EP0180904B1 - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
EP0180904B1
EP0180904B1 EP85113773A EP85113773A EP0180904B1 EP 0180904 B1 EP0180904 B1 EP 0180904B1 EP 85113773 A EP85113773 A EP 85113773A EP 85113773 A EP85113773 A EP 85113773A EP 0180904 B1 EP0180904 B1 EP 0180904B1
Authority
EP
European Patent Office
Prior art keywords
supercooler
cooling
liquefier
suction pipe
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85113773A
Other languages
German (de)
French (fr)
Other versions
EP0180904A3 (en
EP0180904A2 (en
Inventor
Hermann Renz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bitzer Kuehlmaschinenbau GmbH and Co KG
Original Assignee
Bitzer Kuehlmaschinenbau GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bitzer Kuehlmaschinenbau GmbH and Co KG filed Critical Bitzer Kuehlmaschinenbau GmbH and Co KG
Priority to AT85113773T priority Critical patent/ATE46026T1/en
Publication of EP0180904A2 publication Critical patent/EP0180904A2/en
Publication of EP0180904A3 publication Critical patent/EP0180904A3/en
Application granted granted Critical
Publication of EP0180904B1 publication Critical patent/EP0180904B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/074Details of compressors or related parts with multiple cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves

Definitions

  • the invention relates to a cooling device with a piston compressor having a plurality of cylinders according to the preamble of patent claim 1.
  • a cooling device of this type is known from US-A-4197 719.
  • the structure of the known device is complicated, it requires complex external control and requires special compressors to which existing cooling devices cannot normally be easily converted.
  • the invention has for its object to improve a generic device so that with a simple design of the device, the switch from one to two-stage mode of operation takes place automatically and a subsequent installation of the automatic reversing device is possible with existing cooling devices.
  • FR-A-2 503 841 is a heat pump. known for heating buildings, but there is a two-stage expansion with only one-stage compressor. Thermodynamically, there is no gain whatsoever in the case of two-stage expansion versus single-stage expansion, since in this known heat pump a regulator relaxes the intermediate pressure back to suction pressure.
  • a multi-cylinder, motor-driven compressor 1 sucks vaporous refrigerant out of an evaporator 3 at a relatively low pressure via a so-called suction line 2 and compresses the steam to a relatively high pressure in order to draw it over a so-called compressed gas line 4 in a condenser 5 to promote.
  • a heat transfer medium for example air, water or the like
  • the liquefied (and slightly subcooled) refrigerant is passed via a liquid line 6 to an expansion device 7, the function of which is to feed an amount of refrigerant liquid adapted to the respective operating conditions into the evaporator 3.
  • the expansion element 7 is also a throttling point between high and low pressure.
  • the liquid refrigerant fed into the evaporator 3 and kept at low pressure evaporates by supplying heat and is then sucked off again by the compressor 1 via the suction line 2, either dry saturated or slightly overheated.
  • the subcooler 8 is assigned its own coolant circuit with compressor 11, suction line 12, pressure line 14, condenser 15, liquid line 16 and expansion element 17, the subcooler 8 acting as an evaporator and cooling the refrigerant in line 6.
  • the circuit of the subcooler 8 also contains a solenoid valve 19.
  • the refrigerant circuit connected to the compressor 1 is also referred to as the main circuit and the coolant circuit connected to the compressor 11 as a secondary circuit. Both circuits function physically in the same way.
  • the delivery volume of the compressor 11 required for the secondary or subcooling circuit need only be approximately 10 to 25% of the delivery volume of the compressor 1 in order to achieve the desired liquid subcooling.
  • the core of which is a compressor which combines the functions of the compressors 1 and 11.
  • the common piston compressor 21 has six cylinders. Of these six cylinders, only a few (e.g. five cylinders) draw vaporous refrigerant from the evaporator 23 via the suction line 22 and deliver them via the compressed gas line in the same way as previously described with reference to the main circuit of FIG. 1 24 into the common condenser 25.
  • the liquefied refrigerant, after exiting the condenser 25, is led via a first line A of the liquid line 26 directly through the subcooler 28 to the expansion element 27 and is fed by this regulated into the evaporator 23 and after evaporation from the piston compressor 21 vacuumed again.
  • a partial flow of the liquefied refrigerant is fed into the subcooler 28 in a controlled manner via a further line B of the liquid line 26 via a remotely controlled solenoid valve 29 and through a further expansion element 30.
  • the refrigerant of this partial flow evaporates due to the supply of heat by the relatively warmer refrigerant liquid of the strand A and is then pumped out as suction steam via an additional suction line 32 connected to an outlet opening 31 of the subcooler 28.
  • This pumping takes place according to the invention via the cylinder or cylinders of the piston compressor 21, the suction chambers of which are not connected to the line 22 but to the line 32. From the suction side of this or these cylinders, the suction steam is then conveyed to a common pressure chamber of the piston compressor 21 and mixed there with the steam of the main compressor part (originating from the suction line 22). This process causes the refrigerant liquid in the subcooler 8 to be subcooled with the resultant product already mentioned. Performance increase.
  • FIG. 3 shows a modified arrangement in which the subcooler 38 is designed as an “open liquid collector, ie does not act as a heat exchanger like the subcooler 28 in the case of FIG. 2. Corresponding parts are provided with the same reference numerals in FIGS. 2 and 3.
  • the principle of operation of the «open subcooler 38 is based on the fact that part of the liquid refrigerant contained therein is from. relevant part of the compressor 21 is sucked off in vapor form via the additional suction line 32. The refrigerant liquid contained in the subcooler 38 is thereby subcooled.
  • the solenoid valve 29 has the task of interrupting the refrigerant flow during the standstill periods and is opened with a certain delay after the start.
  • a regulator 39 in the additional suction line 32 controls the pressure and the flowing amount of refrigerant.
  • a pressure regulator 40 is provided in the system according to FIG. 3, which is required to maintain a certain condensing pressure.
  • Fig. 4 shows one of the twin cylinder heads of a four, six or eight cylinder compressor in V, W or WW design.
  • the other cylinder heads of the compressor are designed in the usual way.
  • the suction chamber of the cylinder head shown in FIG. 4 is divided into two suction chambers 42 and 43 by a partition 41.
  • the chamber 42 is connected to the subcooler via the additional suction line 32 in the manner described.
  • the suction chamber 43 like the suction chambers of the other cylinders, is connected to the evaporator 23 via the suction line 22.
  • One of the pistons 44 of the compressor is visible in FIG. 3. All cylinders of the arrangement are connected to a common pressure chamber (not shown) in the usual way.
  • a valve device 45 is arranged in the partition 41, which can either be designed (as shown) as a check valve 46 or as a solenoid valve.
  • the compressor compressor 21
  • the subcooler is first pumped down to a suction pressure that corresponds to that of the other cylinders.
  • the check valve opens automatically, the cylinder in question then works in parallel with the other compressor part.
  • valve device 41 as a solenoid valve, this must already be opened when the solenoid valve 29 closes.
  • the cooling device described offers the following advantages: when starting, the system can initially stabilize by delaying the opening of the solenoid valve 29. The risk of refrigerant shifting from the subcooler to the compressor during the start-up phase is avoided by the aforementioned empty pumping. By switching the supercooling circuit on and off, power control is possible without affecting the application limits. By combining the main circuit with its secondary circuit, there is no need for second compressors and condensers with accessories. This also results in a simplified line assembly. A subsequent retrofitting of the compressor to the embodiment according to FIG. 4 is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Surgical Instruments (AREA)

Abstract

1. A cooling device comprising a multi-cylinder reciprocating compressor (21), a liquefier (25), an expansion unit (27) an evaporator (23), and pipes (22, 24, 26) to contain a cooling liquid which can be vaporized, which pipes connect the reciprocating compressor, the liquefier, the expansion unit and the evaporator to one another, and with a supercooler (28, 38) for the cooling liquid, which supercooler operates with a cooling medium which can be vaporized and is situated in the pipe (26) between the liquefier and the expansion unit, wherein a part of the cooling liquid is used as cooling medium for the supercooler, and wherein the outlet opening (31) of the supercooler is connected by means of an auxiliary suction pipe (32) to the suction side of a portion of the cylinders of the reciprocating compressor, and wherein, moreover, either a part of the cooling liquid which is diverted after the liquefier is led through an additional expansion unit (30), and then through the supercooler which is then constructed as a heat exchanger (28) and from here to the auxiliary suction pipe, or the supercooler is constructed as a gas-liquid-separating vessel (38) connected to the auxiliary suction pipe, in which part of the diverted cooling liquid is vaporized by pressure reduction and consequently the remaining liquid portion is cooled, characterized in that a suction chamber (42), which is connected to the auxiliary suction pipe (32), of at least one cylinder of the reciprocating compressor (21) is separated by a separating wall (41) from the suction chambers (43) of the other cylinders, and a valve device (45) is arranged in the separating wall, and in that this valve device closes when the pressure in the suction chamber (42) connected to the auxiliary suction pipe exceeds that in the other suction chambers (43).

Description

Die Erfindung betrifft eine Kühlvorrichtung mit einem mehrere Zylinder aufweisenden Kolbenverdichter nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a cooling device with a piston compressor having a plurality of cylinders according to the preamble of patent claim 1.

Eine Kühlvorrichtung dieser Art ist aus der US-A-4197 719 bekannt.A cooling device of this type is known from US-A-4197 719.

Die bekannte Vorrichtung ist in ihrem Aufbau kompliziert, sie erfordert eine aufwendige externe Steuerung und benötigt Spezialverdichter, auf die vorhandene Kühlvorrichtungen normalerweise nicht ohne weiteres umgerüstet werden können.The structure of the known device is complicated, it requires complex external control and requires special compressors to which existing cooling devices cannot normally be easily converted.

Der Erfindung liegt die Aufgabe zugrunde, eine gattungsgemäße Vorrichtung so zu verbessern, daß bei einfacher Bauart der Vorrichtung die Umschaltung von ein- auf zweistufige Betriebsweise automatisch erfolgt und auch ein nachträglicher Einbau der automatischen Umsteuereinrichtung bei vorhandenen Kühlvorrichtungen möglich ist.The invention has for its object to improve a generic device so that with a simple design of the device, the switch from one to two-stage mode of operation takes place automatically and a subsequent installation of the automatic reversing device is possible with existing cooling devices.

Die Aufgabe wird erfindungsgemäß durch die Merkmale im Kennzeichnungsteil des Patentanspruchs 1 gelöst.The object is achieved by the features in the characterizing part of claim 1.

Aus der FR-A-2 503 841 ist zwar eine Wärmepumpe . für Gebäudeheizungen bekannt, jedoch findet dort eine zweistufige Entspannung mit nur einstufigem Verdichter statt. Thermodynamisch ergibt sich darüber hinaus bei zweistufiger gegenüber einstufiger Entspannung keinerlei Gewinn, da bei dieser bekannten Wärmepumpe ein Regler den Zwischendruck wieder auf Saugdruck entspannt.FR-A-2 503 841 is a heat pump. known for heating buildings, but there is a two-stage expansion with only one-stage compressor. Thermodynamically, there is no gain whatsoever in the case of two-stage expansion versus single-stage expansion, since in this known heat pump a regulator relaxes the intermediate pressure back to suction pressure.

Die nachstehende Beschreibung bevorzugter Ausführungsformen der Erfindung dient im Zusammenhang mit beiliegender Zeichnung der weiteren Erläuterung. Es zeigen :

  • Figur 1 eine herkömmliche Kühlvorrichtung mit Unterkühlung der Kälteflüssigkeit ;
  • Figur 2 eine erste Ausführungsform einer Kühlvorrichtung mit verbesserter Unterkühlung der Kälteflüssigkeit ;
  • Figur 3 eine zweite Ausführungsform einer Kühlvorrichtung mit verbesserter Unterkühlung der Kälteflüssigkeit und
  • Figur 4 eine Ventilanordnung an der Saugseite zweier Zylinder eines Kolbenverdichters.
The following description of preferred embodiments of the invention serves in conjunction with the accompanying drawings for further explanation. Show it :
  • 1 shows a conventional cooling device with subcooling of the refrigerant;
  • Figure 2 shows a first embodiment of a cooling device with improved sub-cooling of the refrigerant;
  • Figure 3 shows a second embodiment of a cooling device with improved subcooling of the refrigerant and
  • Figure 4 shows a valve assembly on the suction side of two cylinders of a piston compressor.

Bei der in Figur 1 dargestellten herkömmlichen Kühlvorrichtung saugt ein mehrere Zylinder aufweisender, motorisch angetriebener Verdichter 1 dampfförmiges Kältemittel über eine sogenannte Saugleitung 2 aus einem Verdampfer 3 bei relativ niedrigem Druck ab und komprimiert den Dampf auf einen relativ hohen Druck, um ihn über eine sogenannte Druckgasleitung 4 in einen Verflüssiger 5 zu fördern. Im Verflüssiger 5 wird über ein Wärmeträgermedium (z. B. Luft, Wasser od. dgl.) Wärme abgeführt, so daß der unter hohem Druck stehende Dampf kondensiert. Über eine Flüssigkeitsleitung 6 wird das verflüssigte (und geringfügig unterkühlte) Kältemittel zu einem Expansionsorgan 7 geleitet, dessen Aufgabe darin besteht, eine den jeweiligen Betriebsbedingungen angepaßte Menge an Kältemittelflüssigkeit in den Verdampfer 3 einzuspeisen. Das Expansionsorgan 7 ist zugleich Drosselstelle zwischen Hoch- und Niederdruck. Das in den Verdampfer 3 eingespeiste, auf niedrigem Druck gehaltene, flüssige Kältemittel verdampft durch Wärmezufuhr und wird anschließend wieder über die Saugleitung 2 - entweder trocken gesättigt oder geringfügig überhitzt - vom Verdichter 1 abgesaugt.In the conventional cooling device shown in FIG. 1, a multi-cylinder, motor-driven compressor 1 sucks vaporous refrigerant out of an evaporator 3 at a relatively low pressure via a so-called suction line 2 and compresses the steam to a relatively high pressure in order to draw it over a so-called compressed gas line 4 in a condenser 5 to promote. In the condenser 5, heat is removed via a heat transfer medium (for example air, water or the like), so that the steam, which is under high pressure, condenses. The liquefied (and slightly subcooled) refrigerant is passed via a liquid line 6 to an expansion device 7, the function of which is to feed an amount of refrigerant liquid adapted to the respective operating conditions into the evaporator 3. The expansion element 7 is also a throttling point between high and low pressure. The liquid refrigerant fed into the evaporator 3 and kept at low pressure evaporates by supplying heat and is then sucked off again by the compressor 1 via the suction line 2, either dry saturated or slightly overheated.

Es läßt sich zeigen, daß die im Verdampfer 3 aufgenommene Wärmemenge (« Kälteleistung ") um so größer ist, je tiefer die Temperatur des Kältemittels vor dem Expansionsorgan 7 liegt. Daher ist es bekannt, in der Flüssigkeitsleitung 6 einen sogenannten Unterkühler 8 vorzusehen, der das flüssige Kältemittel abkühlt. Dem Unterkühler 8 ist ein eigener Kühlmittelkreislauf mit Verdichter 11, Saugleitung 12, Druckleitung 14, Verflüssiger 15, Flüssigkeitsleitung 16 und Expansionsorgan 17 zugeordnet, wobei der Unterkühler 8 als « Verdampfer wirkt und das Kältemittel in der Leitung 6 kühlt. Der Kreislauf des Unterkühlers 8 enthält weiterhin ein Magnetventil 19. Der an den Verdichter 1 angeschlossene Kältemittelkreislauf wird auch als Hauptkreislauf, der an den Verdichter 11 angeschlossene Kühlmittelkreislauf als Nebenkreislauf bezeichnet. Beide Kreisläufe wirken physikalisch in der gleichen Weise.It can be shown that the lower the temperature of the refrigerant in front of the expansion element 7, the greater the amount of heat absorbed in the evaporator 3 (“cooling capacity ). It is therefore known to provide a so-called subcooler 8 in the liquid line 6 The subcooler 8 is assigned its own coolant circuit with compressor 11, suction line 12, pressure line 14, condenser 15, liquid line 16 and expansion element 17, the subcooler 8 acting as an evaporator and cooling the refrigerant in line 6. The The circuit of the subcooler 8 also contains a solenoid valve 19. The refrigerant circuit connected to the compressor 1 is also referred to as the main circuit and the coolant circuit connected to the compressor 11 as a secondary circuit. Both circuits function physically in the same way.

Da der Verdampfungsvorgang im Unterkühler 8 aufgrund der relativ hohen Flüssigkeitstemperatur des Hauptkreislaufes bei einem deutlich höheren Temperaturniveau erfolgen kann als der Verdampfungsvorgang im Verdampfer 3, liegen sowohl der relative Massenstrom wie auch der Wirkungsgrad des Nebenkreislaufes höher als im Hauptkreislauf. Daraus resultiert, daß das für den Neben- oder Unterkühlungskreislauf erforderliche Fördervolumen des Verdichters 11 lediglich etwa 10 bis 25 % des Fördervolumens des Verdichters 1 betragen muß, um die gewünschte Flüssigkeitsunterkühlung zu erzielen. Dies ist Ansatzpunkt der Erfindung, deren Kernstück ein Verdichter ist, der die Funktionen der Verdichter 1 und 11 in sich vereinigt. Nachdem ein solcher einziger Verdichter, wie noch beschrieben werden wird, nur in seinem Zylinderbereich, und zwar saugseitig, unterteilt ist, jedoch einen gemeinsamen Antrieb (Kurbeltrieb) und eine gemeinsame Druckkammer besitzt, kann ohne Nachteile auf die Betriebssicherheit auch ein gemeinsamer, einziger Verflüssiger statt der Verflüssiger 5 und 15 verwendet werden.Since the evaporation process in the subcooler 8 can take place at a significantly higher temperature level than the evaporation process in the evaporator 3 due to the relatively high liquid temperature of the main circuit, both the relative mass flow and the efficiency of the secondary circuit are higher than in the main circuit. The result of this is that the delivery volume of the compressor 11 required for the secondary or subcooling circuit need only be approximately 10 to 25% of the delivery volume of the compressor 1 in order to achieve the desired liquid subcooling. This is the starting point of the invention, the core of which is a compressor which combines the functions of the compressors 1 and 11. Since such a single compressor, as will be described, is divided only in its cylinder area, namely on the suction side, but has a common drive (crank drive) and a common pressure chamber, a common, single condenser can also take place without disadvantages in terms of operational reliability the condensers 5 and 15 are used.

Die Erfindung wird nachstehend anhand zweier Ausführungsbeispiele gemäß Fig. 2 und 3 weiter erläutert.The invention is further explained below using two exemplary embodiments according to FIGS. 2 and 3.

In Fig. 2 hat der gemeinsame Kolbenverdichter 21 sechs Zylinder. Von diesen sechs Zylindern saugen lediglich einige (z. B. fünf Zylinder) dampfförmiges Kältemittel über die Saugleitung-22 aus dem Verdampfer 23 und fördern in gleicher Weise, wie zuvor anhand des Hauptkreislaufes der Fig. 1 beschrieben, über die Druckgasleitung 24 in den gemeinsamen Verflüssiger 25. Das verflüssigte Kältemittel wird nach dem Austritt aus dem Verflüssiger 25 über einen ersten Strang A der Flüssigkeitsleitung 26 direkt durch den Unterkühler 28 zum Expansionsorgan 27 geführt und von diesem geregelt in den Verdampfer 23 eingespeist sowie nach der Verdampfung vom Kolbenverdichter 21 wieder abgesaugt. Ein Teilstrom des verflüssigten Kältemittels wird über einen weiteren Strang B der Flüssigkeitsleitung 26 über ein ferngesteuertes Magnetventil 29 und durch ein weiteres Expansionsorgan 30 geregelt in den Unterkühler 28 eingespeist. Das Kältemittel dieses Teilstroms verdampft aufgrund der Wärmezufuhr durch die relativ wärmere Kältemittelflüssigkeit des Stranges A und wird dann als Saugdampf über eine zusätzliche, mit einer Auslaßöffnung 31 des Unterkühlers 28 verbundenen Saugleitung 32 abgepumpt.In Fig. 2 the common piston compressor 21 has six cylinders. Of these six cylinders, only a few (e.g. five cylinders) draw vaporous refrigerant from the evaporator 23 via the suction line 22 and deliver them via the compressed gas line in the same way as previously described with reference to the main circuit of FIG. 1 24 into the common condenser 25. The liquefied refrigerant, after exiting the condenser 25, is led via a first line A of the liquid line 26 directly through the subcooler 28 to the expansion element 27 and is fed by this regulated into the evaporator 23 and after evaporation from the piston compressor 21 vacuumed again. A partial flow of the liquefied refrigerant is fed into the subcooler 28 in a controlled manner via a further line B of the liquid line 26 via a remotely controlled solenoid valve 29 and through a further expansion element 30. The refrigerant of this partial flow evaporates due to the supply of heat by the relatively warmer refrigerant liquid of the strand A and is then pumped out as suction steam via an additional suction line 32 connected to an outlet opening 31 of the subcooler 28.

Dieses Abpumpen erfolgt erfindungsgemäß über den oder die Zylinder des Kolbenverdichters 21, deren Saugkammem nicht mit der Leitung 22, sondern an die Leitung 32 angeschlossen sind. Von der Saugseite dieses oder dieser Zylinder wird der Saugdampf dann zu einer gemeinsamen Druckkammer des Kolbenverdichters 21 gefördert und dort mit dem Dampf des Hauptverdichterteils (aus der Saugleitung 22 stammend) vermischt. Dieser Vorgang bewirkt eine Unterkühlung der Kältemittelflüssigkeit im Unterkühler 8 mit der bereits erwähnten, hieraus resultierenden. Leistungserhöhung.This pumping takes place according to the invention via the cylinder or cylinders of the piston compressor 21, the suction chambers of which are not connected to the line 22 but to the line 32. From the suction side of this or these cylinders, the suction steam is then conveyed to a common pressure chamber of the piston compressor 21 and mixed there with the steam of the main compressor part (originating from the suction line 22). This process causes the refrigerant liquid in the subcooler 8 to be subcooled with the resultant product already mentioned. Performance increase.

Die Fig. 3 zeigt eine abgewandelte Anordnung, bei welcher der Unterkühler 38 als « offener Flüssigkeitssammler ausgebildet ist, also nicht als Wärmetauscher wie der Unterkühler 28 im Falle der Fig. 2 wirkt. Einander entsprechende Teile sind in Fig. 2 und 3 mit den gleichen Bezugszeichen versehen.FIG. 3 shows a modified arrangement in which the subcooler 38 is designed as an “open liquid collector, ie does not act as a heat exchanger like the subcooler 28 in the case of FIG. 2. Corresponding parts are provided with the same reference numerals in FIGS. 2 and 3.

Das Wirkungsprinzip des « offenen Unterkühlers 38 beruht darauf, daß ein Teil des darin befindlichen flüssigen Kältemittels vom. betreffenden Teil des Verdichters 21 über die zusätzliche Saugleitung 32 dampfförmig abgesaugt wird. Die im Unterkühler 38 enthaltene Kältemittelflüssigkeit wird dadurch unterkühlt.The principle of operation of the «open subcooler 38 is based on the fact that part of the liquid refrigerant contained therein is from. relevant part of the compressor 21 is sucked off in vapor form via the additional suction line 32. The refrigerant liquid contained in the subcooler 38 is thereby subcooled.

Das Magnetventil 29 hat die Aufgabe, den Kältemittelfluß während der Stillstandsperioden zu unterbrechen und wird mit einer gewissen Verzögerung nach dem Start geöffnet. Ein Regler 39 in der zusätzlichen Saugleitung 32 kontrolliert den Druck und die strömende Kältemittelmenge. Zusätzlich ist im System gemäß Fig. 3 ein Druckregler 40 vorgesehen, der zur Aufrechterhaltung eines bestimmten Verflüssigungsdruckes benötigt wird.The solenoid valve 29 has the task of interrupting the refrigerant flow during the standstill periods and is opened with a certain delay after the start. A regulator 39 in the additional suction line 32 controls the pressure and the flowing amount of refrigerant. In addition, a pressure regulator 40 is provided in the system according to FIG. 3, which is required to maintain a certain condensing pressure.

Die Fig. 4 zeigt einen der Twin-Zylinderköpfe eines Vier-, Sechs- oder Acht-Zylinderkompressors in V-, W- oder WW-Ausführung. Die anderen Zylinderköpfe des Kompressors sind in üblicher Weise ausgeführt. Die Saugkammer des in Fig. 4 dargestellten Zylinderkopfes ist durch eine Trennwand 41 in zwei Saugkammern 42 und 43 unterteilt. Die Kammer 42 steht über die zusätzliche Saugleitung 32 in der beschriebenen Weise mit dem Unterkühler in Verbindung. Die Saugkammer 43 ist ebenso wie die Saugkammern der übrigen Zylinder über die Saugleitung 22 an den Verdampfer 23 angeschlossen. Einer der Kolben 44 des Kompressors ist in Fig. 3 sichtbar. Sämtliche Zylinder der Anordnung stehen mit einer gemeinsamen Druckkammer (nicht dargestellt) in der üblichen Weise in Verbindung.Fig. 4 shows one of the twin cylinder heads of a four, six or eight cylinder compressor in V, W or WW design. The other cylinder heads of the compressor are designed in the usual way. The suction chamber of the cylinder head shown in FIG. 4 is divided into two suction chambers 42 and 43 by a partition 41. The chamber 42 is connected to the subcooler via the additional suction line 32 in the manner described. The suction chamber 43, like the suction chambers of the other cylinders, is connected to the evaporator 23 via the suction line 22. One of the pistons 44 of the compressor is visible in FIG. 3. All cylinders of the arrangement are connected to a common pressure chamber (not shown) in the usual way.

In der Trennwand 41 ist eine Ventileinrichtung 45 angeordnet, die entweder (wie dargestellt) als Rückschlagventil 46 oder auch als Magnetventil ausgeführt sein kann. Durch diese Ventileinrichtung ist der Kompressor (Verdichter 21) in der Lage, mit seinen sämtlichen Zylindern auch direkt auf den Verdampfer 23 zu arbeiten, solange das Ventil 29 geschlossen bleibt. In diesem Fall wird der Unterkühler zunächst bis zu einem Saugdruck leergepumpt, der demjenigen der anderen Zylinder entspricht. Das Rückschlagventil öffnet automatisch, der betreffende Zylinder arbeitet dann parallel zum anderen Verdichterteil.A valve device 45 is arranged in the partition 41, which can either be designed (as shown) as a check valve 46 or as a solenoid valve. By means of this valve device, the compressor (compressor 21) is able to work with all its cylinders directly on the evaporator 23 as long as the valve 29 remains closed. In this case, the subcooler is first pumped down to a suction pressure that corresponds to that of the other cylinders. The check valve opens automatically, the cylinder in question then works in parallel with the other compressor part.

Wenn andererseits nach einer gewissen Stabilisierungsphase das Magnetventil 29 geöffnet wird, verdampft ein Teil des flüssigen Kältemittels im Unterkühler. Der Unterkühlungskreislauf arbeitet bei höherem Saugdruck (höhere Kälteleistung und Leistungszahl), so daß das Rückschlagventil im Zylinderkopf automatisch geschlossen bleibt. Der betreffende Zylinder hat dann keine Verbindung mehr zum Nachbarzylinder und bedient nur noch den Unterkühlungskreislauf.On the other hand, if the solenoid valve 29 is opened after a certain stabilization phase, some of the liquid refrigerant evaporates in the subcooler. The supercooling circuit works at a higher suction pressure (higher cooling capacity and coefficient of performance), so that the check valve in the cylinder head remains automatically closed. The cylinder in question then no longer has a connection to the neighboring cylinder and only serves the supercooling circuit.

Bei altemativer Ausbildung der Ventileinrichtung 41 als Magnetventil muß dieses beim Schließen des Magnetventils 29 bereits geöffnet werden.In the case of an alternative design of the valve device 41 as a solenoid valve, this must already be opened when the solenoid valve 29 closes.

Die beschriebene Kühlvorrichtung bietet folgende Vorteile : beim Start kann sich das System durch verzögertes Öffnen des Magnetventils 29 zunächst einmal stabilisieren. Die Gefahr einer Kältemittelverlagerung aus dem Unterkühler in den Verdichter während der Anlaufphase wird durch das vorerwähnte Leerpumpen vermieden. Durch Zu- und Abschalten des Unterkühlungskreislaufes ist eine Leistungsregelung ohne Beeinträchtigung der Anwendungsgrenzen möglich. Durch die Kombination des Haupt- mit seinem Nebenkreislauf können zweite Verdichter und Verflüssiger mit Zubehör entfallen. Es ergibt sich somit auch eine vereinfachte Leitungsmontage. Ein nachträgliches Umrüsten des Verdichters auf die Ausführungsform gemäß Fig. 4 ist möglich.The cooling device described offers the following advantages: when starting, the system can initially stabilize by delaying the opening of the solenoid valve 29. The risk of refrigerant shifting from the subcooler to the compressor during the start-up phase is avoided by the aforementioned empty pumping. By switching the supercooling circuit on and off, power control is possible without affecting the application limits. By combining the main circuit with its secondary circuit, there is no need for second compressors and condensers with accessories. This also results in a simplified line assembly. A subsequent retrofitting of the compressor to the embodiment according to FIG. 4 is possible.

Claims (6)

1. A cooling device comprising a multi-cylinder reciprocating compressor (21), a liquefier (25), an expansion unit (27) an evaporator (23), and pipes (22, 24, 26) to contain a cooling liquid which can be vaporized, which pipes connect the reciprocating compressor, the liquefier, the expansion unit and the evaporator to one another, and with a supercooler (28, 38) for the cooling liquid, which supercooler operates with a cooling medium which can be vaporized and is situated in the pipe (26) between the liquefier and the expansion unit, wherein a part of the cooling liquid is used as cooling medium for the supercooler, and wherein the outlet opening (31) of the supercooler is connected by means of an auxiliary suction pipe (32) to the suction side of a portion of the cylinders of the reciprocating compressor, and wherein, moreover, either a part of the cooling liquid which is diverted after the liquefier is led through an additional expansion unit (30), and then through the supercooler which is then constructed as a heat exchanger (28) and from here to the auxiliary suction pipe, or the supercooler is constructed as a gas-liquid-separating vessel (38) connected to the auxiliary suction pipe, in which part of the diverted cooling liquid is vaporized by pressure reduction and consequently the remaining liquid portion is cooled, characterized in that a suction chamber (42), which is connected to the auxiliary suction pipe (32), of at least one cylinder of the reciprocating compressor (21) is separated by a separating wall (41) from the suction chambers (43) of the other cylinders, and a valve device (45) is arranged in the separating wall, and in that this valve device closes when the pressure in the suction chamber (42) connected to the auxiliary suction pipe exceeds that in the other suction chambers (43).
2. A cooling device according to Claim 1, characterized in that the valve device (45) is a non-return valve.
3. A cooling device according to Claim 1, characterized in that the valve device (45) is a solenoid valve.
4. A cooling device according to any one of Claims 1 to 3, characterized in that a solenoid valve (29) is connected in the circuit in series with the additional expansion unit (30).
5. A cooling device according to any one of Claims 1 to 3, characterized in that a solenoid valve (29) is arranged in the auxiliary suction pipe (32).
6. A cooling device according to any one of Claims 1 to 3, characterized in that a pressure regulator (40) is provided between the liquefier (25) and the supercooler (38).
EP85113773A 1984-11-03 1985-10-29 Cooling device Expired EP0180904B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85113773T ATE46026T1 (en) 1984-11-03 1985-10-29 COOLING DEVICE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843440253 DE3440253A1 (en) 1984-11-03 1984-11-03 COOLING DEVICE
DE3440253 1984-11-03

Publications (3)

Publication Number Publication Date
EP0180904A2 EP0180904A2 (en) 1986-05-14
EP0180904A3 EP0180904A3 (en) 1986-10-08
EP0180904B1 true EP0180904B1 (en) 1989-08-30

Family

ID=6249455

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85113773A Expired EP0180904B1 (en) 1984-11-03 1985-10-29 Cooling device

Country Status (3)

Country Link
EP (1) EP0180904B1 (en)
AT (1) ATE46026T1 (en)
DE (2) DE3440253A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3295029B1 (en) 2015-05-13 2019-07-03 Carrier Corporation Economized reciprocating compressor

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4702086A (en) * 1986-06-11 1987-10-27 Turbo Coils Inc. Refrigeration system with hot gas pre-cooler
US5095712A (en) * 1991-05-03 1992-03-17 Carrier Corporation Economizer control with variable capacity
ES2092424B1 (en) * 1992-09-16 1997-07-01 Ornaque Carlos Gutierrez MIXED BLOCK REFRIGERATION SECURITY SYSTEM.
EP0837291B1 (en) * 1996-08-22 2005-01-12 Denso Corporation Vapor compression type refrigerating system
US5848537A (en) * 1997-08-22 1998-12-15 Carrier Corporation Variable refrigerant, intrastage compression heat pump
DE19826291A1 (en) * 1998-06-12 1999-12-16 Linde Ag Process for operating a pump to convey boiling refrigerants or refrigerants
US6374631B1 (en) * 2000-03-27 2002-04-23 Carrier Corporation Economizer circuit enhancement
US6820434B1 (en) * 2003-07-14 2004-11-23 Carrier Corporation Refrigerant compression system with selective subcooling
DK1498667T3 (en) 2003-07-18 2010-08-16 Star Refrigeration Improved transcritical cooling cycle
WO2006022829A1 (en) 2004-08-09 2006-03-02 Carrier Corporation Co2 refrigeration circuit with sub-cooling of the liquid refrigerant against the receiver flash gas and method for operating the same
DE102004038640A1 (en) 2004-08-09 2006-02-23 Linde Kältetechnik GmbH & Co. KG Refrigeration circuit and method for operating a refrigeration cycle
DE102005009173A1 (en) * 2005-02-17 2006-08-24 Bitzer Kühlmaschinenbau Gmbh refrigeration plant

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH101888A (en) * 1922-06-26 1923-10-16 Sulzer Ag Compression refrigeration machine.
US2320097A (en) * 1941-08-20 1943-05-25 Servel Inc Refrigeration
US4026122A (en) * 1974-10-11 1977-05-31 Primore Sales, Inc. Refrigeration system
NO136427C (en) * 1975-03-11 1977-08-31 Kvaerner Brug Kjoleavdelning DEVICE FOR SYSTEMS OF COMPRESSION AND CONDENSATION OF GASES.
US4197719A (en) * 1976-01-29 1980-04-15 Dunham-Bush, Inc. Tri-level multi-cylinder reciprocating compressor heat pump system
GB1595616A (en) * 1977-01-21 1981-08-12 Hitachi Ltd Air conditioning system
FR2503841A1 (en) * 1981-04-09 1982-10-15 Guillemin Georges Heat extraction pump for heating buildings - has reservoir to compressor connection allowing lower exit temperatures from condenser
JPS58148290A (en) * 1982-02-26 1983-09-03 Hitachi Ltd Refrigerator with acroll compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3295029B1 (en) 2015-05-13 2019-07-03 Carrier Corporation Economized reciprocating compressor

Also Published As

Publication number Publication date
DE3440253A1 (en) 1986-05-15
EP0180904A3 (en) 1986-10-08
EP0180904A2 (en) 1986-05-14
DE3572721D1 (en) 1989-10-05
ATE46026T1 (en) 1989-09-15

Similar Documents

Publication Publication Date Title
DE3786465T2 (en) Three-way heat pump cycle.
DE69003067T2 (en) Refrigeration system.
EP0180904B1 (en) Cooling device
EP1789732B1 (en) Refrigeration circuit and method for operating a refrigeration circuit
DE2508417C2 (en) Refrigeration system
DE69910699T2 (en) Spiral compressor with economiser discharge valve
EP0855009B1 (en) Sorption heat converter system with additional components
DE2157079A1 (en) Two-stage refrigeration system
DE3716393A1 (en) REFRIGERATION PLANT
DE3735808A1 (en) HEAT RECOVERY AND COOLING SYSTEM AND METHOD FOR GENERATING ALL YEAR OLD COOLING IN A REFRIGERATION SYSTEM
DE4439780A1 (en) Compressor chiller
CH695869A5 (en) Multilevel, switchable between load and idling compressor.
DE3521060A1 (en) Method for cooling and liquefying gases
DE10201427A1 (en) Air dehumidification system in air conditioning systems
DE2709343A1 (en) COUNTERFLOW AIR CONDITIONING
EP0487002B1 (en) Device for air-conditioning the passenger compartment of a motor vehicle
DE60022251T2 (en) Refrigeration system with a cooling circuit offering optimized consumption
DE2131793A1 (en) Process and system for creating and maintaining comfortable living conditions in building spaces
EP0021205A2 (en) Hybrid compression-absorption method for operating heat pumps or refrigeration machines
EP3099985B1 (en) Refrigeration plant
EP0190319A1 (en) Refrigerator or heat pump and jet pump therefor.
DE3500800A1 (en) TWO-STAGE REFRIGERANT SYSTEM
EP2215412A1 (en) System for refrigeration, heating or air-conditioning technology, particularly refrigeration systems
DE2303964A1 (en) REFRIGERATION SYSTEM
EP0239837A2 (en) Method of recuperating the condensation heat of a refrigeration system, and refrigeration system for carrying out the method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE DE FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19870404

17Q First examination report despatched

Effective date: 19880108

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19890830

Ref country code: NL

Effective date: 19890830

Ref country code: BE

Effective date: 19890830

REF Corresponds to:

Ref document number: 46026

Country of ref document: AT

Date of ref document: 19890915

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3572721

Country of ref document: DE

Date of ref document: 19891005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19891029

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19941028

Year of fee payment: 10

Ref country code: FR

Payment date: 19941028

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19941121

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951029

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960702

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST