EP0596016A1 - Procede et appareil de reformage du fond d'une boite afin d'ameliorer la resistance. - Google Patents

Procede et appareil de reformage du fond d'une boite afin d'ameliorer la resistance.

Info

Publication number
EP0596016A1
EP0596016A1 EP92916852A EP92916852A EP0596016A1 EP 0596016 A1 EP0596016 A1 EP 0596016A1 EP 92916852 A EP92916852 A EP 92916852A EP 92916852 A EP92916852 A EP 92916852A EP 0596016 A1 EP0596016 A1 EP 0596016A1
Authority
EP
European Patent Office
Prior art keywords
wall
container
roller
reforming
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92916852A
Other languages
German (de)
English (en)
Other versions
EP0596016A4 (fr
EP0596016B1 (fr
Inventor
Andrew Halasz
Sylvan Praturlon
Paul Azzaline
Christopher Caliendo
Richard D Zenger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rexam Beverage Can Co
Original Assignee
American National Can Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/735,994 external-priority patent/US5222385A/en
Application filed by American National Can Co filed Critical American National Can Co
Publication of EP0596016A1 publication Critical patent/EP0596016A1/fr
Publication of EP0596016A4 publication Critical patent/EP0596016A4/fr
Application granted granted Critical
Publication of EP0596016B1 publication Critical patent/EP0596016B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/12Cans, casks, barrels, or drums
    • B65D1/14Cans, casks, barrels, or drums characterised by shape
    • B65D1/16Cans, casks, barrels, or drums characterised by shape of curved cross-section, e.g. cylindrical
    • B65D1/165Cylindrical cans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/30Deep-drawing to finish articles formed by deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/26Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner

Definitions

  • the invention relates generally to a method and apparatus for forming an improved, reformed can bottom, with a result that the entire can is strengthened.
  • this method and apparatus are used for reforming the bottoms of drawn and ironed beverage containers.
  • the reformed can bottom is an integral part of beer and beverage cans, and increases the strength of those cans above that of prior art cans.
  • Metal containers, and drawn or drawn and ironed metal containers in particular, are among the most widely used containers for pressurized carbonated beverages, including such beverages as beer and soft drinks. Such containers are also becoming increasingly popular for food and other uses.
  • Drawn and ironed metal containers are made from a disc of stock material which is converted into a shallow "cup" with short side walls.
  • the base of this cup ultimately forms the bottom of the container, and the short side walls of the cup become the elongated side walls of the container.
  • the shallow cup is passed through a succession of ironing rings. As the spacing between successive rings becomes increasingly narrow, passage of the cup through these successive rings decreases the sidewall thickness and increases the height of the side walls.
  • 3,904,069, 3,979,009 and 4,412,627 disclose containers having bottom wall constructions designed to permit selected and controlled outward flexing or bulging of the bottom wall when the container is sealed and subjected to internal pressures developed by the con- tents.
  • the invention is a method of and apparatus for reforming the bottom of a metal container as, for example, a drawn and ironed or a drawn beverage contain- er, and the container formed by this method and appara ⁇ tus.
  • the container for which this method is suitable may have a longitudinal axis, typically a vertical axis, a generally cylindrical side wall parallel with the vertical axis, an outer annular wall, a convex U-shaped portion, a preformed bottom wall including a center domed portion, and an annular, substantially vertical wall joining the domed portion and the convex U-shaped portion.
  • One aspect of the method comprises supporting the container in a jig.
  • the jig has a bottom peripheral profile portion substantially corresponding in shape to the outer annular wall of the container.
  • the bottom peripheral profile portion of the jig is then mated with the outer annular wall.
  • a reforming means such as a reforming roller is brought into engagement with the substantially vertical wall.
  • the reforming roller rotates along the vertical wall and about an arcuate path, affecting the angle of the substantially vertical wall.
  • the reforming roller farther reduces the radius of curvature of the inner curved portion of the convex U- shaped portion.
  • the reforming means or roller affects the angle of the substantially vertical wall, achieving a negative angle from the vertical axis of the container.
  • the reforming means or roller is rotated about an arcuate path equidistant from an axis that is coaxial with the vertical axis of the container.
  • the reforming means or roller has a peripheral configura ⁇ tion which, upon engagement with the substantially vertical wall, reforms the substantially vertical wall to achieve the desired negative angle from the vertical axis of the container.
  • an actuator moves upwardly and towards the can to cause radial, outward movement of a camming surface.
  • a roller that moves as a result of the movement of this camming surface is caused to engage a substantially vertical wall.
  • This roller may pivot, about a horizontal pivot point, from an inward non-engaging position to a radially outward position where the roller engages the substantially vertical wall.
  • annular recess is formed in the radially outward portion of the convex U-shaped portion, as by a roller, to further increase the container's resistance to pressure.
  • This application is also directed to an apparatus which can be used to practice the method of the inven ⁇ tion, and the container formed by the method and appara ⁇ tus of the invention.
  • the apparatus reforms the bottom wall of a container, and comprises means for supporting the container for reforming and a reforming tool for pressure engagement with the bottom wall to reform that bottom wall.
  • Figure 1 is a top view of a pivoting apparatus for reforming a can bottom in accordance with the invention, and in a radially inward, non-engaging position.
  • Figure 1A is a view of the apparatus of Figure 1, but with the rollers in a radially outward position and engaging the wall of a container.
  • Figure 2 is a side-sectional view of the appara- tus of Figure 1, and with a container shown in solid lines above the apparatus and in phantom lines in place for processing by the apparatus.
  • Figure 3 is a detail of a portion of the appara ⁇ tus of Figure 2, showing the pivot pin about which the roller pivots.
  • Figure 4 is a top view of a second pivoting embodiment of the apparatus in accordance with the invention.
  • Figure 5 is a side-sectional view of the appara- tus of Figure 4, and with a container shown in solid lines above the apparatus and in phantom lines in place for processing by the apparatus.
  • Figure 6 is a top view of a third pivoting embodiment of the apparatus in accordance with the invention.
  • Figure 7 is a side-sectional view of the appara ⁇ tus of Figure 6, and with a container shown in solid lines above the apparatus and in phantom lines in place for processing by the apparatus.
  • Figure 8 is a side perspective view of a container which is suitable for treatment by the process and apparatus of the invention.
  • Figure 9 is an enlarged view of the lower left hand corner of the container of Figure 8, prior to reforming.
  • Figure 10 is an enlarged view of the lower left hand corner of the container of Figure 8, after refor ⁇ ming.
  • Figure 11 is a top view of a non-pivoting embodi- ment of the apparatus in accordance with the invention.
  • Figure 12 is a side-sectional view of the appara ⁇ tus of Figure 11, and with a container shown in solid lines above the apparatus and in phantom lines in place for processing by the apparatus.
  • Figure 13 is a top view of a second non-pivoting embodiment of the apparatus in accordance with the invention.
  • Figure 14 is a side-sectional view of the appara ⁇ tus of Figure 13, and with a container shown in solid lines above the apparatus and in phantom lines in place for processing by the apparatus.
  • Figure 15 is a detail of the roller and bearing of Figure 14, taken along lines 15-15 of Figure 13.
  • Figure 16 is a top view of a third non-pivoting embodiment of the apparatus in accordance with the invention.
  • Figure 17 is a . side-sectional view of the appara ⁇ tus of Figure 16, and with a container shown in solid lines above the apparatus and in phantom lines in place for processing by the apparatus.
  • Figure 18 is a detail of the actuator and dove ⁇ tail slide portion of a portion of the apparatus of Figure 16, taken along lines 18-18 of Figure 16.
  • Figure 19 is a side-sectional view of a fourth non-pivoting apparatus in accordance with the invention, including a single roller, and with a container shown in solid lines above the apparatus and in phantom lines in place for processing by the apparatus.
  • Figure 20 is a photographic profile of a cross- section of a lower portion of a can reformed by a prior art process.
  • Figure 21 is a photographic profile of a cross- section of a lower portion of a can reformed by the process of the present invention.
  • Figure 22 is a photographic profile of a cross- section of a lower portion of a "control" can prior to reforming.
  • Figure 23 is an enlarged cross-sectional view of an alternative embodiment of a bottom profile of a container with improved resistance of internal pressure.
  • the bottom profile or countersink area of the bottom wall is reshaped. This is done by reforming the inner wall of the countersink to further improve buckle resistance and decrease can growth.
  • the finished drawn and ironed container of Figure 11 is supported in a suitable jig that has an internal opening which corresponds to the outer peripheral diameter of the container.
  • the jig has a lower profile portion that conforms to the countersink wall portion at the bottom wall of the container.
  • a plug is inserted into the upper end of the opening and securely held in the top of the container. During processing, this container is rotated about its axis. The bottom peripheral profile of the jig is in extended contact with the container bottom.
  • a reforming roller is brought into engagement with the substantially vertical wall of the domed end of the container and is supported on a shaft. That shaft is designed to be rotated along an arcuate path around the center axis for the container.
  • the roller has a peripheral configuration which defines a substantially vertical upwardly and outwardly tapered wall having a generally arcuate upper portion.
  • the inner wall of the countersink is reformed to a more vertical profile while the dome is stretched to a small degree.
  • the outer wall is held to its original configuration. Alternatively, the outer wall could also be reformed with the inner wall, as will be explained below.
  • the container produced according to the method and apparatus described in the co-pending application exhibited significantly greater column strength, i.e., resistance to crushing by vertical loads applied to the container side wall. That container also exhibited significantly less container growth during internal pressurization and improved buckle resistance.
  • the container constructed in accordance with that invention was thus capable of being produced from stock flat disc material having a significantly reduced thickness.
  • the present invention is a further elaboration and refinement upon the invention described in the co- pending application.
  • the invention is directed to a container 20, such as a drawn or drawn and ironed container shown in Figure 8.
  • a container 20 such as a drawn or drawn and ironed container shown in Figure 8.
  • This container 20 is symmetrical about a vertical axis 22.
  • a generally cylindrical side wall 24 parallel with this vertical axis forms the panel on which graphics, such as a bottler's trademark, may be printed.
  • An outer annular wall 26 forms a transitional portion between this side wall 24 and a convex, U-shaped portion 28 that defines a flange- like ridge.
  • the outer annular wall 26 and U-shaped portion 28 enable these cans to be stacked. In particu ⁇ lar, the bottom of a first can may be securely nested into the top of a second can.
  • the container 20 also includes a preformed bottom wall 30 including a center domed portion 32.
  • An annular, substantially vertical wall 34 joins the domed portion 32 to the convex U-shaped portion 28.
  • This "substantially vertical wall,” for the purposes of this application, has an angle from the vertical of 0 to +5 degrees, and may be as high as +10 degrees. A positive angle is shown by angle C in Figure 9.
  • one such apparatus includes a plurality of rollers 36.
  • three rollers 36 may be used.
  • the use of three rollers 36 has advantages over the use of fewer rollers, for example, a single roller.
  • These rollers 36 are used to contact the annular, substantially vertical wall 34.
  • the use of one roller would concentrate the force transferred from the roller 36 to the wall 34 in a single direction.
  • three rollers 36 will spread the force on this wall 34 over three points, thus imposing a net force of zero on the can.
  • a greater number of rollers also results in a faster cycle for reforming.
  • each of these rollers 36 is indirectly secured to a pivot plate 38. Securing the rollers 36 are a bearing clamp 40 and a bearing 42.
  • Each of the pivot plates 38 are designed to pivot around their respective pivot pin 44 ( Figure 1) . In this embodiment, this pivot pin 44 is vertically disposed. As will be seen in other embodiments, however, other pivot pins may instead be horizontally disposed.
  • a tooling head collar 46 provides a support surface for a jig 48, or lower can support.
  • This jig 48 is removable from the tooling head collar 46 and may be interchanged with another jig having a different shape to accommodate containers having various different lower end configurations.
  • the jig provides radially inward support to. counter the outward force of the rollers.
  • Each jig 48 is manufactured to accommodate and support a given size container 20. Accordingly, a bottom peripheral profile portion 50 of the jig 48 substantially corresponds in shape to the outer annular wall 26 of the container 20. As will be explained below, this bottom peripheral profile portion 50 of the jig 48 is mated with the outer annular wall 26 of the container 20. In the embodiment shown in Figure 2, it may be seen that the lowermost part 52 of this jig 48 also corresponds in shape to the radially outermost region of the convex U- shaped portion 28. In this way, the jig 48 provides greater support around the circumference of the container 20.
  • bearing housings 54 Supporting the bearings 42 and enclosing portions of the reforming rollers 36 are bearing housings 54. These bearing housings 54 are fixedly secured to their respective pivot plates 38. Thus, the motion of the pivot plates 38 and the bearing housings 54 is synchro ⁇ nous. Movement of the pivot plates 38 and bearing housings 54 is facilitated by a vertically movable actuator ball 56. As shown in Figure 2, this actuator ball 56 is positioned in a first, non-engaging position. In this position, the actuator ball 56 merely abuts against camming surfaces 58 on the bearing housing 54. Upward, vertical movement urges the actuator ball 56 to a second position in which it contacts and pushes upwardly on camming surfaces 58.
  • Figures 9 and 10 depict a vertical line V- V.
  • Vertical line V-V is coincident with the vertical axis of container 20.
  • Figure 9 shows a container 20 before reforming.
  • the wall is substan- tially vertical and may even have a so-called "positive" angle.
  • a positive angle is one in which wall 34 angles upwardly and to the right of line V-V.
  • An example of a positive angle appears as angle C in Figure 9.
  • this wall 34 is reformed and may achieve a negative angle A. Additionally, the radius of curvature R is reduced.
  • the results of reforming are shown, for example, in Figure 10. As a result of this negative angle and reduced radius, as will be described below, container 20 has enhanced physical characteristics.
  • One advantage of the apparatus as shown in the present embodiments is that it is adaptable for containers having various bottom sizes. In many instan- ces, one three-roller mechanism will be useful for reworking the inner walls of several different sizes of cans. To the extent that a roller mechanism may not be useful for a particular size can, an advantage of the present apparatus is that one need only change its rollers to enable the apparatus to rework the inner wall of the container.
  • the pivot pin is substantially vertically disposed. As a result, the pivoting of the bearing housing 54 and the pivot plate 38 occur in a horizontal plane.
  • Other embodiments, as described below, will include horizontal pivot pins, causing pivoting of the bearing housing and pivot plate in a vertical plane.
  • the reforming rollers 36 have a perimeter portion 60 that is downwardly tapered. It is this downwardly tapered configuration 60 which, when rollers 36 are placed against the substantially vertical wall 34, results in the reformation of that substantially vertical wall 34 to a wall having a negative angle.
  • the apparatus of Figures 4-5 works in a slightly different manner than the apparatus of Figures 1-3.
  • the rollers 36 upon completion of refor ⁇ ming, the rollers 36 are retracted from the wall 34 and returned to their original position as a result of both applied pressure from an extension spring 62 and retrac ⁇ tion of the actuator ball 56.
  • the rollers 36a upon completion of the reforming, the rollers 36a are retrac- ted from the wall 34 and returned to their original position as a result of both applied pressure from a compression spring 62a and retraction of actuator ball 56a.
  • FIG. 6 and 7 Still another embodiment is shown in Figures 6 and 7.
  • This embodiment also includes three rollers 64. As may be seen in Figure 7, each of these rollers 64 is indirectly secured to a pivot plate 66. Securing the rollers 64 are a bearing clamp 68 and at least one bearing 70. Each of the pivot plates 66 are designed to pivot around their respective pivot pin 72. As may be seen in Figure 7, this pivot pin 72 is horizontally disposed. As a result, the pivoting of the bearing housing 74 and the pivot plate 66 occur in a vertical plane.
  • the embodi ⁇ ment includes a tooling head collar 76 to provide a support surface for a jig 78, or lower can support. This jig 78 is also removable from the tooling head collar 76 and may be interchanged with another jig having a different shape to accommodate containers having various different lower end configurations.
  • a vertically movable actuator 80 As shown in Figure 7, this actuator 80 is positioned in a first, non-engaging position. In this position, the actuator 80 merely abuts against camming surfaces 82 on the bearing housing 74.
  • This coil spring 84 encircles and is held upon a retaining post 86.
  • the coil spring 84 is tensioned by compressing it between the top, abutting surfaces of bearing housings 74 and hex nut 88 secured to retaining post 86.
  • Still other embodiments of the present apparatus are depicted at Figures 11-19. As will be seen, the apparatus of these embodiments does not include a pivot pin for moving the rollers into engagement with the vertical wall 34 of the container 20. In many other respects, however, these apparatuses are similar to those shown in Figures 1-7.
  • the apparatus of Figure 11 includes three rollers 90 secured to a bearing housing 92 with a bearing 94 and a bearing clamp 96.
  • the solid lines of Figure 12 show these rollers in a radially inward position, where the rollers 90 do not contact the annular, substantially vertical wall 34.
  • These rollers 90 are movable from this position to a radially outward position where the roller contacts the annular, substan- tially vertical wall 34.
  • Bearing housings 92 are spring-biased.
  • a tensioned garter spring 98 ( Figure 12) encircles the lower periphery of bearing housings 92.
  • the housings 92 and their related rollers 90 are retained by the garter spring 98 in a radially inward position.
  • the second position of the bearing housings 92 is shown in the solid lines of Figure ll.
  • the housings 92 attain this position when actuator 100 is moved upwardly against camming surfaces 102 of housing 92. This upward movement of actuator 100 pushes housings 92 radially outwardly until rollers 90 contact the annular, substan ⁇ tially vertical wall 34.
  • the actuator 100 Upon completion of treatment of the wall 34 with rollers 90, the actuator 100 is with ⁇ drawn and garter spring 98 urges the bearing housings 92 back into their first position.
  • the embodiment of Figures 11 and 12 includes a jig 104 to support the container along a bottom peripheral profile portion 106 that substantially corresponds in shape to the outer annular wall 26 of the container 20.
  • the perimeter 108 of the rollers 90 also include a downwardly tapered configuration which, when placed against the substantially vertical wall 34, reforms that wall 34 to achieve a negative angle relative to the vertical axis of the container 20.
  • FIG. 13-15 Another three-roller, non-pivoting embodiment of the apparatus of the invention is shown in Figures 13-15.
  • the spring 110 is horizontally disposed and acts along a horizontal plane.
  • spring 110 is in contact with the bearing housing 112 to bias that housing 112 in a radially inward direction.
  • the apparatus of Figure 13 also includes three rollers 114 secured to bearing housing 112 with a bearing 116 and a bearing clamp 118. These rollers 114 are movable from their first position, as shown in Figures 13-15, to a radially outward position where the rollers 114 contact the annular, substantially vertical wall 34 of container 20. Upward movement of actuator 120 pushes housings
  • FIG. 16-18 Still another non-pivoting embodiment of the apparatus of the invention is shown in Figures 16-18.
  • conventional rollers are not used.
  • four radially moveable or expandable segments 124 are mounted to the apparatus for radial movement towards and away from the container 20.
  • these segments 124 are shown in their normal, radially inward position. They are held in this position by a plurality of horizontally tensioned springs 126.
  • Each of these segments 124 which are an alterna- tive type of roller means, may be secured to a housing 128.
  • housings 128 When an actuator 130 is moved vertically upwardly against camming surfaces 132, housings 128 are pushed radially outwardly, as shown in the solid lines of Figure 16, until roller segments 124 contact the annular, substantially vertical wall 34.
  • the actuator 130 Upon completion of treatment of the wall 34 with roller segments 124, the actuator 130 is withdrawn and springs 126 urge the housings 128 back into their first position.
  • FIG. 19 A final version of a non-pivoting embodiment of the apparatus is shown in Figure 19.
  • This roller 134 has a substan ⁇ tially larger diameter than the rollers of the other embodiments. In fact, the diameter of this roller 134 is in excess of 80 percent of the distance between opposite, facing walls 34. This distance is referred to as "D" in Figure 19.
  • this embodiment includes a compression spring 136 which acts along a horizontal plane.
  • roller 134 is in contact with the housing 138 to bias that housing 138 in a rightward direction.
  • Roller 134 is movable from its first position, as shown in Figure 19, to a radially outward position where the roller 134 contacts the annular, substantially vertical wall 34.
  • actuator 140 is vertically movable, as in the apparatus of the previously described embodiments.
  • the actuator 140 encircles a dovetailed collar 142, and this collar 142 is fixed.
  • Housing 138 is horizontally movable when it is contacted by the upwardly-moving actuator 140.
  • the horizontal movement of the housing 138 is guided by a dovetail groove in collar 142.
  • Housing 138 abuts against camming surface 146.
  • spring 136 biases the housing 183 to the right.
  • housing 138 is moved to the right along the camming surface 146.
  • This rightward movement of the housing 138 continues until the periphery of roller 134 contacts the wall 34 of container 20. Reforming takes place in the same manner as with a three-roller appara ⁇ tus, but at only one point along the wall 34.
  • the actuator 140 is lowered and the weight of the housing/roller combination moves that assembly back onto the collar 142, i.e., to the first position of the device.
  • This collar 142 acts as a limit on the downward movement of the housing 138.
  • Figure 9 shows a container before bottom reforming.
  • the wall 34 in this figure is substantially vertical and may, in fact, have a slight positive angle.
  • a wall 34 having a slight positive angle would angle upwardly and to the right from vertical line V-V.
  • diameter DI is greater than diameter D2.
  • the container of Figure 8 that may be reformed in accordance with this invention is generally symmetrical about a vertical axis 22.
  • the container includes a generally cylindrical side wall 24 parallel with the vertical axis 22.
  • the container 20 also includes an outer annular wall 26, a convex U-shaped portion 28, a preformed bottom wall 30, including a center domed portion 32 and an annular, substantially vertical wall 34 joining the domed portion 32 and the convex U-shaped portion 28.
  • the method of the present invention may be described with reference to the various apparatuses shown in the figures, including the apparatus of Figures 1-3.
  • the method comprises several steps.
  • the container 20 is supported on a jig 48.
  • This jig 48 has a bottom peri ⁇ pheral profile portion 50 substantially corresponding in shape to the outer annular wall 26 of the container 20.
  • Reforming rollers 36 are brought into engagement with the substan ⁇ tially vertical wall 34.
  • the reforming rollers 36 rotate along the vertical wall 34 and about an arcuate path. Through this action, the reforming rollers 36 affect the angle of the substantially vertical wall 34.
  • the angle of the substantially vertical wall 34 is changed to a negative angle from the vertical axis of the container 20.
  • the outer wall 148 is held against movement by the bottom peripheral profile portion
  • the outer wall 148 may instead not be held against movement by the bottom peripheral profile portion 50.
  • the internal forming force of the reforming means may also cause the outer wall 148 to be reformed simultaneously with the reforming of vertical, inner wall 34, i.e., while the reforming means is being brought into contact with the inner wall 34.
  • the reforming rollers 36 of this apparatus are rotated about an arcuate path equidistant from an axis that is coaxial with the axis 22 of the container.
  • the reforming roller 134 of that apparatus may be rotated about an arcuate path that is equidistant from an axis that is not coaxial with the axis 22 of the container 20. This occurs because in order to contact wall 34, the roller 134 is shifted to the right of its position as shown in Figure 19.
  • the roller has a peripheral configuration which, upon engagement with the substantially vertical wall, reforms the substantially vertical wall to achieve a negative angle from the vertical axis of the container. Rollers having such peripheral configurations are shown in Figures 2, 5, 7, 12, 14, 17 and 19.
  • an actuator is moved upwardly and towards the can to move a camming surface and its housing in a radially outward direction.
  • a roller movable with the camming surface engages the substantially vertical wall.
  • the roller pivots about a horizontal pivot point.
  • the apparatus may include a horizontal pivot point about which the roller pivots from an inward non- engaging position to a radially outward position wherein the roller engages the substantially vertical wall.
  • the wall 34 exhibits a slight negative angle A.
  • the preferred angle A for an ANC-2A can should be no more than approximately -4 degrees from the vertical line V-V. It is believed that enhanced container characteristics could be attained by providing wall 34 with an angle of as much as -8 to -10 degrees.
  • a wall 34 having a slight negative angle would angle upwardly and to the left from vertical line V-V.
  • diameter.DI would be less than diameter D2. The value of the preferred negative angle will vary with each different type of container.
  • buckle strength of treated cans increased from an average of about 99 to an average of 112.
  • the growth in the dome which results in a downward extension of the U- shaped portion 28 of the container of Figure 9, decreased markedly from an average of 0.055 to 0.006 inches.
  • a number of standard ANC-2A cans were reformed.
  • the outside of the countersink was reformed in accordance with a CMB method and its results are shown in Table 3.
  • a photographic profile of a lower portion of one of these Cans is shown in Figure 20.
  • the second set of cans was reformed on the inside of the countersink in accordance with the present invention and its results are shown in Table 4.
  • a photographic profile of a lower portion of one of these cans is shown in Figure 21.
  • Table 5 shows results from "control" cans, i.e., standard ANC-2A cans prior to reforming of any kind. A photographic profile of a lower portion of one of these cans is shown in Figure 22.
  • dome growth in the untreated can of Table 5 averages 0.050 inches. Both reformed cans show improvement, but the average dome growth of the can reformed in accordance with the present invention is significantly superior (0.005 vs. 0.010 inches). Buckle strength is also somewhat improved (109 vs. 106) . Finally, while average vertical crush of the present reformed cans (313) remains virtually the same as the control can (317) , average vertical crush drops significantly (279) after reforming by the CMB method.
  • FIG. 23 An alternative embodiment of the bottom profile is disclosed in Figure 23.
  • addi- tional strength is achieved by reforming the outer wall 148• .
  • Part of the buckle phenomenon is that when the countersink wall inverts, a countersink diameter change takes place.
  • a spun in annular ' recess 150 on the outer wall 148' will increase the container's 20 resis- tance to pressure.
  • the annular recess 150 may be formed continuously around the outer wall 148' or as a plurality of segments spaced circumferentially around the outer wall 148'.
  • the annular recess 150 is preferably formed by pressure engagement of the outer wall 148' with a forming tool 152.
  • the annular recess preferably has an arcuate cross-sectional shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Rigid Containers With Two Or More Constituent Elements (AREA)
  • Stackable Containers (AREA)
  • Crushing And Grinding (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Packging For Living Organisms, Food Or Medicinal Products That Are Sensitive To Environmental Conditiond (AREA)

Abstract

Procédé et appareil de reformage du fond d'un conteneur (20) et conteneur ou boîte métallique pour boisson fabriqué par ce procédé. Le conteneur pour lequel ce procédé et cet appareil sont destinés, possède une paroi externe annulaire (26), une partie convexe en forme de U (28), un paroi de fond préformée (30) comprenant une partie centrale en dôme (32), et une paroi annulaire (34) joignant la partie en dôme et la partie convexe en U. Le procédé consiste à soutenir la partie de profil périphérique du fond et à amener des moyens de reformage (36) en contact avec la paroi annulaire. Le dispositif de reformage s'appuie contre la paroi annulaire pour la retravailler. Le dispositif de reformage peut également reformer la paroi annulaire externe.
EP92916852A 1991-07-25 1992-07-27 Procede et appareil de reformage du fond d'une boite afin d'ameliorer la resistance Expired - Lifetime EP0596016B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US735994 1991-07-25
US07/735,994 US5222385A (en) 1991-07-24 1991-07-25 Method and apparatus for reforming can bottom to provide improved strength
PCT/US1992/006198 WO1993001903A1 (fr) 1991-07-25 1992-07-27 Procede et appareil de reformage du fond d'une boite afin d'ameliorer la resistance

Publications (3)

Publication Number Publication Date
EP0596016A1 true EP0596016A1 (fr) 1994-05-11
EP0596016A4 EP0596016A4 (fr) 1994-12-07
EP0596016B1 EP0596016B1 (fr) 1996-10-23

Family

ID=24958048

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92916852A Expired - Lifetime EP0596016B1 (fr) 1991-07-25 1992-07-27 Procede et appareil de reformage du fond d'une boite afin d'ameliorer la resistance

Country Status (10)

Country Link
EP (1) EP0596016B1 (fr)
JP (1) JP3519734B2 (fr)
KR (1) KR100260999B1 (fr)
AT (1) ATE144444T1 (fr)
AU (1) AU667208B2 (fr)
CA (1) CA2112975C (fr)
DE (1) DE69214821T2 (fr)
ES (1) ES2094364T3 (fr)
GR (1) GR3021525T3 (fr)
WO (1) WO1993001903A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9726009D0 (en) * 1997-12-10 1998-02-04 Metal Box Plc Can base reforming
US6419110B1 (en) 2001-07-03 2002-07-16 Container Development, Ltd. Double-seamed can end and method for forming
US7506779B2 (en) * 2005-07-01 2009-03-24 Ball Corporation Method and apparatus for forming a reinforcing bead in a container end closure
JP6414958B2 (ja) * 2014-08-27 2018-10-31 ユニバーサル製缶株式会社 缶の製造方法、ボトムリフォーム機構及びこれに用いるボトム支持部材

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US744672A (en) * 1902-11-03 1903-11-17 J P Lindemann & Sons Device for crimping sheet-metal elbows and pipe.
US1524946A (en) * 1923-03-17 1925-02-03 Holland Furnace Co Bead-forming machine
US2158312A (en) * 1936-02-07 1939-05-16 Borg Warner Machine for making a barrel
US2618182A (en) * 1946-11-18 1952-11-18 Perfect Circle Corp Knurling tool for internal cylindrical surfaces
GB2114031B (en) * 1982-02-02 1985-10-09 Metal Box Plc Method of forming containers
US5105973B1 (en) * 1990-10-22 1998-06-02 Ball Corp Beverage container with improved bottom strength
MX9101632A (es) * 1990-10-22 1992-06-05 Ball Corp Metodo y aparato para reforzar la base o fondo de un recipiente

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
No further relevant documents disclosed *
See also references of WO9301903A1 *

Also Published As

Publication number Publication date
AU667208B2 (en) 1996-03-14
JP3519734B2 (ja) 2004-04-19
WO1993001903A1 (fr) 1993-02-04
DE69214821D1 (de) 1996-11-28
DE69214821T2 (de) 1997-05-28
CA2112975A1 (fr) 1993-02-04
ATE144444T1 (de) 1996-11-15
JPH06509513A (ja) 1994-10-27
EP0596016A4 (fr) 1994-12-07
ES2094364T3 (es) 1997-01-16
GR3021525T3 (en) 1997-01-31
CA2112975C (fr) 2002-07-23
KR100260999B1 (ko) 2000-07-01
AU3320093A (en) 1993-02-23
EP0596016B1 (fr) 1996-10-23

Similar Documents

Publication Publication Date Title
US5697242A (en) Method and apparatus for reforming can bottom to provide improved strength
US5540352A (en) Method and apparatus for reforming can bottom to provide improved strength
EP0885076B1 (fr) Appareil et procede utilisant une matrice a paliers pour retreindre des receptacles
EP0899199B1 (fr) Récipient et procédé pour renforcer le fond d' un récipient
US5279442A (en) Drawn and ironed container and apparatus and method for forming same
US4578007A (en) Reforming necked-in portions of can bodies
US5349837A (en) Method and apparatus for processing containers
MXPA05010590A (es) Metodo y aparato para re-moldear y re-contornear una parte inferior de un contenedor.
EP0348070B1 (fr) Procédé de freinage à rouleaux et appareil pour réaliser ce procédé
AU667208B2 (en) Method and apparatus for reforming can bottom to provide improved strength
AU655754B2 (en) Method and apparatus for processing containers
JP2001121231A (ja) 容器の端部を修正する方法及び装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE

A4 Supplementary search report drawn up and despatched

Effective date: 19941024

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE

17Q First examination report despatched

Effective date: 19950404

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19961023

Ref country code: LI

Effective date: 19961023

Ref country code: DK

Effective date: 19961023

Ref country code: CH

Effective date: 19961023

REF Corresponds to:

Ref document number: 144444

Country of ref document: AT

Date of ref document: 19961115

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: BUZZI, NOTARO&ANTONIELLI D'OULX

REF Corresponds to:

Ref document number: 69214821

Country of ref document: DE

Date of ref document: 19961128

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3021525

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2094364

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980131

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110805

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20110726

Year of fee payment: 20

Ref country code: DE

Payment date: 20110727

Year of fee payment: 20

Ref country code: AT

Payment date: 20110705

Year of fee payment: 20

Ref country code: GB

Payment date: 20110725

Year of fee payment: 20

Ref country code: GR

Payment date: 20110726

Year of fee payment: 20

Ref country code: SE

Payment date: 20110727

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110727

Year of fee payment: 20

Ref country code: BE

Payment date: 20110728

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69214821

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69214821

Country of ref document: DE

BE20 Be: patent expired

Owner name: *REXAM BEVERAGE CAN CY

Effective date: 20120727

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20120726

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 144444

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120727

REG Reference to a national code

Ref country code: GR

Ref legal event code: MA

Ref document number: 960402888

Country of ref document: GR

Effective date: 20120728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120728

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120726

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120728