EP0593495B1 - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
EP0593495B1
EP0593495B1 EP92909704A EP92909704A EP0593495B1 EP 0593495 B1 EP0593495 B1 EP 0593495B1 EP 92909704 A EP92909704 A EP 92909704A EP 92909704 A EP92909704 A EP 92909704A EP 0593495 B1 EP0593495 B1 EP 0593495B1
Authority
EP
European Patent Office
Prior art keywords
compressor
oil
coolant
refrigerant
bearings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92909704A
Other languages
German (de)
French (fr)
Other versions
EP0593495A1 (en
Inventor
Klaus Hossner
Adalbert Stenzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bitzer Kuehlmaschinenbau GmbH and Co KG
Original Assignee
Bitzer Kuehlmaschinenbau GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bitzer Kuehlmaschinenbau GmbH and Co KG filed Critical Bitzer Kuehlmaschinenbau GmbH and Co KG
Publication of EP0593495A1 publication Critical patent/EP0593495A1/en
Application granted granted Critical
Publication of EP0593495B1 publication Critical patent/EP0593495B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/042Heating; Cooling; Heat insulation by injecting a fluid

Definitions

  • the invention relates to a cooling device according to the preamble of patent claim 1.
  • Refrigeration and air conditioning systems essentially comprise an evaporator in which heat is extracted from the environment by vaporizing the refrigerant, a compressor which increases the pressure of the evaporated refrigerant from a suction pressure to an outlet pressure, and a condenser in which that is under the outlet pressure evaporated refrigerant is liquefied with the release of heat.
  • the oil injected into the compressor is cooled depending on an end temperature resulting at the pressure outlet of the compressor. Cooling can be done by refrigerant injection, or by cooling with water or air in a heat exchanger, e.g. a plate heat exchanger. In the latter case, a large amount of oil injection requires large and expensive heat exchangers.
  • the temperature of the injected oil is essentially determined by the fact that its viscosity is high enough to ensure lubrication of the bearing points. If the oil temperature rises, the viscosity of the oil drops and the lubrication of the bearing points of the rotors is at risk. However, lower oil viscosities or higher oil temperatures would also be permissible for the above-mentioned seal of the column, which requires the largest amount of oil injection.
  • the object of the invention is to cool the oil used for bearing lubrication in a simple and economical manner, regardless of the total amount of oil injected into the compressor.
  • a cooling device essentially comprises a screw compressor 1, a condenser 2 and an evaporator 3, which are connected in a closed refrigerant circuit by lines 4. Furthermore, there is a check valve 5 in the refrigerant circuit, which is arranged directly at the pressure outlet of the compressor, an oil separator 6, which is arranged behind the check valve 5 and in front of the condenser 2, and an expansion element 7, which is located between the condenser 2 and the evaporator 3 in the refrigerant circuit.
  • a first temperature sensor 8 senses the temperature at the bearing points of the compressor 1 and is connected to a control unit 11 via an electrical line 9.
  • a second Temperature sensor 12 senses the temperature in the pressure outlet area of the compressor 1 and is also connected to the control unit 11 via an electrical line 13.
  • a main oil line 14 extends from the oil separator 6 and leads into the compression space of the compressor 1 via a solenoid valve 15.
  • a bearing oil line 16 is branched off from the main oil line 14 and leads into a heat exchanger 17 and from there to the bearing points of the compressor 1.
  • part of the refrigerant is branched off from the line 4 of the refrigerant circuit via a line 18, fed to a solenoid valve 20 which can be controlled by the control unit 11 via an electrical line 19, and passes from there via an injection nozzle 21 into the heat exchanger 17, from which it is fed to a point 22 of the compressor 1 at which the suction process of the compressor 1 caused by the rotors is completed.
  • the cooling device operates as follows: The refrigerant evaporated in the evaporator 3 is drawn in on the suction side of the compressor 1 and is compressed therein. Oil is injected into the compression chamber of the compressor via the main oil line 14 and the solenoid valve 15. The oil is entrained by the refrigerant to be compressed, and the resulting oil-refrigerant mixture is compressed in the compressed state Check valve 5 fed to the oil separator 6. In the oil separator 6, the oil is separated from the refrigerant and, since it is under increased pressure, is injected back into the compressor 1 via the main oil line 14 and the solenoid valve 15 at a point of the compressor which is at a lower pressure. The oil is separated from the refrigerant so as not to adversely affect the heat transfer of the refrigerant within the refrigerant circuit and also to implement a closed main oil circuit.
  • the control unit 11 opens the magnetic valve 20 via the electrical line 19 and coolant in a liquid state Form injected into the heat exchanger 17 via the line 18 and the injector 21.
  • the oil branched off from the main oil line 14 via the bearing oil line 16 is cooled for cooling the bearing points by the refrigerant branched off behind the condenser 2, heat being supplied to the coolant and heat being removed from the oil used for lubricating the bearing points.
  • the refrigerant evaporated in the heat exchanger 17 is fed to the suction side of the compressor, advantageously to a point 22 at which the suction process of the compressor 1 is completed.
  • the injection at this point 22 of the compressor 1 is necessary because otherwise the cooling capacity of the compressor, ie the amount of heat absorbed by the environment in the evaporator 3 for evaporating the refrigerant, decreases because the refrigerant branched off for cooling the oil used for bearing lubrication does not transfer heat contributes in the evaporator 3. Furthermore, when the refrigerant is injected at the point 22 of the compressor 1, there is the advantage that the refrigerant coming from the heat exchanger 17 meets the partially compressed, warmer refrigerant in the compressor 1 and thereby cools the latter, which leads to an advantageous lower compression end temperature.
  • the second temperature sensor 12 located in the pressure outlet area of the compressor 1 opens the solenoid valve 20 via the electrical line 13 through the control unit 11 and more refrigerant is injected into the heat exchanger 17 by means of the injection nozzle 21. than is necessary for cooling the oil used for bearing lubrication.
  • the temperature sensor 12 or a further temperature sensor (not shown) in the pressure outlet region of the compressor 1 via the control unit 11 switches off the compressor.
  • the main advantage of the controllable cooling of the oil used to lubricate the compressor bearing points according to the invention is that, despite the use of an oil with a low basic viscosity, a sufficient operating viscosity of the oil used for the bearing lubrication is achieved. Since the main oil flow in the main oil line, which is intended for injection into the compressor, remains uncooled, it is prevented that the compression end temperature does not drop to critical values and thus no refrigerant in the oil separator condenses into the oil. In addition, the cost of oil cooling is significantly reduced by the bearing oil cooling according to the invention and thus the economy is increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Surgical Instruments (AREA)

Abstract

PCT No. PCT/EP92/01045 Sec. 371 Date Dec. 21, 1993 Sec. 102(e) Date Dec. 21, 1993 PCT Filed May 13, 1992 PCT Pub. No. WO93/01413 PCT Pub. Date Jan. 21, 1993.In a cooling device for a rotary piston compressor, in particular a screw-type compressor, which is part of a refrigerant circuit together with a condenser and an evaporator, coolant of the refrigeration system and oil serving to lubricate bearings as well as to cool and seal the screw-type compressor are injected into the screw-type compressor. In order to cool the oil serving to lubricate the compressor bearings separately and to thereby achieve a more economical functioning of the entire cooling device, it is suggested that only the part of the oil serving to lubricate the bearings of the compressor is cooled as a function of the oil temperature sensed behind the bearings and that a branched stream of coolant is used for this, the stream on its part subsequently being fed to the compressor again.

Description

Die Erfindung betrifft eine Kühlvorrichtung nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a cooling device according to the preamble of patent claim 1.

Derartige Kühlvorrichtungen (JP-A-2-287 058) können in Drehkolbenverdichtern für Kälte- und Klimaanlagen eingesetzt werden, beispielsweise in einem Schraubenverdichter mit Öleinspritzung. Kälte- und Klimaanlagen umfaßen im wesentlichen einen Verdampfer, in welchem durch Verdampfen des Kältemittels der Umgebung Wärme entzogen wird, einen Verdichter, welcher den Druck des verdampften Kältemittels von einem Ansaugdruck auf einen Auslaßdruck erhöht, und einen Verflüssiger, in welchem das unter dem Auslaßdruck stehende verdampfte Kältemittel unter Wärmeabgabe wieder verflüssigt wird.Such cooling devices (JP-A-2-287 058) can be used in rotary lobe compressors for refrigeration and air conditioning systems, for example in a screw compressor with oil injection. Refrigeration and air conditioning systems essentially comprise an evaporator in which heat is extracted from the environment by vaporizing the refrigerant, a compressor which increases the pressure of the evaporated refrigerant from a suction pressure to an outlet pressure, and a condenser in which that is under the outlet pressure evaporated refrigerant is liquefied with the release of heat.

Bei Schraubenverdichtern sind zur Verdichtung des Kältemittels innerhalb des Verdichtergehäuses zwei ineinander greifende, schraubenartige Rotoren angeordnet, welche radial durch das Verdichtergehäuse dicht abgeschlossen sind. In den überwiegenden Fällen besitzen die in Kälteanlagen verwendeten Schraubenverdichter eine Einrichtung zur Öleinspritzung. Das Öl wird in die Verdichtungsräume der Schraubenverdichter und somit in das sich dort befindliche zu verdichtende Gas eingespritzt. Es dient im wesentlichen folgenden drei Zwecken:

  • 1. Zur Kühlung des Verdichtungsvorganges:
    Durch das eingespritzte Öl wird das zu verdichtende Kältemittel gekühlt und damit wird auch der Schraubenverdichter insgesamt gekühlt. Er wird damit geringeren Temperaturunterschieden ausgesetzt. Dies bedeutet, daß Passungen und Spiele enger ausgeführt werden können, wodurch die Spaltverluste im Verdichter verringert werden.
  • 2. Zur Schmierung der Rotoren und der Lagerstellen:
    Da bei bekannten öleingespritzten Schraubenverdichtern üblicherweise nur einer der Rotoren extern, zum Beispiel durch einen Elektromotor oder dgl. angetrieben wird, muß der andere Rotor indirekt von dem angetriebenen Rotor mitangetrieben werden. Das eingespritzte Öl verringert dabei den Verschleiß an den beiden Rotoren. Außerdem wird das Öl zur Schmierung der Lagerstellen der Rotoren verwendet.
  • 3. Zur Dichtung der Spalte innerhalb des Verdichtungsraumes:
    Das eingespritzte Öl dichtet die Spalte zwischen den beiden Rotoren und zwischen den einzelnen Rotoren und dem Verdichtergehäuse ab. Auf diese Weise werden eventuell vorhandene Leckagepfade innerhalb des Verdichters abgedichtet und somit die Voraussetzungen für einen hohen Wirkungsgrad des Verdichters geschaffen. Das in die Verdichtungskammer eingespritzte Öl wird zerstäubt und von dem sich in der Verdichtungskammer befindlichen, zu verdichtenden, gasförmigen Kältemittel mitgerissen. Am Druckauslaß des Verdichters liegt somit ein Öl-Kältemittel-Gemisch vor. Das sich im Öl-Kältemittel-Gemisch befindliche Öl muß vom Kältemittel durch Ölabscheider abgeschieden werden um erneut in den Verdichter eingespritzt werden zu können und um Wärmeübergänge des Kältemittels innerhalb des Kältemittelkreislaufes nicht nachteilig zu beeinflussen.
In the case of screw compressors, two interlocking, screw-like rotors are arranged within the compressor housing to compress the refrigerant and are sealed radially by the compressor housing. In the majority of cases, the in Refrigeration systems used screw compressors a device for oil injection. The oil is injected into the compression chambers of the screw compressors and thus into the gas to be compressed. It serves three main purposes:
  • 1. To cool the compression process:
    The injected oil cools the refrigerant to be compressed and thus also the screw compressor as a whole is cooled. It is therefore exposed to smaller temperature differences. This means that fits and clearances can be made narrower, which reduces the gap losses in the compressor.
  • 2. For the lubrication of the rotors and the bearing points:
    Since in known oil-injected screw compressors usually only one of the rotors is driven externally, for example by an electric motor or the like, the other rotor must be driven indirectly by the driven rotor. The injected oil reduces wear on the two rotors. The oil is also used to lubricate the rotor bearings.
  • 3. To seal the gaps within the compression space:
    The injected oil seals the gap between the two rotors and between the individual rotors and the compressor housing. That way any leakage paths within the compressor are sealed, thus creating the conditions for a high efficiency of the compressor. The oil injected into the compression chamber is atomized and carried away by the gaseous refrigerant to be compressed, which is located in the compression chamber. An oil / refrigerant mixture is thus present at the pressure outlet of the compressor. The oil in the oil-refrigerant mixture must be separated from the refrigerant by an oil separator so that it can be re-injected into the compressor and so as not to adversely affect the heat transfer of the refrigerant within the refrigerant circuit.

Bei Verdichtung auf hohe Drücke wird das in den Verdichter eingespritzte Öl in Abhängigkeit von einer sich am Druckauslaß des Verdichters ergebenden Endtemperatur gekühlt. Eine Kühlung kann dabei durch Kältemitteleinspritzung, oder durch Kühlung mit Wasser oder mit Luft in einem Wärmetauscher, z.B. einem Plattenwärmetauscher, erfolgen. Eine große Öleinspritzmenge erfordert im letzten Fall große und teure Wärmetauscher.When compressing to high pressures, the oil injected into the compressor is cooled depending on an end temperature resulting at the pressure outlet of the compressor. Cooling can be done by refrigerant injection, or by cooling with water or air in a heat exchanger, e.g. a plate heat exchanger. In the latter case, a large amount of oil injection requires large and expensive heat exchangers.

Die Temperatur des eingespritzten Öls wird im wesentlichen dadurch bestimmt, daß seine Viskosität groß genug ist, um eine Schmierung der Lagerstellen zu gewährleisten. Steigt die Öltemperatur, so sinkt die Viskosität des Öls und die Schmierung der Lagerstellen der Rotoren ist gefährdet. Für die oben erwähnte Dichtung der Spalte, die die größte Öleinspritzmenge erfordet, wären dagegen auch geringere Ölviskositäten bzw. höhere Öltemperaturen zulässig.The temperature of the injected oil is essentially determined by the fact that its viscosity is high enough to ensure lubrication of the bearing points. If the oil temperature rises, the viscosity of the oil drops and the lubrication of the bearing points of the rotors is at risk. However, lower oil viscosities or higher oil temperatures would also be permissible for the above-mentioned seal of the column, which requires the largest amount of oil injection.

Aufgabe der Erfindung ist es, das zur Lagerschmierung verwendete Öl auf eine einfache und wirtschaftliche Art und Weise, unabhängig von der gesamten, in den Verdichter eingespritzten Ölmenge regelbar zu kühlen.The object of the invention is to cool the oil used for bearing lubrication in a simple and economical manner, regardless of the total amount of oil injected into the compressor.

Die Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst.The object is achieved by the characterizing features of claim 1.

Die nachstehende Beschreibung einer bevorzugten Ausführungsform der Erfindung dient im Zusammenhang mit beiliegender Zeichnung, die schematisch eine Kühlvorrichtung zeigt, der weiteren Erläuterung.The following description of a preferred embodiment of the invention serves in conjunction with the accompanying drawing, which schematically shows a cooling device, for further explanation.

Wie dargestellt umfaßt eine Kühlvorrichtung im wesentlichen einen Schraubenverdichter 1, einen Verflüssiger 2 und einen Verdampfer 3, die in einem geschlossenen Kältemittelkreislauf durch Leitungen 4 verbunden sind. Ferner befinden sich im Kältemittelkreislauf ein Rückschlagventil 5, das direkt am Druckausgang des Verdichters angeordnet ist, ein Ölabscheider 6, der hinter dem Rückschlagventil 5 und vor dem Verflüssiger 2 angeordnet ist, sowie ein Expansionsorgan 7, das sich zwischen dem Verflüssiger 2 und dem Verdampfer 3 im Kältemittelkreislauf befindet.As shown, a cooling device essentially comprises a screw compressor 1, a condenser 2 and an evaporator 3, which are connected in a closed refrigerant circuit by lines 4. Furthermore, there is a check valve 5 in the refrigerant circuit, which is arranged directly at the pressure outlet of the compressor, an oil separator 6, which is arranged behind the check valve 5 and in front of the condenser 2, and an expansion element 7, which is located between the condenser 2 and the evaporator 3 in the refrigerant circuit.

Im Verdichter 1 sind zwei im einzelnen nicht sichtbare Temperaturfühler 8 und 12 angeordnet. Ein erster Temperaturfühler 8 fühlt die Temperatur an den Lagerstellen des Verdichters 1 ab und ist über eine elektrische Leitung 9 mit einer Steuerungseinheit 11 verbunden. Ein zweiter Temperaturfühler 12 fühlt die Temperatur im Druckauslaßbereich des Verdichters 1 ab und ist über eine elektrische Leitung 13 ebenfalls mit der Steuerungseinheit 11 verbunden.Two temperature sensors 8 and 12, which are not visible in detail, are arranged in the compressor 1. A first temperature sensor 8 senses the temperature at the bearing points of the compressor 1 and is connected to a control unit 11 via an electrical line 9. A second Temperature sensor 12 senses the temperature in the pressure outlet area of the compressor 1 and is also connected to the control unit 11 via an electrical line 13.

Vom Ölabscheider 6 geht eine Hauptölleitung 14 aus, die über ein Magnetventil 15 in den Verdichtungsraum des Verdichters 1 führt. Von der Hauptölleitung 14 ist eine Lagerölleitung 16 abgezweigt, die in einen Wärmetauscher 17 und von diesem an die Lagerstellen des Verdichters 1 führt.A main oil line 14 extends from the oil separator 6 and leads into the compression space of the compressor 1 via a solenoid valve 15. A bearing oil line 16 is branched off from the main oil line 14 and leads into a heat exchanger 17 and from there to the bearing points of the compressor 1.

Hinter dem Verflüssiger 2 wird aus der Leitung 4 des Kältemittelkreislaufs ein Teil des Kältemittels über eine Leitung 18 abgezweigt, einem von der Steuerungseinheit 11 über eine elektrische Leitung 19 steuerbaren Magnetventil 20 zugeführt und gelangt von diesem über eine Einspritzdüse 21 in den Wärmetauscher 17, von dem es einer Stelle 22 des Verdichters 1 zugeleitet wird, an welcher der durch die Rotoren bewirkte Ansaugvorgang des Verdichters 1 abgeschlossen ist.Behind the condenser 2, part of the refrigerant is branched off from the line 4 of the refrigerant circuit via a line 18, fed to a solenoid valve 20 which can be controlled by the control unit 11 via an electrical line 19, and passes from there via an injection nozzle 21 into the heat exchanger 17, from which it is fed to a point 22 of the compressor 1 at which the suction process of the compressor 1 caused by the rotors is completed.

Die Betriebsweise der Kühlvorrichtung ist folgende:
Das im Verdampfer 3 verdampfte Kältemittel wird an der Saugseite des Verdichters 1 angesaugt und in diesem verdichtet. In den Verdichtungsraum des Verdichters wird über die Hauptölleitung 14 und das Magnetventil 15 Öl eingespritzt. Das Öl wird vom zu verdichtenden Kältemittel mitgerissen, und das auf diese Weise entstehende Öl-Kältemittel-Gemisch wird in verdichtetem Zustand über das Rückschlagventil 5 dem Ölabscheider 6 zugeleitet. Im Ölabscheider 6 wird das Öl vom Kältemittel abgeschieden und, da es unter erhöhtem Druck steht, über die Hauptölleitung 14 und das Magnetventil 15 an einer sich unter niedrigerem Druck befindlichen Stelle des Verdichters 1 wieder in diesen eingespritzt. Das Öl wird vom Kältemittel abgeschieden, um die Wärmeübergänge des Kältemittels innerhalb des Kältemittelkreislaufes nicht nachteilig zu beeinflussen, und um außerdem einen geschlossenen Hauptölkreislauf zu realisieren.
The cooling device operates as follows:
The refrigerant evaporated in the evaporator 3 is drawn in on the suction side of the compressor 1 and is compressed therein. Oil is injected into the compression chamber of the compressor via the main oil line 14 and the solenoid valve 15. The oil is entrained by the refrigerant to be compressed, and the resulting oil-refrigerant mixture is compressed in the compressed state Check valve 5 fed to the oil separator 6. In the oil separator 6, the oil is separated from the refrigerant and, since it is under increased pressure, is injected back into the compressor 1 via the main oil line 14 and the solenoid valve 15 at a point of the compressor which is at a lower pressure. The oil is separated from the refrigerant so as not to adversely affect the heat transfer of the refrigerant within the refrigerant circuit and also to implement a closed main oil circuit.

Steigt die Temperatur im Verdichter 1 an, was einen Temperaturanstieg an den Lagerstellen der Rotoren des Verdichters 1 bewirkt, so sinkt dadurch die Viskosität des Öls, insbesondere auch des Öls, das sich in den Lagerstellen befindet. Wird eine kritische Temperatur, bei der sich die Viskosität des Öls an den Lagerstellen stark verringert hat, überschritten, was vom Temperaturfühler 8 hinter den Lagerstellen festgestellt wird, so wird von der Steuerungseinheit 11 über die elektrische Leitung 19 das Magnetventil 20 geöffnet und Kältemittel in flüssiger Form über die Leitung 18 und die Einspritzdüse 21 in den Wärmetauscher 17 eingespritzt. Im Wärmetauscher 17 wird das von der Hauptöleitung 14 über die Lagerölleitung 16 abgezweigte Öl zur Kühlung der Lagerstellen durch das hinter dem Verflüssiger 2 abgezweigte Kältemittel gekühlt, wobei dem Kältemittel Wärme zugeführt und dem zur Lagerstellenschmierung verwendeten Öl Wärme entzogen wird. Das dabei im Wärmetauscher 17 verdampfte Kältemittel wird der Saugseite des Verdichters zugeführt, vorteilhafterweise an einer Stelle 22, an der der Ansaugvorgang des Verdichters 1 abgeschlossen ist. Die Einspritzung an dieser Stelle 22 des Verdichters 1 ist deshalb notwendig, weil sonst die Kälteleistung des Verdichters, d. h. die im Verdampfer 3 zum Verdampfen des Kältemittels von der Umgebung aufgenommene Wärmemenge sinkt, weil das zur Kühlung des der Lagerschmierung dienenden Öls abgezweigte Kältemittel nicht zum Wärmeübergang im Verdampfer 3 beiträgt. Des weiteren ergibt sich beim Einspritzen des Kältemittels an der Stelle 22 des Verdichters 1 der Vorteil, daß das vom Wärmetauscher 17 kommende Kältemittel mit dem teilweise verdichteten, wärmeren Kältemittel im Verdichter 1 zusammentrifft und dabei letzteres abkühlt, was zu einer vorteilhaften niedrigeren Verdichtungsendtemperatur führt.If the temperature in the compressor 1 rises, which causes a rise in temperature at the bearing points of the rotors of the compressor 1, the viscosity of the oil, in particular also of the oil which is located in the bearing points, drops as a result. If a critical temperature at which the viscosity of the oil at the bearing points has decreased significantly, which is determined by the temperature sensor 8 behind the bearing points, the control unit 11 opens the magnetic valve 20 via the electrical line 19 and coolant in a liquid state Form injected into the heat exchanger 17 via the line 18 and the injector 21. In the heat exchanger 17, the oil branched off from the main oil line 14 via the bearing oil line 16 is cooled for cooling the bearing points by the refrigerant branched off behind the condenser 2, heat being supplied to the coolant and heat being removed from the oil used for lubricating the bearing points. The refrigerant evaporated in the heat exchanger 17 is fed to the suction side of the compressor, advantageously to a point 22 at which the suction process of the compressor 1 is completed. The injection at this point 22 of the compressor 1 is necessary because otherwise the cooling capacity of the compressor, ie the amount of heat absorbed by the environment in the evaporator 3 for evaporating the refrigerant, decreases because the refrigerant branched off for cooling the oil used for bearing lubrication does not transfer heat contributes in the evaporator 3. Furthermore, when the refrigerant is injected at the point 22 of the compressor 1, there is the advantage that the refrigerant coming from the heat exchanger 17 meets the partially compressed, warmer refrigerant in the compressor 1 and thereby cools the latter, which leads to an advantageous lower compression end temperature.

Sollte die Verdichtungsendtemperatur dennoch einen vorgegebenen Grenzwert übersteigen, so wird mit dem sich im Druckauslaßbereich des Verdichters 1 befindlichen, zweiten Temperaturfühler 12 über die elektrische Leitung 13 durch die Steuerungseinheit 11 das Magnetventil 20 geöffnet und vermittels der Einspritzdüse 21 mehr Kältemittel in den Wärmetauscher 17 eingespritzt, als es für die Kühlung des der Lagerschmierung dienenden Öls erforderlich ist.If the final compression temperature nevertheless exceeds a predetermined limit value, the second temperature sensor 12 located in the pressure outlet area of the compressor 1 opens the solenoid valve 20 via the electrical line 13 through the control unit 11 and more refrigerant is injected into the heat exchanger 17 by means of the injection nozzle 21. than is necessary for cooling the oil used for bearing lubrication.

Sollte auch bei ständig geöffnetem Magnetventil 20 die Verdichtungsendtemperatur weiter ansteigen, so wird durch den Temperaturfühler 12, bzw. durch einen weiteren, nicht dargestellten Temperaturfühler im Druckauslaßbereich des Verdichters 1 über die Steuerungseinheit 11 eine Abschaltung des Verdichters erreicht.If the final compression temperature continues to rise even when the solenoid valve 20 is continuously open, the temperature sensor 12 or a further temperature sensor (not shown) in the pressure outlet region of the compressor 1 via the control unit 11 switches off the compressor.

Die oben beschriebene Kühlung des zur Lagerschmierung verwendeten Öls bietet den Vorteil, Öl niedriger Grund-Viskosität zu verwenden. Bisher wurde die Forderung nach hoher Grund-Viskosität vor allem von der Schmierung der Lagerstellen des Verdichters bestimmt, da bei hohen Lagertemperaturen eine ausreichende Betriebs-Viskosität des Öls an den Lagerstellen erforderlich ist. Auf der "kalten Seite" des Kältemittelkreislaufs kann die Verwendung von Öl mit hoher Grund-Viskosität jedoch zu Problemen führen. Bei niedriger Verdampfungstemperaturen kann nämlich das über den Ölabscheider nicht abgeschiedene und sich damit im Kältemittelkreislauf befindliche Öl so dickflüssig werden, daß es vom Kältemittelgasstrom im Verdampfer nicht mehr mitgerissen wird. Es kommt auf diese Weise zu einer Ölverlagerung in den Verdampfer, was zu einem verminderten Wärmeübergang des Kältemittelgases, beispielsweise an Verdampferrohren des Verdampfers, oder sogar zum Verstopfen einzelner solcher Rohre führen kann.The above-described cooling of the oil used for bearing lubrication offers the advantage of using oil with a low basic viscosity. So far, the requirement for a high basic viscosity has primarily been determined by the lubrication of the bearing points of the compressor, since an adequate operating viscosity of the oil is required at the bearing points at high bearing temperatures. On the "cold side" of the refrigerant circuit, however, the use of oil with a high basic viscosity can cause problems. At low evaporation temperatures, the oil that is not separated by the oil separator and is therefore in the refrigerant circuit can become so viscous that it is no longer carried away by the refrigerant gas flow in the evaporator. In this way there is an oil shift into the evaporator, which can lead to a reduced heat transfer of the refrigerant gas, for example to evaporator tubes of the evaporator, or even to the clogging of individual such tubes.

Wird dagegen ein Öl niedrigerer Viskosität verwendet, so muß bei bekannten Kühlvorrichtungen das gesamte in den Verdichter eingespritzte Öl gekühlt werden, um an den Lagerstellen die geforderte Betriebs-Viskosität zu erhalten. Einer derartigen Kühlung des gesamten eingespritzten Öls sind jedoch Grenzen gesetzt, da eine dadurch bewirkte zu starke Erniedrigung der Verdichtungsendtemperatur dazu führen kann, daß diese in die Nähe der Verflüssigungstemperatur kommt und sich bereits Kältemittel im Ölabscheider verflüssigt. Das Öl-Kältemittel-Gemisch hat außerdem eine wesentlich geringere Viskosität als das reine Öl und ist für die Lagerschmierung nicht mehr ausreichend, da das Kältemittel an den warmen Lagerstellen schlagartig aus dem Öl verdampft und auf diese Weise den Schmierfilm an den Lagern unterbricht. Die größere Kältemittelmenge im Öl hat auch energetische Nachteile. Dieses Kältemittel muß mitverdichtet werden mit der Folge eines höheren Energiebedarfs des Verdichters.If, on the other hand, an oil of lower viscosity is used, all of the oil injected into the compressor must be cooled in known cooling devices in order to obtain the required operating viscosity at the bearing points. However, there are limits to such cooling of the entire injected oil, since a resulting reduction in the compression end temperature too much can result in the latter coming close to the liquefaction temperature and refrigerant already liquefying in the oil separator. The oil-refrigerant mixture also has a much lower viscosity than the pure oil and is no longer sufficient for bearing lubrication, since the refrigerant suddenly evaporates from the oil at the warm bearing points and thus interrupts the lubricating film on the bearings. The larger amount of refrigerant in the oil also has energy disadvantages. This refrigerant must also be compressed, which means that the compressor requires more energy.

Der Hauptvorteil der erfindungsgemäßen, regelbaren Kühlung des zur Schmierung der Verdichterlagerstellen verwendeten Öls ist, daß trotz Verwendung eines Öls niedriger Grund-Viskosität eine genügende Betriebs-Viskosität des der Lagerschmierung dienenden Öls erreicht wird. Da der sich in der Hauptölleitung befindliche Hauptölstrom, der zur Einspritzung in den Verdichter vorgesehen ist, dabei ungekühlt bleibt, wird verhindert, daß die Verdichtungsendtemperatur nicht auf kritische Werte absinkt und damit auch kein Kältemittel im Ölabscheider in das Öl kondensiert. Außerdem wird durch die erfindungsgemäße Lagerölkühlung der Aufwand für die Ölkühlung ganz wesentlich reduziert und damit die Wirtschaftlichkeit erhöht.The main advantage of the controllable cooling of the oil used to lubricate the compressor bearing points according to the invention is that, despite the use of an oil with a low basic viscosity, a sufficient operating viscosity of the oil used for the bearing lubrication is achieved. Since the main oil flow in the main oil line, which is intended for injection into the compressor, remains uncooled, it is prevented that the compression end temperature does not drop to critical values and thus no refrigerant in the oil separator condenses into the oil. In addition, the cost of oil cooling is significantly reduced by the bearing oil cooling according to the invention and thus the economy is increased.

Claims (4)

  1. A cooling apparatus for a rotary piston compressor (1), especially a worm compressor, which together with a condenser (2) and an evaporator (3) forms part of a coolant circuit, it being possible to inject into the worm compressor a partial flow (18) of the coolant for the refrigerating plant and an oil (14) used to lubricate bearings and also to cool and seal the worm compressor, and a branched flow of coolant, which is in turn then returned to the worm compressor, being used to cool said oil,
    characterised in that only the part of the oil used to lubricate the bearings of the worm compressor (1) is cooled by the branched flow of coolant in dependence on the oil temperature detected at the bearings.
  2. An apparatus according to Claim 1,
    characterised in that the branched flow of coolant may in addition be regulated in dependence on a final compression temperature produced after compression.
  3. An apparatus according to Claim 1 or 2,
    characterised in that the branched flow of coolant is supplied to the suction side of the worm compressor (1).
  4. An apparatus according to one of the preceding Claims, characterised in that the branched flow of coolant is supplied to the worm compressor (1) at a point (22) at which the suction operation of the worm compressor (1) is complete.
EP92909704A 1991-07-11 1992-05-13 Cooling device Expired - Lifetime EP0593495B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4122889 1991-07-11
DE4122889A DE4122889C1 (en) 1991-07-11 1991-07-11
PCT/EP1992/001045 WO1993001413A1 (en) 1991-07-11 1992-05-13 Cooling device

Publications (2)

Publication Number Publication Date
EP0593495A1 EP0593495A1 (en) 1994-04-27
EP0593495B1 true EP0593495B1 (en) 1995-01-18

Family

ID=6435868

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92909704A Expired - Lifetime EP0593495B1 (en) 1991-07-11 1992-05-13 Cooling device

Country Status (7)

Country Link
US (1) US5433590A (en)
EP (1) EP0593495B1 (en)
AT (1) ATE117409T1 (en)
DE (1) DE4122889C1 (en)
DK (1) DK0593495T3 (en)
ES (1) ES2067334T3 (en)
WO (1) WO1993001413A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6082982A (en) * 1997-11-17 2000-07-04 Uop Llc Flooded compressor with improved oil reclamation
AU1479199A (en) * 1997-12-30 1999-07-26 Ateliers Busch S.A. Cooling device
US6067804A (en) * 1999-08-06 2000-05-30 American Standard Inc. Thermosiphonic oil cooler for refrigeration chiller
DE19963170A1 (en) * 1999-12-27 2001-06-28 Leybold Vakuum Gmbh Vacuum pump with shaft sealant
EP1571337B1 (en) * 2004-03-05 2007-11-28 Corac Group plc Multi-stage No-oil Gas Compressor
SE526649C2 (en) * 2004-08-12 2005-10-18 Peter Blomkvist Heat pump
US8590324B2 (en) 2009-05-15 2013-11-26 Emerson Climate Technologies, Inc. Compressor and oil-cooling system
CN103782117B (en) 2011-09-16 2016-05-18 丹佛斯公司 For the cooling and sub-cooling circuit of motor of compressor
DK2573388T3 (en) * 2011-09-22 2019-01-14 Moventas Gears Oy Process for controlling the lubrication of an exchange and of an exchange
ES2479692T3 (en) * 2011-09-22 2014-07-24 Moventas Gears Oy A procedure to control the lubrication of a transmission and a transmission

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3176913A (en) * 1960-07-22 1965-04-06 Linde Eismasch Ag Rotary compressor arrangement
US3710590A (en) * 1971-07-19 1973-01-16 Vilter Manufacturing Corp Refrigerant cooled oil system for a rotary screw compressor
US3759348A (en) * 1971-11-08 1973-09-18 Maekawa Seisakusho Kk Method of compressing chlorine gas
SE360168B (en) * 1971-12-22 1973-09-17 Stal Refrigeration Ab
DE2801408A1 (en) * 1978-01-13 1979-07-19 Linde Ag Refrigeration unit rotary piston compressor cooling system - injects oil and refrigerant mixture into compression chamber
FR2620205A1 (en) * 1987-09-04 1989-03-10 Zimmern Bernard HERMETIC COMPRESSOR FOR REFRIGERATION WITH ENGINE COOLED BY GAS ECONOMIZER
JPH0784955B2 (en) * 1989-04-26 1995-09-13 ダイキン工業株式会社 Screw refrigerator

Also Published As

Publication number Publication date
ES2067334T3 (en) 1995-03-16
EP0593495A1 (en) 1994-04-27
US5433590A (en) 1995-07-18
ATE117409T1 (en) 1995-02-15
WO1993001413A1 (en) 1993-01-21
DK0593495T3 (en) 1995-04-10
DE4122889C1 (en) 1992-12-17

Similar Documents

Publication Publication Date Title
DE60222720T2 (en) Cooling system with variable speed drive
DE69722146T2 (en) Refrigeration arrangement with a compressor for single or multi-stage operation with capacity control
EP0710807A2 (en) Compressor refrigeration machine
DE102006050232B9 (en) refrigeration plant
EP1719650B1 (en) Air conditioning unit for a vehicle
EP0701096A2 (en) Method for operating a cold producing installation for air conditioning of vehicles and cold producing installation carrying out the same
EP0593495B1 (en) Cooling device
DE60123321T2 (en) Compressor system with a controlled cooling fan
DE19631914A1 (en) Cooling plant driven at super critical pressure for coolant - has amount of coolant in cooler kept constant no matter what its temperature, so that heat exchange capability is maximised
DE102004019364A1 (en) Vapor compression cooling circuit with ejector
DE69513765T2 (en) Refrigeration system
DE69514936T2 (en) COOLING SYSTEM AND METHOD
DE4119557A1 (en) DEVICE WITH COOLING CIRCUIT
EP0069756B1 (en) Heat pump arrangement
DE102008005076A1 (en) Refrigerant circuit and method for operating a refrigerant circuit
WO1980002869A1 (en) Circulation pump for liquid and/or gas medium
DE102012212227A1 (en) Cooling system, particularly vehicle air conditioning system, has heat transmission device with one or multiple thermoelectric elements, particularly Peltier elements, which are connected with subcooling path
DE4212162C2 (en) Device for cooling the electric motor of a semi-hermetic refrigerant compressor
EP0152608B1 (en) Control method for a compound refrigeration plant
DE102011012644A1 (en) Cooling system for cooling and freezing of foods in warehouses or supermarkets, has refrigerant circuit, which is provided for circulation of refrigerant, particularly carbon dioxide, in operating flow direction
EP2215412A1 (en) System for refrigeration, heating or air-conditioning technology, particularly refrigeration systems
EP2473795A2 (en) Heat pump
DE102019119751B3 (en) Method for operating a refrigeration cycle of a motor vehicle and refrigeration cycle
DE2438418A1 (en) Rotating vane gas compressor for refrigerating plant - has means for injecting the gas in liquid state into the compression chamber
DE19832682C2 (en) Defrosting device for an evaporator of a heat pump or an air conditioner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19931214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DK ES FR IT LI SE

17Q First examination report despatched

Effective date: 19940502

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DK ES FR IT LI SE

REF Corresponds to:

Ref document number: 117409

Country of ref document: AT

Date of ref document: 19950215

Kind code of ref document: T

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2067334

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19950513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950531

Ref country code: CH

Effective date: 19950531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970409

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970410

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19970513

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19970516

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970527

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980514

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19980514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

BERE Be: lapsed

Owner name: BITZER KUHLMASCHINENBAU G.M.B.H. & CO. K.G.

Effective date: 19980531

EUG Se: european patent has lapsed

Ref document number: 92909704.6

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050513