EP0579904A1 - Corrosion resistant copper alloy - Google Patents

Corrosion resistant copper alloy Download PDF

Info

Publication number
EP0579904A1
EP0579904A1 EP93106094A EP93106094A EP0579904A1 EP 0579904 A1 EP0579904 A1 EP 0579904A1 EP 93106094 A EP93106094 A EP 93106094A EP 93106094 A EP93106094 A EP 93106094A EP 0579904 A1 EP0579904 A1 EP 0579904A1
Authority
EP
European Patent Office
Prior art keywords
corrosion
copper alloy
elements
positive ions
resistant copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93106094A
Other languages
German (de)
French (fr)
Other versions
EP0579904B1 (en
Inventor
Wolfgang Dr. Dürrschnabel
Monika Dr. Breu
Gert Dr. Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wieland Werke AG
Original Assignee
Wieland Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wieland Werke AG filed Critical Wieland Werke AG
Publication of EP0579904A1 publication Critical patent/EP0579904A1/en
Application granted granted Critical
Publication of EP0579904B1 publication Critical patent/EP0579904B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Definitions

  • the invention relates to a corrosion-resistant copper alloy which consists of copper and at least two alloy elements which are less noble than copper in their electrochemical voltage potential and which together with copper form a firmly adhering, non-porous cover layer made of oxides, oxide hydrates and / or hydroxides, the amount of each Elements lies within the limits within which the alloy lies in the mixed crystal range under technical cooling conditions.
  • Such an alloy is known for example from DE-OS 3,605,796.
  • DE-OS 3,605,796 because of the high concentrations of the additional elements, there is a risk of excretion and thus of additional processing difficulties.
  • the majority of corrosion damage in copper water pipes is caused by even surface corrosion or pitting. Improper installation can also lead to corrosion attacks in the area of solder joints and connections.
  • the corrosion resistance of copper can in principle be increased by producing a firmly adhering, coherent oxide cover layer. This is applied to the inner surface of the pipe using special manufacturing processes, but this is technically complicated and labor-intensive.
  • the more advanced method is to use alloy additives to form a material that, when used, automatically forms an improved oxide coating.
  • the invention is based on the object of specifying a corrosion-resistant material which is characterized in particular by an improved covering layer formation compared to oxygen-free copper and by reduced copper solubility and for which there is no risk of pitting.
  • the mass loss should be reduced.
  • the copper alloy contains at least 99.0% by weight of copper, the melting point of the mixed crystal is above 400 ° C., at least two alloy elements of unequal valence form thermodynamically stable chemical compounds of the types mentioned in the top layer Form that the two alloy elements together assume an average valence between 2.5 and 3.0, the difference between the valences being a maximum of 3.
  • Average valence should be understood to mean the arithmetic mean of the valences of the two alloy elements.
  • Claims 2 to 4 relate to preferred embodiments of the invention: Thereafter, at least one element forms thermodynamically stable chemical compounds of oxides, oxide hydrates and / or hydroxides in the form of divalent positive ions in the cover layer, and at least one further element forms thermodynamically stable chemical compounds of the type mentioned in the form of trivalent positive ions in the cover layer, or that Another element forms thermodynamically stable chemical compounds of the types mentioned in the form of tetravalent positive ions in the cover layer, or at least one element forms thermodynamically stable chemical compounds of the types mentioned in the form of monovalent positive ions in the cover layer, and at least one further element forms in the cover layer thermodynamically stable chemical compounds of the types mentioned in the form of tetravalent positive ions.
  • the elements lithium, sodium, potassium, rubidium or cesium are selected from the group of monovalent positive ions; from the group of divalent positive ions, the elements zinc, cadmium, beryllium, magnesium, calcium, strontium, barium, manganese, iron, cobalt or nickel; from the group of the trivalent ions boron, aluminum, gallium, indium, scandium, yttrium, lanthanum, cerium, mixed metal, chromium, iron or cobalt and from the group of the tetravalent ions silicon, germanium, tin, titanium, zircon or hafnium.
  • Phosphorus improves the pourability and acts as a deoxidizer.
  • the elements mentioned are added in an amount of at least 0.1% by weight.
  • the alloy according to the invention is preferably used as a material for pipes in installation and sanitary technology and for drinking water pipes.
  • Tubes measuring 18 x 1 mm were made of oxygen-free copper and three comparative alloys of the following composition.
  • Fig. 1 the current density-potential curves of the alloys CuMg0.7Ti0.2, CuAl0.5Zn0.5, CuLi0.6Si0.1 and SF-Cu are shown in comparison. It can be seen that the alloyed elements significantly expand the range of corrosion resistance. The passive current density is reduced compared to SF-Cu, which speaks for the better cover layer quality. The breakthrough potential has shifted towards more positive values.
  • the polarization resistance R p or the reciprocal, the polarization conductance R p ⁇ 1 is a measure of the rate of corrosion. The lower the polarization conductance, the greater the resistance to uniform corrosion.
  • Figures 2a to g compare the polarization conductance of the materials CuMg0.7Ti0.2, CuAl0.5, Zn0.5 and CuLi0.6Si0.1 in different states (soft / hard) with that of SF-Cu. Unalloyed Cu not only exhibits poorer behavior, but also considerable scatter.
  • the alloys according to the invention show significantly better behavior than SF-Cu. Not only is the quality of the covering layer improved, but also the rate of formation is influenced and, above all, the potential range of corrosion resistance is expanded. This formation of the passive layer significantly reduces the Cu solubility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Powder Metallurgy (AREA)
  • Laminated Bodies (AREA)

Abstract

The invention relates to a corrosion-resistant copper alloy consisting of copper and at least two alloy elements which, in their electromotive series potential, are less electropositive than copper and which, together with copper, form a coherent, pore-free covering layer of oxides, hydrated oxides and/ôor hydroxides, the quantity of the individual elements being within those limits within which the alloy is in the solid-solution range under technical cooling conditions. This copper alloy is characterised by the following features: it contains at least 99.0 % by weight of copper, the melting point of the solid solution is above 400 DEG C, at least two alloy elements of unequal valency form, in the covering layer, thermodynamically stable chemical compounds of the said types in such a form that the two alloy elements together assume an average valency of between 2.5 and 3.0, the difference of the valencies being at most 3. <IMAGE>

Description

Die Erfindung betrifft eine korrosionsbeständige Kupferlegierung, die aus Kupfer und mindestens zwei Legierungselementen besteht, die in ihrem elektrochemischen Spannungspotential unedler als Kupfer sind und die zusammen mit Kupfer eine festhaftende, porenfreie Deckschicht aus Oxiden, Oxidhydraten und/oder Hydroxiden bilden, wobei die Menge der einzelnen Elemente innerhalb derjenigen Grenzen liegt, innerhalb derer die Legierung unter technischen Abkühlbedingungen im Mischkristallbereich liegt.The invention relates to a corrosion-resistant copper alloy which consists of copper and at least two alloy elements which are less noble than copper in their electrochemical voltage potential and which together with copper form a firmly adhering, non-porous cover layer made of oxides, oxide hydrates and / or hydroxides, the amount of each Elements lies within the limits within which the alloy lies in the mixed crystal range under technical cooling conditions.

Eine derartige Legierung ist beispielsweise bekannt durch die DE-OS 3.605.796. Wegen der hohen Konzentrationen der Zusatzelemente besteht dort jedoch die Gefahr der Ausscheidungsbildung und damit die Gefahr zusätzlicher Verarbeitungsschwierigkeiten.Such an alloy is known for example from DE-OS 3,605,796. However, because of the high concentrations of the additional elements, there is a risk of excretion and thus of additional processing difficulties.

Die Mehrzahl der Korrosionsschadensfälle in Wasserleitungsrohren aus Kupfer wird durch gleichmäßige Flächenkorrosion oder Lochfraß ausgelöst. Durch unsachgemäße Montage kann es außerdem zu Korrosionsangriffen im Bereich von Lötstellen und Verbindungen kommen. Die Korrosionsbeständigkeit von Kupfer kann zwar grundsätzlich dadurch erhöht werden, daß eine festhaftende, zusammenhängende oxidische Deckschicht erzeugt wird. Diese wird durch spezielle Herstellungsverfahren auf der Rohrinnenfläche aufgebracht, was jedoch technisch umständlich und arbeitsintensiv ist. Die fortschrittlichere Methode ist, durch Legierungszusätze einen Werkstoff zu bilden, bei dem sich im Gebrauch von selbst eine verbesserte oxidische Deckschicht bildet.The majority of corrosion damage in copper water pipes is caused by even surface corrosion or pitting. Improper installation can also lead to corrosion attacks in the area of solder joints and connections. The corrosion resistance of copper can in principle be increased by producing a firmly adhering, coherent oxide cover layer. This is applied to the inner surface of the pipe using special manufacturing processes, but this is technically complicated and labor-intensive. The more advanced method is to use alloy additives to form a material that, when used, automatically forms an improved oxide coating.

Der Erfindung liegt die Aufgabe zugrunde, einen korrosionsbeständigen Werkstoff anzugeben, der sich durch eine insbes. gegenüber sauerstofffreiem Kupfer verbesserte Deckschichtbildung und durch reduzierte Kupferlöslichkeit auszeichnet und für den keine Lochfraßgefährdung besteht. Der Massenabtrag soll dabei herabgesetzt werden.The invention is based on the object of specifying a corrosion-resistant material which is characterized in particular by an improved covering layer formation compared to oxygen-free copper and by reduced copper solubility and for which there is no risk of pitting. The mass loss should be reduced.

Die Aufgabe wird erfindungsgemäß durch folgende Merkmale gelöst: die Kupferlegierung enthält mindestens 99,0 Gew.-% Kupfer, der Schmelzpunkt des Mischkristalls liegt oberhalb 400° C, mindestens zwei Legierungselemente ungleicher Valenz bilden in der Deckschicht thermodynamisch stabile chemische Verbindungen der genannten Arten in der Form, daß die beiden Legierungselemente zusammen eine mittlere Valenz zwischen 2,5 und 3,0 annehmen, wobei die Differenz der Valenzen maximal 3 beträgt.The object is achieved according to the invention by the following features: the copper alloy contains at least 99.0% by weight of copper, the melting point of the mixed crystal is above 400 ° C., at least two alloy elements of unequal valence form thermodynamically stable chemical compounds of the types mentioned in the top layer Form that the two alloy elements together assume an average valence between 2.5 and 3.0, the difference between the valences being a maximum of 3.

(Unter "mittlerer Valenz" soll dabei das arithmetische Mittel der Valenzen der beiden Legierungselemente verstanden werden).("Average valence" should be understood to mean the arithmetic mean of the valences of the two alloy elements).

Die Ansprüche 2 bis 4 betreffen bevorzugte Ausführungsformen der Erfindung:
Danach bildet mindestens ein Element in der Deckschicht thermodynamisch stabile chemische Verbindungen aus Oxiden, Oxidhydraten und/oder Hydroxiden in Form zweiwertiger positiver Ionen, und mindestens ein weiteres Element bildet in der Deckschicht thermodynamisch stabile chemische Verbindungen der genannten Art in Form dreiwertiger positiver Ionen, oder das weitere Element bildet in der Deckschicht thermodynamisch stabile chemische Verbindungen der genannten Arten in Form vierwertiger positiver Ionen, bzw. mindestens ein Element bildet in der Deckschicht thermodynamisch stabile chemische Verbindungen der genannten Arten in Form einwertiger positiver Ionen, und mindestens ein weiteres Element bildet in der Deckschicht thermodynamisch stabile chemische Verbindungen der genannten Arten in Form vierwertiger positiver Ionen.
Claims 2 to 4 relate to preferred embodiments of the invention:
Thereafter, at least one element forms thermodynamically stable chemical compounds of oxides, oxide hydrates and / or hydroxides in the form of divalent positive ions in the cover layer, and at least one further element forms thermodynamically stable chemical compounds of the type mentioned in the form of trivalent positive ions in the cover layer, or that Another element forms thermodynamically stable chemical compounds of the types mentioned in the form of tetravalent positive ions in the cover layer, or at least one element forms thermodynamically stable chemical compounds of the types mentioned in the form of monovalent positive ions in the cover layer, and at least one further element forms in the cover layer thermodynamically stable chemical compounds of the types mentioned in the form of tetravalent positive ions.

Durch die Wertigkeitspaarung von zweiwertigen zu dreiwertigen positiven Ionen, von zweiwertigen zu vierwertigen Ionen oder von einwertigen zu vierwertigen Ionen wird eine festhaftende und weitgehend porenfreie Deckschicht erzeugt. Es hat sich überraschenderweise gezeigt, daß durch die Auswahl der Wertigkeitspaarungen die Struktur der Cu₂O-Phase dahingehend beeinflußt wird, daß sich sowohl schneller eine Deckschicht bildet, als auch, daß die Schutzwirkung der entstehenden Deckschicht wirksamer ist.Through the valence pairing of divalent to trivalent positive ions, from divalent to tetravalent ions or from monovalent to tetravalent ions a firmly adhering and largely pore-free cover layer is generated. It has surprisingly been found that the structure of the Cu₂O phase is influenced by the choice of valence pairs in such a way that a cover layer is formed more quickly, and that the protective effect of the resulting cover layer is more effective.

Nach weiteren bevorzugten Ausführungsformen der Erfindung werden aus der Gruppe der einwertigen positiven Ionen die Elemente Lithium, Natrium, Kalium, Rubidium oder Cäsium ausgewählt;
aus der Gruppe der zweiwertigen positiven Ionen die Elemente Zink, Cadmium, Beryllium, Magnesium, Calcium, Strontium, Barium, Mangan, Eisen, Kobalt oder Nickel;
aus der Gruppe der dreiwertigen Ionen Bor, Aluminium, Gallium, Indium, Scandium, Yttrium, Lanthan, Cer, Mischmetall, Chrom, Eisen oder Kobalt und
aus der Gruppe der vierwertigen Ionen Silizium, Germanium, Zinn, Titan, Zirkon oder Hafnium.
According to further preferred embodiments of the invention, the elements lithium, sodium, potassium, rubidium or cesium are selected from the group of monovalent positive ions;
from the group of divalent positive ions, the elements zinc, cadmium, beryllium, magnesium, calcium, strontium, barium, manganese, iron, cobalt or nickel;
from the group of the trivalent ions boron, aluminum, gallium, indium, scandium, yttrium, lanthanum, cerium, mixed metal, chromium, iron or cobalt and
from the group of the tetravalent ions silicon, germanium, tin, titanium, zircon or hafnium.

Es ist vorteilhaft, der Legierung bis zu 0,04 Gew.-% Phosphor zuzusetzen. Phosphor verbessert die Gießbarkeit und wirkt als Desoxidationsmittel.It is advantageous to add up to 0.04% by weight of phosphorus to the alloy. Phosphorus improves the pourability and acts as a deoxidizer.

Nach einer bevorzugten Ausführungsform der Erfindung werden die genannten Elemente in einer Menge von mindestens 0,1 Gew.-% zugesetzt.According to a preferred embodiment of the invention, the elements mentioned are added in an amount of at least 0.1% by weight.

Bevorzugt wird die erfindungsgemäße Legierung als Werkstoff für Rohre in der Installations- und Sanitärtechnik sowie für Trinkwasserleitungen verwendet.The alloy according to the invention is preferably used as a material for pipes in installation and sanitary technology and for drinking water pipes.

Die Erfindung wird anhand der folgenden Ausführungsbeispiele näher erläutert:
Es wurden Rohre der Abmessung 18 x 1 mm aus sauerstofffreiem Kupfer und aus drei Vergleichslegierungen der folgenden Zusammensetzung hergestellt. Werkstoff SF-Cu weich, 50 - 70 HB hart, 100 - 120 HB Cu Mg0,7Ti0,2 (Paarung 2+/4+) weich, 50 - 70 HB Bsp. 1 hart, 100 - 120 HB Bsp. 2 Cu Al0,5Zn0,5 (Paarung 3+/2+) weich, 50 - 70 HB Bsp. 3 hart, 100 - 120 HB Bsp. 4 Cu Li0,6Si0,1 (Paarung 1+/4+) weich, 50 - 70 HB Bsp. 5 hart, 100 - 120 HB Bsp. 6
The invention is explained in more detail using the following exemplary embodiments:
Tubes measuring 18 x 1 mm were made of oxygen-free copper and three comparative alloys of the following composition. material SF-Cu soft, 50 - 70 HB hard, 100 - 120 HB Cu Mg0.7Ti0.2 (pairing 2 + / 4 +) soft, 50 - 70 HB Ex. 1 hard, 100 - 120 HB Ex. 2 Cu Al0.5Zn0.5 (pairing 3 + / 2 +) soft, 50 - 70 HB Ex. 3 hard, 100 - 120 HB Ex. 4 Cu Li0.6Si0.1 (pairing 1 + / 4 +) soft, 50 - 70 HB Ex. 5 hard, 100 - 120 HB Ex. 6

Zur Beurteilung des Korrosionsverhaltens wurden an den Rohrmustern Stromdichte-Potential-Kurven (Fig.1) und der elektrochemische Polarisationswiderstand (Rp) bzw. Polarisationsleitwert (Rp⁻¹) gemäß Fig. 2a - 2g gemessen sowie der Massenabtrag (Fig.3) ermittelt.To assess the corrosion behavior, current density-potential curves (Fig. 1) and the electrochemical polarization resistance (R p ) or polarization conductance (R p ⁻¹) according to Figs. 2a - 2g were measured and the mass removal (Fig. 3) determined.

Es zeigen im einzelnen:

Fig.1:
die Stromdichte-Potential-Kurven der Legierungssysteme Cu-Mg-Ti, Cu-Al-Zn und Cu-Li-Si im Vergleich zu SF-Cu.
Bezugselektrode: gesättigte Kalomelektrode.
Fig.2a bis 2g:
den Polarisationsleitwert Rp⁻¹ als Funktion der Versuchsdauer.
  • (a) SF-Cu, Zustand weich, 50-70 HB bzw. hart, 100-120 HB
  • (b) CuMg0,7Ti0,2, Zustand weich, 50-70 HB
  • (c) CuMg0,7Ti0,2, Zustand hart, 100-120 HB
  • (d) CuAl0,5Zn0,5, Zustand weich, 50-70 HB
  • (e) CuAl0,5Zn0,5, Zustand hart, 100-120 HB
  • (f) CuLi0,6Si0,1, Zustand weich, 50-70 HB
  • (g) CuLi0,6Si0,1, Zustand hart, 100-120HB
Fig.3:
den auf die Fläche bezogenen Gewichtsverlust nach einer Zeit von 1000 h.
The individual shows:
Fig.1:
the current density-potential curves of the alloy systems Cu-Mg-Ti, Cu-Al-Zn and Cu-Li-Si compared to SF-Cu.
Reference electrode: saturated calom electrode.
Fig.2a to 2g:
the polarization conductance R p ⁻¹ as a function of the test duration.
  • (a) SF-Cu, soft state, 50-70 HB or hard, 100-120 HB
  • (b) CuMg0.7Ti0.2, soft state, 50-70 HB
  • (c) CuMg0.7Ti0.2, hard condition, 100-120 HB
  • (d) CuAl0.5Zn0.5, soft state, 50-70 HB
  • (e) CuAl0.5Zn0.5, hard condition, 100-120 HB
  • (f) CuLi0.6Si0.1, soft state, 50-70 HB
  • (g) CuLi0.6Si0.1, hard condition, 100-120HB
Fig. 3:
the weight loss related to the area after a period of 1000 h.

In Fig. 1 sind die Stromdichte-Potential-Kurven der Legierungen CuMg0,7Ti0,2, CuAl0,5Zn0,5, CuLi0,6Si0,1 und SF-Cu im Vergleich dargestellt. Es ist zu erkennen, daß die zulegierten Elemente den Bereich der Korrosionsbeständigkeit deutlich erweitern. Die Passivstromdichte ist gegenüber SF-Cu verringert, was für die bessere Deckschichtqualität spricht. Die Durchbruchpotentiale sind zu positiveren Werten hin verschoben.In Fig. 1, the current density-potential curves of the alloys CuMg0.7Ti0.2, CuAl0.5Zn0.5, CuLi0.6Si0.1 and SF-Cu are shown in comparison. It can be seen that the alloyed elements significantly expand the range of corrosion resistance. The passive current density is reduced compared to SF-Cu, which speaks for the better cover layer quality. The breakthrough potential has shifted towards more positive values.

Der Polarisationswiderstand Rp bzw. der Kehrwert, der Polarisationsleitwert Rp⁻¹, ist ein Maß für die Korrosionsgeschwindigkeit. Je geringer der Polarisationsleitwert, desto größer ist die Beständigkeit gegen gleichmäßige Korrosion. Die Figuren 2a bis g vergleichen den Polarisationsleitwert der Werkstoffe CuMg0,7Ti0,2, CuAl0,5,Zn0,5 und CuLi0,6Si0,1 in verschiedenen Zuständen (weich/hart) mit demjenigen von SF-Cu. Unlegiertes Cu zeigt nicht nur ein schlechteres Verhalten, sondern auch eine beträchtliche Streuung.The polarization resistance R p or the reciprocal, the polarization conductance R p ⁻¹, is a measure of the rate of corrosion. The lower the polarization conductance, the greater the resistance to uniform corrosion. Figures 2a to g compare the polarization conductance of the materials CuMg0.7Ti0.2, CuAl0.5, Zn0.5 and CuLi0.6Si0.1 in different states (soft / hard) with that of SF-Cu. Unalloyed Cu not only exhibits poorer behavior, but also considerable scatter.

Bei allen untersuchten Werkstoffen war der Massenverlust gegenüber SF-Cu entsprechend Fig.3 erheblich reduziert.The mass loss compared to SF-Cu was significantly reduced in accordance with Fig. 3 for all investigated materials.

In allen Fällen zeigen die erfindungsgemäßen Legierungen ein deutlich besseres Verhalten als SF-Cu. Es wird nicht nur die Deckschichtqualität verbessert, sondern auch die Bildungsgeschwindigkeit beeinflußt und vor allem der Potentialbereich der Korrosionsbeständigkeit ausgedehnt. Durch diese Ausbildung der Passivschicht wird die Cu-Löslichkeit deutlich herabgesetzt.In all cases, the alloys according to the invention show significantly better behavior than SF-Cu. Not only is the quality of the covering layer improved, but also the rate of formation is influenced and, above all, the potential range of corrosion resistance is expanded. This formation of the passive layer significantly reduces the Cu solubility.

Es ist weiterhin als entscheidender Vorteil anzusehen, daß durch die Kombination bestimmter Zwangskomponenten der pH-Wert-Bereich für die Bildung von Deckschichten erweitert wird. Während einige Legierungselemente entsprechend ihrem Pourbaix-Diagramm fähig sind, auch in sauren Medien Reaktionsprodukte zu bilden und somit zum Aufbau einer wirksamen Schutzschicht beizutragen, gilt entsprechendes für andere Elemente in alkalischen Medien. Somit sind die die Erfindung betreffenden Werkstoffe nicht nur in neutralen Wässern einsetzbar. Gewisse pH-Wert-Schwankungen wirken sich nicht negativ auf das Korrosionsverhalten aus.It is also considered to be a decisive advantage that the combination of certain compulsory components extends the pH range for the formation of cover layers. While some alloy elements are capable of forming reaction products in acidic media according to their Pourbaix diagram and thus contribute to the formation of an effective protective layer, the same applies to other elements in alkaline media. The materials relating to the invention can thus not only be used in neutral waters. Certain pH fluctuations do not have a negative effect on the corrosion behavior.

Verschiebt sich das Durchbruchpotential außerdem so weit in positive Richtung, daß es sich nicht mehr im Bereich des freien Korrosionspotentials befindet, so liegt ein zusätzlicher Schutz gegen Elementbildung wie z. B. Kontakt- oder Belüftungselemente vor. Zudem konnte bei den überprüften Rohrmustern keine Lochfraßgefährdung festgestellt werden.If the breakthrough potential also shifts so far in the positive direction that it is no longer in the area of the free corrosion potential, additional protection against element formation such as e.g. B. contact or ventilation elements. In addition, no risk of pitting was found in the tube samples checked.

Claims (11)

Korrosionsbeständige Kupferlegierung, bestehend aus Kupfer und mindestens zwei Legierungselementen, die in ihrem elektrochemischen Spannungspotential unedler als Kupfer sind und die zusammen mit Kupfer eine festhaftende, porenfreie Deckschicht aus Oxiden, Oxidhydraten und/oder Hydroxiden bilden, wobei die Menge der einzelnen Elemente innerhalb derjenigen Grenzen liegt, innerhalb derer die Legierung unter technischen Abkühlbedingungen im Mischkristallbereich liegt,
gekennzeichnet durch folgende Merkmale:
die Kupferlegierung enthält mindestens 99,0 Gew.-% Kupfer, der Schmelzpunkt des Mischkristalls liegt oberhalb 400° C, mindestens zwei Legierungselemente ungleicher Valenz bilden in der Deckschicht thermodynamisch stabile chemische Verbindungen der genannten Arten in der Form, daß die beiden Legierungselemente zusammen eine mittlere Valenz zwischen 2,5 und 3,0 annehmen, wobei die Differenz der Valenzen maximal 3 beträgt.
Corrosion-resistant copper alloy, consisting of copper and at least two alloy elements, whose electrochemical voltage potential is less noble than copper and which, together with copper, form a firmly adhering, non-porous cover layer made of oxides, oxide hydrates and / or hydroxides, the amount of the individual elements being within those limits , within which the alloy lies in the mixed crystal range under technical cooling conditions,
characterized by the following features:
the copper alloy contains at least 99.0% by weight of copper, the melting point of the mixed crystal is above 400 ° C, at least two alloy elements of unequal valence form thermodynamically stable chemical compounds of the types mentioned in the top layer in such a way that the two alloy elements together form a medium one Assume valence between 2.5 and 3.0, the difference between the valences being a maximum of 3.
Korrosionsbeständige Kupferlegierung nach Anspruch 1,
dadurch gekennzeichnet,
daß mindestens ein Element in der Deckschicht thermodynamisch stabile chemische Verbindungen der genannten Arten in Form zweiwertiger positiver Ionen bildet
und
daß mindestens ein weiteres Element in der Deckschicht thermodynamisch stabile chemische Verbindungen der genannten Arten in Form dreiwertiger positiver Ionen bildet.
Corrosion-resistant copper alloy according to claim 1,
characterized,
that at least one element in the cover layer forms thermodynamically stable chemical compounds of the types mentioned in the form of divalent positive ions
and
that at least one further element in the top layer forms thermodynamically stable chemical compounds of the types mentioned in the form of trivalent positive ions.
Korrosionsbeständige Kupferlegierung nach Anspruch 1,
dadurch gekennzeichnet,
daß mindestens ein Element in der Deckschicht thermodynamisch stabile chemische Verbindungen der genannten Arten in Form zweiwertiger positiver Ionen bildet
und
daß mindestens ein weiteres Element in der Deckschicht thermodynamisch stabile chemische Verbindungen der genannten Arten in Form vierwertiger positiver Ionen bildet.
Corrosion-resistant copper alloy according to claim 1,
characterized,
that at least one element in the cover layer forms thermodynamically stable chemical compounds of the types mentioned in the form of divalent positive ions
and
that at least one further element in the cover layer forms thermodynamically stable chemical compounds of the types mentioned in the form of tetravalent positive ions.
Korrosionsbeständige Kupferlegierung nach Anspruch 1,
dadurch gekennzeichnet,
daß mindestens ein Element in der Deckschicht thermodynamisch stabile chemische Verbindungen der genannten Arten in Form einwertiger positiver Ionen bildet
und
daß mindestens ein weiteres Element in der Deckschicht thermodynamisch stabile chemische Verbindungen der genannten Arten in Form vierwertiger positiver Ionen bildet.
Corrosion-resistant copper alloy according to claim 1,
characterized,
that at least one element in the top layer forms thermodynamically stable chemical compounds of the types mentioned in the form of monovalent positive ions
and
that at least one further element in the cover layer forms thermodynamically stable chemical compounds of the types mentioned in the form of tetravalent positive ions.
Korrosionsbeständige Kupferlegierung nach Anspruch 4,
dadurch gekennzeichnet,
daß die Elemente aus der Gruppe der einwertigen positiven Ionen aus Lithium, Natrium, Kalium, Rubidium oder Cäsium bestehen.
Corrosion-resistant copper alloy according to claim 4,
characterized,
that the elements from the group of monovalent positive ions consist of lithium, sodium, potassium, rubidium or cesium.
Korrosionsbeständige Kupferlegierung nach Anspruch 2 oder 3,
dadurch gekennzeichnet,
daß die Elemente aus der Gruppe der zweiwertigen positiven Ionen aus Zink, Cadmium, Beryllium, Magnesium, Calcium, Strontium, Barium, Mangan, Eisen, Kobalt oder Nickel bestehen.
Corrosion-resistant copper alloy according to claim 2 or 3,
characterized,
that the elements from the group of divalent positive ions consist of zinc, cadmium, beryllium, magnesium, calcium, strontium, barium, manganese, iron, cobalt or nickel.
Korrosionsbeständige Kupferlegierung nach Anspruch 2,
dadurch gekennzeichnet,
daß die Elemente aus der Gruppe der dreiwertigen positiven Ionen aus Bor, Aluminium, Gallium, Indium, Scandium, Yttrium, Lanthan, Cer, Mischmetall, Chrom, Eisen oder Kobalt bestehen.
Corrosion-resistant copper alloy according to claim 2,
characterized,
that the elements from the group of trivalent positive ions consist of boron, aluminum, gallium, indium, scandium, yttrium, lanthanum, cerium, mixed metal, chromium, iron or cobalt.
Korrosionsbeständige Kupferlegierung nach Anspruch 3,
dadurch gekennzeichnet,
daß die Elemente aus der Gruppe der vierwertigen Ionen aus Silizium, Germanium, Zinn, Titan, Zirkon oder Hafnium bestehen.
Corrosion-resistant copper alloy according to claim 3,
characterized,
that the elements from the group of tetravalent ions consist of silicon, germanium, tin, titanium, zircon or hafnium.
Korrosionsbeständige Kupferlegierung nach einem oder mehreren der Ansprüche 1 bis 8,
dadurch gekennzeichnet,
daß sie bis zu 0,04 Gew.- % Phosphor enthält.
Corrosion-resistant copper alloy according to one or more of claims 1 to 8,
characterized,
that it contains up to 0.04% by weight of phosphorus.
Korrosionsbeständige Kupferlegierung nach einem oder mehreren der Ansprüche 1 bis 9,
dadurch gekennzeichnet,
daß die Elemente mindestens 0,1 Gew.- % betragen.
Corrosion-resistant copper alloy according to one or more of claims 1 to 9,
characterized,
that the elements are at least 0.1% by weight.
Verwendung einer korrosionsbeständigen Kupferlegierung nach einem oder mehreren der Ansprüche 1 bis 10 als Werkstoff für Rohre in der Installations- und Sanitärtechnik sowie für Trinkwasserleitungen.Use of a corrosion-resistant copper alloy according to one or more of claims 1 to 10 as a material for pipes in installation and sanitary engineering and for drinking water pipes.
EP19930106094 1992-04-24 1993-04-15 Corrosion resistant copper alloy Expired - Lifetime EP0579904B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19924213488 DE4213488C2 (en) 1992-04-24 1992-04-24 Corrosion resistant copper alloy
DE4213488 1992-04-24

Publications (2)

Publication Number Publication Date
EP0579904A1 true EP0579904A1 (en) 1994-01-26
EP0579904B1 EP0579904B1 (en) 1995-11-02

Family

ID=6457381

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19930106094 Expired - Lifetime EP0579904B1 (en) 1992-04-24 1993-04-15 Corrosion resistant copper alloy

Country Status (5)

Country Link
EP (1) EP0579904B1 (en)
DE (2) DE4213488C2 (en)
DK (1) DK0579904T3 (en)
ES (1) ES2081653T3 (en)
FI (1) FI102908B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0695810A1 (en) * 1994-07-06 1996-02-07 William Prym GmbH &amp; Co. KG Corrosion resistant copper alloy

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4401997C2 (en) * 1994-01-25 1999-02-25 Okan Dipl Ing Dr Akin Use of a copper alloy for components in flowing water
DE29916516U1 (en) 1999-09-20 2000-04-20 Reif, Peter, 87600 Kaufbeuren Faucet with integrated soap dispenser
DE102007015442B4 (en) * 2007-03-30 2012-05-10 Wieland-Werke Ag Use of a corrosion-resistant copper alloy
DE102011016318A1 (en) * 2011-04-07 2012-10-11 Wieland-Werke Ag Hard phase copper-tin multicomponent bronze, method of manufacture and use

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2065166A (en) * 1979-11-22 1981-06-24 Sumitomo Light Metal Ind Copper-base-alloy tube for carrying potable water and for a heat exchanger
EP0238859A2 (en) * 1986-02-22 1987-09-30 William Prym GmbH &amp; Co. KG Corrosion-resistant copper alloy for pipings, tanks or the like for flowing liquids, particularly for cold and/or hot water pipes
US4872048A (en) * 1985-09-13 1989-10-03 Mitsubishi Kinzoku Kabushiki Kaisha Semiconductor device having copper alloy leads

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4047978A (en) * 1975-04-17 1977-09-13 Olin Corporation Processing copper base alloys

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2065166A (en) * 1979-11-22 1981-06-24 Sumitomo Light Metal Ind Copper-base-alloy tube for carrying potable water and for a heat exchanger
US4872048A (en) * 1985-09-13 1989-10-03 Mitsubishi Kinzoku Kabushiki Kaisha Semiconductor device having copper alloy leads
EP0238859A2 (en) * 1986-02-22 1987-09-30 William Prym GmbH &amp; Co. KG Corrosion-resistant copper alloy for pipings, tanks or the like for flowing liquids, particularly for cold and/or hot water pipes

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Week 8229, Derwent Publications Ltd., London, GB; AN 82-60405E & JP-A-57 094 539 (FURUKAWA ELECTRIC CO) 12. Juni 1982 *
Week 8608, Derwent Publications Ltd., London, GB; AN 86-051352 & JP-A-61 003 876 (NIPPON MINING KK) 9. Januar 1986 *
Week 8648, Derwent Publications Ltd., London, GB; AN 86-314306 & JP-A-61 231 131 (KOBE STEEL KK) 15. Oktober 1986 *
Week 9006, Derwent Publications Ltd., London, GB; AN 90-040228 & JP-A-1 316 431 (FURUKAWA ELECTRIC CO) 21. Dezember 1989 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0695810A1 (en) * 1994-07-06 1996-02-07 William Prym GmbH &amp; Co. KG Corrosion resistant copper alloy

Also Published As

Publication number Publication date
DE4213488C2 (en) 1995-05-24
FI931830A0 (en) 1993-04-23
ES2081653T3 (en) 1996-03-16
DE4213488A1 (en) 1993-10-28
FI931830A (en) 1993-10-25
FI102908B1 (en) 1999-03-15
DE59300844D1 (en) 1995-12-07
DK0579904T3 (en) 1996-02-05
FI102908B (en) 1999-03-15
EP0579904B1 (en) 1995-11-02

Similar Documents

Publication Publication Date Title
DE19816671C2 (en) Use of alloys as lead-free solder alloys
DE3634495C2 (en) Process for producing a copper-tin alloy and its use as a conductor material
DE2942345C2 (en)
DE102006010760B4 (en) Copper alloy and method of making the same
DE2631628A1 (en) USE OF COLLOIDAL VANADIUM PENTOXIDE SOLUTIONS FOR ANTISTATIC EQUIPMENT OF HYDROPHOBIC SURFACES
DE112009000731T5 (en) Cu-Ni-Si-Co-Cr system alloy for electronic materials
DE4036096A1 (en) SYNTHETIC SEALED SEMICONDUCTOR DEVICE
DE2701411A1 (en) CERAMIC CONNECTIONS WITH HIGH DIELECTRICITY CONSTANTS
DE4108564C2 (en)
DE2703636A1 (en) REGENERATING ELECTRIC CAPACITOR AND METHOD FOR MANUFACTURING IT
EP0034391A1 (en) Use of a lead alloy for the anodes in the electrolytic production of zinc
EP0579904A1 (en) Corrosion resistant copper alloy
DE2626004C3 (en) Galvanic solid state cell
DE3908513C2 (en)
DE3530736C2 (en)
DE2536896A1 (en) PROCEDURE FOR SOLDERING ALUMINUM OR ALUMINUM ALLOYS USING FLUX-SOLVENT COMPOSITIONS AND FLUX-SOLDER COMPOSITIONS FOR USE IN THIS PROCESS
EP1273671A1 (en) Dezincification resistant copper-zinc alloy and method for producing the same
DE3412463A1 (en) ELECTRIC CAPACITOR WITH POLYETHYLENE TEREPHTHALATE AS A DIELECTRIC, ESPECIALLY FOR USE AS A SOLVABLE CHIP COMPONENT
AT393697B (en) IMPROVED COPPER-BASED METAL ALLOY, IN PARTICULAR FOR THE CONSTRUCTION OF ELECTRONIC COMPONENTS
DE2349233C3 (en) Matrix of photoconductive cells
EP0566978B1 (en) Use of a copper-aluminium-zinc alloy as corrosion resistant material
EP0258670B1 (en) Impregnated-layers component
EP0792941B1 (en) Use of a copper-aluminium-(zinc) alloy as a corrosion-resistant material
DE3204794C2 (en)
DE3717246A1 (en) NICKEL-BASED MATERIAL FOR A SEMICONDUCTOR ARRANGEMENT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930415

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE DK ES FR IT NL SE

17Q First examination report despatched

Effective date: 19940704

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE DK ES FR IT NL SE

REF Corresponds to:

Ref document number: 59300844

Country of ref document: DE

Date of ref document: 19951207

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2081653

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100521

Year of fee payment: 18

Ref country code: ES

Payment date: 20100505

Year of fee payment: 18

Ref country code: DK

Payment date: 20100412

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100402

Year of fee payment: 18

Ref country code: IT

Payment date: 20100419

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20100423

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20100409

Year of fee payment: 18

BERE Be: lapsed

Owner name: *WIELAND-WERKE A.G.

Effective date: 20110430

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20111101

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111101

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110502

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110415

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110416

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120430

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59300844

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130416