EP0593495A1 - Cooling device. - Google Patents

Cooling device.

Info

Publication number
EP0593495A1
EP0593495A1 EP92909704A EP92909704A EP0593495A1 EP 0593495 A1 EP0593495 A1 EP 0593495A1 EP 92909704 A EP92909704 A EP 92909704A EP 92909704 A EP92909704 A EP 92909704A EP 0593495 A1 EP0593495 A1 EP 0593495A1
Authority
EP
European Patent Office
Prior art keywords
oil
compressor
refrigerant
cooling
bearing points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92909704A
Other languages
German (de)
French (fr)
Other versions
EP0593495B1 (en
Inventor
Klaus Hossner
Adalbert Stenzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bitzer Kuehlmaschinenbau GmbH and Co KG
Original Assignee
Bitzer Kuehlmaschinenbau GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bitzer Kuehlmaschinenbau GmbH and Co KG filed Critical Bitzer Kuehlmaschinenbau GmbH and Co KG
Publication of EP0593495A1 publication Critical patent/EP0593495A1/en
Application granted granted Critical
Publication of EP0593495B1 publication Critical patent/EP0593495B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/042Heating; Cooling; Heat insulation by injecting a fluid

Definitions

  • the invention relates to a cooling device according to the preamble of claim 1.
  • Refrigeration and air conditioning systems essentially comprise an evaporator in which heat is removed by evaporation of the refrigerant by means of the environment, a compressor which increases the pressure of the evaporated refrigerant from an intake pressure to an outlet pressure, and a condenser in which the evaporated refrigerant under the outlet pressure is liquefied again with heat being given off.
  • the refrigerant to be compressed is cooled by the injected oil and thus the screw compressor as a whole is also cooled. It is therefore exposed to smaller temperature differences. This means that fits and clearances can be made narrower, which reduces the gap losses in the compressor.
  • the injected oil seals the gap between the two rotors and between the individual rotors and the compressor housing. That way any leakage paths within the compressor are sealed off, thus creating the conditions for a high efficiency of the compressor.
  • the oil injected into the compression chamber is atomized and entrained by the gaseous refrigerant to be compressed located in the compression chamber. An oil / refrigerant mixture is thus present at the pressure outlet of the compressor.
  • the oil in the oil-refrigerant mixture must be separated from the refrigerant by an oil separator in order to be re-injected into the compressor and in order not to adversely affect heat transfer of the refrigerant within the refrigerant circuit.
  • the oil injected into the compressor is cooled depending on an end temperature resulting at the pressure outlet of the compressor. Cooling can be done by refrigerant injection, or by cooling with water or air in a heat exchanger, e.g. a plate heat exchanger. In the latter case, a large amount of oil injection requires large and expensive heat exchangers.
  • the temperature of the injected oil is essentially determined by the fact that its viscosity is high enough to ensure lubrication of the bearing points. If the oil temperature rises, the viscosity of the oil drops and the lubrication of the bearing points of the rotors is at risk. In contrast, lower oil viscosities or higher oil temperatures would also be permissible for the above-mentioned seal of the gap, which requires the greatest amount of oil injection.
  • the object of the invention is to controllably cool the oil used for bearing lubrication in a simple and economical manner, regardless of the total amount of oil injected into the compressor.
  • a cooling device essentially comprises a screw compressor 1, a condenser 2 and an evaporator 3, which are connected by lines 4 in a closed refrigerant circuit. Furthermore, there is a check valve 5 in the refrigerant circuit, which is arranged directly at the pressure outlet of the compressor, an oil separator 6, which is arranged behind the check valve 5 and in front of the condenser 2, and an expansion element 7, which is located between the condenser 2 and the evaporator 3 is in the refrigerant circuit.
  • a first temperature sensor 8 senses the temperature at the bearing points of the compressor 1 and is connected to a control unit 11 via an electrical line 9.
  • a second Temperature sensor 12 senses the temperature in the pressure outlet area of the compressor 1 and is also connected to the control unit 11 via an electrical line 13.
  • a main oil line 14 extends from the oil separator 6 and leads via a solenoid valve 15 into the compression space of the compressor 1.
  • a bearing oil line 16 is branched off from the main oil line 14 and leads into a heat exchanger 17 and from there to the bearing points of the compressor 1.
  • part of the refrigerant is branched off from the line 4 of the refrigerant circuit via a line 18, fed to a solenoid valve 20 which can be controlled by the control unit 11 via an electrical line 19, and from there passes through an injection nozzle 21 into the heat exchanger 17, from which it is fed to a point 22 of the compressor 1 at which the suction process of the compressor 1 brought about by the rotors is completed.
  • the mode of operation of the cooling device is as follows:
  • the refrigerant evaporated in the evaporator 3 is drawn in on the suction side of the compressor 1 and is compressed therein.
  • Oil is injected into the compression chamber of the compressor via the main oil line 14 and the solenoid valve 15.
  • the oil is entrained by the refrigerant to be compressed, and the resulting oil-refrigerant mixture is compressed in the compressed state
  • Check valve 5 fed to the oil separator 6.
  • the oil separator 6 the oil is separated from the refrigerant and, since it is under increased pressure, is injected back into the compressor 1 via the main oil line 14 and the solenoid valve 15 at a point of the compressor which is at a lower pressure.
  • the oil is separated from the refrigerant so as not to adversely affect the heat transfer of the refrigerant within the refrigerant circuit and also to implement a closed main oil circuit.
  • the control unit 11 uses the electrical line 19 to switch the magnetic valve 20 opened and liquid refrigerant injected into the heat exchanger 17 via the line 18 and the injector 21.
  • the oil branched off from the main oil line 14 via the bearing oil line 16 is cooled for cooling the bearing points by the refrigerant branched off behind the condenser 2, heat being supplied to the refrigerant and heat being removed from the oil used for bearing point lubrication.
  • the refrigerant evaporated in the heat exchanger 17 is fed to the suction side of the compressor, advantageously to a point 22 at which the suction process of the compressor 1 is completed.
  • the injection at this point 22 of the compressor 1 is necessary because otherwise the refrigerating capacity of the compressor, ie the amount of heat absorbed by the environment in the evaporator 3 for evaporating the refrigerant, decreases because the refrigerant which is used to cool the oil used for bearing lubrication does not branch off contributes to the heat transfer in the evaporator 3. Furthermore, when the refrigerant is injected at the point 22 of the compressor 1, there is the advantage that the refrigerant coming from the heat exchanger 17 meets the partially compressed, warmer refrigerant in the compressor 1 and cools the latter, which leads to an advantageous lower compression end temperature .
  • the second temperature sensor 12 located in the pressure outlet area of the compressor 1 is used to open the solenoid valve 20 via the electrical line 13 through the control unit 11 and by means of the injection nozzle 21 more refrigerant into the heat exchanger 17 injected than is required for cooling the oil used for bearing lubrication.
  • the temperature sensor 12 or a further temperature sensor (not shown) in the pressure outlet area of the compressor 1 via the control unit 11 switches off the compressor.
  • the above-described cooling of the oil used for bearing lubrication offers the advantage of using oil with a low basic viscosity. So far, the requirement for a high basic viscosity has primarily been determined by the lubrication of the bearing points of the compressor, since an adequate operating viscosity of the oil is required at the bearing points at high bearing temperatures. On the "cold side" of the refrigerant circuit, however, the use of oil with a high basic viscosity can lead to problems.
  • the oil that is not separated by the oil separator and is therefore in the refrigerant circuit can become so viscous that it is no longer entrained by the refrigerant gas flow in the evaporator. In this way, oil is stored in the evaporator, which can lead to reduced heat transfer of the refrigerant gas, for example to evaporator tubes of the evaporator, or even to the clogging of individual such tubes.
  • the main advantage of the controllable cooling of the oil used to lubricate the compressor bearing points according to the invention is that, despite the use of an oil with a low basic viscosity, a sufficient operating viscosity of the oil used for bearing lubrication is achieved. Since the main oil flow in the main oil line, which is provided for injection into the compressor, remains uncooled, it is prevented that the compression end temperature does not drop to critical values and thus no refrigerant in the oil separator is condensed into the oil . In addition, the cost of oil cooling is considerably reduced by the bearing oil cooling according to the invention and thus the economy is increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Surgical Instruments (AREA)

Abstract

PCT No. PCT/EP92/01045 Sec. 371 Date Dec. 21, 1993 Sec. 102(e) Date Dec. 21, 1993 PCT Filed May 13, 1992 PCT Pub. No. WO93/01413 PCT Pub. Date Jan. 21, 1993.In a cooling device for a rotary piston compressor, in particular a screw-type compressor, which is part of a refrigerant circuit together with a condenser and an evaporator, coolant of the refrigeration system and oil serving to lubricate bearings as well as to cool and seal the screw-type compressor are injected into the screw-type compressor. In order to cool the oil serving to lubricate the compressor bearings separately and to thereby achieve a more economical functioning of the entire cooling device, it is suggested that only the part of the oil serving to lubricate the bearings of the compressor is cooled as a function of the oil temperature sensed behind the bearings and that a branched stream of coolant is used for this, the stream on its part subsequently being fed to the compressor again.

Description

B e s c h r e i b u n g Description
KühlvorrichtungCooler
Die Erfindung betrifft eine Kühlvorrichtung nach dem Ober¬ begriff des Patentanspruchs 1.The invention relates to a cooling device according to the preamble of claim 1.
Derartige Kühlvorrichtungen können in Drehkolbenverdich¬ tern für Kälte- und Klimaanlagen eingesetzt werden, bei¬ spielsweise in einem Schraubenverdichter mit Öleinsprit- zung. Kälte- und Klimaanlagen umfaßen im wesentlichen einen Verdampfer, in welchem durch Verdampfen des Kälte¬ mittels der Umgebung Wärme entzogen wird, einen Verdich¬ ter, welcher den Druck des verdampften Kältemittels von einem Ansaugdruck auf einen Auslaßdruck erhöht, und einen Verflüssiger, in welchem das unter dem Auslaßdruck stehen¬ de verdampfte Kältemittel unter Wärmeabgabe wieder ver¬ flüssigt wird.Such cooling devices can be used in rotary piston compressors for refrigeration and air conditioning systems, for example in a screw compressor with oil injection. Refrigeration and air conditioning systems essentially comprise an evaporator in which heat is removed by evaporation of the refrigerant by means of the environment, a compressor which increases the pressure of the evaporated refrigerant from an intake pressure to an outlet pressure, and a condenser in which the evaporated refrigerant under the outlet pressure is liquefied again with heat being given off.
Bei Schraubenverdichtern sind zur Verdichtung des Kälte¬ mittels innerhalb des Verdichtergehäuses zwei ineinander greifende, schraubenartige Rotoren angeordnet, welche radial durch das Verdichtergehäuse dicht abgeschlossen sind. In den überwiegenden Fällen besitzen die in Kälteanlagen verwendeten Schraubenverdichter eine Ein¬ richtung zur Öleinspritzung. Das Öl wird in die Verdich¬ tungsräume der Schraubenverdichter und somit in das sich dort befindliche zu verdichtende Gas eingespritzt. Es dient im wesentlichen folgenden drei Zwecken:In the case of screw compressors, two intermeshing, screw-like rotors are arranged within the compressor housing to compress the refrigerant, and are sealed radially by the compressor housing. In the vast majority of cases, the in Refrigeration systems used screw compressors a device for oil injection. The oil is injected into the compression chambers of the screw compressors and thus into the gas to be compressed located there. It serves three main purposes:
1. Zur Kühlung des Verdichtungsvorganges:1. To cool the compression process:
Durch das eingespritzte Öl wird das zu verdichtende Kältemittel gekühlt und damit wird auch der Schrauben¬ verdichter insgesamt gekühlt. Er wird damit geringeren Temperaturunterschieden ausgesetzt. Dies bedeutet, daß Passungen und Spiele enger ausgeführt werden können, wodurch die Spaltverluste im Verdichter verringert werden.The refrigerant to be compressed is cooled by the injected oil and thus the screw compressor as a whole is also cooled. It is therefore exposed to smaller temperature differences. This means that fits and clearances can be made narrower, which reduces the gap losses in the compressor.
2. Zur Schmierung der Rotoren und der Lagerstellen:2. For the lubrication of the rotors and the bearing points:
Da bei bekannten öleingespritzten Schraubenverdichtern üblicherweise nur einer der Rotoren extern, zum Bei¬ spiel durch einen Elektromotor oder dgl. angetrieben wird, muß der andere Rotor indirekt von dem angetrie¬ benen Rotor mitangetrieben werden. Das eingespritzte Öl verringert dabei den Verschleiß an den beiden Roto¬ ren. Außerdem wird das Öl zur Schmierung der Lager¬ stellen der Rotoren verwendet.Since in known oil-injected screw compressors usually only one of the rotors is driven externally, for example by an electric motor or the like, the other rotor must be driven indirectly by the driven rotor. The injected oil reduces wear on the two rotors. In addition, the oil is used to lubricate the bearings of the rotors.
5. Zur Dichtung der Spalte innerhalb des Verdichtungsrau¬ mes:5. For sealing the gaps within the compression space:
Das eingespritzte Öl dichtet die Spalte zwischen den beiden Rotoren und zwischen den einzelnen Rotoren und dem Verdichtergehäuse ab. Auf diese Weise werden eventuell vorhandene Leckagepfade innerhalb des Ver¬ dichters abgedichtet und somit die Voraussetzungen für einen hohen Wirkungsgrad des Verdichters geschaffen. Das in die Verdichtungskammer eingespritzte Öl wird zerstäubt und von dem sich in der Verdichtungskammer befindlichen, zu verdichtenden, gasförmigen Kältemit¬ tel mitgerissen. Am Druckauslaß des Verdichters liegt somit ein Öl-Kältemittel-Gemisch vor. Das sich im Öl-Kältemittel-Gemisch befindliche Öl muß vom Kälte¬ mittel durch Ölabscheider abgeschieden werden um er¬ neut in den Verdichter eingespritzt werden zu können und um Wärmeübergänge des Kältemittels innerhalb des Kältemittelkreislaufes nicht nachteilig zu beeinflus¬ sen.The injected oil seals the gap between the two rotors and between the individual rotors and the compressor housing. That way any leakage paths within the compressor are sealed off, thus creating the conditions for a high efficiency of the compressor. The oil injected into the compression chamber is atomized and entrained by the gaseous refrigerant to be compressed located in the compression chamber. An oil / refrigerant mixture is thus present at the pressure outlet of the compressor. The oil in the oil-refrigerant mixture must be separated from the refrigerant by an oil separator in order to be re-injected into the compressor and in order not to adversely affect heat transfer of the refrigerant within the refrigerant circuit.
Bei Verdichtung auf hohe Drücke wird das in den Verdichter eingespritzte Öl in Abhängigkeit von einer sich am Druck¬ auslaß des Verdichters ergebenden Endtemperatur gekühlt. Eine Kühlung kann dabei durch Kältemitteleinspritzung, oder durch Kühlung mit Wasser oder mit Luft in einem Wär¬ metauscher, z.B. einem Plattenwärmetauscher, erfolgen. Eine große Öleinspritzmenge erfordert im letzten Fall große und teure Wärmetauscher.When compressing to high pressures, the oil injected into the compressor is cooled depending on an end temperature resulting at the pressure outlet of the compressor. Cooling can be done by refrigerant injection, or by cooling with water or air in a heat exchanger, e.g. a plate heat exchanger. In the latter case, a large amount of oil injection requires large and expensive heat exchangers.
Die Temperatur des eingespritzten Öls wird im wesentlichen dadurch bestimmt, daß seine Viskosität groß genug ist, um eine Schmierung der Lagerstellen zu gewährleisten. Steigt die Oltemperatur, so sinkt die Viskosität des Öls und die Schmierung der Lagerstellen der Rotoren ist gefährdet. Für die oben erwähnte Dichtung der Spalte, die die größte Öl¬ einspritzmenge erfordet, wären dagegen auch geringere Öl- viskositäten bzw. höhere Öltemperaturen zulässig. Aufgabe der Erfindung ist es, das zur Lagerschmierung ver¬ wendete Öl auf eine einfache und wirtschaftliche Art und Weise, unabhängig von der gesamten, in den Verdichter ein¬ gespritzten Ölmenge regelbar zu kühlen.The temperature of the injected oil is essentially determined by the fact that its viscosity is high enough to ensure lubrication of the bearing points. If the oil temperature rises, the viscosity of the oil drops and the lubrication of the bearing points of the rotors is at risk. In contrast, lower oil viscosities or higher oil temperatures would also be permissible for the above-mentioned seal of the gap, which requires the greatest amount of oil injection. The object of the invention is to controllably cool the oil used for bearing lubrication in a simple and economical manner, regardless of the total amount of oil injected into the compressor.
Die Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst.The object is achieved by the characterizing features of claim 1.
Die nachstehende Beschreibung einer bevorzugten Ausfüh- rungsform der Erfindung dient im Zusammenhang mit beilie¬ gender Zeichnung, die schematisch eine Kühlvorrichtung zeigt, der weiteren Erläuterung.The following description of a preferred embodiment of the invention serves in conjunction with the attached drawing, which schematically shows a cooling device, for further explanation.
Wie dargestellt umfaßt eine Kühlvorrichtung im wesentlich¬ en einen Schraubenverdichter 1, einen Verflüssiger 2 und einen Verdampfer 3, die in einem geschlossenen Kältemit¬ telkreislauf durch Leitungen 4 verbunden sind. Ferner be¬ finden sich im Kältemittelkreislauf ein Rückschlagventil 5, das direkt am Druckausgang des Verdichters angeordnet ist, ein Olabscheider 6, der hinter dem Rückschlagventil 5 und vor dem Verflüssiger 2 angeordnet ist, sowie ein Ex¬ pansionsorgan 7, das sich zwischen dem Verflüssiger 2 und dem Verdampfer 3 im Kältemittelkreislauf befindet.As shown, a cooling device essentially comprises a screw compressor 1, a condenser 2 and an evaporator 3, which are connected by lines 4 in a closed refrigerant circuit. Furthermore, there is a check valve 5 in the refrigerant circuit, which is arranged directly at the pressure outlet of the compressor, an oil separator 6, which is arranged behind the check valve 5 and in front of the condenser 2, and an expansion element 7, which is located between the condenser 2 and the evaporator 3 is in the refrigerant circuit.
Im Verdichter 1 sind zwei im einzelnen nicht sichtbare Temperaturfühler 8 und 12 angeordnet. Ein erster Tempera¬ turfühler 8 fühlt die Temperatur an den Lagerstellen des Verdichters 1 ab und ist über eine elektrische Leitung 9 mit einer Steuerungseinheit 11 verbunden. Ein zweiter Temperaturfühler 12 fühlt die Temperatur im Druckausla߬ bereich des Verdichters 1 ab und ist über eine elektrische Leitung 13 ebenfalls mit der Steuerungseinheit 11 verbun¬ den.Two temperature sensors 8 and 12, which are not visible in detail, are arranged in the compressor 1. A first temperature sensor 8 senses the temperature at the bearing points of the compressor 1 and is connected to a control unit 11 via an electrical line 9. A second Temperature sensor 12 senses the temperature in the pressure outlet area of the compressor 1 and is also connected to the control unit 11 via an electrical line 13.
Vom Olabscheider 6 geht eine Hauptölleitung 14 aus, die über ein Magnetventil 15 in den Verdichtungsraum des Ver¬ dichters 1 führt. Von der Hauptölleitung 14 ist eine Lagerölleitung 16 abgezweigt, die in einen Wärmetauscher 17 und von diesem an die Lagerstellen des Verdichters 1 führt.A main oil line 14 extends from the oil separator 6 and leads via a solenoid valve 15 into the compression space of the compressor 1. A bearing oil line 16 is branched off from the main oil line 14 and leads into a heat exchanger 17 and from there to the bearing points of the compressor 1.
Hinter dem Verflüssiger 2 wird aus der Leitung 4 des Käl¬ temittelkreislaufs ein Teil des Kältemittels über eine Leitung 18 abgezweigt, einem von der Steuerungseinheit 11 über eine elektrische Leitung 19 steuerbaren Magnetventil 20 zugeführt und gelangt von diesem über eine Einspritz¬ düse 21 in den Wärmetauscher 17, von dem es einer Stelle 22 des Verdichters 1 zugeleitet wird, an welcher der durch die Rotoren bewirkte Ansaugvorgang des Verdichters 1 abge¬ schlossen ist.After the condenser 2, part of the refrigerant is branched off from the line 4 of the refrigerant circuit via a line 18, fed to a solenoid valve 20 which can be controlled by the control unit 11 via an electrical line 19, and from there passes through an injection nozzle 21 into the heat exchanger 17, from which it is fed to a point 22 of the compressor 1 at which the suction process of the compressor 1 brought about by the rotors is completed.
Die Betriebsweise der Kühlvorrichtung ist folgende: Das im Verdampfer 3 verdampfte Kältemittel wird an der Saugseite des Verdichters 1 angesaugt und in diesem ver¬ dichtet. In den Verdichtungsraum des Verdichters wird über die Hauptölleitung 14 und das Magnetventil 15 Öl einge¬ spritzt. Das Öl wird vom zu verdichtenden Kältemittel mit¬ gerissen, und das auf diese Weise entstehende Öl-Kälte¬ mittel-Gemisch wird in verdichtetem Zustand über das Rückschlagventil 5 dem Olabscheider 6 zugeleitet. Im Olabscheider 6 wird das Öl vom Kältemittel abgeschieden und, da es unter erhöhtem Druck steht, über die Hauptöl¬ leitung 14 und das Magnetventil 15 an einer sich unter niedrigerem Druck befindlichen Stelle des Verdichters 1 wieder in diesen eingespritzt. Das Öl wird vom Kältemittel abgeschieden, um die Wärmeübergänge des Kältemittels innerhalb des Kältemittelkreislaufes nicht nachteilig zu beeinflussen, und um außerdem einen geschlossenen Hauptölkreislauf zu realisieren.The mode of operation of the cooling device is as follows: The refrigerant evaporated in the evaporator 3 is drawn in on the suction side of the compressor 1 and is compressed therein. Oil is injected into the compression chamber of the compressor via the main oil line 14 and the solenoid valve 15. The oil is entrained by the refrigerant to be compressed, and the resulting oil-refrigerant mixture is compressed in the compressed state Check valve 5 fed to the oil separator 6. In the oil separator 6, the oil is separated from the refrigerant and, since it is under increased pressure, is injected back into the compressor 1 via the main oil line 14 and the solenoid valve 15 at a point of the compressor which is at a lower pressure. The oil is separated from the refrigerant so as not to adversely affect the heat transfer of the refrigerant within the refrigerant circuit and also to implement a closed main oil circuit.
Steigt die Temperatur im Verdichter 1 an, was einen Tem¬ peraturanstieg an den Lagerstellen der Rotoren des Ver¬ dichters 1 bewirkt, so sinkt dadurch die Viskosität des Öls, insbesondere auch des Öls, das sich in den Lagerstel¬ len befindet. Wird eine kritische Temperatur, bei der sich die Viskosität des Öls an den Lagerstellen stark verrin¬ gert hat, überschritten, was vom Temperaturfühler 8 hinter den Lagerstellen festgestellt wird, so wird von der Steu¬ erungseinheit 11 über die elektrische Leitung 19 das Mag¬ netventil 20 geöffnet und Kältemittel in flüssiger Form über die Leitung 18 und die Einspritzdüse 21 in den Wärme¬ tauscher 17 eingespritzt. Im Wärmetauscher 17 wird das von der Hauptöleitung 14 über die Lagerölleitung 16 abge¬ zweigte Öl zur Kühlung der Lagerstellen durch das hinter dem Verflüssiger 2 abgezweigte Kältemittel gekühlt, wobei dem Kältemittel Wärme zugeführt und dem zur Lagerstellen¬ schmierung verwendeten Öl Wärme entzogen wird. Das dabei im Wärmetauscher 17 verdampfte Kältemittel wird der Saug¬ seite des Verdichters zugeführt, vorteilhafterweise an einer Stelle 22, an der der Ansaugvorgang des Verdichters 1 abgeschlossen ist. Die Einspritzung an dieser Stelle 22 des Verdichters 1 ist deshalb notwendig, weil sonst die Kälteleistung des Verdichters, d. h. die im Verdampfer 3 zum Verdampfen des Kältemittels von der Umgebung aufge¬ nommene Wärmemenge sinkt, weil das zur Kühlung des der Lagerschmierung dienenden Öls abgezweigte Kältemittel nicht zum Wärmeübergang im Verdampfer 3 beiträgt. Des weiteren ergibt sich beim Einspritzen des Kältemittels an der Stelle 22 des Verdichters 1 der Vorteil, daß das vom Wärmetauscher 17 kommende Kältemittel mit dem teilweise verdichteten, wärmeren Kältemittel im Verdichter 1 zu¬ sammentrifft und dabei letzteres abkühlt, was zu einer vorteilhaften niedrigeren Verdichtungsendtemperatur führt.If the temperature in the compressor 1 rises, which causes an increase in temperature at the bearing points of the rotors of the compressor 1, the viscosity of the oil, in particular also of the oil which is located in the bearing positions, drops as a result. If a critical temperature at which the viscosity of the oil at the bearing points has decreased significantly, which is determined by the temperature sensor 8 behind the bearing points, the control unit 11 uses the electrical line 19 to switch the magnetic valve 20 opened and liquid refrigerant injected into the heat exchanger 17 via the line 18 and the injector 21. In the heat exchanger 17, the oil branched off from the main oil line 14 via the bearing oil line 16 is cooled for cooling the bearing points by the refrigerant branched off behind the condenser 2, heat being supplied to the refrigerant and heat being removed from the oil used for bearing point lubrication. The refrigerant evaporated in the heat exchanger 17 is fed to the suction side of the compressor, advantageously to a point 22 at which the suction process of the compressor 1 is completed. The injection at this point 22 of the compressor 1 is necessary because otherwise the refrigerating capacity of the compressor, ie the amount of heat absorbed by the environment in the evaporator 3 for evaporating the refrigerant, decreases because the refrigerant which is used to cool the oil used for bearing lubrication does not branch off contributes to the heat transfer in the evaporator 3. Furthermore, when the refrigerant is injected at the point 22 of the compressor 1, there is the advantage that the refrigerant coming from the heat exchanger 17 meets the partially compressed, warmer refrigerant in the compressor 1 and cools the latter, which leads to an advantageous lower compression end temperature .
Sollte die Verdichtungsendtemperatur dennoch einen vorge¬ gebenen Grenzwert übersteigen, so wird mit dem sich im Druckauslaßbereich des Verdichters 1 befindlichen, zweiten Temperaturfühler 12 über die elektrische Leitung 13 durch die Steuerungseinheit 11 das Magnetventil 20 geöffnet und vermittels der Einspritzdüse 21 mehr Kältemittel in den Wärmetauscher 17 eingespritzt, als es für die Kühlung des der Lagerschmierung dienenden Öls erforderlich ist.Should the final compression temperature nevertheless exceed a predetermined limit value, the second temperature sensor 12 located in the pressure outlet area of the compressor 1 is used to open the solenoid valve 20 via the electrical line 13 through the control unit 11 and by means of the injection nozzle 21 more refrigerant into the heat exchanger 17 injected than is required for cooling the oil used for bearing lubrication.
Sollte auch bei ständig geöffnetem Magnetventil 20 die Verdichtungsendtemperatur weiter ansteigen, so wird durch den Temperaturfühler 12, bzw. durch einen weiteren, nicht dargestellten Temperaturfühler im Druckauslaßbereich des Verdichters 1 über die Steuerungseinheit 11 eine Abschal¬ tung des Verdichters erreicht. Die oben beschriebene Kühlung des zur Lagerschmierung ver¬ wendeten Öls bietet den Vorteil, Öl niedriger Grund-Vis¬ kosität zu verwenden. Bisher wurde die Forderung nach hoher Grund-Viskosität vor allem von der Schmierung der Lagerstellen des Verdichters bestimmt, da bei hohen Lager¬ temperaturen eine ausreichende Betriebs-Viskosität des Öls an den Lagerstellen erforderlich ist. Auf der "kalten Sei¬ te" des Kältemittelkreislaufs kann die Verwendung von Öl mit hoher Grund-Viskosität jedoch zu Problemen führen. Bei niedriger Verdampfungstemperaturen kann nämlich das über den Olabscheider nicht abgeschiedene und sich damit im Kältemittelkreislauf befindliche Öl so dickflüssig werden, daß es vom Kältemittelgasstrom im Verdampfer nicht mehr mitgerissen wird. Es kommt auf diese Weise zu einer Ölver- lagerung in den Verdampfer, was zu einem verminderten Wär¬ meübergang des Kältemittelgases, beispielsweise an Ver¬ dampferrohren des Verdampfers, oder sogar zum Verstopfen einzelner solcher Rohre führen kann.If the final compression temperature continues to rise even when the solenoid valve 20 is continuously open, the temperature sensor 12 or a further temperature sensor (not shown) in the pressure outlet area of the compressor 1 via the control unit 11 switches off the compressor. The above-described cooling of the oil used for bearing lubrication offers the advantage of using oil with a low basic viscosity. So far, the requirement for a high basic viscosity has primarily been determined by the lubrication of the bearing points of the compressor, since an adequate operating viscosity of the oil is required at the bearing points at high bearing temperatures. On the "cold side" of the refrigerant circuit, however, the use of oil with a high basic viscosity can lead to problems. At low evaporation temperatures, the oil that is not separated by the oil separator and is therefore in the refrigerant circuit can become so viscous that it is no longer entrained by the refrigerant gas flow in the evaporator. In this way, oil is stored in the evaporator, which can lead to reduced heat transfer of the refrigerant gas, for example to evaporator tubes of the evaporator, or even to the clogging of individual such tubes.
Wird dagegen ein Öl niedrigerer Viskosität verwendet, so muß bei bekannten Kühlvorrichtungen das gesamte in den Verdichter eingespritzte Öl gekühlt werden, um an den Lagerstellen die geforderte Betriebs-Viskosität zu erhal¬ ten. Einer derartigen Kühlung des gesamten eingespritzten Öls sind jedoch Grenzen gesetzt, da eine dadurch bewirkte zu starke Erniedrigung der Verdichtungsendtemperatur dazu führen kann, daß diese in die Nähe der Verflüssigungs¬ temperatur kommt und sich bereits Kältemittel im Olab¬ scheider verflüssigt. Das Öl-Kältemittel-Gemisch hat au¬ ßerdem eine wesentlich geringere Viskosität als das reine Öl und ist für die Lagerschmierung nicht mehr ausreichend, da das Kältemittel an den warmen Lagerstellen schlagartig aus dem Öl verdampft und auf diese Weise den Schmierfilm an den Lagern unterbricht. Die größere Kältemittelmenge im Öl hat auch energetische Nachteile. Dieses Kältemittel muß mitverdichtet werden mit der Folge eines höheren Energie¬ bedarfs des Verdichters.If, on the other hand, an oil of lower viscosity is used, all of the oil injected into the compressor must be cooled in known cooling devices in order to maintain the required operating viscosity at the bearing points. However, such cooling of the entire injected oil has limits, since a resulting excessive reduction in the compression temperature can result in the fact that it comes close to the liquefaction temperature and the refrigerant is already liquefied in the oil separator. The oil-refrigerant mixture also has a much lower viscosity than the pure oil and is no longer sufficient for bearing lubrication. since the refrigerant suddenly evaporates from the oil at the warm bearing points and thus interrupts the lubricating film on the bearings. The larger amount of refrigerant in the oil also has energy disadvantages. This refrigerant must also be compressed, which means that the compressor requires more energy.
Der Hauptvorteil der erfindungsgemäßen, regelbaren Kühlung des zur Schmierung der Verdichterlagerstellen verwendeten Öls ist, daß trotz Verwendung eines Öls niedriger Grund- Viskosität eine genügende Betriebs-Viskosität des der Lagerschmierung dienenden Öls erreicht wird. Da der sich in der Hauptölleitung befindliche Hauptölstrom, der zur Einspritzung in den Verdichter vorgesehen ist, dabei unge- kühlt bleibt, wird verhindert, daß die Verdichtungsend- temperatur nicht auf kritische Werte absinkt und damit auch kein Kältemittel im Olabscheider in das Öl konden¬ siert. Außerdem wird durch die erfindungsgemäße Lageröl- kühlung der Aufwand für die Ölkühlung ganz wesentlich reduziert und damit die Wirtschaftlichkeit erhöht. The main advantage of the controllable cooling of the oil used to lubricate the compressor bearing points according to the invention is that, despite the use of an oil with a low basic viscosity, a sufficient operating viscosity of the oil used for bearing lubrication is achieved. Since the main oil flow in the main oil line, which is provided for injection into the compressor, remains uncooled, it is prevented that the compression end temperature does not drop to critical values and thus no refrigerant in the oil separator is condensed into the oil . In addition, the cost of oil cooling is considerably reduced by the bearing oil cooling according to the invention and thus the economy is increased.

Claims

P a t e n t a n s p r ü c h eKühlvorrichtung für einen Drehkolbenverdichter, insbe¬ sondere einen Schraubenverdichter, der zusammen mit einem Verflüssiger und einem Verdampfer Teil eines Kältemittelkreislaufes ist, wobei in den Schraubenver¬ dichter ein Teilstrom des Kältemittels der Kälteanlage und ein der Schmierung von Lagerstellen sowie der Küh¬ lung und Abdichtung des Schraubenverdichters dienendes Öl einspritzbar sind, dadurch gekennzeichnet, daß nur der der Schmierung der Lagerstellen des Schraubenverdichters (1) dienende Teil des Öls in Ab¬ hängigkeit von der an den Lagerstellen abgefühlten Ol¬ temperatur gekühlt und hierfür ein abgezweigter Kälte¬ mittelstrom verwendet wird, der seinerseits danach wieder dem Schraubenverdichter (1) zugeleitet wird.Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der abgezweigte Kältemittelstrom zusätzlich in Ab¬ hängigkeit von einer sich nach der Verdichtung erge¬ benden Verdichtungsendtemperatur regelbar ist.Vorrichtung nach Anspruch 1 oder 2, dadurch gekenn¬ zeichnet, daß der abgezweigte Kältemittelström der Saugseite des Schraubenverdichters (1) zugeleitet wird. Vorrichtung nach einem der vorstehend genannten An¬ sprüche, dadurch gekennzeichnet, daß der abgezweigte Kältemittelstrom dem Schraubenverdichter (1) an einer Stelle (22) zugeleitet wird, an der der Ansaugvorgang des Schraubenverdichters (1) abgeschlossen ist. GEÄNDERTE ANSPRÜCHE[beim Internationalen Büro am 23. November 1992 (23.11.92) eingegangen, ursprünglicher Anspruch 1 geändert; alle weiteren Ansprüche unverändert (1 Seit Cooling device for a rotary lobe compressor, in particular a screw compressor, which together with a condenser and an evaporator is part of a refrigerant circuit, with a partial flow of the refrigerant of the refrigeration system and a lubrication of bearing points and the cooling device in the screw compressor Oil and serving of the screw compressor can be injected, characterized in that only the part of the oil used for the lubrication of the bearing points of the screw compressor (1) is cooled as a function of the oil temperature sensed at the bearing points and for this purpose a branched-off refrigerant flow is used, which in turn is then fed back to the screw compressor (1) .Device according to claim 1, characterized in that the branched-off refrigerant flow is additionally controllable as a function of a compression end temperature resulting after compression according to claim 1 or 2, characterized gekenn¬ characterized in that the branched refrigerant flow is fed to the suction side of the screw compressor (1). Device according to one of the preceding claims, characterized in that the branched-off refrigerant flow is fed to the screw compressor (1) at a point (22) at which the suction process of the screw compressor (1) is completed. CHANGED CLAIMS [received at the International Bureau on November 23, 1992 (November 23, 1992), original claim 1 amended; all other claims unchanged (1 page
1. Kühlvorrichtung für einen Drehkolbenverdichter, insbesondere einen Schraubenverdichter, der zusammen mit einem Verflüssiger und einem Verdampfer Teil eines Kältemittelkreislaufs ist, wobei in den Schraubenverdichter ein Teilstrom des Kältemittels der Kälteanlage und ein der Schmierung von Lagerstellen sowie der Kühlung und Abdichtung des Schraubenverdichters dienendes öl einspritzbar sind, zu dessen Kühlung ein abgezweigter Kältemittelstrom verwendet wird, der seinerseits danach wieder dem Schraubenverdichter zugeleitet wird, dadurch gekennzeichnet, daß nur der der Schmierung der Lagerstellen des Schraubenverdichters (1 ) dienende Teil des Öls in Abhängigkeit von der an den Lagerstellen abgefühlten Oltemperatur durch den abgezweigten Kältemittelström gekühlt wird. 1.Cooling device for a rotary lobe compressor, in particular a screw compressor, which is part of a refrigerant circuit together with a condenser and an evaporator, with a partial flow of the refrigerant of the refrigeration system and an oil used for lubricating bearing points and for cooling and sealing the screw compressor being injectable into the screw compressor are, for the cooling of which a branched-off refrigerant flow is used, which in turn is then fed back to the screw compressor, characterized in that only that part of the oil which serves to lubricate the bearing points of the screw compressor (1), depending on the oil temperature sensed at the bearing points, by the branched refrigerant flow is cooled.
INARTIKEL19GENANNTEERKLÄRUNGINARTICLE 19 CERTIFICATE
1. Die Druckschrift DE,A, 2 261 091 offenbart eine Anordnung zur Ölkühlung von Kühlkompressoren des Rotationstyps, bei der ein hinter dem Verflüssiger abgezweigter Kältemittel- ström zur Ölkühlung verwendet wird, der danach wieder dem Arbeitsraum des Verdichters zugeleitet wird. Die Ölkühlung findet dabei in einem Ölkühler statt, der vom abgezweigten Kältemittelstrom durchströmt wird. Dabei wird ein Regelven¬ til, welches die Einspritzmenge des Kältemittels in den Öl¬ kühler regelt, in Abhängigkeit von der Temperatur am Aus¬ gang des Verdichters, die von einem Temperaturfühler abge¬ tastet wird, und in Abhängigkeit von der Temperatur hinter dem Ölkühler, die von einem weiteren Temperaturfühler abge¬ tastet wird, gesteuert. Das abgekühlte Öl wird sodann über eine Leitung den Lagern und den übrigen Schmierstellen des Verdichters zugeführt, während das Kältemittel über eine Leitung in den Verdichter eingespritzt wird.1. The document DE, A, 2 261 091 discloses an arrangement for oil cooling of refrigeration compressors of the rotary type, in which a refrigerant flow branched off behind the condenser is used for oil cooling, which is then returned to the working space of the compressor. The oil cooling takes place in an oil cooler through which the branched refrigerant flow flows. A control valve, which regulates the injection quantity of the refrigerant into the oil cooler, is used as a function of the temperature at the outlet of the compressor, which is sensed by a temperature sensor, and as a function of the temperature downstream of the oil cooler, which is sensed by a further temperature sensor. The cooled oil is then fed to the bearings and the other lubrication points of the compressor via a line, while the refrigerant is injected into the compressor via a line.
Der Druckschrift läßt sich jedoch nicht entnehmen, daß nur der der Schmierung der Lagerstellen des Verdichters dienen¬ de Teil des Öls in Abhängigkeit von der Temperatur an den Lagerstellen selbst gekühlt wird, wie es Gegenstand der vorliegenden internationalen Patentanmeldung ist.However, it cannot be inferred from the document that only that part of the oil which is used to lubricate the bearing points of the compressor is cooled as a function of the temperature at the bearing points themselves, as is the subject of the present international patent application.
2. Die Druckschrift EP,A,0 306 405 offenbart ein Verfahren und eine Vorrichtung zur Kühlung eines elektrischen Motors eines motorbetriebenen hermetischen Verdichters. Es handelt sich hierbei lediglich um eine geregelte Motorkühlung eines Schraubenverdichters, wobei zur Motorkühlung flüssiges Kältemittel hinter dem Verdichter abgezweigt wird. Von einer geregelten Kühlung des für die Schmierung der Lager¬ stellen des Schraubenverdichters verwendeten Öls ist in dieser Druckschrift an keiner Stelle die Rede.2. EP, A, 0 306 405 discloses a method and a device for cooling an electric motor of a motor-driven hermetic compressor. This is only a controlled motor cooling of a screw compressor, with liquid refrigerant being branched off behind the compressor for motor cooling. Of A regulated cooling of the oil used for the lubrication of the screw compressor bearings is nowhere in this document.
3. Auch die US,A,3 759 348 offenbart lediglich ein Verfahren, bei dem zur Kühlung des aus einem Olabscheider abgeschiede¬ nen Öls ein nach dem Verflüssiger abgezweigter Kältemittel¬ strom verwendet wird, der in einen Ölkühler eingeleitet und nach Verlassen des Olkühlers wieder dem Schraubenverdichter zugeführt wird. Dabei wird der in den Ölkühler eingeleitete Kältemittelstrom in Abhängigkeit von der Temperatur des verdichteten Kältemittels am Auslaß des Verdichters, die von einem am Auslaß des Verdichters angeordneten Tempera¬ turfühler abgefühlt wird, über ein steuerbares Expansions¬ ventil gesteuert. Sowohl das abgekühlte Öl als auch der den Ölkühler verlassende Kältemittelstrom werden über Einlasse in den Verdichtungsraum des Verdichters eingeleitet, an der der Ansaugvorgang bereits abgeschlossen ist. Auch diese Druckschrift offenbart keine Kühlung des lediglich zur Schmierung der Lagerstellen verwendeten Öls in Abhängigkeit von der Temperatur an den Lagerstellen.3. US Pat. No. 3,759,348 also only discloses a method in which a refrigerant stream branched off after the condenser is used to cool the oil separated from an oil separator, which is introduced into an oil cooler and again after leaving the oil cooler is fed to the screw compressor. The coolant flow introduced into the oil cooler is controlled via a controllable expansion valve as a function of the temperature of the compressed refrigerant at the outlet of the compressor, which is sensed by a temperature sensor arranged at the outlet of the compressor. Both the cooled oil and the refrigerant flow leaving the oil cooler are introduced via inlets into the compression chamber of the compressor, at which the suction process has already been completed. This publication also does not disclose cooling of the oil used only for lubricating the bearing points, depending on the temperature at the bearing points.
4. Die DE,A,2 801 408 offenbart die Kühlung eines Verdichters, wohingegen die Kühlung des Öls der Lagerstellen nicht Ge¬ genstand dieser Druckschrift ist. Es ist in dieser Druck¬ schrift sogar explizit erwähnt, daß zur Schmierung der La¬ ger des Verdichters warmes Öl einer Temperatur verwendet wird, die nahezu der Endtemperatur des Verdichters ent¬ spricht (siehe Seite 14, Zeilen 13 f.).4. DE, A, 2 801 408 discloses the cooling of a compressor, whereas the cooling of the oil in the bearing points is not the subject of this document. It is even explicitly mentioned in this publication that warm oil of a temperature which corresponds almost to the end temperature of the compressor is used for lubricating the bearings of the compressor (see page 14, lines 13 f.).
5. Da bei allen vier genannten Druckschriften ist das Merkmal enthalten, daß ein abgezweigter Teilstrom des Kältemittels zur Kühlung des im Verdichter verwendeten Öls vorgesehen ist, wird dieses Merkmal bei dem geänderten Anspruch 1 in den Oberbegriff aufgenommen, während das Merkmal, daß nur der der Schmierung der Lagerstellen des Schraubenver¬ dichters dienende Teil des Öls in Abhängigkeit von der an den Lagerstellen abgefühlten oltemperatur gekühlt wird, Ge¬ genstand des Kennzeichnungsteils bleibt. 5. As is the case with all four of the mentioned publications contain that a branched-off partial flow of the refrigerant is provided for cooling the oil used in the compressor, this feature is included in the preamble in the amended claim 1, while the feature that only the part of the oil used for lubricating the bearing points of the screw compressor is used depending on the oil temperature sensed at the bearing points, the object of the marking part remains.
EP92909704A 1991-07-11 1992-05-13 Cooling device Expired - Lifetime EP0593495B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4122889A DE4122889C1 (en) 1991-07-11 1991-07-11
DE4122889 1991-07-11
PCT/EP1992/001045 WO1993001413A1 (en) 1991-07-11 1992-05-13 Cooling device

Publications (2)

Publication Number Publication Date
EP0593495A1 true EP0593495A1 (en) 1994-04-27
EP0593495B1 EP0593495B1 (en) 1995-01-18

Family

ID=6435868

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92909704A Expired - Lifetime EP0593495B1 (en) 1991-07-11 1992-05-13 Cooling device

Country Status (7)

Country Link
US (1) US5433590A (en)
EP (1) EP0593495B1 (en)
AT (1) ATE117409T1 (en)
DE (1) DE4122889C1 (en)
DK (1) DK0593495T3 (en)
ES (1) ES2067334T3 (en)
WO (1) WO1993001413A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6082982A (en) * 1997-11-17 2000-07-04 Uop Llc Flooded compressor with improved oil reclamation
US6371742B1 (en) * 1997-12-30 2002-04-16 Ateliers Busch S.A. Cooling device
US6067804A (en) * 1999-08-06 2000-05-30 American Standard Inc. Thermosiphonic oil cooler for refrigeration chiller
DE19963170A1 (en) * 1999-12-27 2001-06-28 Leybold Vakuum Gmbh Vacuum pump with shaft sealant
EP1571337B1 (en) * 2004-03-05 2007-11-28 Corac Group plc Multi-stage No-oil Gas Compressor
SE526649C2 (en) * 2004-08-12 2005-10-18 Peter Blomkvist Heat pump
US8590324B2 (en) * 2009-05-15 2013-11-26 Emerson Climate Technologies, Inc. Compressor and oil-cooling system
CN103782117B (en) 2011-09-16 2016-05-18 丹佛斯公司 For the cooling and sub-cooling circuit of motor of compressor
DK2573388T3 (en) * 2011-09-22 2019-01-14 Moventas Gears Oy Process for controlling the lubrication of an exchange and of an exchange
ES2479692T3 (en) * 2011-09-22 2014-07-24 Moventas Gears Oy A procedure to control the lubrication of a transmission and a transmission

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3176913A (en) * 1960-07-22 1965-04-06 Linde Eismasch Ag Rotary compressor arrangement
US3710590A (en) * 1971-07-19 1973-01-16 Vilter Manufacturing Corp Refrigerant cooled oil system for a rotary screw compressor
US3759348A (en) * 1971-11-08 1973-09-18 Maekawa Seisakusho Kk Method of compressing chlorine gas
SE360168B (en) * 1971-12-22 1973-09-17 Stal Refrigeration Ab
DE2801408A1 (en) * 1978-01-13 1979-07-19 Linde Ag Refrigeration unit rotary piston compressor cooling system - injects oil and refrigerant mixture into compression chamber
FR2620205A1 (en) * 1987-09-04 1989-03-10 Zimmern Bernard HERMETIC COMPRESSOR FOR REFRIGERATION WITH ENGINE COOLED BY GAS ECONOMIZER
JPH0784955B2 (en) * 1989-04-26 1995-09-13 ダイキン工業株式会社 Screw refrigerator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9301413A1 *

Also Published As

Publication number Publication date
ES2067334T3 (en) 1995-03-16
EP0593495B1 (en) 1995-01-18
US5433590A (en) 1995-07-18
DK0593495T3 (en) 1995-04-10
WO1993001413A1 (en) 1993-01-21
ATE117409T1 (en) 1995-02-15
DE4122889C1 (en) 1992-12-17

Similar Documents

Publication Publication Date Title
DE69722146T2 (en) Refrigeration arrangement with a compressor for single or multi-stage operation with capacity control
DE60222720T2 (en) Cooling system with variable speed drive
DE102006050232B9 (en) refrigeration plant
DE60006761T2 (en) Improved part load performance of a screw compressor with variable speed
EP1895246B1 (en) Refrigeration circuit and method for operating a refrigeration circuit
DE19781873B4 (en) Cooling circuit with series evaporators and an adjustable compressor
EP0710807A2 (en) Compressor refrigeration machine
DE4320537A1 (en) Encapsulated rotary compressor
EP1886075A1 (en) Refrigeration plant
DE60123321T2 (en) Compressor system with a controlled cooling fan
EP3479903B1 (en) Centrifuge
EP0593495A1 (en) Cooling device.
DE2455470A1 (en) GAS COMPRESSION SYSTEM
DE3435761A1 (en) DEVICE FOR COOLING THE OIL IN A COMPRESSION AND IN PARTICULAR A SCREW COMPRESSING UNIT
DE4036854C1 (en)
DE4119557A1 (en) DEVICE WITH COOLING CIRCUIT
EP0180904B1 (en) Cooling device
EP1317627B1 (en) Pump comprising a water supply
DE102011012644A1 (en) Cooling system for cooling and freezing of foods in warehouses or supermarkets, has refrigerant circuit, which is provided for circulation of refrigerant, particularly carbon dioxide, in operating flow direction
DE4338939C1 (en) Method and device for the cooling of a refrigerant compressor
DE2621303A1 (en) DEVICE FOR COMPRESSING AND EXPANSION OF GAS
EP2215412A1 (en) System for refrigeration, heating or air-conditioning technology, particularly refrigeration systems
DE2438418A1 (en) Rotating vane gas compressor for refrigerating plant - has means for injecting the gas in liquid state into the compression chamber
WO2014091018A1 (en) Compressor unit and utility vehicle having a cooling machine comprising a compressor unit of said type
DE3709628A1 (en) Cooling system with a piston compressor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19931214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DK ES FR IT LI SE

17Q First examination report despatched

Effective date: 19940502

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DK ES FR IT LI SE

REF Corresponds to:

Ref document number: 117409

Country of ref document: AT

Date of ref document: 19950215

Kind code of ref document: T

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2067334

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19950513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950531

Ref country code: CH

Effective date: 19950531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970409

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970410

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19970513

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19970516

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970527

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980514

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19980514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

BERE Be: lapsed

Owner name: BITZER KUHLMASCHINENBAU G.M.B.H. & CO. K.G.

Effective date: 19980531

EUG Se: european patent has lapsed

Ref document number: 92909704.6

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050513