EP0594424B1 - Lampe fluorescente avec un mélange amélioré de matière fluorescente - Google Patents

Lampe fluorescente avec un mélange amélioré de matière fluorescente Download PDF

Info

Publication number
EP0594424B1
EP0594424B1 EP93308376A EP93308376A EP0594424B1 EP 0594424 B1 EP0594424 B1 EP 0594424B1 EP 93308376 A EP93308376 A EP 93308376A EP 93308376 A EP93308376 A EP 93308376A EP 0594424 B1 EP0594424 B1 EP 0594424B1
Authority
EP
European Patent Office
Prior art keywords
activated
phosphor
lamp
colour
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93308376A
Other languages
German (de)
English (en)
Other versions
EP0594424A1 (fr
Inventor
Romano G. Pappalardo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flowil International Lighting Holding BV
Original Assignee
Flowil International Lighting Holding BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flowil International Lighting Holding BV filed Critical Flowil International Lighting Holding BV
Publication of EP0594424A1 publication Critical patent/EP0594424A1/fr
Application granted granted Critical
Publication of EP0594424B1 publication Critical patent/EP0594424B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7737Phosphates
    • C09K11/7738Phosphates with alkaline earth metals
    • C09K11/7739Phosphates with alkaline earth metals with halogens
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7777Phosphates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/38Devices for influencing the colour or wavelength of the light
    • H01J61/42Devices for influencing the colour or wavelength of the light by transforming the wavelength of the light by luminescence
    • H01J61/44Devices characterised by the luminescent material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/38Devices for influencing the colour or wavelength of the light
    • H01J61/42Devices for influencing the colour or wavelength of the light by transforming the wavelength of the light by luminescence
    • H01J61/48Separate coatings of different luminous materials

Definitions

  • This invention relates to a fluorescent lamp having on its interior surface a phosphor coating for converting ultraviolet radiation to visible light having a white colour, the coating comprising (i) a halophosphate phosphor and (ii) a quad phosphor blend using narrow band phosphors.
  • Desirable fluorescent lamp characteristics are high brightness and high colour rendering at an economical cost.
  • such lamps as the Sylvania OctronTM and DesignerTM series of lamps are constructed with two layers of phosphor coatings.
  • the first or the base coat is an inexpensive halophosphate phosphor of the desired lamp colour temperature.
  • the second or skin coat is comprised of three expensive rare earth activated phosphors, emitting in the red, green and blue spectral regions, blended to effect a composite white emission of desired colour temperature.
  • the expensive tri-phosphor blend absorbs the ultra-violet excitation energy of the Hg plasma in excess proportion to the weight of the phosphor in the lamps.
  • the halophosphate base coat absorbs the excitation energy that eludes the skin coat, while diluting the high CRI and brightness capability of the tri-phosphor blend. Even though these phosphor blends achieve desirable economic and performance characteristics, further improvements are desirable.
  • EP-A-0595527 (which is relevant only to the novelty of the present invention) there is disclosed such a lamp wherein the combination of phosphors results in a colour point between the range of 2700 to 5500 K on or near the Planckian locus, and a CRI for the lamp of at least 85, the quad phosphor blend comprising :
  • EP-A-0595527 there is disclosed the use of a SylvaniaTM type #2194 phosphor (Ba Mg:Aluminate: Eu; Mn) or SylvaniaTM type #2288 (Zinc ortho-silicate: Mn) as the fourth phosphor component which have principal emission peaks at about 515 nm and 528 nm, respectively.
  • the present invention concerns the use of a different fourth phosphor component.
  • US-A-4,623,816 relates to a fluorescent lamp utilizing a dual phosphor layer coating having a conventional calcium haloapatite phosphor and a top phosphor layer comprising a tri-phosphor blend including a lanthanum cerium orthophosphate phosphor activated with terbium ion as the green colour component along with an europium-activated yttrium oxide phosphor as the red colour component.
  • US-A-4,797,594 relates to a fluorescent reprographic lamp having a phosphor layer disposed on and coextensive with a reflector layer and a protective coating over at least the portion of the inner surface of the lamp envelope not covered with the reflector layer.
  • the phosphor layer comprises particles of green-emitting zinc orthosilcate phosphor which are individually coated with a non-particulate, conformal aluminum oxide coating.
  • a skin coat or tri-phosphor blend that has been used is a red Y 2 O 3 :Eu +3 (Sylvania Type 2342), a green CeMgAl 11 O 19 :Tb +3 (Sylvania Type 2297), and a blue BaMg 2 Al 16 O 27 :Eu +2 .
  • Another SylvaniaTM lamp is the Lite White De-Luxe (LWX) which is a blend of lamp phosphors, Sylvania Types #1246, #2293, and #2345.
  • These phosphors respectively, have the general composition of barium aluminate activated with europium, magnesium hexa-aluminate activated with cerium and terbium, and yttrium oxide activated with europium.
  • Fluorescent lamps utilizing the above skin coats have achieved high colour rendering and high brightness while demonstrating excellent durability in the harsh environment of the fluorescent lamp.
  • additional and further improvements are desirable.
  • Especially desirable is the production of a blend which produces efficient white colour emission and improved colour rendition at an even more economical cost.
  • the luminous efficacy, colour rendering index and other lamp output characteristics may be varied depending upon the particular composition of the lamp phosphors utilized. Certain terms as used in this specification have meanings which are generally accepted in the lighting industry. These terms are described in the IES LIGHTING HANDBOOK, Reference Volume, 1984, Illuminating Engineering Society of North America.
  • the colour rendering index of light source is a measure of the degree of colour shift objects undergo when illuminated by the light source as compared with the colour of those same objects when illuminated by a reference source of comparable colour temperature.
  • the CRI rating consists of a General Index, Ra, based on a set of eight test-colour samples that have been found adequate to cover the colour gamut.
  • the colour appearance of a lamp is described by its chromaticity coordinates which can be calculated from the spectral power distribution according to standard methods. See CIE, Method of measuring and specifying colour rendering properties of light sources (2nd ed.), Publ. CIE No. 13.2 (TC-3,2), Bureau Central de Ia CIE, Paris, 1974.
  • the CIE standard chromaticity diagram includes the colour points of black body radiators at various temperatures.
  • the locus of blackbody chromaticities on the x,y-diagram is known as the Planckian locus. Any emitting source represented by a point on this locus may be specified by a colour temperature.
  • Luminous efficacy of a source of light is the quotient of the total luminous flux emitted by the total lamp power input as expressed in lumens per watt (LPW or lm/W).
  • the colour rendering properties of light sources in general, and of fluorescent lamps in particular, are condensed in a single parameter, the general colour-rendering index.
  • the CRI and brightness of light sources are mutually conflicting properties, in the sense that they cannot be simultaneously optimized.
  • there is opportunity for relative optimization of CRI and brightness by judicious blending of phosphors. For example, in all rare earth triphosphor blends relatively high levels of both CRI and brightness are achieved. It is desirable to achieve even further improvements to the CRI without sacrificing brightness.
  • a fluorescent lamp having on its interior surface a phosphor coating for converting ultraviolet radiation to visible light having a white colour, the coating comprising (i) a halophosphate phosphor and (ii) a quad phosphor blend using four narrow band phosphors, wherein the combination of phosphors results in a colour point from 2700 to 5500 K on or near the Planckian locus, and a CRI for the lamp of at least 85, the quad phosphor blend comprising :
  • the fourth phosphor component of the quad-phosphor blend is present in an amount sufficient to increase the CRI of a blend comprising the first, second and third phosphor components while minimizing a decrease in brightness due to the presence of the fourth phosphor component.
  • the fourth component of the quad-phosphor blend comprises an alkaline earth metal activated blue/green emitting phosphor.
  • the most preferred phosphor is manganese activated magnesium gallate which is available as SylvaniaTM type #213 phosphor. This has a principal emission band with a peak at 504 nm and a half width of 32 nm (see lines 3 to 4, page 52 of "Fluorescent Lamp Phosphors" by Keith H. Butler; 1980 ISBN 0-271-00219-0).
  • the quad phosphor blend comprises:
  • the two blends of lamp phosphors are preferably applied to the interior of the lamp as two separate layers, one on top of the other.
  • the present invention provides a quad-phosphor blend suitable for use in such a fluorescent lamp comprising:
  • EP-A-0395775 It is known from EP-A-0395775 to provide a fluorescent lamp which comprises narrow band red and green phosphor components and an additional blue phosphor component which has a relatively broad emission band of 50 nm or more.
  • the illustrated examples of the blue phosphor component have emission band half widths ranging from 93 to 170 nm.
  • the blend may include two or more of these wide band emitting blue phosphor components whose broad emission peaks are at approximately the same wavelength (the illustrated blue phosphor components have peaks in the wavelength range of 480 to 493 nm).
  • US-A-5,122,710 there is disclosed a quad-phosphor blend for a fluorescent lamp in which all the phosphor components are rare earth narrow band phosphors.
  • this document mentions that the CRI of a standard tri-phosphor rare earth blend having output energy peaks in the blue (453 nm), green (541 nm) and red (611 nm) colour ranges can be improved by adding a fourth rare earth phosphor with a peak wavelength at about 480 nm. Neither of these documents discloses a lamp having a halophosphate and a quad phosphor blend.
  • a fluorescent lamp 24 containing a phosphor excitable to fluorescence.
  • the lamp 24 comprises a tubular, hermetically sealed, glass envelope 25. Electrodes 26 and 27 are sealed in the ends of envelope 25. Suitable terminals 28 and 29 are connected to the electrodes 26 and 27 and project from envelope 25. The electrodes 26 and 27 extend through glass presses in mount stems to the terminals 28 and 29.
  • the interior of the tube is filled with an inert gas such as argon or a mixture of argon and neon or krypton at a low pressure, for example 266 Pa (2 torr), and a small quantity of mercury, at least enough to provide a low vapour pressure during operation.
  • a plasma generating and sustaining medium such as one or more inert gases and mercury is included within envelope 25 so that ultraviolet radiation is produced in the interior of the glass envelope during lamp operation.
  • a phosphor coating 31 on the interior surface of the glass envelope converts the emitted ultraviolet radiation to visible illumination having a white colour.
  • FIG. 1 shows a phosphor coating incorporated in a lamp.
  • the coating illustrated at 33 comprises a quad blend of four phosphors. Although dual phosphor layers are shown in FIG. 1, the quad blend of the present invention may be utilized as a single coat.
  • the dual layer comprises a first layer 35 deposited on the inner glass surface and a second phosphor layer or top layer 33 deposited on the first phosphor layer 35.
  • the use of a dual phosphor layer permits the weight of phosphor utilized in the second or top coat to be reduced and a less expensive phosphor to be utilized as the first layer 35.
  • the first layer 35 comprises a halophosphate phosphor, preferably finely divided fluorescent calcium haloapatite phosphor exhibiting the desired white colour point.
  • the second layer or top layer 35 comprises a quad phosphor blend on the inside of the tube so that a substantial portion of the ultraviolet radiation is instantly converted to visible illumination having a white colour.
  • the relative proportions of the components in the blend are such that an enhanced colour rendering index is produced as compared to a tri-component blends formed from a three phosphor component blend consisting of a single green component.
  • the first layer or inner coating typically comprises a halogenated alkaline earth phosphate with the activator element being lead, manganese, antimony or tin.
  • the host has the apatite structure, a typical example being calcium chlorophosphate 3Ca 3 (PO 4 ) 2 ⁇ CaCl 2 .
  • Many modifications are possible including partial substitutions of the alkaline earth cations by other divalent metals such as zinc and cadmium. Also, partial substitutions of the chloride by fluoride ions is desirable for some applications.
  • Phosphor materials which result from these combinations generally exhibit good luminescence when stimulated by short (253.7 nanometers) ultraviolet radiation, the response being greatest when the materials are synthesized to produce small deviations from stoichiometry.
  • activation by combinations of antimony and manganese will produce a wide spectrum of luminescent emissions from alkaline earth phosphates excited by ultraviolet light.
  • these phosphors have wide application in fluorescent lamps and may be adjusted in composition to provide white light which varies from "cool” to "warm” white.
  • Typical phosphors are "Warm White”, SylvaniaTM Type 4300 and “Cool White", SylvaniaTM Type 4450.
  • the quad-phosphor blend comprises a blend of three phosphor components having a predetermined CRI and exhibiting a characteristic spectral power distribution and quantum yield.
  • the components comprise a first green emitting phosphor component having a visible emission spectrum principally in the 500 to 570 nm wavelength range.
  • a second blue colour emitting phosphor component has an emission spectrum principally in the 430 to 490 nm wavelength range.
  • a third red colour emitting phosphor component has an emission spectrum principally in the 590 to 630 nm wavelength range.
  • a fourth phosphor component has a principal Gaussian peak in the region of 500 to 510 nm. The fourth phosphor component is present in an amount sufficient to increase the CRI of a blend comprising the first, second, and third phosphor components while minimizing a decrease in brightness due to the presence of the fourth phosphor component.
  • the relative proportions of the components of the quad-phosphor blend light generating media are such that when their emissions are blended, the combination of phosphors result in a predetermined colour point from about 2700 to 5500 K, preferably 2700 to 4200 K, on or near the Planckian locus.
  • the relative proportions of the components are such that an enhanced colour rendering index is produced as compared to a tri-component blend formed from a three phosphor component blend consisting of single components of green, red and blue emitting phosphor components.
  • Two-coat lamps which include blends in accordance with embodiments of the present invention as the second layer, exhibit increased CRI values when compared with lamps made with only the narrow band rare earth activated phosphor components in the second layer of phosphor.
  • the preferred phosphors for the initial green, red, and blue phosphor components are rare earth activated phosphors.
  • Typical green colour rare earth activated phosphors comprise Tb-Ce activated magnesium aluminate, Eu-Mn activated barium aluminate, Tb-Ce activated yttrium silicate, and Tb-Ce activated lanthanum orthophosphate.
  • a preferred Tb-Ce activated magnesium aluminate is available as a magnesium hexa-aluminate as SylvaniaTM Type #2293.
  • a preferred Eu-Mn activated barium aluminate is SylvaniaTM Type #2194 having the formula BaMg 2 Al 16 O 27 :Eu +2 ,Mn.
  • a Tb-Ce activated lanthanum orthophosphate having the formula LaPO 4 :Ce,Tb.
  • the terbium-activated lanthanum cerium phosphor is used as a lower cost substitute for the terbium and cerium co-activated magnesium aluminate phosphor component in a blend.
  • This type of phosphor is commercially available from Nichia company as Type NP220 phosphor.
  • a corresponding SylvaniaTM phosphor is Type 2211, LaPO 4 :Ce,Tb, known as LAP.
  • the second phosphor component is a blue colour emitting phosphor, preferably a rare earth activated narrow-band emitting phosphor.
  • Typical blue emitting phosphors are europium activated barium magnesium aluminate, europium activated strontium chlorophosphate, and europium activated strontium barium calcium chlorophosphate.
  • the preferred blue emitting phosphor is a barium magnesium aluminate activated by divalent europium and having a peak emission at 455 nm; such a phosphor having the formula BaMg 2 Al 16 O 27 :Eu +2 is available as SylvaniaTM Type 2461 or Type 246.
  • the third phosphor component is a preferably a rare earth red colour emitting phosphor.
  • Typical red emitting phosphors are activated by trivalent europium.
  • Preferred red emitting phosphors are europium activated gadolinium oxide (Gd 2 O 3 :Eu +3 ) and europium activated yttrium oxide (Y 2 O 3 :Eu +3 ).
  • a most preferred red emitting phosphor is the yttrium oxide activated by trivalent europium having a peak emission at 611 nm and available as SylvaniaTM Type 2342 or Type 2345.
  • the amount of the fourth phosphor component incorporated into the initial phosphor blend is in an amount sufficient to desirably increase the CRI of the initial three component blend while minimizing any decrease in brightness.
  • the resulting lamp incorporating the four component phosphor blend has a CRI greater than 85 and even more preferably greater than 87 with a corresponding loss in brightness at less than 10 percent, and preferably less than 7 percent.
  • the fourth phosphor component has a principal Gaussian peak in the blue-green emitting region of 500 nm to 510 nm.
  • the fourth phosphor is necessarily a different phosphor than the first, second or third phosphor initially utilized so as to result in an enhanced CRI for the final phosphor blend.
  • Preferred non-rare earth phosphors are alkaline earth metal activated phosphors, of which magnesium gallate is most preferred.
  • SylvaniaTM Type #213 is a manganese activated magnesium gallate.
  • FIG. 2 illustrates an x-y chromaticity diagram showing the placement of the standard fluorescent colours of cool white, white, and warm white on a standard chromaticity diagram.
  • a fluorescent lamp according to embodiments of the present invention is defined as the region of white light of correlated colour temperature from 2700 Kelvin to 5500 Kelvin with colour points that fall a distance less than or equal to 0.0054 from the Black Body locus (in the 1960 UCS u-v diagram).
  • FIG. 2 illustrates, in the CIE 1931 standard colourimetric observer x-y chromaticity diagram, the range of white light emitting lamp colours that can be produced with blends of a quad blend of lamp phosphors.
  • the phosphor layers are applied by techniques known in the art.
  • the first layer of phosphor such as, for example, a calcium halophosphate activated by antimony and manganese is coated as a layer directly adjacent the glass from a liquid suspension.
  • a phosphor coating suspension is prepared by dispersing the phosphor particles in a water-based system employing polyethylene oxide and hydroxyethyl cellulose as the binders with water as the solvent.
  • the phosphor suspension is applied by causing the suspension to flow down the inner surface of the bulb. Evaporation of the water results in an insoluble layer of phosphor particles adhering to the inside surface of the bulb wall.
  • the first layer is then dried prior to overcoating with the quad phosphor blend.
  • the desired second phosphor layer is similarly applied from a water based suspension containing the appropriate and desired blend of phosphors.
  • the second water base suspension containing the quad blend is allowed to flow over the first layer until the liquid is drained from the tube.
  • the phosphor numbers given in the Example below have identifying numbers utilized by GTE Products Corporation, Towanda, Pa., and are known as "SylvaniaTM" phosphors.
  • the rearranging of the spectral distribution has an effect on CRI and brightness.
  • the SPD was transformed from watt/nm to photons/nm units.
  • the resulting photon spectral curve was redistributed to produce: 1) a curve of the same spectral shape as the original one, but of reduced overall area, about 90 percent; and, 2) the remaining 10 percent photons were bunched together into a gaussian band.
  • This mathematical manipulation corresponds to mixing the original blend with another phosphor exhibiting a Gaussian emission band, and with the same quantum yield for emission as the original blend.
  • the reduced intensity SPD and the ad-hoc Gaussian are reconverted to watt/nm units, and the photometric and colourimetric properties of the resulting blend are calculated, as the peak position and width of the Gaussian are varied.
  • Selected results, namely CRI and predicted lumens from such blends, are collected in Figure 3, for the realistic assumption of 30nm full-width at half maximum (FWHM) for the Gaussian band.
  • the predicted CRI and lumen output show complementary trends (Figure 3). It is also evident that CRI values of about 90 may result when the Gaussian peak is located in the green spectral region at about 500 nm. Another region of enhanced CRI, over the value for the original blend (indicated in Figure 1 by the dotted horizontal line) occurs when the peak of the Gaussian is moved to the red spectral region at about 630 nm.
  • a commercial phosphor with an emission in the blue-green spectral region was selected as a CRI-enhancing fourth component additive to the original SylvaniaTM Lite White DeLuxe (LWX) blend.
  • the fourth phosphor component selected was SylvaniaTM phosphor Type 213 (Mg gallate:Mn), as a suitable additive to raise the CRI of the original LWX blend.
  • the SPD of the single-phosphor lamps, coated respectively with Type 213, and with the components of the LWX lamp (SylvaniaTM Types 246, 2293 and 2345) were combined to provide a field with the colour coordinates of the LWX lamp. Prediction on the brightness of the resulting blends were based on the 100-hour lumen output of the single-component lamps, as listed in Table 1.

Claims (14)

  1. Lampe fluorescente ayant, sur sa paroi intérieure, un revêtement de luminophores pour convertir un rayonnement ultraviolet en une lumière visible présentant une couleur blanche, le revêtement comprenant (i) un luminophore d'halophosphate et (ii) un mélange de quatre luminophores utilisant quatre luminophores de bande étroite, combinaison des luminophores dont il résulte un point de couleur entre 2700 et 5500 K sur ou proche du lieu de Planck, et un indice de rendu des couleurs pour la lampe d'au moins 85, le mélange des quatre luminophores comprenant :
    a) un premier composant de luminophore émettant une couleur verte et ayant une crête d'émission comprise entre 500 et 750 nm ;
    b) un deuxième composant de luminophore émettant une couleur bleue et ayant une crête d'émission comprise entre 430 et 490 nm ;
    c) un troisième composant de luminophore émettant une couleur rouge et ayant une crête d'émission comprise entre 590 et 630 nm ; et
    d) un quatrième composant de luminophore qui est différent des premier, deuxième et troisième composants de luminophore ;
          caractérisée en ce que
       le quatrième composant de luminophore présente une crête d'émission comprise entre 500 et 510 nm.
  2. Lampe selon la revendication 1, caractérisée en ce que le premier composant de luminophore émettant une couleur verte est choisi dans le groupe comprenant l'aluminate de magnésium activé par Tb-Ce, l'aluminate de baryum activé par Eu-Mn, le silicate d'yttrium activé par Tb-Ce, et l'orthophosphate de lanthane activé par Tb-Ce.
  3. Lampe selon la revendication 1 ou 2, caractérisée en ce que le deuxième composant de luminophore émettant une couleur bleue est choisi dans le groupe comprenant l'aluminate de magnésium baryum activé par Eu, le chlorophosphate de strontium activé par Eu, et le chlorophosphate de calcium baryum strontium activé par Eu.
  4. Lampe selon l'une quelconque des revendications précédentes, caractérisée en ce que le troisième composant de luminophore émettant une couleur rouge est choisi dans le groupe comprenant l'oxyde de gadolinium activé par Eu et l'oxyde d'yttrium activé par Eu.
  5. Lampe selon l'une quelconque des revendications précédentes, caractérisée en ce que le quatrième composant de luminophore est un luminophore de terre alcaline.
  6. Lampe selon la revendication 5, caractérisée en ce que le quatrième composant de luminophore est du gallate de magnésium activé par du manganèse.
  7. Lampe selon l'une quelconque des revendications précédentes, caractérisée en ce que le quatrième composant de luminophore est présent dans le mélange des quatre luminophores dans une unique fraction de lampe comprise entre 0,040 et 0,17.
  8. Lampe selon l'une quelconque des revendications précédentes, caractérisée en ce que le luminophore d'halophosphate est un luminophore d'haloapatite de calcium.
  9. Lampe fluorescente selon l'une quelconque des revendications précédentes, dans laquelle le dit indice de rendu des couleurs est supérieur à 87.
  10. Lampe fluorescente selon l'une quelconque des revendications précédentes, dans laquelle la dite combinaison de luminophores apporte un point de couleur compris entre 2700 et 4200 K sur le lieu de Planck ou à proximité de celui-ci.
  11. Lampe fluorescente selon l'une quelconque des revendications précédentes, dans laquelle les coordonnées ICI de la lumière visible présente une valeur x comprise entre 0,3 et 0,45, et une valeur y comprise entre 0,3 et 0,45.
  12. Lampe fluorescente selon l'une quelconque des revendications précédentes, dans laquelle le dit mélange de quatre luminophores produit une lumière ayant des points de couleur qui tombent à une distance inférieure ou égale à 0,0054 du lieu du corps noir -"Black Body Locus"- (dans le diagramme u-v d'UCS de 1960).
  13. Lampe fluorescente selon la revendication 1, caractérisée en ce que le mélange des quatre luminophores comprend :
    a) un premier composant de luminophore émettant une couleur verte et choisi dans le groupe comprenant l'aluminate de magnésium activé par Tb-Ce, l'aluminate de baryum activé par Eu-Mn, le silicate d'yttrium activé par Tb-Ce, et l'orthophosphate de lanthane activé par Tb-Ce ;
    b) un deuxième composant de luminophore émettant une couleur bleue et choisi dans le groupe comprenant l'aluminate de magnésium baryum activé par Eu, le chlorophosphate de strontium activé par Eu, et le chlorophosphate de calcium baryum strontium activé par Eu;
    c) un troisième composant de luminophore émettant une couleur rouge et choisi dans le groupe comprenant l'oxyde de gadolinium activé par Eu, et l'oxyde d'yttrium activé par Eu ; et
    d) un quatrième composant de luminophore émettant une couleur bleue verte, qui est du gallate de magnésium activé par du manganèse.
  14. Mélange de quatre luminophores approprié pour une utilisation dans une lampe fluorescente selon la revendication 13, comprenant :
    a) un premier composant de luminophore émettant une couleur verte et choisi dans le groupe comprenant l'aluminate de magnésium activé par Tb-Ce, l'aluminate de baryum activé par Eu-Mn, le silicate d'yttrium activé par Tb-Ce, et l'orthophosphate de lanthane activé par Tb-Ce ;
    b) un deuxième composant de luminophore émettant une couleur bleue et choisi dans le groupe comprenant l'aluminate de magnésium baryum activé par Eu, le chlorophosphate de strontium activé par Eu, et le chlorophosphate de calcium baryum strontium activé par Eu ;
    c) un troisième composant de luminophore émettant une couleur rouge et choisi dans le groupe comprenant l'oxyde de gadolinium activé par Eu, et l'oxyde d'yttrium activé par Eu ; et
    d) un quatrième composant de luminophore,
          caractérisé en ce que
    le quatrième composant de luminophore est du gallate de magnésium activé par du manganèse.
EP93308376A 1992-10-21 1993-10-21 Lampe fluorescente avec un mélange amélioré de matière fluorescente Expired - Lifetime EP0594424B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US96424092A 1992-10-21 1992-10-21
US964240 2001-09-26

Publications (2)

Publication Number Publication Date
EP0594424A1 EP0594424A1 (fr) 1994-04-27
EP0594424B1 true EP0594424B1 (fr) 1998-12-30

Family

ID=25508303

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93308376A Expired - Lifetime EP0594424B1 (fr) 1992-10-21 1993-10-21 Lampe fluorescente avec un mélange amélioré de matière fluorescente

Country Status (3)

Country Link
EP (1) EP0594424B1 (fr)
CA (1) CA2108749A1 (fr)
DE (1) DE69322834T2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9196800B2 (en) 1996-06-26 2015-11-24 Osram Gmbh Light-radiating semiconductor component with a luminescence conversion element

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW326096B (en) * 1995-08-24 1998-02-01 Matsushita Electric Ind Co Ltd Discharge lamp for general lighting services and lighting appliance for general lighting services
DE19655445B3 (de) * 1996-09-20 2016-09-22 Osram Gmbh Weißes Licht abstrahlendes Halbleiterbauelement mit Lumineszenzkonversionsschicht und Verwendung solcher Halbleiterbauelemente
JP3424566B2 (ja) 1998-09-29 2003-07-07 松下電器産業株式会社 蛍光ランプおよび照明器具
DE10152217A1 (de) * 2001-10-23 2003-04-30 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Leuchtstoffzusammensetzung für Niederdruckentladungslampen
US7391148B1 (en) 2002-06-13 2008-06-24 General Electric Company Phosphor blends for high-CRI fluorescent lamps
GB2405409A (en) * 2003-08-29 2005-03-02 Gen Electric Phosphor blends for high-CRI fluorescent lamps
GB2432041B (en) * 2003-11-19 2008-03-05 Gen Electric High lumen output flurorescent lamp with high color rendition
GB2408382B (en) * 2003-11-19 2007-06-13 Gen Electric High lumen output fluorescent lamp with high color rendition
JP4543250B2 (ja) * 2004-08-27 2010-09-15 Dowaエレクトロニクス株式会社 蛍光体混合物および発光装置
US7834533B2 (en) * 2008-02-27 2010-11-16 General Electric Company T8 fluorescent lamp
US9142397B2 (en) 2011-10-25 2015-09-22 General Electric Company High color rendering index fluorescent lamp with multi-layer phosphor coating
US8461753B2 (en) 2011-10-25 2013-06-11 General Electric Company Fluorescent lamp with multi-layer phosphor coating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4623816A (en) * 1985-04-22 1986-11-18 General Electric Company Fluorescent lamp using multi-layer phosphor coating
EP0595527A1 (fr) * 1992-10-19 1994-05-04 Flowil International Lighting (Holding) B.V. Lampes fluorescentes avec un rendu des couleurs élevé et une haute luminosité

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535423A (en) * 1978-09-05 1980-03-12 Toshiba Corp Fluorescent lamp
US4423349A (en) * 1980-07-16 1983-12-27 Nichia Denshi Kagaku Co., Ltd. Green fluorescence-emitting material and a fluorescent lamp provided therewith
GB8823691D0 (en) * 1988-10-08 1988-11-16 Emi Plc Thorn Aquarium lighting
US5049779A (en) * 1989-05-02 1991-09-17 Nichia Kagaku Kogyo K.K. Phosphor composition used for fluorescent lamp and fluorescent lamp using the same
US5122710A (en) * 1989-11-28 1992-06-16 Duro-Test Corporation Rare earth phosphor blends for fluorescent lamp using four to five phosphors
US5051277A (en) * 1990-01-22 1991-09-24 Gte Laboratories Incorporated Method of forming a protective bi-layer coating on phosphore particles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4623816A (en) * 1985-04-22 1986-11-18 General Electric Company Fluorescent lamp using multi-layer phosphor coating
EP0595527A1 (fr) * 1992-10-19 1994-05-04 Flowil International Lighting (Holding) B.V. Lampes fluorescentes avec un rendu des couleurs élevé et une haute luminosité

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THE PENNSYLVANIA STATE UNIVERSITY PRESS, 1980, K.H. BUTLER " Fluorescent Lamp Phosphors " *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9196800B2 (en) 1996-06-26 2015-11-24 Osram Gmbh Light-radiating semiconductor component with a luminescence conversion element

Also Published As

Publication number Publication date
EP0594424A1 (fr) 1994-04-27
DE69322834D1 (de) 1999-02-11
DE69322834T2 (de) 1999-08-19
CA2108749A1 (fr) 1994-04-22

Similar Documents

Publication Publication Date Title
CA2105023C (fr) Lampe fluorescente contenant un melange de luminophores ameliore
EP0595627B1 (fr) Lampe fluorescente avec un indice CRI et une luminosité améliorés
CA2105021C (fr) Lampe fluorescente contenant un melange de luminophores ameliore
US6867536B2 (en) Blue-green phosphor for fluorescent lighting applications
US7119488B2 (en) Optimized phosphor system for improved efficacy lighting sources
US6965193B2 (en) Red phosphors for use in high CRI fluorescent lamps
EP0596548B1 (fr) Lampe à décharge de mercure à basse pression
EP0594424B1 (fr) Lampe fluorescente avec un mélange amélioré de matière fluorescente
US20030155857A1 (en) Fluorescent lamp with single phosphor layer
US6794810B2 (en) Phosphor composition for low-pressure gas discharge lamps
CN102969219A (zh) 具有高cri和lpw的荧光灯
US8866372B2 (en) Phosphor system for improved efficacy lighting sources
EP0030557B1 (fr) Substance phosphorescente a deux composantes dans une lampe a emission de lumiere blanche
EP2444992B1 (fr) Lampe avec chroma amélioré et couleur préférée
WO1998008916A1 (fr) Lampe a vapeur de mercure a basse pression
US20130134862A1 (en) Fluorescent lamp having high cri
JPH01156391A (ja) 蛍光ランプ用発光組成物およびこれを使用した蛍光ランプ
JPH08153491A (ja) 蛍光ランプおよび照明器具
JPH0517655B2 (fr)
JPH05109387A (ja) 電球色蛍光ランプ
JP2002298787A (ja) 蛍光ランプ
JPH02120389A (ja) 蛍光ランプ
JPH06240253A (ja) 蛍光体およびそれを用いた蛍光ランプ
JP2000182568A (ja) 蛍光ランプ
JPH03283348A (ja) けい光ランプ

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB NL

17P Request for examination filed

Effective date: 19940405

17Q First examination report despatched

Effective date: 19960110

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB NL

REF Corresponds to:

Ref document number: 69322834

Country of ref document: DE

Date of ref document: 19990211

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031023

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20031026

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20031030

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20031031

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031230

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

BERE Be: lapsed

Owner name: *FLOWIL INTERNATIONAL LIGHTING (HOLDING) B.V.

Effective date: 20041031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050503

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

BERE Be: lapsed

Owner name: *FLOWIL INTERNATIONAL LIGHTING (HOLDING) B.V.

Effective date: 20041031