EP0578280A2 - Pending charge movement control procedure and arrangement for implementing the same - Google Patents

Pending charge movement control procedure and arrangement for implementing the same Download PDF

Info

Publication number
EP0578280A2
EP0578280A2 EP93113406A EP93113406A EP0578280A2 EP 0578280 A2 EP0578280 A2 EP 0578280A2 EP 93113406 A EP93113406 A EP 93113406A EP 93113406 A EP93113406 A EP 93113406A EP 0578280 A2 EP0578280 A2 EP 0578280A2
Authority
EP
European Patent Office
Prior art keywords
displacement
load
pendulum
theoretical
mobile support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93113406A
Other languages
German (de)
French (fr)
Other versions
EP0578280A3 (en
EP0578280B1 (en
Inventor
Patrice Genet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konecranes France SA
Original Assignee
Caillard SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caillard SA filed Critical Caillard SA
Publication of EP0578280A2 publication Critical patent/EP0578280A2/en
Publication of EP0578280A3 publication Critical patent/EP0578280A3/xx
Application granted granted Critical
Publication of EP0578280B1 publication Critical patent/EP0578280B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • B66C13/063Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads electrical

Definitions

  • the present invention relates to a method for controlling the movements of a pendulum load suspended from a horizontally movable support.
  • the invention also relates to devices for its implementation.
  • the invention is particularly applicable to port lifting devices such as cranes, gantry cranes or containers.
  • a primary objective is to precisely move from one point to another a load suspended by cables to a mobile support, such as a motorized trolley, and in particular to obtain a zero swing of the load at the end of the journey.
  • the accuracy of the movement depends essentially on the control and the damping of the load's oscillations during the movement.
  • the object of the present invention is to remedy these drawbacks by proposing a method for controlling the movements of a pendulum load suspended from a horizontally movable support, and moved from a starting point to an ending point during a travel from predetermined duration, which allows for the taking into account of disturbances and pendulum length variations and which uses the power of the lifting device to the maximum in order to reduce travel times.
  • the device for controlling the movement of a pendulum load suspended from a horizontally movable support implementing the method according to the invention, associated with a lifting machine comprising lifting means and steering means, is characterized in that it comprises control and processing means receiving, on the one hand, information representative of the length of the associated pendulum, the swing angle and the displacement of the mobile support respectively length acquisition means, angle acquisition means and displacement acquisition means, and issuing in return lifting orders and direction orders respectively intended for lifting means and direction means , said direction orders being calculated so as to satisfy the displacement law X (t) according to the method as defined above.
  • the device for controlling the movement of a pendular load 20 suspended from a mobile support of a lifting machine 1 comprises a computer 4 receiving on the one hand, at input CL, information on the length of the pendulum from a position encoder 7, at input B, sway information from a camera 18, or any other optical analysis device, and at the CD input, information on the displacement of the mobile support or direction information, and delivering in return, at output SL, lifting orders transmitted to lifting means 6, 5, 8 of the lifting machine 1, and at output SD, direction orders transmitted to lifting means 1 direction 14, 15, 16.
  • the lifting means comprise a lifting drum 8 around which a suspension cable 21 connected to the load 20 is wound, for example, a container, a reduction gear 5 and an electric motor 6, arranged according to well known techniques.
  • the lifting motor 6, with which the lifting encoder 7 is associated, is controlled, via a control line 9 and an amplifier 10, either from a lifting control lever 2 or by the computer 4, through the SL output above.
  • the steering means comprise a steering roller 16 rolling on a horizontal steering rail 17 linked to the lifting machine, a reduction gear 15 and an electric motor 14 to which a direction encoder 13 is fixed.
  • This steering motor 14 is controlled via a steering power line 12 and a power amplifier 11, either from a steering control lever 3, or by the computer 4, through the aforementioned SD output.
  • the swing angle is measured by a camera 18 secured to the movable support and the objective of which is directed vertically downwards, the pendulum load 20 being equipped with an optical beacon 19 emitting a beam directed upwards.
  • FIG. 2 The general diagram of a container handling and lifting machine 30 that can be fitted with a movement control device according to the invention is given in FIG. 2.
  • the port lifting device 30 comprises, according to known techniques, a gantry 35 to which a horizontal boom structure 33 is connected.
  • a mobile carriage 34 can be moved horizontally in a direction X along the arrow 33.
  • a container 31 is suspended from the movable carriage 34 by cables 32 whose variation in length allows the container 31 to move in a vertical direction Z.
  • FIG. 4 illustrates the main geometric variables taken into account in the implementation of the method according to the invention.
  • the variable x represents the horizontal displacement of the carriage or mobile support 40.
  • a perpendicular load 41 is suspended from the mobile carriage 40 by a cable of length l .
  • the cable is inclined at an angle ⁇ with respect to the vertical, the pendulum load 41 having a deviation y from said vertical.
  • the instantaneous displacement of the pendulum load 41 is represented by a variable X equal to the sum x + y.
  • the displacement of the suspension point of the load 41, and therefore the displacement of the mobile support 40 is determined by expressing the dynamic balance of the pendulum load: g being the acceleration of gravity.
  • Equation (1) makes it possible to calculate the displacement X (t) as a function of the maximum acceleration ⁇ and the duration of the journey T, while equation (2) makes it possible to calculate the difference y as a function of the derivative second l 'of the instantaneous length of the pendulum associated with the load and the acceleration X''(t).
  • the position x of the carriage 40 is determined, with reference to FIG. 1, using the encoder 13, for example an incremental encoder, mounted on the shaft of the steering motor 14.
  • variable l is determined by the encoder 7 mounted on the shaft of the lifting motor 6 while the variable y is calculated from the angle ⁇ and the length l via the optical system constituted by the camera 18 and tag 19.
  • This beacon 19 constitutes a light source which creates a light spot on the sensitive element of the camera 18 which in return delivers a signal proportional to the angle ⁇ .
  • the computer 4 can then determine the theoretical value of the difference y and the actual instantaneous position X of the pendulum load 41.
  • a first block 61 illustrates the calculation of the theoretical displacement X (t) according to the invention.
  • This theoretical displacement X (t) is compared to the actual displacement X equal to the sum of the displacement x of the carriage 40 ( Figure 4) and of the product l.sin ⁇ of the instantaneous length l of the pendulum and the sine of the swing angle ⁇ , this sum being represented by block 67.
  • the difference ⁇ 1 between the theoretical displacement X (t) and the actual displacement X is derived at 62.
  • the speed is then regulated (block 65) at the level of the steering motor 14 (FIG. 1).
  • the effective displacement x of the carriage causes a swing of angle ⁇ (block 66).
  • Such control ensured a substantially zero swing at the end of the pendulum load path.
  • the method according to the invention moreover allows a relative optimization of the duration T of the path of the pendulum load. For a given distance D to be covered, it is possible to vary the period T of the maximum acceleration continuously.
  • VMAX the journey time T and the maximum acceleration ⁇ can then be determined. On the other hand, if this limitation is reached, a phase at VMAX speed is undertaken. A maximum acceleration and a distance traveled at VMAX speed are also determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control And Safety Of Cranes (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

In a first servo loop, there is derived with respect to time, the separation ( epsilon 1) between the theoretical position (X(t)) of the charge in its real position (X), and there is added to the theoretical position (x(t)) of the moving medium, the derivative with respect to time of this difference modified by a correction coefficient (K1), and in a second servo loop, the difference ( epsilon 2) between the theoretical position (xth) of the moving medium and the measured position (x) of the latter is multiplied by a predetermined constant and the result obtained is added to the theoretical speed (x'th) of the moving medium. <IMAGE>

Description

La présente invention concerne un procédé de contrôle des déplacements d'une charge pendulaire, suspendue à un support mobile horizontalement.The present invention relates to a method for controlling the movements of a pendulum load suspended from a horizontally movable support.

L'invention vise également des dispositifs pour sa mise en oeuvre.The invention also relates to devices for its implementation.

L'invention s'applique notamment aux engins de levage portuaires tels que grues, portiques à benne ou à conteneurs.The invention is particularly applicable to port lifting devices such as cranes, gantry cranes or containers.

Dans le domaine industriel de la manutention et du levage de charges, notamment de conteneurs, un objectif primordial est déplacer avec précision d'un point à un autre une charge suspendue par des câbles à un support mobile, tel qu'un chariot motorisé, et tout particulièrement d'obtenir un balancement nul de la charge en fin de trajet.In the industrial field of handling and lifting of loads, in particular of containers, a primary objective is to precisely move from one point to another a load suspended by cables to a mobile support, such as a motorized trolley, and in particular to obtain a zero swing of the load at the end of the journey.

Or, la précision du déplacement dépend essentiellement du contrôle et de l'amortissement des oscillations de la charge au cours du déplacement.However, the accuracy of the movement depends essentially on the control and the damping of the load's oscillations during the movement.

Un certain nombre de procédés de contrôle des déplacements de charges pendulaires existent déjà, mais les temps de manoeuvre donnés par ces procédés dépendent de la période du pendule constitué par la charge suspendue.A number of methods for controlling the movement of pendular loads already exist, but the operating times given by these methods depend on the period of the pendulum constituted by the suspended load.

Ces procédés présentent en particulier les inconvénients suivants :

  • les mouvements sont calculés avant le démarrage du mouvement en fonction des longueurs pendulaires qui sont elles-mêmes variables pendant le mouvement, en particulier pour les appareils de levage. Le calcul des paramètres du mouvement doit donc être effectué avant la mise en route en faisant des approximations sur la longueur du pendule et sur la variation de celle-ci ;
  • dans le cas de petits mouvements, les mouvements, liés à la période du pendule, sont nécessairement lents ;
  • il est difficile de tenir compte de conditions initiales non nulles.
These methods have the following disadvantages in particular:
  • the movements are calculated before the start of the movement as a function of the pendulum lengths which are themselves variable during the movement, in particular for lifting devices. The calculation of the movement parameters must therefore be carried out before start-up by making approximations on the length of the pendulum and on the variation thereof;
  • in the case of small movements, the movements, linked to the pendulum period, are necessarily slow;
  • it is difficult to take into account non-zero initial conditions.

Ces inconvénients font que la précision de déplacement, si elle reste suffisante en manutention de produits en vrac, est insuffisante en manutention de conteneurs.These drawbacks mean that the movement precision, if it remains sufficient for handling bulk products, is insufficient for handling containers.

Le but de la présente invention est de remédier à ces inconvénients en proposant un procédé de contrôle des déplacements d'une charge pendulaire suspendue à un support mobile horizontalement, et déplacée d'un point de départ à un point d'arrivée pendant un trajet de durée prédéterminée, qui permette la prise en compte de perturbations et de variations de longueur pendulaire et qui utilise au maximum la puissance de l'appareil de levage afin de diminuer les temps de déplacement.The object of the present invention is to remedy these drawbacks by proposing a method for controlling the movements of a pendulum load suspended from a horizontally movable support, and moved from a starting point to an ending point during a travel from predetermined duration, which allows for the taking into account of disturbances and pendulum length variations and which uses the power of the lifting device to the maximum in order to reduce travel times.

Suivant l'invention, on soumet le support mobile à une loi de déplacement du support x(t) déterminé de sorte que le déplacement de la charge pendulaire soit régi par une loi de déplacement de charge X(t) satisfaisant aux conditions suivantes :
   X''(t) est continue et dérivable
   X''(t) = 0

Figure imgb0001
et X'''(t) = 0
Figure imgb0002
pour t ≧T (durée du trajet), t désignant le temps, X" la dérivée seconde c'est-à-dire l'accélération de la charge lors de son déplacement et X''' la dérivée troisième.According to the invention, the mobile support is subjected to a law of displacement of the support x (t) determined so that the displacement of the pendulum load is governed by a law of displacement of load X (t) satisfying the following conditions:
X '' (t) is continuous and differentiable
X '' (t) = 0
Figure imgb0001
and X '''(t) = 0
Figure imgb0002
for t ≧ T (duration of the journey), t denoting time, X "the second derivative, that is to say the acceleration of the load during its displacement and X '''the third derivative.

Ainsi, plutôt que d'imposer, comme dans les procédés de contrôle antérieurs, le déplacement du support mobile et de rechercher les paramètres particuliers donnant un balancement nul en fin de trajet, les conditions mathématiques selon l'invention garantissant un balancement nul, il suffit de choisir une loi de déplacement répondant à ces conditions. On peut alors en effectuer un choix en fonction de paramètres tels que la vitesse maximale et l'accélération maximale du support mobile pour déterminer la loi de déplacement donnant les temps de trajet les plus courts.Thus, rather than imposing, as in the previous control methods, the displacement of the mobile support and searching for the particular parameters giving a zero swing at the end of the journey, the mathematical conditions according to the invention guaranteeing zero swing, it suffices to choose a displacement law that meets these conditions. We can then make a choice based on parameters such as maximum speed and maximum acceleration of the mobile support to determine the displacement law giving the shortest travel times.

Dans une forme de réalisation avantageuse de l'invention, la loi de déplacement du support x(t) est choisie de sorte que la charge pendulaire soit soumise à une loi d'accélération X"(t) régie par la relation

X''(t) = γ 2 · (1-cos T  · t)

Figure imgb0003
,

   γ étant l'accélération de la charge au cours du trajet.In an advantageous embodiment of the invention, the law of displacement of the support x (t) is chosen so that the pendulum load is subject to an acceleration law X "(t) governed by the relation

X '' (t) = γ 2 · (1-cos T T)
Figure imgb0003
,

γ being the acceleration of the load during the journey.

Cette loi, d'écriture simple, répond aux conditions d'annulation du balancement de charge énoncées précédemment. Son intégration double ne présente en outre aucune difficulté particulière de mise en oeuvre.This simple writing law meets the conditions for canceling load balancing set out above. Its dual integration also presents no particular difficulty of implementation.

Suivant un autre aspect de l'invention, le dispositif de contrôle de déplacement d'une charge pendulaire suspendue à un support mobile horizontalement, mettant en oeuvre le procédé selon l'invention, associé à un engin de levage comprenant des moyens de levage et des moyens de direction, est caractérisé en ce qu'il comprend des moyens de contrôle et de traitement recevant, d'une part, des informations représentatives de la longueur du pendule associé, de l'angle de ballant et du déplacement du support mobile issues respectivement de moyens d'acquisition de longueur, de moyens d'acquisition d'angle et de moyens d'acquisition de déplacement, et émettant en retour des ordres de levage et des ordres de direction respectivement à destination des moyens de levage et des moyens de direction, lesdits ordres de direction étant calculés de façon à satisfaire la loi de déplacement X(t) selon le procédé tel que défini plus haut.According to another aspect of the invention, the device for controlling the movement of a pendulum load suspended from a horizontally movable support, implementing the method according to the invention, associated with a lifting machine comprising lifting means and steering means, is characterized in that it comprises control and processing means receiving, on the one hand, information representative of the length of the associated pendulum, the swing angle and the displacement of the mobile support respectively length acquisition means, angle acquisition means and displacement acquisition means, and issuing in return lifting orders and direction orders respectively intended for lifting means and direction means , said direction orders being calculated so as to satisfy the displacement law X (t) according to the method as defined above.

D'autres particularités et avantages de l'invention apparaitront encore dans la description ci-après. Aux dessins annexés, donnés à titre d'exemples non limitatifs :

  • la figure 1 est une vue d'une forme pratique de réalisation du dispositif de contrôle de déplacement selon l'invention,
  • la figure 2 est une vue générale d'un engin de levage portuaire pouvant être équipé d'un dispositif selon l'invention,
  • la figure 3 représente la loi d'évolution de la vitesse d'un chariot dans un dispositif de contrôle de déplacement, dans l'art antérieur,
  • la figure 4 est un schéma qui illustre les différentes variables géométriques utilisées pour la description du procédé et du dispositif selon l'invention,
  • les figures 5A, 5B et 5C représentent respectivement les lois d'évolution de l'accélération, de la vitesse et du déplacement d'une charge pendulaire, avec le procédé selon l'invention,
  • la figure 6 est un schéma bloc illustrant le procédé selon l'invention.
Other features and advantages of the invention will appear in the description below. In the appended drawings, given by way of nonlimiting examples:
  • FIG. 1 is a view of a practical embodiment of the movement control device according to the invention,
  • FIG. 2 is a general view of a port lifting device which can be fitted with a device according to the invention,
  • FIG. 3 represents the law of evolution of the speed of a carriage in a displacement control device, in the prior art,
  • FIG. 4 is a diagram which illustrates the different geometrical variables used for the description of the method and the device according to the invention,
  • FIGS. 5A, 5B and 5C respectively represent the laws of evolution of the acceleration, the speed and the displacement of a pendular load, with the method according to the invention,
  • FIG. 6 is a block diagram illustrating the method according to the invention.

On va maintenant expliquer le procédé de contrôle de déplacement selon l'invention, conjointement à la description du dispositif mettant en oeuvre le procédé.We will now explain the displacement control method according to the invention, together with the description of the device implementing the method.

Dans une forme de réalisation particulière d'un dispositif de contrôle selon l'invention illustrée en figure 1, le dispositif de contrôle de déplacement d'une charge pendulaire 20 suspendue à un support mobile d'un engin de levage 1 comprend un calculateur 4 recevant d'une part, en entrée CL, une information de longueur du pendule issue d'un codeur de position 7, en entrée B, une information de ballant issue d'une caméra 18, ou de tout autre dispositif d'analyse optique, et en entrée CD, une information de déplacement du support mobile ou information de direction, et délivrant en retour, en sortie SL, des ordres de levage transmis à des moyens de levage 6, 5, 8 de l'engin de levage 1, et en sortie SD, des ordres de direction transmis à des moyens de direction 14, 15, 16.In a particular embodiment of a control device according to the invention illustrated in FIG. 1, the device for controlling the movement of a pendular load 20 suspended from a mobile support of a lifting machine 1 comprises a computer 4 receiving on the one hand, at input CL, information on the length of the pendulum from a position encoder 7, at input B, sway information from a camera 18, or any other optical analysis device, and at the CD input, information on the displacement of the mobile support or direction information, and delivering in return, at output SL, lifting orders transmitted to lifting means 6, 5, 8 of the lifting machine 1, and at output SD, direction orders transmitted to lifting means 1 direction 14, 15, 16.

Les moyens de levage comprennent un tambour de levage 8 autour duquel s'enroule un câble de suspension 21 relié à la charge 20, par exemple, un conteneur, un réducteur 5 et un moteur électrique 6, agencés suivant des techniques bien connues. Le moteur de levage 6, auquel est associé le codeur de levage 7, est commandé, via une ligne de commande 9 et un amplificateur 10, soit à partir d'un levier de commande de levage 2 soit par le calculateur 4, à travers la sortie SL précitée.The lifting means comprise a lifting drum 8 around which a suspension cable 21 connected to the load 20 is wound, for example, a container, a reduction gear 5 and an electric motor 6, arranged according to well known techniques. The lifting motor 6, with which the lifting encoder 7 is associated, is controlled, via a control line 9 and an amplifier 10, either from a lifting control lever 2 or by the computer 4, through the SL output above.

Les moyens de direction comprennent un galet de direction 16 roulant sur un rail de direction 17 horizontal lié à l'engin de levage, un réducteur 15 et un moteur électrique 14 auquel est fixé un codeur de direction 13. Ce moteur de direction 14 est commandé via une ligne de puissance de direction 12 et un amplificateur de puissance 11, soit à partir d'un levier de commande de direction 3, soit par le calculateur 4, à travers la sortie SD précitée.The steering means comprise a steering roller 16 rolling on a horizontal steering rail 17 linked to the lifting machine, a reduction gear 15 and an electric motor 14 to which a direction encoder 13 is fixed. This steering motor 14 is controlled via a steering power line 12 and a power amplifier 11, either from a steering control lever 3, or by the computer 4, through the aforementioned SD output.

L'angle de ballant est mesuré grâce à une caméra 18 solidaire du support mobile et dont l'objectif est dirigé verticalement vers le bas, la charge pendulaire 20 étant équipé d'une balise optique 19 émettant un faisceau dirige vers le haut.The swing angle is measured by a camera 18 secured to the movable support and the objective of which is directed vertically downwards, the pendulum load 20 being equipped with an optical beacon 19 emitting a beam directed upwards.

Le schéma général d'un engin 30 de manutention et de levage de conteneurs 31 pouvant être doté d'un dispositif de contrôle de déplacement selon l'invention est donné en figure 2.The general diagram of a container handling and lifting machine 30 that can be fitted with a movement control device according to the invention is given in FIG. 2.

L'engin de levage portuaire 30 comprend, suivant des techniques connues, un portique 35 auquel est relié une structure de flèche horizontale 33. Un chariot mobile 34 peut être déplacé horizontalement suivant une direction X le long de la flèche 33. Un conteneur 31 est suspendu au chariot mobile 34 par des câbles 32 dont la variation de longueur permet le déplacement du conteneur 31 suivant une direction verticale Z.The port lifting device 30 comprises, according to known techniques, a gantry 35 to which a horizontal boom structure 33 is connected. A mobile carriage 34 can be moved horizontally in a direction X along the arrow 33. A container 31 is suspended from the movable carriage 34 by cables 32 whose variation in length allows the container 31 to move in a vertical direction Z.

Les techniques antérieures de commande des mouvements des engins de levage font généralement appel à des solutions particulières de l'équation différentielle du mouvement d'une charge pendulaire. La figure 3 illustre une loi d'évolution de la vitesse V en fonction du temps t du point de suspension de la charge lorsque celui-ci est animé d'un mouvement que l'on peut décomposer en :

  • une phase d'accélération constante, de durée T1,
  • une phase à vitesse constante, de durée T2,
  • une phase de décélération constante, de durée T3.
The prior techniques for controlling the movements of lifting devices generally call for particular solutions of the differential equation of the movement of a pendulum load. FIG. 3 illustrates a law of evolution of the speed V as a function of the time t of the point of suspension of the load when the latter is animated by a movement which can be broken down into:
  • a constant acceleration phase, of duration T1,
  • a phase at constant speed, of duration T2,
  • a constant deceleration phase, of duration T3.

Ces solutions particulières sont des fonctions de la période du pendule. Une méthode permettant d'atteindre un point d'arrivée sans balancement consiste à calculer des temps d'accélération T1 et de freinage T3 adéquats en fonction de la longueur du pendule et de la durée T2 de la phase à vitesse constante. Les inconvénients de ces techniques, -temps de déplacement lié à la période pendulaire, difficulté de prise en compte de conditions initiales, notamment-, sont éliminés avec la mise en oeuvre du procédé de contrôle selon l'invention.These particular solutions are functions of the pendulum period. One method of reaching an end point without swinging consists in calculating adequate acceleration times T1 and braking times T3 as a function of the length of the pendulum and the duration T2 of the phase at constant speed. The drawbacks of these techniques, travel time linked to the pendulum period, difficulty in taking into account initial conditions, in particular, are eliminated with the implementation of the control method according to the invention.

La figure 4 illustre les principales variables géométriques prises en compte dans la mise en oeuvre du procédé selon l'invention. La variable x représente le déplacement horizontal du chariot ou support mobile 40. Une charge perpendiculaire 41 est suspendue au chariot mobile 40 par un câble de longueur l. En situation de balancement, le câble est incliné d'un angle α par rapport à la verticale, la charge pendulaire 41 présentant un écart y par rapport à ladite verticale. Le déplacement instantané de la charge pendulaire 41 est représenté par une variable X égale à la somme x + y.FIG. 4 illustrates the main geometric variables taken into account in the implementation of the method according to the invention. The variable x represents the horizontal displacement of the carriage or mobile support 40. A perpendicular load 41 is suspended from the mobile carriage 40 by a cable of length l . In a situation of rocking, the cable is inclined at an angle α with respect to the vertical, the pendulum load 41 having a deviation y from said vertical. The instantaneous displacement of the pendulum load 41 is represented by a variable X equal to the sum x + y.

Un exemple de loi de déplacement X(t) de la charge pendulaire 41 qui satisfait les conditions mathématiques selon l'invention est associé à la loi d'accélération suivante :

X''(t) = γ 2 (1 - cos T  · t) pour 0≦t<T   (1)

Figure imgb0004


   X''(t) = 0 pour t≧T (durée du trajet)
   γ étant l'accélération maximale de la charge.An example of displacement law X (t) of the pendulum load 41 which satisfies the mathematical conditions according to the invention is associated with the following acceleration law:

X '' (t) = γ 2 (1 - cos T · T) for 0 ≦ t <T (1)
Figure imgb0004


X '' (t) = 0 for t ≧ T (journey time)
γ being the maximum acceleration of the load.

On vérifie aisément que la loi de déplacement X(T) qui en résulte satisfait aux conditions précitées, à savoir :
   la dérivée seconde X''(t) est continue et dérivable et X''(t) = 0

Figure imgb0005
et X'''(t) = 0
Figure imgb0006
pour un temps t ≧ T (durée du trajet).It is easy to verify that the resulting law of displacement X (T) satisfies the aforementioned conditions, namely:
the second derivative X '' (t) is continuous and differentiable and X '' (t) = 0
Figure imgb0005
and X '''(t) = 0
Figure imgb0006
for a time t ≧ T (journey time).

Par ailleurs, le déplacement du point de suspension de la charge 41, et par conséquent le déplacement du support mobile 40 est déterminé en exprimant l'équilibre dynamique de la charge pendulaire :

Figure imgb0007

g étant l'accélération de la pesanteur.Furthermore, the displacement of the suspension point of the load 41, and therefore the displacement of the mobile support 40 is determined by expressing the dynamic balance of the pendulum load:
Figure imgb0007

g being the acceleration of gravity.

L'équation (1) permet de calculer le déplacement X(t) en fonction de l'accélération maximale γ et de la durée de trajet T, tandis que l'équation (2) permet de calculer l'écart y en fonction de la dérivée seconde l'' de la longueur instantanée du pendule associé à la charge et de l'accélération X''(t).Equation (1) makes it possible to calculate the displacement X (t) as a function of the maximum acceleration γ and the duration of the journey T, while equation (2) makes it possible to calculate the difference y as a function of the derivative second l 'of the instantaneous length of the pendulum associated with the load and the acceleration X''(t).

On montre aisément que les considérations précitées conduisent à l'équation du second degré en y, c'est-à-dire de l'écart de la charge par rapport à la verticale, suivante :

Figure imgb0008

   La racine présentant le signe de (-X'') est la solution de l'équation (3).It is easy to show that the above considerations lead to the equation of the second degree in y , that is to say of the deviation of the load from the vertical, as follows:
Figure imgb0008

The root with the sign of (-X '') is the solution of equation (3).

A partir de la connaissance de l'écart y et du déplacement X, on peut en déduire aisément x(t) au fur et à mesure de l'évolution de l (longueur instantanée du pendule).From knowing the difference y and the displacement X, we can easily deduce x (t) as the evolution of l (instantaneous length of the pendulum) progresses.

La position x du chariot 40 est déterminée, en référence à la figure 1, à l'aide du codeur 13, par exemple un codeur incrémental, monté sur l'arbre du moteur de direction 14.The position x of the carriage 40 is determined, with reference to FIG. 1, using the encoder 13, for example an incremental encoder, mounted on the shaft of the steering motor 14.

La variable l est déterminée par le codeur 7 monté sur l'arbre du moteur de levage 6 tandis que la variable y est calculée à partir de l'angle α et de la longueur l par l'intermédiaire du système optique constitué par la caméra 18 et la balise 19.The variable l is determined by the encoder 7 mounted on the shaft of the lifting motor 6 while the variable y is calculated from the angle α and the length l via the optical system constituted by the camera 18 and tag 19.

Cette balise 19 constitue une source lumineuse qui crée une tâche lumineuse sur l'élément sensible de la caméra 18 qui délivre en retour un signal proportionnel à l'angle α.This beacon 19 constitutes a light source which creates a light spot on the sensitive element of the camera 18 which in return delivers a signal proportional to the angle α.

Connaissant l'angle α et la longueur l, le calculateur 4 peut ensuite déterminer la valeur théorique de l'écart y et la position réelle instantanée X de la charge pendulaire 41.Knowing the angle α and the length l , the computer 4 can then determine the theoretical value of the difference y and the actual instantaneous position X of the pendulum load 41.

On rencontre en fait dans un engin de levage portuaire des situations réelles de perturbations dues par exemple à l'effet du vent ou à un balancement initial.In fact, in a port lifting device, there are real situations of disturbance due for example to the effect of the wind or to an initial rocking.

On peut tenir compte du balancement initial ou de perturbations tendant à écarter la position de la charge pendulaire de la loi théorique de déplacement X(t) en réalisant un asservissement de la position de la charge à sa position théorique, représenté sous forme de schéma-bloc 60 à la figure 6.We can take into account the initial swing or disturbances tending to separate the position of the pendulum load from the theoretical law of displacement X (t) by controlling the position of the load to its theoretical position, represented in the form of a block diagram 60 in FIG. 6.

Un premier bloc 61 illustre le calcul du déplacement théorique X(t) selon l'invention. Ce déplacement théorique X(t) est comparé au déplacement réel X égal à la somme du déplacement x du chariot 40 (figure 4) et du produit l.sin α de la longueur instantanée l du pendule et du sinus de l'angle de balancement α, cette somme étant représentée par le bloc 67. La différence ε1 entre le déplacement théorique X(t) et le déplacement réel X est dérivée en 62. La dérivée ε'1 permet le calcul du déplacement corrigé x du chariot 40 selon la relation (bloc 63) suivante :

x = xth + K₁ ε'1

Figure imgb0009


   xth représentant le déplacement théorique et K₁ε'₁ représentant la correction à apporter à ce déplacement théorique. Cette correction correspond à un effort d'amortissement de type visqueux.A first block 61 illustrates the calculation of the theoretical displacement X (t) according to the invention. This theoretical displacement X (t) is compared to the actual displacement X equal to the sum of the displacement x of the carriage 40 (Figure 4) and of the product l.sin α of the instantaneous length l of the pendulum and the sine of the swing angle α, this sum being represented by block 67. The difference ε1 between the theoretical displacement X (t) and the actual displacement X is derived at 62. The derivative ε'1 allows the calculation of the corrected displacement x of the carriage 40 according to the relation (block 63) below:

x = xth + K₁ ε'1
Figure imgb0009


x th representing the theoretical displacement and K₁ε'₁ representing the correction to be made to this theoretical displacement. This correction corresponds to a viscous type damping force.

Ce calcul de correction est suivi d'une boucle d'asservissement du déplacement x comprenant un calcul d'une consigne de vitesse CV selon la relation suivante (bloc 64) :

CV = x' th + K₂ε₂,

Figure imgb0010


avec

x'th :
dérivée du déplacement théorique xth
ε₂ :
erreur de la boucle d'asservissement en x,
et
K₂ :
coefficient de correction.
This correction calculation is followed by a displacement control loop x comprising a calculation of a speed reference CV according to the following relation (block 64):

CV = x ' th + K₂ε₂,
Figure imgb0010


with
x ' th :
derived from theoretical displacement x th
ε₂:
error of the control loop in x,
and
K₂:
correction coefficient.

La vitesse est ensuite régulée (bloc 65) au niveau du moteur de direction 14 (figure 1). Le déplacement effectif x du chariot provoque un balancement d'angle α (bloc 66). Un tel asservissement permet de garantir un balancement sensiblement nul en fin de trajet de la charge pendulaire.The speed is then regulated (block 65) at the level of the steering motor 14 (FIG. 1). The effective displacement x of the carriage causes a swing of angle α (block 66). Such control ensured a substantially zero swing at the end of the pendulum load path.

Les figures 5A, 5B et 5C illustrent respectivement les lois d'évolution de l'accélération X''(t), de la vitesse X'(t) et du déplacement X(t) du chariot dans la forme particulière de réalisation de l'invention décrite précédemment, avec une accélération maximale γ = 0,6 m/s², une durée de trajet T = 10s et une vitesse initiale Vo nulle.FIGS. 5A, 5B and 5C respectively illustrate the laws of evolution of the acceleration X '' (t), the speed X '(t) and the displacement X (t) of the carriage in the particular embodiment of the invention previously described, with maximum acceleration γ = 0.6 m / s², travel time T = 10s and an initial speed V o zero.

Le procédé selon l'invention permet d'ailleurs une optimisation relative de la durée T du trajet de la charge pendulaire. Pour une distance donnée D à parcourir, il est possible de varier la période T de l'accélération maximale de façon continue.The method according to the invention moreover allows a relative optimization of the duration T of the path of the pendulum load. For a given distance D to be covered, it is possible to vary the period T of the maximum acceleration continuously.

A titre d'exemple, pour un trajet comprenant une phase d'accélération et une phase de freinage, la relation liant la période T, l'accélération maximale γ et la distance D, est la suivante :

Figure imgb0011

   Si l'on cherche à diminuer la durée du trajet pour une distance donnée, l'accélération maximale γ doit augmenter. On est alors limité par les performances mécaniques de l'engin de levage. On peut notamment être conduit à considérer les limitations suivantes :

  • limitations de vitesse,
  • limitation d'accélération,
  • limitation de puissance.
By way of example, for a path comprising an acceleration phase and a braking phase, the relationship linking the period T, the maximum acceleration γ and the distance D, is as follows:
Figure imgb0011

If one seeks to decrease the duration of the journey for a given distance, the maximum acceleration γ must increase. We are then limited by the mechanical performance of the lifting machine. We may in particular be led to consider the following limitations:
  • speed limits,
  • acceleration limitation,
  • power limitation.

Lorsque la vitesse maximale du chariot est atteinte, il est possible d'insérer entre les phases d'accélération et de freinage, une phase au cours de laquelle le déplacement de la charge pendulaire s'effectuera sans balancement et à vitesse de régime VMAX.When the maximum speed of the carriage is reached, it is possible to insert between the phases acceleration and braking, a phase during which the displacement of the pendulum load will be carried out without swinging and at speed of VMAX speed.

Dans un exemple de réalisation pratique de l'invention, les limitations suivantes ont été ainsi prises en compte :

  • effet moteur au niveau du point de suspension de charge inférieur à FMAX,
  • vitesse du point de suspension inférieure à VMAX.
In a practical embodiment of the invention, the following limitations have been taken into account:
  • motor effect at the load suspension point lower than FMAX,
  • suspension point speed lower than VMAX.

Si la première limitation (VMAX) n'est pas atteinte, on peut ensuite déterminer la durée de trajet T et l'accélération maximale γ . En revanche si cette limitation est atteinte, une phase à vitesse VMAX est entreprise. On détermine aussi une accélération maximale et une distance parcourue à vitesse VMAX.If the first limitation (VMAX) is not reached, the journey time T and the maximum acceleration γ can then be determined. On the other hand, if this limitation is reached, a phase at VMAX speed is undertaken. A maximum acceleration and a distance traveled at VMAX speed are also determined.

Bien entendu, l'invention n est pas limitée aux exemples décrits et représentés et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l'invention.Of course, the invention is not limited to the examples described and shown and numerous modifications can be made to these examples without departing from the scope of the invention.

Il est ainsi possible de déterminer une loi de déplacement qui optimise les performances des dispositifs de levage équipés selon l'invention, en tenant compte de limitations supplémentaires éventuelles.It is thus possible to determine a displacement law which optimizes the performance of the lifting devices fitted according to the invention, taking into account any additional limitations.

Claims (15)

Procédé de contrôle de déplacement d'une charge pendulaire (20, 41, 31) suspendue à un support (40, 34) mobile horizontalement, et déplacée d'un point de départ à un point d'arrivée, dans lequel on soumet la charge à une loi théorique de déplacement (X(t)) de ladite charge, caractérisé en ce que l'on procède à une étape (AS) d'asservissement de la position réelle de la charge pendulaire (20, 31, 41) à sa position théorique représentée par la variable de déplacement X(t), dans laquelle, dans une première boucle d'asservissement, on dérive par rapport au temps l'écart (ε1) entre la position théorique (X(t)) de la charge et sa position réelle (X), et on ajoute à la position théorique (x(t)) du support mobile la dérivée par rapport au temps de cette différence modifiée par un coefficient correcteur (K1), et dans une deuxième boucle d'asservissement, on multiplie l'écart (ε2) entre la position théorique (xth) du support mobile et la position mesurée (x) de celui-ci par une constante déterminée, et on ajoute le résultat obtenu à la vitesse théorique (x'th) du support mobile.Method for controlling the movement of a pendulum load (20, 41, 31) suspended from a horizontally movable support (40, 34) and moved from a starting point to an ending point, in which the load is subjected to a theoretical law of displacement (X (t)) of said load, characterized in that a step (AS) is performed to control the real position of the pendulum load (20, 31, 41) at its theoretical position represented by the displacement variable X (t), in which, in a first control loop, the difference (ε1) between the theoretical position (X (t)) of the load is derived with respect to time its real position (X), and to the theoretical position (x (t)) of the mobile support is added the derivative with respect to time of this difference modified by a correction coefficient (K1), and in a second servo loop, we multiply the difference (ε2) between the theoretical position (xth) of the mobile support and the measured position (x) of the latter by a determined constant, and the result is added to the theoretical speed (x'th) of the mobile support. Procédé selon la revendication 1, caractérisé en ce qu'il comporte en outre les étapes d'acquisition suivantes: AC1/ acquisition de la longueur instantanée (1) du pendule; AC/2 acquisition de la variable réelle de déplacement (x) du support mobile (34, 40); AC/3 acquisition de l'angle (α) entre le pendule et la verticale.    et une étape de calcul du déplacement réel (X) de la charge pendulaire, à partir du résultat des étapes d'acquisition précitées, suivie d'une étape de calcul de l'erreur (E1) égale à la différence entre le déplacement théorique X(t) et le déplacement réel X.Method according to claim 1, characterized in that it further comprises the following acquisition steps: AC1 / acquisition of the instantaneous length (1) of the pendulum; AC / 2 acquisition of the real displacement variable (x) of the mobile support (34, 40); AC / 3 acquisition of the angle (α) between the pendulum and the vertical. and a step of calculating the real displacement (X) of the pendulum load, from the result of the aforementioned acquisition steps, followed by a step of calculating the error (E1) equal to the difference between the theoretical displacement X (t) and the real displacement X. Procédé selon la revendication 2, caractérisé en ce qu'il comporte en outre une étape de détermination d'une correction (CORx), ladite correction (CORx) étant ajoutée à la variable de déplacement théorique (x(t)) pour obtenir la consigne effective de déplacement (x) du support mobile (40).Method according to claim 2, characterized in that it further comprises a step of determining a correction (CORx), said correction (CORx) being added to the theoretical displacement variable (x (t)) to obtain the setpoint effective displacement (x) of the mobile support (40). Procédé conforme à l'une des revendications 1 à 3, la charge étant déplacée d'un point de départ à un point d'arrivée pendant un trajet de durée prédéterminée (T), caractérisé en ce qu'on soumet le support mobile (40, 34) à une loi de déplacement de support x(t) déterminée de sorte que le déplacement de la charge pendulaire (20, 41, 31) soit régi par une loi de déplacement de charge X(t) satisfaisant aux conditions suivantes:
   X''(t) est continue et dérivable selon la variable de temps t,
   X''(t) = 0
Figure imgb0012
et X'''(t) = 0
Figure imgb0013
pour t≧T (durée du trajet), t désignant le temps, X'' la dérivée seconde, c'est-à-dire l'accélération de la charge lors de son déplacement et X''' la dérivée troisième.
Method according to one of claims 1 to 3, the load being moved from a starting point to an ending point during a journey of predetermined duration (T), characterized in that the movable support (40 , 34) to a law of displacement of support x (t) determined so that the displacement of the pendulum load (20, 41, 31) is governed by a law of displacement of load X (t) satisfying the following conditions:
X '' (t) is continuous and differentiable according to the time variable t,
X '' (t) = 0
Figure imgb0012
and X '''(t) = 0
Figure imgb0013
for t ≧ T (duration of the journey), t denoting time, X '' the second derivative, i.e. the acceleration of the load during its displacement and X '''the third derivative.
Procédé selon la revendication 4, caractérisé en ce que la loi de déplacement de support x(t) est choisie de sorte que la charge pendulaire est soumise à une loi d'accélération X''(t) régie par la relation:
Figure imgb0014
   γ étant l'accélération maximale de la charge au cours du trajet.
Method according to claim 4, characterized in that the law of support displacement x (t) is chosen so that the pendulum load is subjected to an acceleration law X '' (t) governed by the relation:
Figure imgb0014
γ being the maximum acceleration of the load during the journey.
Procédé selon la revendication 5, caractérisé en ce qu'il comporte les étapes suivantes: A) calcul de la valeur théorique instantanée de la variable de déplacement X(t) de la charge pendulaire (20, 31, 41) par double intégration de la loi d'accélération X''(t) et en fonction de la vitesse initiale (Vo) de la charge pendulaire (20, 31, 41), B) calcul de la valeur théorique instantanée de l'écart y(t) de la charge par rapport à la verticale, en fonction de la longueur instantanée (1) du pendule associée à la charge pendulaire (20, 31, 41), C) calcul de la valeur théorique de consigne du déplacement x(t) du support mobile (34, 40), sachant que x(t) = X(t) - y(t)
Figure imgb0015
, à partir des résultats des étapes précitées A) et B).
Method according to claim 5, characterized in that it comprises the following steps: A) calculation of the instantaneous theoretical value of the displacement variable X (t) of the pendulum load (20, 31, 41) by double integration of the acceleration law X '' (t) and as a function of the initial speed ( Vo ) of the pendulum load (20, 31, 41), B) calculation of the instantaneous theoretical value of the difference y (t) of the load with respect to the vertical, as a function of the instantaneous length (1) of the pendulum associated with the pendular load (20, 31, 41), C) calculating the theoretical nominal value of the displacement x (t) of the mobile support (34, 40), knowing that x (t) = X (t) - y (t)
Figure imgb0015
, from the results of the above-mentioned steps A) and B).
Procédé selon l'une des revendications 5 ou 6, caractérisé en ce qu'il comprend en outre une limitation de la vitesse du support mobile (40, 34) à une vitesse maximale (VMAX) et en ce que, lorsque ladite limitation est atteinte, une phase de déplacement à vitesse constante est exécutée.Method according to one of claims 5 or 6, characterized in that it further comprises a limitation of the speed of the mobile support (40, 34) to a maximum speed (VMAX) and in that, when said limitation is reached , a displacement phase at constant speed is executed. Procédé selon l'une des revendications 5 à 7, caractérisé en ce qu'il comprend en outre une limitation de la force appliquée au support mobile (40, 34) à un effort maximal (FMAX).Method according to one of claims 5 to 7, characterized in that it further comprises a limitation of the force applied to the mobile support (40, 34) to a maximum force (FMAX). Procédé selon l'une des revendications 5 à 8, caractérisé en ce qu'il comporte en outre une étape d'optimisation relative de la durée du trajet de la charge pendulaire (20, 41, 31).Method according to one of claims 5 to 8, characterized in that it further comprises a step of relative optimization of the duration of the path of the pendulum load (20, 41, 31). Dispositif de contrôle de déplacement d'une charge pendulaire (20) suspendue à un support (40, 34) mobile horizontalement, mettant en oeuvre le procédé selon l'une des revendications 1 à 9, associé à un engin de levage (1, 30) comprenant des moyens de levage (5, 6, 8) et des moyens de direction (14, 15, 16, 17), caractérisé en ce qu'il comprend des moyens de contrôle et de traitement (4) recevant d'une part des informations représentatives de la longueur (1) du pendule associé, de l'angle de ballant (α) et du déplacement (x) du support mobile (40) issues respectivement de moyens d'acquisition de longueur (7), de moyens d'acquisition d'angle (18) et de moyens d'acquisition de déplacement (13), et émettant en retour des ordres de levage et des ordres de direction respectivement à destination desdits moyens de levage (5, 6, 8) et desdits moyens de direction (14, 15, 16, 17), ces moyens de contrôle et de traitement (4) comportant des moyens pour calculer à tout instant la position théorique (X(t)) et la position réelle (X) et des moyens pour réaliser l'asservissement de la position réelle (X) de la charge pendulaire (41) à la consigne de position théorique (X(t)) à partir des informations de longueur (l), de déplacement (x) du support mobile (40) et d'angle de ballant (α).Device for controlling the movement of a pendulum load (20) suspended from a horizontally movable support (40, 34), implementing the method according to one of claims 1 to 9, associated with a lifting device (1, 30 ) comprising lifting means (5, 6, 8) and steering means (14, 15, 16, 17), characterized in that it comprises control and treatment means (4) receiving on the one hand information representative of the length (1) of the associated pendulum, the swing angle (α) and the displacement (x) of the mobile support (40) from respectively length acquisition means (7), angle acquisition means (18) and displacement acquisition means (13), and in return issuing lifting orders and direction orders respectively to destination of said lifting means (5, 6, 8) and said steering means (14, 15, 16, 17), these control and processing means (4) comprising means for calculating the theoretical position at any time (X (t)) and the real position (X) and means for controlling the real position (X) of the pendulum load (41) from the theoretical position setpoint (X (t)) from the information of length (l), displacement (x) of the mobile support (40) and swing angle (α). Dispositif selon la revendication 10, caractérisé en ce que les moyens de contrôle et de traitement (4) sont agencés pour réaliser en outre au sein de la boucle d'asservissement du déplacement (X) de la charge pendulaire (20, 41), un asservissement de la position instantanée (X) du support mobile (40) à une valeur corrigée calculée par lesdits moyens de contrôle et de traitement (4).Device according to claim 10, characterized in that the control and processing means (4) are arranged to further carry out within the control loop the movement (X) of the pendulum load (20, 41), a slaving of the instantaneous position (X) of the mobile support (40) to a corrected value calculated by said control and processing means (4). Dispositif selon la revendication 10 ou 11, caractérisé en ce qu'il comporte des moyens pour mettre en oeuvre le procédé selon la revendication 4 ou 5.Device according to claim 10 or 11, characterized in that it comprises means for implementing the method according to claim 4 or 5. Dispositif selon l'une des revendications 10 à 12, caractérisé en ce que les moyens d'acquisition de la longueur (l) et les moyens du déplacement (x) du support mobile comprennent respectivement un codeur de levage (7) associé aux moyens de levage (6, 5, 8) et un codeur de direction (13) associé aux moyens de direction (14, 15, 16).Device according to one of Claims 10 to 12, characterized in that the means for acquiring the length (l) and the means for moving (x) the movable support respectively comprise a lifting encoder (7) associated with the means for lifting (6, 5, 8) and a direction encoder (13) associated with the steering means (14, 15, 16). Dispositif selon l'une des revendications 10 à 13, caractérisé en ce que les moyens d'acquisition d'angle comprennent, d'une part, une balise optique (19) solidaire de la charge pendulaire (20) et dont le faisceau lumineux est orienté vers le haut, et d'autre part, des moyens d'analyse optique (18), tels qu'une caméra, dirigés vers le bas, solidaires du support mobile et sensiblement à la verticale de ladite balise (19) en l'absence de ballant de la charge pendulaire.Device according to one of claims 10 to 13, characterized in that the angle acquisition means comprise, on the one hand, an optical beacon (19) integral with the pendulum load (20) and whose light beam is oriented upwards, and on the other hand, optical analysis means (18), such as a camera, directed downwards, integral of the movable support and substantially vertical to said tag (19) in the absence of a swing of the pendulum load. Dispositif selon l'une des revendications 10 à 14, caractérisé en ce que les moyens de contrôle et de traitement comprennent un calculateur programmable.Device according to one of claims 10 to 14, characterized in that the control and processing means comprise a programmable computer.
EP93113406A 1990-07-18 1991-07-17 Pending charge movement control procedure and arrangement for implementing the same Expired - Lifetime EP0578280B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9009145A FR2664885B1 (en) 1990-07-18 1990-07-18 METHOD FOR CONTROLLING THE MOVEMENT OF A PENDULUM LOAD AND DEVICE FOR ITS IMPLEMENTATION.
FR9009145 1990-07-18
EP91401997A EP0467783A1 (en) 1990-07-18 1991-07-17 Pending charge movement control procedure, and arrangement for implementing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP91401997.1 Division 1991-07-17

Publications (3)

Publication Number Publication Date
EP0578280A2 true EP0578280A2 (en) 1994-01-12
EP0578280A3 EP0578280A3 (en) 1994-03-02
EP0578280B1 EP0578280B1 (en) 1996-05-29

Family

ID=9398842

Family Applications (2)

Application Number Title Priority Date Filing Date
EP91401997A Withdrawn EP0467783A1 (en) 1990-07-18 1991-07-17 Pending charge movement control procedure, and arrangement for implementing the same
EP93113406A Expired - Lifetime EP0578280B1 (en) 1990-07-18 1991-07-17 Pending charge movement control procedure and arrangement for implementing the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP91401997A Withdrawn EP0467783A1 (en) 1990-07-18 1991-07-17 Pending charge movement control procedure, and arrangement for implementing the same

Country Status (5)

Country Link
EP (2) EP0467783A1 (en)
DE (3) DE467783T1 (en)
ES (2) ES2029975T1 (en)
FR (1) FR2664885B1 (en)
GR (1) GR920300044T1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0869096A2 (en) * 1996-11-07 1998-10-07 Mitsubishi Heavy Industries, Ltd. Suspended load swing displacement detector
WO2009156573A1 (en) * 2008-06-23 2009-12-30 Konecranes Oyj Method of controlling rotation speed of motor of speed-controllable hoist drive, and hoist drive
US11334027B2 (en) 2018-11-19 2022-05-17 B&R Industrial Automation GmbH Method and oscillation controller for compensating for oscillations of an oscillatable technical system

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0596330B1 (en) * 1992-11-03 1997-05-28 Siemens Aktiengesellschaft Arrangement for measuring crane load oscillations
FR2698344B1 (en) * 1992-11-23 1994-12-30 Telemecanique Device for regulating the transfer of a suspended load.
FI91239C (en) * 1993-02-01 1998-07-20 Kimmo Hytoenen Method and apparatus for controlling crane operation
US5819962A (en) * 1993-03-05 1998-10-13 Mitsubishi Jukogyo Kabushiki Kaisha Apparatus for stopping the oscillation of hoisted cargo
FR2703347B1 (en) * 1993-04-02 1995-05-05 Telemecanique Device for transferring a suspended load.
GB2280045A (en) * 1993-07-15 1995-01-18 Daewoo Engineering Company Anti-swing automatic control systems for unmanned overhead cranes
JP2971318B2 (en) * 1994-03-28 1999-11-02 三菱重工業株式会社 Sway control device for suspended load
DE59508176D1 (en) * 1994-10-26 2000-05-18 Siemens Ag ARRANGEMENT FOR MEASURING DETERMINATION OF LOAD SWINGING IN CRANES
US5817770A (en) 1997-03-21 1998-10-06 Drug Abuse Sciences, Inc. Cocaethylene immunogens and antibodies
DE10029579B4 (en) * 2000-06-15 2011-03-24 Hofer, Eberhard P., Prof. Dr. Method for orienting the load in crane installations
DE102005005358A1 (en) * 2005-02-02 2006-08-10 Siemens Ag HMI device for a rack warehouse, in particular a storage and retrieval unit for a high-bay warehouse, and a method for controlling the HMI device
US7831333B2 (en) 2006-03-14 2010-11-09 Liebherr-Werk Nenzing Gmbh Method for the automatic transfer of a load hanging at a load rope of a crane or excavator with a load oscillation damping and a trajectory planner
ES2338685T3 (en) 2006-03-15 2010-05-11 Liebherr-Werk Nenzing Gmbh PROCEDURE FOR THE AUTOMATIC HANDLING OF A LOAD OF A CRANE WITH AMORTIGUATION OF THE PENDULAR MOVEMENT OF THE LOAD AND PLANNING DEVICE OF THE TRAJECTORY.
DE102015008506A1 (en) 2015-07-03 2017-01-05 Gebhardt Fördertechnik GmbH Machine device that tends to oscillate from a pulse-shaped drive load, in particular storage and retrieval unit, production machine, robot, crane or the like, and method for operating such a device
CN108238550A (en) * 2018-02-02 2018-07-03 北京市政建设集团有限责任公司 The emergency control method of support system unstability during a kind of hoisting and hanging operation
CN110963409B (en) * 2019-11-29 2021-02-09 北京航天自动控制研究所 Method for measuring automatic deviation rectification deviation of tire crane machine vision

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2088462A1 (en) * 1970-05-09 1972-01-07 Siemens Ag
DE2316810A1 (en) * 1972-04-14 1973-10-18 Asea Ab ARRANGEMENT AT KRAENEN TO DETERMINE THE DEVIATION OF THE LOAD FASTENING ORGANIZATION FROM A DEFINED PLUMB RIGHT LINE
DE2751823A1 (en) * 1976-11-29 1978-06-01 Asea Ab Travelling crane with lifted load swing suppressor - has computing units simulating swing and providing crane travel correction signals
EP0089662A1 (en) * 1982-03-22 1983-09-28 Fried. Krupp Gesellschaft mit beschränkter Haftung Arrangement on cranes for the automatic control of load carrier movements with stabilisation of the oscillations of the suspended load
WO1986002341A1 (en) * 1984-10-11 1986-04-24 Bertin & Cie. Method and device for limiting the swinging of a load freely hanging from a moving support
DE3627580A1 (en) * 1985-08-16 1987-03-05 Hitachi Ltd METHOD FOR CONTROLLING A CRANE

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2088462A1 (en) * 1970-05-09 1972-01-07 Siemens Ag
DE2316810A1 (en) * 1972-04-14 1973-10-18 Asea Ab ARRANGEMENT AT KRAENEN TO DETERMINE THE DEVIATION OF THE LOAD FASTENING ORGANIZATION FROM A DEFINED PLUMB RIGHT LINE
DE2751823A1 (en) * 1976-11-29 1978-06-01 Asea Ab Travelling crane with lifted load swing suppressor - has computing units simulating swing and providing crane travel correction signals
EP0089662A1 (en) * 1982-03-22 1983-09-28 Fried. Krupp Gesellschaft mit beschränkter Haftung Arrangement on cranes for the automatic control of load carrier movements with stabilisation of the oscillations of the suspended load
WO1986002341A1 (en) * 1984-10-11 1986-04-24 Bertin & Cie. Method and device for limiting the swinging of a load freely hanging from a moving support
DE3627580A1 (en) * 1985-08-16 1987-03-05 Hitachi Ltd METHOD FOR CONTROLLING A CRANE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEEE INTERNATIONAL CONFERENCE ON CONTROL AND APPLICATIONS PROCEEDINGS. no. WA35 , 3 Avril 1989 , NEW YORK (US) pages 1 - 5 XP90590 P. V[H[ ET AL. 'Conventional and optimal control in swing-free transfer of suspended load.' *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0869096A2 (en) * 1996-11-07 1998-10-07 Mitsubishi Heavy Industries, Ltd. Suspended load swing displacement detector
EP0869096A3 (en) * 1996-11-07 2000-01-19 Mitsubishi Heavy Industries, Ltd. Suspended load swing displacement detector
WO2009156573A1 (en) * 2008-06-23 2009-12-30 Konecranes Oyj Method of controlling rotation speed of motor of speed-controllable hoist drive, and hoist drive
CN102066231A (en) * 2008-06-23 2011-05-18 科恩起重机有限公司 Method of controlling rotation speed of motor of speed-controllable hoist drive, and hoist drive
CN102066231B (en) * 2008-06-23 2013-05-15 科恩起重机有限公司 Method of controlling rotation speed of motor of speed-controllable hoist drive, and hoist drive
US8651301B2 (en) 2008-06-23 2014-02-18 Konecranes Plc Method of controlling rotation speed of motor of speed-controllable hoist drive, and hoist drive
US11334027B2 (en) 2018-11-19 2022-05-17 B&R Industrial Automation GmbH Method and oscillation controller for compensating for oscillations of an oscillatable technical system

Also Published As

Publication number Publication date
DE69119913D1 (en) 1996-07-04
EP0578280A3 (en) 1994-03-02
ES2029975T1 (en) 1992-10-16
EP0467783A1 (en) 1992-01-22
EP0578280B1 (en) 1996-05-29
DE69119913T2 (en) 1996-12-19
ES2090795T3 (en) 1996-10-16
GR920300044T1 (en) 1992-08-26
FR2664885B1 (en) 1995-08-04
FR2664885A1 (en) 1992-01-24
DE578280T1 (en) 1994-10-06
DE467783T1 (en) 1992-07-23

Similar Documents

Publication Publication Date Title
EP0578280B1 (en) Pending charge movement control procedure and arrangement for implementing the same
EP2361216B1 (en) Device for controlling the movement of a load suspended from a crane
FR2923818A1 (en) DEVICE FOR REGULATING THE DISPLACEMENT OF A SUSPENDED LOAD.
FR2698344A1 (en) Device for regulating the transfer of a suspended load.
FR2563642A1 (en) BRAKE CONTROL CIRCUIT OF A CONVEYOR
FR2931466A1 (en) METHOD FOR CONTROLLING THE ORIENTATION MOVEMENT OF THE ROTATING PART OF A TOWER CRANE
FR2648796A1 (en) Control device for a lifting winch, in particular for a drilling installation
EP0713474B1 (en) Method for controlling the swinging motion of an oscillating load and device for applying same
EP0394147B1 (en) Device for controlling automatically the position and the oscillations of a suspended load during its transportation by a lifting device
EP0192513B1 (en) Process for the regulated control of an electric motor for the displacement of a moving body, and control device for carrying out the process
FR2571867A1 (en) METHOD AND DEVICE FOR LIMITING THE BALLOVER OF A LOAD FREELY SUSPENDED UNDER A MOBILE HOLDER.
EP0611211B1 (en) System to control the speed of displacement of a swaying load and lifting device comprising such a system
FR2597996A1 (en) DEVICE FOR CONTROLLING THE ROTOR OF A HELICOPTER
FR2598141A1 (en) Control device for suppressing oscillations in a suspension-type crane
EP3571466B1 (en) Autonomous method and device for determining the pitch attidude of a motor vehicle
FR2579189A1 (en) METHOD FOR CONTROLLING CONTROL OF MOBILE DECELERATION AND CONTROL DEVICE CONTROLLED FOR IMPLEMENTING THE METHOD
FR2704847A1 (en) Process and device for limiting the swing of a load suspended from a motorised support
EP0252841B1 (en) Automatic control device of the retardation of the rotation of a boom and/or counter-boom of hoisting machines
FR2669317A1 (en) Automatic lifting movements which are synchronised and guided by sensors
FR2461676A1 (en) Control system for loading crane - calculates optimum trajectory using uniform acceleration and deceleration phases
EP0109315B1 (en) Method and apparatus to control an aircraft in the vertical plane
EP3878707B1 (en) Method of controlling an installation for transporting vehicles using a continuously moving cable and a device configured to implement the method
FR2775678A1 (en) Regulation of displacement of suspended load carried by crane
FR2681562A1 (en) METHOD FOR MOUNTING PENDULES ON A CATENARY.
CH694502A5 (en) Device for controlling a motor speed variator hoist having anti-sway function.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930823

AC Divisional application: reference to earlier application

Ref document number: 467783

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE ES FR GB GR IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE ES FR GB GR IT NL

GBC Gb: translation of claims filed (gb section 78(7)/1977)
TCNL Nl: translation of patent claims filed
DET De: translation of patent claims
17Q First examination report despatched

Effective date: 19951023

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 467783

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB GR IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960529

REF Corresponds to:

Ref document number: 69119913

Country of ref document: DE

Date of ref document: 19960704

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960729

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2090795

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2090795

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: KCI KONECRANES INTERNATIONAL PLC

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

NLS Nl: assignments of ep-patents

Owner name: KONECRANES (FRANCE) SA

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100720

Year of fee payment: 20

Ref country code: ES

Payment date: 20100726

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100720

Year of fee payment: 20

Ref country code: FR

Payment date: 20100823

Year of fee payment: 20

Ref country code: DE

Payment date: 20100727

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100727

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20100726

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69119913

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69119913

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20110717

BE20 Be: patent expired

Owner name: S.A. *KONEKRANES FRANCE

Effective date: 20110717

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20110716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110717

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110718