte angegebenen Einheit Wärmeenergie zugeführt wird, ein Minuszeichen (-), daß von der betreffenden Einheit Wärmeenergie abgeführt oder entnommen wird.

Figure imgb0001
However, the devices according to FIG. 1 can also be operated in a different way than heat pumps (refrigeration machines) and also as a heat transformer or as a heat pump transformer. A total of eight operating modes are possible, which are shown in Table I below. A plus sign (+) means that thermal energy is added to the unit indicated in the first column, a minus sign (-) means that thermal energy is dissipated or taken from the unit in question.
Figure imgb0001

Bei den Betriebsarten 1 bis 4 erfolgt die Rotordrehung in Uhrzeigerrichtung, bei den Betriebsarten 5 bis 8 in Gegenuhrzeigerrichtung.In operating modes 1 to 4, the rotor is rotated clockwise, in operating modes 5 to 8 in a counterclockwise direction.

Die Betriebsart 2 wurde oben unter Bezugnahme auf Fig. 1 erläutert. Es sei angemerkt, daß dabei T3 größer, gleich oder kleiner als T2 sein kann. T4 ist größer als T3 und T2 und diese sind größer als T1.Operating mode 2 was explained above with reference to FIG. 1. It should be noted that T3 can be greater than, equal to or smaller than T2. T4 is larger than T3 and T2 and these are larger than T1.

Besonders vorteilhafte Wärmepumpen- bzw. Kältemaschinen-Betriebsarten sind auch 1 und 3, da bei Betriebsart oder Typ 1 Nutzwärme bei zwei verschiedenen Temperaturniveaus T4 und T3 abgegebenwird, während bei Betriebsart 3 sich Kälte auf einem relativ tiefen Niveau T1 und einem etwas höheren Niveau erzeugen läßt.Particularly advantageous heat pump or refrigerator operating modes are also 1 and 3, since in operating mode or type 1 useful heat is released at two different temperature levels T4 and T3, while in operating mode 3 cold can be generated at a relatively low level T1 and a somewhat higher level .

Die Betriebsart 8 stellt einen Wärmetransformator dar. Die Einheit 10 gibt Nutzwärme der relativ hohen Temperatur 14, die Einheit 16 Abwärme der relativ niedrigen Temperatur T1 ab, die Einheiten 12 und 14 nehmen Wärme der mittleren Temperaturen T3 bzw T2 auf, wobei

T4 > T3 >/=/< T2 > T1

Figure imgb0002


ist.The operating mode 8 represents a heat transformer. The unit 10 emits useful heat of the relatively high temperature 14, the unit 16 waste heat of the relatively low temperature T1, the units 12 and 14 absorb heat of the medium temperatures T3 and T2, respectively

T4>T3> / = / <T2> T1
Figure imgb0002


is.

In den Betriebsarten 3 und 6 arbeitet die Einrichtung als Wärmepumpentransformator. Für die Temperaturniveaus gilt hier

Betriebsart 3: T3 > T4 > T2 > T1.

Figure imgb0003

Betriebsart 6: T4 > T3 > T1 > T2
Figure imgb0004


Die Wärmepumpentransformatoren eignen sich vor allem zur Wärmerückgewinnung bei Kondensationsvorgängen. Die beim Kondensieren eines Stoffes frei werdenden Kondensationswärme wird dem Wärmepumpentransformator zugeführt und durch diesen auf eine über der Kondensationstemperatur liegende Temperatur hochtransformiert, so daß sie für die Verdampfung des betreffenden Stoffes genutzt werden kann.In modes 3 and 6, the device works as a heat pump transformer. The following applies to the temperature levels

Operating mode 3: T3>T4>T2> T1.
Figure imgb0003

Operating mode 6: T4>T3>T1> T2
Figure imgb0004


The heat pump transformers are particularly suitable for heat recovery during condensation processes. The condensation heat released when a substance is condensed is fed to the heat pump transformer and transformed up to a temperature above the condensation temperature so that it can be used for the evaporation of the substance in question.

Weitere vorteilhafte Abwandlungen ergeben sich, wenn man die Einrichtung gem. Fig. 1 durch eine Kompressionsmaschine KM und/oder eine Expansionsmaschine EM ergänzt. Bei Fig. 1 wird die Expansionsmaschine EM beim Anschluß 10a in die Leitung 18 eingeschaltet und sie kann z. B. dazu verwendet werden, die für den Antrieb der Rotoren der Einheiten 10 bis 16 benötigte Antriebsenergie zu liefern. Die Kompressionsmaschine KM wird beim Anschluß 16a in die Leitung 20 eingeschaltet und gestattet es, dem System zusätzlich Energie durch mechanische Arbeit zuzuführen.Further advantageous modifications result if the device according to. Fig. 1 supplemented by a compression machine KM and / or an expansion machine EM. In Fig. 1, the expansion machine EM is turned on at line 10a in line 18 and it can, for. B. can be used to supply the drive energy required to drive the rotors of the units 10 to 16. The compression machine KM is switched on at line 16a in line 20 and allows additional energy to be supplied to the system by mechanical work.

Mit Kompressions- oder Expansionsmaschine ergeben sich die in Tabelle II aufgeführten 22 Typen oder Betriebsarten, wobei ein Pluszeichen in der Zeile W bedeutet, daß dem System Arbeit über eine Kompressionsmaschine KM zugeführt wird, während ein Minuszeichen in dieser Zeile die Entnahme von Energie aus dem System durch eine Expansionsmaschine EM bedeutet.

Figure imgb0005
Compression or expansion machines result in the 22 types or operating modes listed in Table II, with a plus sign in the line W meaning that work is being supplied to the system via a compression machine KM, while a minus sign in this line means the removal of energy from the system means by an expansion machine EM.
Figure imgb0005

In Figur 5 ist ein Ausführungsbeispiel der vorliegenden Einrichtung dargestellt, mit der Wärmeenergie in mechanische Arbeit, insbesondere Wellenleistung einer Turbine, umgesetzt werden kann. Die Einrichtung gemäß Figur 5 enthält zwei Rotationskolbenmaschineneinheiten 710 bzw. 712, die im wesentlichen so aufgebaut sein können, wie es in Verbindung mit Figur 1 erläutert worden war. Die Einheiten enthalten jeweils drei Rotorkammer-Anschlüsse 710a, 710b und 710c bzw. 712a, 712b und 712c, die so angeordnet sind, wie es für die entsprechenden Anschlüsse in Figur 1 erläutert worden ist. Die Anschlüsse 710a und 712a sind über eine Leitung 717 verbunden, welche eine arbeitsleistende Expansionsmaschine, z. B. eine Turbine 719 enthält. Der Anschluß 710b ist mit dem Anschluß 712c über eine Leitung 721 verbunden. Der Anschluß 712b ist mit dem Anschluß 710c über eine Leitung 723 verbunden. Die Leitungen 721 und 723 führen durch einen Wärmetauscher 726. Ferner können die Leitungen 717 und 723 durch einen Wärmetauscher 728 thermisch gekoppelt sein. Gegebenenfalls kann das durch die Leitung 717 strömende gasförmige Arbeitsfluid ganz oder teilweise durch den Wärmetauscher 726 geführt werden, wie es gestrichelt angedeutet ist.FIG. 5 shows an exemplary embodiment of the present device with which thermal energy can be converted into mechanical work, in particular shaft power from a turbine. The device according to FIG. 5 contains two rotary piston machine units 710 and 712, which can be constructed essentially as it was explained in connection with FIG. 1. The units each contain three rotor chamber connections 710a, 710b and 710c or 712a, 712b and 712c, which are arranged as explained for the corresponding connections in FIG. 1. The connections 710a and 712a are connected via a line 717, which is a work-performing expansion machine, e.g. B. contains a turbine 719. Terminal 710b is connected to terminal 712c via line 721. Terminal 712b is connected to terminal 710c via line 723. The lines 721 and 723 lead through a heat exchanger 726. Furthermore, the lines 717 and 723 can be thermally coupled by a heat exchanger 728. If necessary, all or part of the gaseous working fluid flowing through line 717 can be passed through heat exchanger 726, as indicated by dashed lines.

Im Betrieb wird der Einheit 710 Wärmeenergie verhältnismäßig hoher Temperatur TH zugeführt und der Einheit 712 wird Wärmeenergie relativ niedriger Temperatur TL entnommen. Die Rotoren der Einheiten 710 und 712 sitzen auf einer gemeinsamen Welle oder werden auf andere Weise synchron angetrieben, wobei im wesentlichen hier ebenfalls nur die mechanischen Reibungsverluste gedeckt zu werden brauchen, da sich die durch Druckdifferenzen in den Einheiten entstehenden Drehmomente kompensieren.In operation, the unit 710 receives heat energy of a relatively high temperature T H and the unit 712 takes heat energy of a relatively low temperature T L. The rotors of the units 710 and 712 are seated on a common shaft or are driven synchronously in some other way, whereby essentially only the mechanical friction losses need to be covered here as well, since the torques resulting from pressure differences in the units are compensated for.

Die Fig. 5A bis 5H zeigen verschiedene Betriebszustände während einer Umdrehung der Rotoren der Einheiten 710 und 712. In den Einheiten 710 und 712 laufen vier gegeneinander phasenverschobene thermodynamische Gas-Kreisprozesse ab. Charakteristisch ist dabei für die Einrichtung gemäß Fig. 5, daß ein bestimmtes Volumen des Arbeitsgases jeweils nur zwischen den Einheiten 710 und 712 hin- und herpendelt, während ein anderer Teil des Volumens von diesem "Pendelvolumen" durch die Turbine 719 gefördert wird und dort mechanische Arbeit leistet. Für die Erläuterung dieses Prozesses sei zuerst das Arbeitsgas betrachtet, das sich in der linken Hälfte der Einheit 712d zwischen dem Messer 712d und der Dichtung 712e befindet. Bei der Drehung der Rotoren in Uhrzeigerrichtung wird das Gas aus der relativ kalten Einheit 712 durch die Leitung 723 in die relativ heiße Einheit 710 verdrängt.5A to 5H show different operating states during one revolution of the rotors of the units 710 and 712. In units 710 and 712, four thermodynamic gas cycle processes which are phase-shifted with respect to one another take place. It is characteristic of the device according to FIG. 5 that a certain volume of the working gas only oscillates back and forth between the units 710 and 712, while another part of the volume of this "pendulum volume" is conveyed by the turbine 719 and mechanical there Does work. To explain this process, first consider the working gas located in the left half of the unit 712d between the knife 712d and the seal 712e. As the rotors rotate clockwise, the gas is displaced from the relatively cold unit 712 through line 723 into the relatively hot unit 710.

In der Stellung gemäß Figur 5c ist dieser Vorgang abgeschlossen, d.h. daß die linke Hälfte der Einheit 710 nun Arbeitsgas relativ hohen Druckes enthält. Das Messer 710d überläuft nun die Öffnung 710a (Figur 5C), so daß das unter dem relativ hohen Druck stehende Arbeitsgas durch die Leitung 717 zur Turbine 719 strömt, wo es sich entspannt und dann in den mit der Öffnung 712a in Verbindung stehenden Arbeitsraum der Einheit 712 (Figur 5D) strömt, wo es das in diesem Arbeitsraum enthaltene, sich auf relativ niedriger Temperatur befindliche "braune" Arbeitsgasvolumen, das eine niedrige Dichte hat, etwas verdichtet, wie durch den "orangen" Teil dargestellt ist. In Figur 5E erreicht der Kolben 712d den Anschluß 710a, so daß das Ausströmen von Arbeitsgas relativ hohen Druckes aus dem sich vor diesem Kolben befindlichen Teil des Arbeitsraumes beendet wird. Dieser Teil des Arbeitsraumes enthält nun ein "blaues" Arbeitsgasvolumen, das durch das Abströmen des "orangen" Teiles entspannt worden ist. Das Arbeitsgasvolumen wird nun zwischen 5E und 5H in den sich zwischen der Dichtung 712e und dem Messer 712d befindlichen Teil des Arbeitsraumes übergeführt, wobei der Druck durch die Temperaturerniedrigung sinkt. In Figur 5G ist dieser Vorgang abgeschlossen.In the position according to FIG. 5c, this process is completed, ie the left half of the unit 710 now contains working gas of relatively high pressure. The knife 710d now overflows the opening 710a (FIG. 5C), so that the working gas under the relatively high pressure flows through the line 717 to the turbine 719, where it relaxes and then into the working space of the unit connected to the opening 712a 712 (Figure 5D) flows where it somewhat compresses the "brown" working gas volume contained in this workspace, which is at a relatively low temperature and has a low density, as represented by the "orange" part. In FIG. 5E, the piston 712d reaches the connection 710a, so that the outflow of working gas at a relatively high pressure occurs in front of this piston located part of the work area is terminated. This part of the working space now contains a "blue" working gas volume which has been released by the "orange" part flowing out. The working gas volume is now transferred between 5E and 5H in the part of the working space located between the seal 712e and the knife 712d, the pressure dropping as a result of the lowering of the temperature. This process is completed in FIG. 5G.

Es ist also ersichtlich, daß das "blaue" Volumen nur zwischen den Einheiten 710 und 712 hin- und herpendelt, jedoch durch intermittierende Expansion den anderen, "orangen" Teil des Arbeitsgases antreibt und durch die Turbine fördert, um dort mechanische Arbeit zu erzeugen. Selbstverständlich ist das Arbeitsgas im "blauen" und im "orangen" Volumen nicht voneinander getrennt, die obige Erläuterung soll nur verdeutlichen, daß ein gewisser Prozentsatz des Arbeitsgases zwischen den Einheiten 710 und 712 hin- und herpendelt, während ein anderer Teil vom ersten Teil durch die Turbine gedrückt wird, um die gewünschte Wellenleistung zu erzeugen. Dieser Massenanteil mC hängt von den Temperaturnive aus TH und TL in den Einheiten 710 und 712 ab.It can thus be seen that the "blue" volume only oscillates back and forth between units 710 and 712, but drives the other, "orange" part of the working gas by intermittent expansion and conveys it through the turbine to produce mechanical work there. Of course, the working gas in the "blue" and in the "orange" volume is not separated from one another, the above explanation is only intended to illustrate that a certain percentage of the working gas oscillates between units 710 and 712, while another part passes through from the first part the turbine is pushed to generate the desired shaft power. This mass fraction m C depends on the temperature levels from T H and T L in units 710 and 712.

Ganz entsprechende Vorgänge laufen mit entsprechender Phasenverschiebung hinsichtlich des "gelben" Pendelvolumens und des "roten" Arbeitsvolumens ab. Während bei dem oben erläuterten Prozeß das "orange" Volumen vom "blauen" bzw. "braunen" Volumen zyklisch durch die Turbine gefördert wurde, wird beim zweiten, um 180o versetzten Prozeß, das "hote" Gasvolumen vom "gelben" bzw "grunen" Volumen durch die Turbine gefördert.Corresponding processes take place with a corresponding phase shift with regard to the "yellow" pendulum volume and the "red" working volume. While in the above-explained process, the "orange" volume was conveyed cyclically by the "blue" or "brown" volume through the turbine, is the second to 180 o offset process, the "hote" gas volume from the "yellow" or "greens "Volume conveyed through the turbine.

Eine Einrichtung der in Figur 5 dargestellten Art läßt sich sehr kompakt bauen, man kann die Rotationskolbenmaschinen und die Turbine in ein und demselben, z. B. zylindrischen Gehäuse unterbringen, das dann außen nur geeignete Wärmetauscherflächen und, falls die Turbine mit einem elektrischen Generator verbunden ist, zur Leistungsentnahme nur elektrische Anschlüsse aufweist.A device of the type shown in Figure 5 can be built very compact, you can the rotary piston machines and the turbine in one and the same, for. B. housing cylindrical housing, which then has only suitable heat exchanger surfaces and, if the turbine is connected to an electrical generator, has only electrical connections for power consumption.

Ersetzt man die Turbine 719 durch einen Kompressor oder Verdichter entgegengesetzter Förderrichtung so ergibt sich eine Wärmepumpe bzw. Kältemaschine.If the turbine 719 is replaced by a compressor or compressor in the opposite direction of delivery, the result is a heat pump or refrigeration machine.

Die Ausführungsform gemäß Fig. 6 enthält vier Hubkolbeneinheiten 810, 812, 814, 816, die jeweils einen Zylinder und einen im Zylinder verschiebbar gelagerten Kolben K enthalten. Die Kolben sind bezüglich der Innenwand des jeweiligen Zylinders abgedichtet, z. B. durch O-Ringe, da an ihnen im Betrieb der Einrichtung eine Druckdifferenz auftritt. Die Kolben der Einheiten 810 und 812 sowie die Kolben der Einheiten 814 und 816 sind jeweils über eine Getriebeeinheit G starr miteinander gekoppelt, so daß sie synchrone Hubbewegungen in den jeweiligen Zylindern ausführen.The embodiment according to FIG. 6 contains four reciprocating piston units 810, 812, 814, 816, each of which contains a cylinder and a piston K which is displaceably mounted in the cylinder. The pistons are sealed with respect to the inner wall of the respective cylinder, e.g. B. by O-rings, since a pressure difference occurs on them during operation of the device. The pistons of the units 810 and 812 as well as the pistons of the units 814 and 816 are each rigidly coupled to one another via a gear unit G, so that they execute synchronous lifting movements in the respective cylinders.

Die Einheit 810 arbeitet auf einem verhältnismäßig hohen Temperaturniveau (H), die Einheiten 812 und 814 arbeiten auf mittleren Temperaturniveaus M₁ bzw. M₂, die gleich oder auch etwas verschieden sein können. Die Einheit 816 arbeitet auf einem relativ niedrigen Temperaturniveau L.The unit 810 works at a relatively high temperature level (H), the units 812 and 814 work at medium temperature levels M₁ or M₂, which can be the same or slightly different. Unit 816 operates at a relatively low temperature level L.

Eine erste Arbeitsfluidleitung 818 verbindet Anschlüsse 810a, 812d an den einander entgegengesetzten, "äußeren" Enden der Zylinder der Einheiten 810 und 812 sowie Anschlüsse 814b, 816a an den einander zugewandten "inneren" Enden der Zylinder der Einheiten 814 bzw. 816. In entsprechender Weise verbindet eine zweite Arbeitsfluidleitung 820 Anschlüsse 810b, 812a an den einander gegenüberliegenden, "inneren" Enden der Einheiten 810, 812 und Anschlüsse 814a, 816b an den einander entgegengesetzten, "äußeren" Enden der Einheiten 814 bzw. 816. Die die Anschlüsse 810a und 812b sowie die Anschlüsse 810b und 812a verbindenden Teile der Leitungen 818, 820 sind durch einen Wärmetauscher 826 thermisch miteinander gekoppelt. In entsprechender Weise sind die zwischen den Anschlüssen 814b und 816a sowie den Anschlüssen 814a und 816b verlaufenden Teile der Arbeitsfluidleitungen 818, 820 durch einen Wärmetauscher 828 thermisch miteinander gekoppelt.A first working fluid line 818 connects ports 810a, 812d on the opposite "outer" ends of the cylinders of the units 810 and 812 and ports 814b, 816a on the facing "inner" ends of the cylinders of the units 814 and 816, respectively connects a second working fluid line 820 connections 810b, 812a on the opposite, "inner" ends of the units 810, 812 and connections 814a, 816b on the opposite, "outer" ends of the units 814 and 816. The connections 810a and 812b and the connections 810b and parts 812a connecting the lines 818, 820 are thermally coupled to one another by a heat exchanger 826. Correspondingly, the parts of the working fluid lines 818, 820 running between the connections 814b and 816a and the connections 814a and 816b are thermally coupled to one another by a heat exchanger 828.

Die durch die Leitung 818 verbundenen Arbeitsräume in den Zylindern der Einheiten 810 bis 816 bilden ein erstes Arbeitsmittelsystem. Die durch die Leitung 820 verbundenen Arbeitsräume in den Zylindern der Einheiten 810 bis 816 bilden ein zweites, fluidmäßig vom ersten getrenntes Arbeitsfluidsystem. In den beiden Systemen laufen zwei verschiedene, gegeneinander um 360o Kurbelwellendrehung versetzte thermodynamische Prozesse ab, zu deren Durchlaufen jeweils eine Kurbelwellendrehung von 720o erforderlich ist. Die vom Arbeitsfluid, z. B. einem Gas, wie Helium, des ersten Systems eingenommenen Arbeitsräume sind in Fig. 6 punktiert dargestellt. Die vom Arbeitsfluid des anderen Systems eingenommenen Arbeitsräume sind in Fig. 6 weiss dargestellt. Die Kolben sind schräg schraffiert.The working spaces connected by the line 818 in the cylinders of the units 810 to 816 form a first working medium system. The working spaces connected by the line 820 in the cylinders of the units 810 to 816 form a second working fluid system which is fluidly separated from the first. In the two systems, two different thermodynamic processes, offset by 360 o crankshaft rotation, take place, each of which requires a crankshaft rotation of 720 o . The working fluid, e.g. B. a gas such as helium, the first system occupied work spaces are shown in dotted lines in Fig. 6. The working spaces occupied by the working fluid of the other system are shown in white in FIG. 6. The pistons are hatched at an angle.

Die Kolben führen vorzugsweise intermittierende Bewegungen aus, d.h. daß sie jeweils während einer Kurbelwellendrehung von 90o einen Hub ausführen und während der nächsten 90o Kurbelwellendrehung in der am Ende der vorangegangenen Hubbewegung erreichten Extremstellung im Zylinder verharren, wobei sich die Kolben des einen Paares von Einheiten 810, 812 jeweils bewegen, während die Kolben des anderen Paares von Einheiten 814, 816 ruhen und umgekehrt. Wenn man eine gewisse Verringerung des Wirkungsgrades in Kauf nimmt, kann man auch mit einer sinusförmigen Hubbewegung der Kolben arbeiten.The piston preferably execute intermittent movements, ie, that they in each case during a crankshaft rotation of 90 o to run and remain in the reached at the end of the previous stroke movement extreme position during the next 90 ° of crankshaft rotation in the cylinder a hub, with the pistons of one pair of units 810, 812 each move while the pistons of the other pair of units 814, 816 are at rest and vice versa. If you accept a certain reduction in efficiency, you can also work with a sinusoidal stroke movement of the pistons.

In dem in Fig. 6a dargestellten Zustand befinden sich die Kolben der Einheiten 810 und 812 in der Mitte ihres Aufwärtshubes, wobei heißes Arbeitsfluid des der Leitung 818 zugeordneten ersten Systems (System A punktierte Arbeitsräume) in den unteren Teil der sich auf dem mittleren Temperaturniveau (M₁) befindenden Einheit 812 verdrängt wird. Gleichzeitig wird auf mittlerer Temperatur befindliches Arbeitsfluid des der Leitung 820 zugeordneten Systems (System B weiße Arbeitsräume) aus dem oberen Teil der Einheit 812 in den unteren Teil der "heißen" Einheit 810 verdrängt. Die verdrängten Arbeitsfluide der beiden Systeme tauschen dabei Wärme im Wärmetauscher 826 aus. Wegen der Temperaturerniedrigung sinkt der Druck im System A zwischen -90o und +90o zeigt.In the state shown in FIG. 6a, the pistons of the units 810 and 812 are in the middle of their upward stroke, with hot working fluid of the first system (system A punctured working spaces) assigned to line 818 in the lower part of the medium temperature level ( M₁) located unit 812 is displaced. At the same time, medium-temperature working fluid of the system assigned to line 820 (system B, white working spaces) is displaced from the upper part of unit 812 into the lower part of "hot" unit 810. The displaced working fluids of the two systems exchange heat in the 826 heat exchanger. Because of the lowering of the temperature, the pressure in system A drops between -90 o and +90 o .

Bei 90o (Fig. 11b) haben die Kolben ihre Extremlage erreicht.At 90 o (Fig. 11b) the pistons have reached their extreme position.

Im Breich von 90o bis 270o ruhen die Kolben in den Einheiten 810 und 812 während die Kolben in den Einheiten 814 und 816 eine Hubbewegung nach oben durchführen (Fig. 6b bis Fig. 6d). Das kalte Arbeitsfluid des Systems A wird dabei aus der "kalten" Einheit 816 in die sich auf einen mittleren Temperaturniveau M₂ befindende Einheit 814 verdrängt. Hierdurch steigt der Druck im System A an, wie die Kurve in Fig. 7 zwischen 90o und 270o zeigt, der Temperaturanstieg ist jedoch wegen des relativ geringen Temperaturunterschiedes zwischen den Temperaturniveaus der Einheiten 816 und 814 verhältnismäßig klein. Gleichzeitig wird das Arbeitsfluid des Systems B aus der Einheit 814 in die Einheit 816 verdrängt.In Breich of 90 o to 270 o, the pistons resting in the units 810 and 812 while the pistons in the units 814 and 816 according to a reciprocating movement to perform the above (Fig. 6b to Fig. 6d). The cold working fluid of system A is displaced from the "cold" unit 816 into the unit 814 located at an average temperature level M₂. This increases the pressure in system A, as the curve in FIG. 7 shows between 90 o and 270 o , but the temperature rise is relatively small because of the relatively small temperature difference between the temperature levels of the units 816 and 814. At the same time, the working fluid of system B is displaced from unit 814 into unit 816.

Im Bereich von 270o bis 450o bewegen sich die Kolben der Einheiten 810 nach unten (Fig. 6e), so daß das auf mittlerer Temperatur befindliche Arbeitsfluid aus der Einheit 812 in die sich auf hoher Temperatur befindliche Arbeitseinheit 810 verdrängt wird. Gleichzeitig wird heißes Arbeitsfluid des Systems B aus der Einheit 812 in die Einheit 810 verdrängt. Auch hier findet wiederum ein Wärmetausch im Wärmetauscher 826 statt. Die Kolben in den Einheiten 814 und 816 ruhen zwischen 270 und 450o (Fig. 6d bis 6f).In the range of 270 o to 450 o, the pistons of the units 810 move downward (FIG. 6e), so that the working fluid at a medium temperature is displaced from the unit 812 in which are located on high temperature working unit 810. At the same time, hot working fluid of system B is displaced from unit 812 into unit 810. Here, too, heat is exchanged in the 826 heat exchanger. The pistons in units 814 and 816 rest between 270 and 450 o (Fig. 6d to 6f).

Im Bereich zwischen 450 und 630o der Kurbelwellendrehung ruhen die Kolben in den Einheiten 810 und 812 während die Kolben der Einheiten 814 und 816 nach oben bewegen (Fig. 6f bis 6h). Im Bereich zwischen 630o bis 90o des nächsten Zyklus bewegen sich dann die Kolben der Einheiten 810 und 812 wieder nach oben, während die Kolben in den Einheiten 814 und 816 ruhen. Die dabei ablaufenden Verdrängungs-, Erwärmungs- und Abkühlungsvorgänge dürften keiner weiteren Erläuterung bedürfen.In the range between 450 and 630 o of the crankshaft rotation, the pistons in the units 810 and 812 rest while the pistons of the units 814 and 816 move upward (FIGS. 6f to 6h). The pistons of units 810 and 812 then move up again in the range between 630 o to 90 o of the next cycle, while the pistons in units 814 and 816 are at rest. The displacement, heating and cooling processes taking place should not require any further explanation.

Wenn die Kolben in der anhand von Fig. 6 beschriebenen Weise angetrieben werden, arbeitet die Einrichtung gemäß Fig. 6 als Wärmepumpe bzw. Kältemaschine. Der Einheit 810 wird Wärme relativ hoher Temperatur zugeführt, die Einheit 816 nimmt Wärme relativ niedriger Temperatur auf (Kühlwärme oder hochzupumpende Wärme). Die Einheiten 812, 814 geben Wärme mittlerer Temperatur ab (Heizwärme oder Abwärme).If the pistons are driven in the manner described with reference to FIG. 6, the device according to FIG. 6 operates as a heat pump or cooling machine. Unit 810 is supplied with relatively high temperature heat, unit 816 receives relatively low temperature heat (cooling heat or heat to be pumped up). The units 812, 814 emit medium-temperature heat (heating or waste heat).

Kehrt man die Richtung der Wärmeströme und der Arbeitsmittelströme z. B. durch entsprechende Umkehrung der Antriebsrichtung der einzelnen Einheiten um, so arbeitet die Einrichtung gemäß Fig. 6 als Wärmetransformator, d.h. die Einheiten 812, 814 nehmen Wärme in einem mittleren Temperaturniveau auf, die Einheit 810 gibt "hochtransformierte" Netzwärme höherer Temperatur ab, während von der Einheit 816 Abwärme relativ niedriger Temperatur abgeführt werden muß.Reversing the direction of the heat flows and the working fluid flows z. B. by appropriate reversal of the drive direction of the individual 6 operates as a heat transformer, ie the units 812, 814 absorb heat at a medium temperature level, the unit 810 emits "highly transformed" network heat of higher temperature, while the unit 816 dissipates waste heat of a relatively low temperature must become.

Die Ausführungsform gemäß Fig. 6 kann analog zu Fig. 5 ebenfalls durch eine Rotationsmaschine ergänzt werden, die dann z. B. zwischen die Anschlüsse 810a und 816b geschaltet wird. Auch die Ausführungen, die in Verbindung mit Tabelle I und II gemacht werden, gelten entsprechend.The embodiment according to FIG. 6 can also be supplemented by a rotary machine analogous to FIG. B. is connected between the terminals 810a and 816b. The statements made in connection with Tables I and II also apply accordingly.

In Fig. 7 ist eine Fig. 5 entsprechende Ausführungsform der Erfindung dargestellt, die zur Erzeugung mechanischer Arbeit verwendet werden kann. Die Einrichtung gemäß Fig. 7, die in den Figuren 7A bis 7D in vier verschiedenen Phasen ihres Arbeitszyklus dargestellt ist, enthält eine erste Hubkolbenmaschineneinheit 910 und eine zweite Hubkolbenmaschineneinheit 912. Die Einheit 910 enthält einen Kolben K1, der mit dem Gehäuse der Einheit zwei Arbeitsräume bildet, die auf einem verhältnismäßig hohen Temperaturniveau H arbeiten. Die zweite Einheit 912 enthält einen Kolben K2, der mit dem Gehäuse dieser Maschine ebenfalls zwei Arbeitsräume bildet, die jedoch auf einer verhältnismäßig niedrigen Temperatur L arbeiten. Die Kolben K1 und K2 sind mechanisch miteinander gekoppelt, so daß sie sich synchron jeweils auf ein erstes (in Fig. 7 oberes) Ende des zugehörigen Gehäuses oder auf ein zweites (in Fig. 7 unteres) Ende des zugehörigen Gehäuses hin bewegen. Die Antriebsvorrichtung kann eine intermittierende Bewegung erzeugen, wie es anhand von Fig. 6 erläutert wurde, man kann jedoch auch mit einer simusförmigen oder anderen Hubbewegung arbeiten.FIG. 7 shows an embodiment of the invention corresponding to FIG. 5, which can be used to generate mechanical work. The device according to FIG. 7, which is shown in FIGS. 7A to 7D in four different phases of its working cycle, contains a first reciprocating piston engine unit 910 and a second reciprocating piston engine unit 912. The unit 910 contains a piston K1 which, with the housing of the unit, has two working spaces forms, which work at a relatively high temperature level H. The second unit 912 contains a piston K2, which also forms two working spaces with the housing of this machine, but which operate at a relatively low temperature L. The pistons K1 and K2 are mechanically coupled to one another so that they each move synchronously towards a first (upper in FIG. 7) end of the associated housing or a second (lower in FIG. 7) end of the associated housing. The drive device can produce an intermittent movement, as was explained with reference to FIG. 6, but one can also work with a simus-shaped or other lifting movement.

Das obere, erste Ende der ersten Einheit 910 ist über einen Anschluß 910aa und eine Arbeitsfluidleitung 921 mit einem Anschluß 912ba am zweiten, unteren Ende der Einheit 912 verbunden. Ferner ist das zweite, untere Ende der Einheit 910 über einen Anschluß 910ba über eine Arbeitsfluidleitung 923 mit einem Anschluß 912aa am ersten, oberen Ende der Einheit 912 verbunden. Die Leitungen 921, 923 können durch einen Wärmetauscher 926 thermisch miteinander gekoppelt sein.The upper, first end of the first unit 910 is via a connection 910aa and a working fluid line 921 with a connection 912ba connected to the second, lower end of the unit 912. Furthermore, the second, lower end of the unit 910 is connected via a connection 910ba via a working fluid line 923 to a connection 912aa at the first, upper end of the unit 912. The lines 921, 923 can be thermally coupled to one another by a heat exchanger 926.

Ferner ist das erste Ende der ersten Einheit 910 über einen Anschluß 910ab und eine dritte Arbeitsfluidleitung 917, die eine Arbeitsmaschine, wie eine Expansionsmaschine, z. B. eine Turbine 931 enthält, mit einem Anschluß 912ba am ersten Ende der Einheit 912 verbunden und/oder das zweite, untere Ende der ersten Einheit 910 ist über einen Anschluß 910bb und ein Arbeitsfluidleitung 919, die eine zweite Arbeitsmaschine, wie eine Expansionsmaschine, z. B. eine Turbine 933 enthält, mit einem Anschluß 912bb am zweiten Ende der Einheit 912 gekoppelt. Den Turbinen kann Wellenleistung entommen werden, d.h. die Einrichtung gemäß Fig. 7 kann als Motor dienen. Im übrigen gelten die Ausführungen, die bezüglich Fig. 5 gemacht worden sind.Furthermore, the first end of the first unit 910 is connected via a connection 910ab and a third working fluid line 917, which connects a working machine, such as an expansion machine, e.g. B. includes a turbine 931, connected to a port 912ba at the first end of the unit 912 and / or the second, lower end of the first unit 910 is via a port 910bb and a working fluid line 919, which a second work machine, such as an expansion machine, e.g. . B. includes a turbine 933, coupled to a port 912bb at the second end of the unit 912. Shaft power can be extracted from the turbines, i.e. 7 can serve as a motor. Otherwise, the statements made with regard to FIG. 5 apply.

Durch Aneinanderreihen mehrerer, phasenverschoben verarbeitender Einrichtungen gemäß Fig. 7 läßt sich gewünschtenfall ein gleichmäßigerer Lauf erreichen. Die entsprechenden Turbinen der gekoppelten, phasenverschoben arbeitenden Einrichtungen können dann auf einer gemeinsamen Welle sitzen.If several, phase-shifted processing devices according to FIG. 7 are lined up in a row, a more uniform run can be achieved if desired. The corresponding turbines of the coupled, phase-shifted devices can then sit on a common shaft.

Claims (8)

  1. Installation for harnessing thermal energy with a closed fluid circuit, in which the volume of the working fluid remains constant throughout the entire working cycle, with at least two piston engine units which form at least four working spaces with variable volume; further with a conduit system interconnecting the at least four working spaces, with a drive device for propelling pistons of the piston engines, the drive device and the conduit system being so designed that the volume of the working spaces which communicate with each other remains constant during movement of the pistons, and with a device for feed and removal of heat to and from the piston engine units, characterised in that:
    - four piston engine units are each provided with a first working space,
    - in that the devices for feed and removal of heat are so designed that the entire casing of each piston engine unit operates at a uniform temperature level, the devices for feed and removal of thermal energy being so designed that, depending on the type of operation, thermal energy is fed to (+) or removed from (-)the piston engine units according to the following table:
    Figure imgb0008
    - in that the pistons of the first and second piston engine units (10, 12; 810, 812) are propelled by the drive device synchronously and with the same phase, so that the volume of the first working space (in accordance with connection 10b or 810a) of the first piston engine unit (10; 810) changes inversely to the volume of the first working space (in accordance with connection 12c or 812b) of the second piston engine unit (12; 812), and
    - in that the pistons of the third and of the fourth piston engine units (14, 16; 814, 816) are propelled by the drive device synchronously and with the same phase, yet with offset phasing relative to the pistons of the first or second piston engine unit (10, 12; 810, 812), so that the volume of the first working space (in accordance with connection 14b or 814b) of the third piston engine unit (14; 814) changes inversely to the volume of the volume of the first working space (in accordance with connection 16c or 816a) of the fourth piston engine unit (16, 816),
    - the pistons in operational types 5 to 8 being propelled in the opposite direction to that of operational types 1 to 4.
  2. Installation according to claim 1, characterised in that the piston engine units are reciprocating piston engine units (810, 812, 814, 816; Fig. 6), and in that the second working spaces are interconnected by a second conduit system (820).
  3. Installation according to claim 1 or 2, characterised in that a first conduit (upper portion of 20 or 818 in Fig. 1 or Fig. 6), connecting the first working spaces of the first and of the second piston engine units (10, 12, Fig. 1; 810, 812, Fig. 6), and a second conduit (upper portion of 22 or 820) connecting the second working spaces of the first and of the second piston engine units (10, 12; 810, 812), are thermally coupled by a first heat-exchanger (26, 826), and in that a third conduit (lower portion of 18 or 818) connecting the first working spaces of the third and of the fourth piston engine units (14, 16 or 814, 816), and a fourth conduit (lower portion of 24 or 820) connecting the second working spaces of the third and of the fourth piston engine units (14, 814; 16, 816), are thermally interconnected by a second heat-exchanger (28, 828).
  4. Installation according to claim 1, characterised in that the piston engine units are rotary piston engine units (10, 12, 14, 16 in Fig. 1), whose casings each form a substantially cylindrical rotor chamber and contain as a piston a rotarily-disposed, substantially cylindrical rotor; in the the rotor has at least two elements (13) providing a seal with respect to the casing, in that at least one seal (11), stationary with respect to the casing, is provided between casing and rotor; in that each rotor chamber contains at least one set of three connections (10a, 10b, 10c...) for working fluid conduits, of which the first (10a) in each case is at an angular distance from the adjacent seal (11) stationary on the casing which is equal to 180o divided by the number of seals, and in that the second and third connections (10b, 10c), with a given rotational direction of the rotor, lies directly in front of or directly behind an associated seal (11) stationary with the casing; in that the first connection (10a) of the first rotary piston engine unit (10) is connected by a branching first working fluid conduit (18) to the first connection (14b) of the third rotary piston engine unit (14) and to the third connection (16c) of the fourth rotary piston engine unit (16); in that the first connection (12a) of the second rotary piston engine unit (12) is connected by a branching second working fluid conduit (24) to the second connection (16b) of the fourth rotary piston engine unit (16), and to the third connection (14c) of the third rotary piston engine unit (14); in that the first connection (14a) of the third rotary piston engine unit (14) is connected by a branching third working fluid conduit (22) to the second connection (12b) of the second rotary piston engine unit (12) and to the third connection (10c) of the first rotary piston engine unit (10), and in that the first connection (16a) of the fourth rotary piston engine unit (16) is connected by a branching fourth working fluid conduit (20) to the second connection (10b) of the first rotary piston engine unit (10), and to the third connection (12c) of the second rotary piston engine unit (12).
  5. Installation according to claim 4, characterised in that there is disposed, in the portion of the first working fluid conduit (18) adjacent to the first connection (10a) of the first rotary piston engine unit (10), and/or in the portion of the fourth working fluid conduit (20) adjacent to the first connection (16a) of the fourth rotary piston engine unit (16), a compression engine absorbing work, or an expansion engine generating work.
  6. Installation according to claim 5, characterised in that the devices for feed and removal of thermal energy are so designed that, depending on the type of operation, thermal energy is fed to (+) or removed from (-)the piston engine units according to the following table, a plus sign in the line (W) meaning that work is being fed to the system via a compression engine (KM), whereas a minus sign in this line means the removal of energy from the system by an expansion engine (EM):
    Figure imgb0009
  7. Installation for harnessing thermal energy with a closed fluid circuit, in which the volume of the working fluid remains constant throughout the entire working cycle, with at least two piston engine units which form at least four working spaces with variable volume; further with a conduit system interconnecting the at least four working spaces, with a drive device for propelling pistons of the piston engines, the drive device and the conduit system being so designed that the volume of the working spaces which communicate with each other remains constant during movement of the pistons, and with devices for feed and removal of heat to or from the piston engine units, characterised in that:
    - the two piston engine units are rotary piston engine units (710, 712), whose casings each form a substantially cylindrical rotor chamber, and contains as a piston a rotarily-disposed substantially cylindrical rotor which contains at least one pair of diametral elements providing a seal with respect to the casing, and at least one stationary seal with respect to the rotor, and at least one set of three connections (710a, 710b, 710c; 712a, 712b, 712c) for working fluid conduits, of which the first (710a) is at an angular distance from each adjacent seal stationary on the casing which is equal to 180o divided by the number of seals, and in that the second and third seals (710b, 710c; 712b, 712c), with a given rotational direction of the rotor, lie directly in front of or directly behind an associated seal stationary on the casing,
    - in that the devices for feed and removal of heat are so designed that the entire casing of each rotary piston engine unit each operates at a uniform temperature level,
    - in that the first connection (710a) of the first rotary piston engine unit (710) is connected to the first connection (712a) of the second rotary piston engine unit (712) by a first working fluid conduit (717), which contains a compression or expansion engine; in that the second connection (710b) of the first rotary piston engine unit (710) is connected by a second working fluid conduit (721) to the third connection (712c) of the second rotary piston engine unit (712), and in that the third connection (710c) of the first rotary piston engine unit (710) is connected by a third working fluid conduit (723) to the second connection (712b) of the second rotary piston engine unit (712),
    - in that the rotors of the first and of the second rotary piston engine unit are propelled by the drive device synchronously and with the same phase, so that the volume of the first working space (in accordance with connection 710b) of the first rotary piston engine unit changes inversely to the volume of the first working space (in accordance with connection 712c) of the second rotary piston engine unit (712), and the volume of the second working space (in accordance with connection 710c) of the first rotary piston engine unit (710) changes inversely to the volume of the second working space (in accordance with connection 712b) of the second rotary piston engine unit (712).
  8. Installation for harnessing thermal energy with a closed fluid circuit, in which the volume of the working fluid remains constant throughout the entire working cycle, with at least two piston engine units which form at least four working spaces with variable volume; further with a conduit system interconnecting the at least four working spaces, with a drive device for propelling pistons of the piston engines, the drive device and the conduit system being so designed that the volume of the working spaces which communicate with each other remains constant during movement of the pistons, and with devices for feed and removal of heat to or from the piston engine units, characterised in that:
    - the piston engine units are reciprocating piston engine units (910, 912), whose casings each form a working cylinder which contains a piston (K1 or K2), and has at a first and and at a second end opposite said first end connections (910aa, 910ab, 910ba, 910bb or 912aa, 912ab; 912ba, 912bb) for working fluid conduits (917, 919, 921, 923);
    - in that the devices for feed and removal of heat are so designed that the entire casing of each reciprocating piston engine unit operates at a uniform temperature level,
    - in that the pistons (K1, K2) of the two reciprocating piston engine units (910, 912) are propelled by the drive device synchronously and with the same phase, in such a way that they both move synchronously to the first or to the second end;
    - in that a connection (910ab) on the first end of the first piston engine unit (910) is connected to a connection (912ba) on the first end of the second piston engine unit (912) by a first working fluid conduit (917), which contains a compression or expansion engine (919);
    - in that a connection (910bb) on the second end of the first piston engine unit (910) is connected by a second working fluid conduit (919) containing a compression or expansion engine (933), to a connection (912bb) on the second end of the second piston engine unit;
    - in that a connection (910aa) on the first end of the first piston engine unit (910) is connected by a third working fluid conduit (921) to a connection (912ba) at the second end of the second piston engine unit (912),
    - and in that a connection (910ba) on the second end of the first piston engine unit is connected by a fourth working fluid conduit (923) to a connection (912aa) on the first end of the second piston engine unit.
EP19870900725 1985-12-23 1986-12-23 Installation for harnessing thermal energy Expired - Lifetime EP0252137B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3545936 1985-12-23
DE19853545936 DE3545936A1 (en) 1985-12-23 1985-12-23 DEVICE FOR UTILIZING HEATING ENERGY

Publications (2)

Publication Number Publication Date
EP0252137A1 EP0252137A1 (en) 1988-01-13
EP0252137B1 true EP0252137B1 (en) 1993-03-17

Family

ID=6289475

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19870900725 Expired - Lifetime EP0252137B1 (en) 1985-12-23 1986-12-23 Installation for harnessing thermal energy

Country Status (5)

Country Link
US (1) US4819432A (en)
EP (1) EP0252137B1 (en)
JP (1) JP2589521B2 (en)
DE (2) DE3545936A1 (en)
WO (1) WO1987003932A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4024398A1 (en) * 1990-08-01 1992-02-06 Josef Gail Stirling engine with tow cylindrical rotors and absorber - has working spaces in pairs of cylinders connected together by passages through heated and cooled sleeves
DE4238166A1 (en) * 1992-11-12 1994-05-19 Licentia Gmbh Rotary compressor or displacer
DE102009057125B4 (en) * 2009-12-08 2012-03-22 Igor Turchynets Fluid rotary engine with external combustion
CN114127403A (en) 2019-05-21 2022-03-01 通用电气公司 Energy conversion apparatus and control system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1926463A (en) * 1923-07-18 1933-09-12 Elliott J Stoddard Apparatus for obtaining power from compressed air
US3115014A (en) * 1962-07-30 1963-12-24 Little Inc A Method and apparatus for employing fluids in a closed cycle
GB1181533A (en) * 1967-02-20 1970-02-18 John Paine Renshaw Improvements in or relating to "Hot" Gas Engines or Refrigerating Engines Operating on the Reversed Hot Gas Engine Cycle.
FR1528939A (en) * 1967-05-05 1968-06-14 Alcatel Sa Refrigeration and liquefaction device
DE1751704A1 (en) * 1968-07-15 1971-08-05 Guenter Serwatzky Miniature cryogenic cooling machine
US3830059A (en) * 1971-07-28 1974-08-20 J Spriggs Heat engine
JPS5834662B2 (en) * 1976-04-28 1983-07-28 嘉宏 石崎 rotary stirling engine
DE2635971A1 (en) * 1976-08-10 1978-02-23 Borsig Gmbh HEAT PUMP
IT1117927B (en) * 1977-11-21 1986-02-24 Romano Giuliano CLOSED THERMODYNAMIC MACHINE
US4179890A (en) * 1978-04-04 1979-12-25 Goodwin Hanson Epitrochoidal Stirling type engine
DE3237841A1 (en) * 1982-10-12 1984-04-12 Franz X. Prof. Dr.-Ing. 8000 München Eder Thermally operated heat pump
DE3536710A1 (en) * 1985-10-15 1987-04-23 Schneider Christian Dipl Ing Heat converter and method of operating it

Also Published As

Publication number Publication date
WO1987003932A1 (en) 1987-07-02
DE3688076D1 (en) 1993-04-22
US4819432A (en) 1989-04-11
EP0252137A1 (en) 1988-01-13
JP2589521B2 (en) 1997-03-12
DE3545936A1 (en) 1987-08-20
JPS63502127A (en) 1988-08-18

Similar Documents

Publication Publication Date Title
EP1017933B1 (en) Method and device for entropy transfer with a thermodynamic cyclic process
DE2109891B2 (en) Thermodynamic machine as a cooling machine or heat engine
EP3390785A1 (en) Constant-pressure multi-compartment vessel, thermodynamic energy converter and operating method
DE4336982A1 (en) Power generation facility
EP0252137B1 (en) Installation for harnessing thermal energy
EP0607154B1 (en) Energy converter on the hot-air engine principle
DE4018943A1 (en) Piston engine for use in regenerative cycles - produces optimum time slope using rotating eccentric transmission
DE19814742C1 (en) Rotary heat engine
DE29804607U1 (en) Rotary piston machine
EP0597367A1 (en) Rotary compressor
DE2923621A1 (en) THERMAL DRIVE
DE2055738A1 (en) Balanced free piston machine
EP1682749B1 (en) Rotary piston thermal engine device
WO2011131373A1 (en) Heat engine with an isochoric-isobaric cyclic process
DE2518554A1 (en) Continuous combustion type IC engine - has heat exchanger, combustion chamber, reciprocating rotary piston compressor and/or expander
DE2225816A1 (en) Cooling system
DE2219479A1 (en) DYNAMIC REGENERATIVE HEAT EXCHANGER
DE4010206A1 (en) Wankel type rotary engine - operates on Stirling cycle with heated and cooled casing portions
WO2002084078A1 (en) Rotary piston thermal engine device
DE102010013620B4 (en) Hot gas engine with rotating segmented pistons
DE69816446T2 (en) THERMAL MACHINE
DE2045759C3 (en) Reciprocating heat engine for generating hydraulic energy
DE3536710A1 (en) Heat converter and method of operating it
DE19860522C1 (en) Heat engine has working pistons coupled to power transmission block sliding in guides
DE4320356A1 (en) Displacement-type Stirling heat engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19871222

17Q First examination report despatched

Effective date: 19880421

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 3688076

Country of ref document: DE

Date of ref document: 19930422

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

RIN2 Information on inventor provided after grant (corrected)

Free format text: DOETSCH, HANS, PETER * KRAUSS, HELMUT * HOEFER, HANS * SCHNEIDER, CHRISTIAN

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

RIN2 Information on inventor provided after grant (corrected)

Free format text: SCHNEIDER, CHRISTIAN * DOETSCH, HANS, PETER * KRAUSS, HELMUT * HOEFER, HANS

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930713

ITTA It: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 87900725.0

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20041214

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20041220

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20041221

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20041228

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20041229

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050225

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051223

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060701

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20051223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20060701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060831