EP2361216B1 - Device for controlling the movement of a load suspended from a crane - Google Patents

Device for controlling the movement of a load suspended from a crane Download PDF

Info

Publication number
EP2361216B1
EP2361216B1 EP09771368.9A EP09771368A EP2361216B1 EP 2361216 B1 EP2361216 B1 EP 2361216B1 EP 09771368 A EP09771368 A EP 09771368A EP 2361216 B1 EP2361216 B1 EP 2361216B1
Authority
EP
European Patent Office
Prior art keywords
sway angle
speed
angle
movement
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09771368.9A
Other languages
German (de)
French (fr)
Other versions
EP2361216A1 (en
Inventor
Pentcho Stantchev
Dobromir Valachev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Toshiba Inverter Europe SAS
Original Assignee
Schneider Toshiba Inverter Europe SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Toshiba Inverter Europe SAS filed Critical Schneider Toshiba Inverter Europe SAS
Publication of EP2361216A1 publication Critical patent/EP2361216A1/en
Application granted granted Critical
Publication of EP2361216B1 publication Critical patent/EP2361216B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • B66C13/063Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads electrical

Definitions

  • the present invention relates to a regulating device and a method for regulating the movement of a load suspended by cables to a hoist, this hoisting apparatus being capable of driving the load in a rotational movement.
  • the lifting gear concerned include in particular different types of tower cranes or jib cranes. These cranes have an arrow that hangs on top of a vertical mast.
  • the boom has a point of attachment to which the load is suspended by suspension cables. They have the distinction of making a first movement which is a rotational movement of the arrow about a vertical axis of rotation Z which is generally centered on the mast of the crane (rotation or slewing movement).
  • these cranes perform a second movement which is a linear movement of the point of attachment along the arrow, this second movement being called translation movement in the present document.
  • the point of attachment of the load is a carriage (trolley) which is movable in translation on rails, the translational movement then being performed along the horizontal axis X of the arrow (trolley movement).
  • Other cranes have an arrow which is liftable (luffing jib) or articulated (jack-knife jib) and at the end of which is arranged the point of attachment of the load. The lifting or articulation of the arrow then creates the translational movement of the point of attachment.
  • the cranes always include a load lifting device which is associated with the suspension cables whose length is variable so as to move the load vertically in a third movement called hoisting movement.
  • a first swing (or first swing) is generated by the rotational movement about the vertical axis of rotation Z.
  • a second swing (or second swing) is also generated by the acceleration / deceleration of the translational movement along the X translation axis.
  • the peculiarity of a dangling due to a rotational movement is that this dangling has a component that is generated by the centrifugal force of the load during the rotational movement, this force tending to move the load away from the rotational zone. It is therefore not possible to remove the first ballant by acting only on the controls of this rotational movement.
  • the first ballant has the particularity to remain present as soon as the speed of rotation is non-zero, even when the acceleration or deceleration of the rotational movement is zero.
  • the invention aims to control the oscillations of a load suspended from a crane, using a device and a simple process, fast and easy to implement. It makes it possible to minimize the measurements or the information taken which are necessary to carry out the control and the control of the ballad of a load.
  • the invention describes a device for regulating the movement of a load suspended by suspension cables at a point of attachment of a hoist, the point of attachment being able to perform a rotational movement. around a vertical axis of rotation and a translational movement along a translation axis, the rotational movement generating a first swing angle of the load along the axis of translation.
  • the regulating device comprises means for calculating the first swaying angle and a speed of the first swaying angle, using as only input variables information representative of a length of the suspension cables, information representative of a distance between the axis of rotation and the point of attachment and information representative of a speed of rotation of the point of attachment, and using as an internal variable an acceleration of the first angle of dangling.
  • the calculating means determines the first swing angle and the speed of the first swing angle using an iterative process using the acceleration of the first swing angle.
  • the calculation means determine the first swing angle of the load while also taking into account the translational movement effected by the point of attachment along the axis of translation.
  • the information representative of the rotation speed of the point of attachment is determined by using a speed reference which is supplied to a speed variator controlling the rotational movement of the point of attachment.
  • the information representative of the rotation speed of the point of attachment is determined by using a speed estimation which is developed by a variable speed drive controlling the rotational movement of the point of attachment.
  • the regulating device calculates an offset value of the first dangling angle which is a function of the rotation speed of the point of attachment and delivers a first correction signal of the speed of the translational movement of the d-point. grip which takes into account the offset value.
  • the first correction signal is proportional to the difference between the first swing angle and the offset value and is proportional to the speed of the first swing angle.
  • the first correction signal is added to a speed reference to provide a speed reference of the translation movement of the point of attachment, the correction signal being calculated by applying a correction coefficient to the difference between the first swing angle ( ⁇ x) and the offset value and the speed of the first swing angle.
  • the correction coefficients may be variable depending on the length of the suspension cables.
  • the calculating means calculate a second angle of the load on a tangential axis perpendicular to the translation axis and a speed of the second swing angle, using an iterative process and using as only input variables the information representative of the length, the information representative of the distance and the information representative of the speed of rotation, and using as an internal variable an acceleration of the second dangling angle.
  • the invention also claims an automation system for controlling the movement of a load suspended by suspension cables at a point of attachment of a hoist and comprising such a control device. Similarly, the invention claims a method for controlling the movement of a suspended load which is implemented in such a control device.
  • the device for regulating the displacement of a suspended load according to the invention can be implemented in a hoist device comprising a rotational movement of the load, such as a crane or the like.
  • the example of figure 1 shows a crane 5 which has a vertical mast and a substantially horizontal arrow 6.
  • the arrow 6 comprises a point of attachment 10, which can be a movable carriage as in the example of the figure 1 .
  • the arrow 6 can rotate about a vertical axis of rotation Z passing through the vertical mast of the crane 5.
  • the attachment point 10 is movable along the arrow 6 to perform a translational movement according to a X translation axis.
  • the translation axis X thus crosses the axis of rotation Z at a point O (see figure 2 ) and passes through the point of attachment 10.
  • the translation axis X is horizontal, but some cranes have an arrow 6 having a non-zero angle relative to the horizontal.
  • the crane 5 can perform a vertical lifting movement to raise and lower a load 15 suspended by one or more suspension cables 14 which pass through the point of attachment 10 and at the end of which is associated with a suspension member of the load 15 to move.
  • the point of attachment 10 is situated at a distance R from the axis of rotation Z (represented by the point O of the figure 2 ), this distance R varying as the point of attachment 10 moves along the axis of translation X.
  • the load 15 Under the action of the lifting movement, the load 15 obviously has a suspension height varying according to the length L of the cables This suspension suspension height of the load will subsequently be assimilated to the length of the cables L, to which an offset could be added possibly representing the distance between the low end of the cables 14 and the load 15 (materialized, for example by its center of gravity).
  • the load 15 moves along a virtual vertical cylinder centered on the vertical axis Z and radius R, ignoring the ballant.
  • the rotational movement of the point of attachment 10 is therefore carried out along a moving tangential horizontal axis Y which is always perpendicular to the translation axis X and tangent with respect to the vertical cylinder.
  • the load 15 takes a pendulous swinging motion which is defined by a swing angle having two orthogonal components.
  • a first component forms the first dangling angle noted ⁇ x and corresponds to the projection of the ballant on the translation axis X.
  • a second component forms the second dangling angle noted ⁇ y and corresponds to the projection of the ballant on the tangential axis Y
  • the load 15 also takes a pendulum movement with a swinging angle along the translation axis X only, which is therefore added to the first swing angle ⁇ x defined above.
  • the translation movement along the X axis is performed by means of a translation motor Mx driven by a variable speed drive Dx which receives a speed reference Vx ref (see figure 3 ).
  • the rotational movement about the vertical axis Z is performed by means of a rotation motor My driven by a variable speed drive Dy which receives an angular speed reference Vy ref .
  • the lifting movement along the Z axis is performed by means of a hoisting motor not shown in the figures which makes it possible to wind and unwind the suspension cables. This hoist motor could be placed on the point of attachment 10.
  • the translation or rotation movement is controlled by the driver of the crane 5, this conductor providing a translation speed reference signal Vcx, respectively a rotation speed reference signal Vcy, using, for example, combinator (s) - of the joystick type, as indicated on the figure 3 .
  • the speed instructions Vcx, Vcy come directly from automation equipment.
  • a rotational movement generates a ballant whose angle has components ⁇ x and ⁇ y nonzero in the two perpendicular axes, respectively X and Y.
  • the second component ⁇ y along the Y axis is generated by the acceleration / deceleration of the point of attachment and can be fought by acting on the control of the rotational movement.
  • the first component ⁇ x along the X axis is generated by the centrifugal force which causes a displacement of the load 15 which is not directed in the tangential plane YZ, but which is directed along a perpendicular plane XZ.
  • This first component ⁇ x can not therefore be fought by acting on the control of the rotational movement, but involves also acting on the control of the translational movement along the axis X.
  • centrifugal force causes the load to move along the X axis, even when the rotational movement is at constant speed (i.e., at zero acceleration / deceleration).
  • the object of the invention is therefore to assist in the control of a hoist 5 capable of performing a translational movement and a rotational movement of the point of attachment 10, these two movements can obviously be performed simultaneously. Similarly, the translation and rotation movements can be performed simultaneously with a lifting movement of the load 15 along the axis Z.
  • the invention makes it possible to simply and automatically damp the ballant along the X axis and along the Y axis during the displacement of the load 15, in a manner that is transparent to the driver of the machine.
  • the invention does not require a learning phase and does not require measurement of the swing angle ⁇ x and / or ⁇ y, measurement of the motor current or the motor torque which can prove to be expensive and longer to enforce.
  • a regulating device 20 is intended to damp the oscillating movement of the load 15 during its displacement in rotation and / or in translation, this displacement obviously being able to be performed at the same time as a lifting movement of the load 15 .
  • the regulating device 20 comprises means for determining information representative of the length L of the suspension cables.
  • These determination means comprise, for example, a sensor or encoder associated with the lifting motor shaft or with the winding drum of the cables.
  • Other means for determining the length L are conceivable: for example, several limit switches distributed over the entire race of the cables, the length L being then determined by predetermined bearing values as a function of the triggering of these limit switches. . This solution is nevertheless less precise obviously.
  • the regulation device 20 comprises an estimator module 21 connected to a correction module 22.
  • the estimator module 21 receives as input the information representative of the length L of the cables, the distance R and the speed of rotation Vy and comprises means for calculating which compute in real time the first swinging angle ⁇ x and the speed (or variation) ⁇ 'x of this first angle ⁇ x, as well as the second swing angle ⁇ y and the speed (or variation) ⁇ 'y of this second angle .theta.y.
  • the estimator module 21 then transmits these calculated values to the correction module 22 which calculates and outputs a first correction signal ⁇ Vy which is added to the instruction of speed Vcy of the rotational movement, and a second correction signal ⁇ Vx which is added to the speed reference Vcx of the translational movement.
  • Equation a) has a specific term "Vy 2 * R * cos ⁇ x" which is always positive when the rotation speed Vy is non-zero. This translates the influence of the centrifugal force which makes that, as soon as a rotation movement is in progress (even with a zero acceleration V'y), a first bending angle ⁇ x is created in the X direction, perpendicular to the tangential axis Y.
  • the objective of the regulation is not to cancel this ballant during the rotational movement but only to reach a position of equilibrium with a non-zero ballad of the load 15 corresponding to an angle non-zero equilibrium during the rotation, then return to a swing angle ⁇ x zero at the end of the rotational movement, when the rotation speed Vy is zero.
  • this equilibrium angle therefore corresponds to an offset value, denoted by ⁇ x eq .
  • ⁇ x eq an offset value
  • the first correction signal ⁇ Vx therefore does not depend directly on the first swing angle ⁇ x but on the difference between the first swing angle ⁇ x and the offset value ⁇ x eq .
  • the offset value ⁇ x eq is non-zero and therefore the regulating device 20 delivers a correction signal ⁇ Vx which takes into account the value of offset generated by the centrifugal force on the swinging angle ⁇ x.
  • the offset value ⁇ x eq automatically becomes zero and the regulator 20 then applies a correction signal ⁇ Vx which is proportional to ⁇ x and ⁇ 'x.
  • the values of the correction coefficients K ⁇ , K ' ⁇ are fixed.
  • the values of the correction coefficients K ⁇ , K ' ⁇ are modifiable as a function of the length L of the cables determined by the device 20, so as to optimize the speed corrections to be made according to the height of the pendulum formed by the load 15.
  • the correction module 22 receives as input information representative of the length L and is therefore capable of storing several values of K ⁇ , K ' ⁇ along the length L.
  • the automation system of the crane 5 controls only a displacement in rotation, that is to say that it provides a translation speed setpoint Vcx which is zero.
  • the rotational movement thus generates a first swinging angle ⁇ x along the translation axis X caused by the centrifugal force applied to the load 15, as well as a second swinging angle ⁇ y along the tangential axis Y caused by the acceleration / deceleration of the rotational movement.
  • the first swinging angle can be canceled only by acting on the translational movement.
  • the automation system of the crane 5 also controls a translational movement, that is to say that it also provides a non-zero translation speed reference Vcx.
  • This translational movement also creates a swinging along the X axis caused by the acceleration / deceleration of the translational movement.
  • the first dangling angle ⁇ x then represents the accumulation of the dangling generated by the translation and rotation movements.
  • control device does not include any preliminary modeling step, which would require measuring other physical parameters such as a measurement of the swing angle or a measurement of the current flowing in the motor, for the purpose of determining or to refine a particular mathematical model or for the purpose of establishing a transfer function between the speed of the carriage and the dangling angle measured by a sensor for a given cable length.
  • the control device thus described is intended to be implanted in an automation system of the crane 5, responsible in particular for controlling and monitoring the movements of the load 15.
  • This automation system comprises in particular a speed variator Dx for the movement translation and a variable speed drive Dy for the rotational movement. Due to its simplicity, the control device can be installed directly in the variable speed drives Dx and Dy, for example by means of a specific module of the drive.
  • the automation system may also include a programmable controller which serves in particular to provide the Vcx and Vcy speed instructions. In this case, the control device can also be easily integrated into an application program of the programmable controller.
  • the regulating device implements a method for regulating the displacement of the load 15 in a rotational movement around the Z axis possibly associated with a translation movement along the X axis.
  • the regulation method comprises a calculation step , carried out by the estimator module 21, which makes it possible to determine a first swinging angle ⁇ x and a speed ⁇ 'x of this swinging angle.
  • the calculation step uses only the length L, the distance R and the rotation speed Vy of the hook point 10 as input variables and uses the acceleration ⁇ "x as an internal variable. a pendulum model with damping.
  • the control method also comprises a correction step performed by the correction module 22.
  • the correction step calculates an offset value ⁇ x eq of the angle ⁇ x which is proportional to the rotation speed Vy and delivers a first signal correction ⁇ Vx of the translation speed which takes into account the offset value ⁇ x eq .
  • the first correction signal ⁇ Vx is calculated by applying a correction coefficient K ⁇ x to the difference between the first swinging angle ⁇ x and the offset value ⁇ x eq and a correction coefficient K ' ⁇ x at the speed ⁇ 'x.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

A device for controlling movement of a load suspended by cables from a hook point that is rotatable about a vertical axis and movable translationally along an axis of translation, the movement of rotation generating a first or sway angle of the load relative to the axis of translation. The device calculates the first or sway angle and a speed of the first or sway angle, the only input variables used being the length of the cables, the distance between the axis of rotation and the hook point, and the speed of rotation of the hook point, while the acceleration of the first or sway angle is used as an internal variable.

Description

La présente invention se rapporte à un dispositif de régulation et à un procédé de régulation du déplacement d'une charge suspendue par câbles à un engin de levage, cet engin de levage étant susceptible d'entraîner la charge dans un mouvement de rotation.The present invention relates to a regulating device and a method for regulating the movement of a load suspended by cables to a hoist, this hoisting apparatus being capable of driving the load in a rotational movement.

Les engins de levage concernés englobent notamment différents types de grues à tour (tower crane) ou de grues à flèche (jib crane). Ces grues comportent une flèche qui est accrochée en haut d'un mât vertical. La flèche possède un point d'accroche auquel est suspendue la charge par des câbles de suspension. Elles ont la particularité d'effectuer un premier mouvement qui est un mouvement de rotation de la flèche autour d'un axe de rotation Z vertical qui est généralement centré sur le mât de la grue (rotation or slewing movement).The lifting gear concerned include in particular different types of tower cranes or jib cranes. These cranes have an arrow that hangs on top of a vertical mast. The boom has a point of attachment to which the load is suspended by suspension cables. They have the distinction of making a first movement which is a rotational movement of the arrow about a vertical axis of rotation Z which is generally centered on the mast of the crane (rotation or slewing movement).

Par ailleurs, ces grues effectuent un second mouvement qui est un mouvement linéaire du point d'accroche le long de la flèche, ce second mouvement étant appelé mouvement de translation dans le présent document. Dans certaines grues, le point d'accroche de la charge est un chariot (trolley) qui est mobile en translation sur des rails, le mouvement de translation étant alors effectué selon l'axe horizontal X de la flèche (trolley movement). D'autres grues comportent une flèche qui est relevable (luffing jib) ou articulée (jack-knife jib) et au bout de laquelle est disposé le point d'accroche de la charge. Le relevage ou l'articulation de la flèche crée alors le mouvement de translation du point d'accroche.Furthermore, these cranes perform a second movement which is a linear movement of the point of attachment along the arrow, this second movement being called translation movement in the present document. In some cranes, the point of attachment of the load is a carriage (trolley) which is movable in translation on rails, the translational movement then being performed along the horizontal axis X of the arrow (trolley movement). Other cranes have an arrow which is liftable (luffing jib) or articulated (jack-knife jib) and at the end of which is arranged the point of attachment of the load. The lifting or articulation of the arrow then creates the translational movement of the point of attachment.

De plus, les grues comportent toujours un dispositif de levage de la charge qui est associé aux câbles de suspension dont la longueur est variable de façon à pouvoir déplacer la charge verticalement dans un troisième mouvement appelé mouvement de levage (hoisting movement).In addition, the cranes always include a load lifting device which is associated with the suspension cables whose length is variable so as to move the load vertically in a third movement called hoisting movement.

La manutention d'une charge par un engin de levage entraîne des balancements de cette charge qu'il est évidemment souhaitable d'amortir pour effectuer en douceur et en toute sécurité le transfert de la charge et cela, dans un laps de temps le plus court possible. Dans le cas d'une grue, un premier balancement (ou premier ballant) est généré par le mouvement de rotation autour de l'axe de rotation vertical Z. Un second balancement (ou second ballant) est également généré par l'accélération/décélération du mouvement de translation selon l'axe de translation X.The handling of a load by a lifting vehicle causes swaying of this load that it is obviously desirable to damp to perform smoothly and safely the transfer of the load and this, in a shortest period of time possible. In the case of a crane, a first swing (or first swing) is generated by the rotational movement about the vertical axis of rotation Z. A second swing (or second swing) is also generated by the acceleration / deceleration of the translational movement along the X translation axis.

Contrairement à un ballant dû à un mouvement linéaire, la particularité d'un ballant dû à un mouvement de rotation est que ce ballant possède une composante qui est générée par la force centrifuge de la charge lors du mouvement de rotation, cette force ayant tendance à écarter la charge par rapport à la zone de rotation. Il n'est donc pas possible de supprimer le premier ballant en agissant uniquement sur les commandes de ce mouvement de rotation. De plus, le premier ballant a la particularité de rester présent dès que la vitesse de rotation est non nulle, même quand l'accélération ou la décélération du mouvement de rotation est nulle.Unlike a dangling due to a linear movement, the peculiarity of a dangling due to a rotational movement is that this dangling has a component that is generated by the centrifugal force of the load during the rotational movement, this force tending to move the load away from the rotational zone. It is therefore not possible to remove the first ballant by acting only on the controls of this rotational movement. In addition, the first ballant has the particularity to remain present as soon as the speed of rotation is non-zero, even when the acceleration or deceleration of the rotational movement is zero.

Il existe déjà plusieurs solutions pour diminuer automatiquement l'angle du ballant généré par un mouvement de translation d'une charge suspendue selon un axe horizontal, notamment dans les documents FR2698344 , FR2775678 , US5443566 . Cependant aucun de ces documents ne traite d'un dispositif d'anti-ballant capable de réguler automatiquement l'angle du ballant généré par un mouvement de rotation de la charge autour d'un axe de rotation vertical. L'article de Sadati et al ("Design of a Gain-Scheduling Anti-Swing Controller for Tower Cranes Using Fuzzy Clustering Techniques", Comp. Int. for Mod., Cont. and Autom., 2006, ISBN: 978-0-7695-2791-4 ) décrit un dispositif selon le préambule de la revendication 1.There are already several solutions to automatically reduce the angle of the balloon generated by a translational movement of a load suspended along a horizontal axis, particularly in documents FR2698344 , FR2775678 , US5443566 . However none of these documents deals with an anti-dangling device capable of automatically regulating the angle of the balloon generated by a rotational movement of the load around a vertical axis of rotation. The article of Sadati et al ("Design of a Gain-Scheduling Anti-Swing Controller for Tower Cranes Using Fuzzy Clustering Techniques", Comp.Int.Mod., Cont.and Autom., 2006, ISBN: 978-0-7695-2791- 4 ) discloses a device according to the preamble of claim 1.

C'est pourquoi l'invention a pour but de maîtriser les oscillations d'une charge suspendue à une grue, en utilisant un dispositif et un procédé simple, rapide et facile à mettre en oeuvre. Elle permet de minimiser les mesures ou les prises d'information qui sont nécessaires pour effectuer le contrôle et la maitrise du ballant d'une charge.This is why the invention aims to control the oscillations of a load suspended from a crane, using a device and a simple process, fast and easy to implement. It makes it possible to minimize the measurements or the information taken which are necessary to carry out the control and the control of the ballad of a load.

Pour cela, l'invention décrit un dispositif de régulation du déplacement d'une charge suspendue par des câbles de suspension à un point d'accroche d'un engin de levage, le point d'accroche étant susceptible d'effectuer un mouvement de rotation autour d'un axe de rotation vertical et un mouvement de translation selon un axe de translation, le mouvement de rotation générant un premier angle de ballant de la charge selon l'axe de translation. Le dispositif de régulation comporte des moyens de calcul du premier angle de ballant et d'une vitesse du premier angle de ballant, en utilisant comme seules variables d'entrée une information représentative d'une longueur des câbles de suspension, une information représentative d'une distance entre l'axe de rotation et le point d'accroche et une information représentative d'une vitesse de rotation du point d'accroche, et en utilisant comme variable interne une accélération du premier angle de ballant. Les moyens de calcul déterminent le premier angle de ballant et la vitesse du premier angle de ballant à l'aide d'un processus itératif utilisant l'accélération du premier angle de ballant.For this purpose, the invention describes a device for regulating the movement of a load suspended by suspension cables at a point of attachment of a hoist, the point of attachment being able to perform a rotational movement. around a vertical axis of rotation and a translational movement along a translation axis, the rotational movement generating a first swing angle of the load along the axis of translation. The regulating device comprises means for calculating the first swaying angle and a speed of the first swaying angle, using as only input variables information representative of a length of the suspension cables, information representative of a distance between the axis of rotation and the point of attachment and information representative of a speed of rotation of the point of attachment, and using as an internal variable an acceleration of the first angle of dangling. The calculating means determines the first swing angle and the speed of the first swing angle using an iterative process using the acceleration of the first swing angle.

Selon une caractéristique, les moyens de calcul déterminent le premier angle de ballant de la charge en tenant compte également du mouvement de translation effectué par le point d'accroche selon l'axe de translation.According to one characteristic, the calculation means determine the first swing angle of the load while also taking into account the translational movement effected by the point of attachment along the axis of translation.

Selon une autre caractéristique, l'information représentative de la vitesse de rotation du point d'accroche est déterminée en utilisant une référence de vitesse qui est fournie à un variateur de vitesse pilotant le mouvement de rotation du point d'accroche. Alternativement, l'information représentative de la vitesse de rotation du point d'accroche est déterminée en utilisant une estimation de vitesse qui est élaborée par un variateur de vitesse pilotant le mouvement de rotation du point d'accroche.According to another characteristic, the information representative of the rotation speed of the point of attachment is determined by using a speed reference which is supplied to a speed variator controlling the rotational movement of the point of attachment. Alternatively, the information representative of the rotation speed of the point of attachment is determined by using a speed estimation which is developed by a variable speed drive controlling the rotational movement of the point of attachment.

Selon une autre caractéristique, le dispositif de régulation calcule une valeur d'offset du premier angle de ballant qui est fonction de la vitesse de rotation du point d'accroche et délivre un premier signal de correction de la vitesse du mouvement de translation du point d'accroche qui tient compte de la valeur d'offset. Le premier signal de correction est proportionnel à la différence entre le premier angle de ballant et la valeur d'offset et est proportionnel à la vitesse du premier angle de ballant.According to another characteristic, the regulating device calculates an offset value of the first dangling angle which is a function of the rotation speed of the point of attachment and delivers a first correction signal of the speed of the translational movement of the d-point. grip which takes into account the offset value. The first correction signal is proportional to the difference between the first swing angle and the offset value and is proportional to the speed of the first swing angle.

Selon une autre caractéristique, le premier signal de correction est ajouté à une consigne de vitesse pour fournir une référence de vitesse du mouvement de translation du point d'accroche, le signal de correction étant calculé en appliquant un coefficient de correction à la différence entre le premier angle de ballant (Θx) et la valeur d'offset et à la vitesse du premier angle de ballant. Les coefficients de correction peuvent être variables en fonction de la longueur des câbles de suspension.According to another characteristic, the first correction signal is added to a speed reference to provide a speed reference of the translation movement of the point of attachment, the correction signal being calculated by applying a correction coefficient to the difference between the first swing angle (Θx) and the offset value and the speed of the first swing angle. The correction coefficients may be variable depending on the length of the suspension cables.

Selon une autre caractéristique, les moyens de calcul calculent un second angle de ballant de la charge selon un axe tangentiel perpendiculaire à l'axe de translation et une vitesse du second angle de ballant, à l'aide d'un processus itératif et en utilisant comme seules variables d'entrée l'information représentative de la longueur, l'information représentative de la distance et l'information représentative de la vitesse de rotation, et en utilisant comme variable interne une accélération du second angle de ballant.According to another characteristic, the calculating means calculate a second angle of the load on a tangential axis perpendicular to the translation axis and a speed of the second swing angle, using an iterative process and using as only input variables the information representative of the length, the information representative of the distance and the information representative of the speed of rotation, and using as an internal variable an acceleration of the second dangling angle.

L'invention revendique également un système d'automatisme destiné à commander le déplacement d'une charge suspendue par des câbles de suspension à un point d'accroche d'un engin de levage et comportant un tel dispositif de régulation. De même, l'invention revendique un procédé de régulation du déplacement d'une charge suspendue qui est mis en oeuvre dans un tel dispositif de régulation.The invention also claims an automation system for controlling the movement of a load suspended by suspension cables at a point of attachment of a hoist and comprising such a control device. Similarly, the invention claims a method for controlling the movement of a suspended load which is implemented in such a control device.

D'autres caractéristiques et avantages vont apparaître dans la description détaillée qui suit en se référant à un mode de réalisation donné à titre d'exemple et représenté par les dessins annexés sur lesquels :

  • la figure 1 montre un exemple d'un engin de levage, de type grue, comportant un mouvement de rotation autour d'un axe vertical,
  • la figure 2 schématise les angles de ballant d'une charge suspendue à un point d'accroche dans un tel engin de levage,
  • la figure 3 représente un schéma simplifié d'un dispositif de régulation du déplacement d'une charge conforme à l'invention.
Other features and advantages will appear in the detailed description which follows with reference to an embodiment given by way of example and represented by the appended drawings in which:
  • the figure 1 shows an example of a hoist, crane type, having a rotational movement about a vertical axis,
  • the figure 2 schematizes the dangling angles of a load suspended at a point of attachment in such a hoist,
  • the figure 3 represents a simplified diagram of a device for regulating the displacement of a load according to the invention.

Le dispositif de régulation du déplacement d'une charge suspendue selon l'invention peut être mis en oeuvre dans un engin de levage comportant un mouvement de rotation de la charge, tel qu'une grue ou analogue. L'exemple de la figure 1 montre une grue 5 qui comporte un mât vertical et une flèche sensiblement horizontale 6. La flèche 6 comporte un point d'accroche 10, qui peut être un chariot mobile comme dans l'exemple de la figure 1. La flèche 6 peut effectuer un mouvement de rotation autour d'un axe vertical de rotation Z passant par le mât vertical de la grue 5. Le point d'accroche 10 est mobile le long de la flèche 6 pour effectuer un mouvement de translation selon un axe de translation X. L'axe de translation X croise donc l'axe de rotation Z en un point O (voir figure 2) et passe par le point d'accroche 10. Dans l'exemple montré, l'axe de translation X est horizontal, mais certaines grues comportent une flèche 6 ayant un angle non nul par rapport à l'horizontale.The device for regulating the displacement of a suspended load according to the invention can be implemented in a hoist device comprising a rotational movement of the load, such as a crane or the like. The example of figure 1 shows a crane 5 which has a vertical mast and a substantially horizontal arrow 6. The arrow 6 comprises a point of attachment 10, which can be a movable carriage as in the example of the figure 1 . The arrow 6 can rotate about a vertical axis of rotation Z passing through the vertical mast of the crane 5. The attachment point 10 is movable along the arrow 6 to perform a translational movement according to a X translation axis. The translation axis X thus crosses the axis of rotation Z at a point O (see figure 2 ) and passes through the point of attachment 10. In the example shown, the translation axis X is horizontal, but some cranes have an arrow 6 having a non-zero angle relative to the horizontal.

Par ailleurs, la grue 5 peut effectuer un mouvement vertical de levage pour soulever et descendre une charge 15 suspendue par un ou plusieurs câbles de suspension 14 qui transitent par le point d'accroche 10 et au bout desquels est associé un organe de suspension de la charge 15 à déplacer.Furthermore, the crane 5 can perform a vertical lifting movement to raise and lower a load 15 suspended by one or more suspension cables 14 which pass through the point of attachment 10 and at the end of which is associated with a suspension member of the load 15 to move.

En référence à la figure 2, le point d'accroche 10 est situé à une distance R de l'axe de rotation Z (matérialisé par le point O de la figure 2), cette distance R variant lorsque le point d'accroche 10 se déplace selon l'axe de translation X. Sous l'action du mouvement de levage, la charge 15 présente évidemment une hauteur de suspension variant en fonction de la longueur L des câbles de suspension 14. Cette hauteur de suspension de la charge sera par la suite assimilée à la longueur des câbles L, à laquelle on pourrait éventuellement ajouter un offset représentant la distance entre l'extrémité basse des câbles 14 et la charge 15 (matérialisée par exemple par son centre de gravité).With reference to the figure 2 , the point of attachment 10 is situated at a distance R from the axis of rotation Z (represented by the point O of the figure 2 ), this distance R varying as the point of attachment 10 moves along the axis of translation X. Under the action of the lifting movement, the load 15 obviously has a suspension height varying according to the length L of the cables This suspension suspension height of the load will subsequently be assimilated to the length of the cables L, to which an offset could be added possibly representing the distance between the low end of the cables 14 and the load 15 (materialized, for example by its center of gravity).

Durant le mouvement de rotation, la charge 15 se déplace donc le long d'un cylindre vertical virtuel centré sur l'axe vertical Z et de rayon R, en faisant abstraction du ballant. A tout instant, le mouvement de rotation du point d'accroche 10 s'effectue donc suivant un axe horizontal tangentiel Y mobile qui est toujours perpendiculaire à l'axe de translation X et tangent par rapport au cylindre vertical.During the rotational movement, the load 15 moves along a virtual vertical cylinder centered on the vertical axis Z and radius R, ignoring the ballant. At any time, the rotational movement of the point of attachment 10 is therefore carried out along a moving tangential horizontal axis Y which is always perpendicular to the translation axis X and tangent with respect to the vertical cylinder.

Lorsque le point d'accroche 10 effectue un mouvement de rotation, la charge 15 prend un mouvement pendulaire appelé ballant qui est défini par un angle de ballant ayant deux composantes orthogonales. Une première composante forme le premier angle de ballant noté Θx et correspond à la projection du ballant sur l'axe de translation X. Un second composante forme le second angle de ballant noté Θy et correspond à la projection du ballant sur l'axe tangentiel Y. De plus, lorsque le point d'accroche 10 effectue un mouvement de translation, la charge 15 prend également un mouvement pendulaire avec un angle de ballant selon l'axe de translation X uniquement, qui vient donc s'ajouter au premier angle de ballant Θx défini ci-dessus.When the hook point 10 rotates, the load 15 takes a pendulous swinging motion which is defined by a swing angle having two orthogonal components. A first component forms the first dangling angle noted Θx and corresponds to the projection of the ballant on the translation axis X. A second component forms the second dangling angle noted Θy and corresponds to the projection of the ballant on the tangential axis Y In addition, when the attachment point 10 performs a translational movement, the load 15 also takes a pendulum movement with a swinging angle along the translation axis X only, which is therefore added to the first swing angle Θx defined above.

Le mouvement de translation selon l'axe X est effectué grâce à un moteur de translation Mx piloté par un variateur de vitesse Dx qui reçoit une référence de vitesse Vxref (voir figure 3). De même, le mouvement de rotation autour de l'axe vertical Z est effectué grâce à un moteur de rotation My piloté par un variateur de vitesse Dy qui reçoit une référence de vitesse angulaire Vyref. Le mouvement de levage selon l'axe Z est effectué grâce à un moteur de levage non représenté sur les figures qui permet d'enrouler et de dérouler les câbles de suspension. Ce moteur de levage pourrait être placé sur le point d'accroche 10.The translation movement along the X axis is performed by means of a translation motor Mx driven by a variable speed drive Dx which receives a speed reference Vx ref (see figure 3 ). Similarly, the rotational movement about the vertical axis Z is performed by means of a rotation motor My driven by a variable speed drive Dy which receives an angular speed reference Vy ref . The lifting movement along the Z axis is performed by means of a hoisting motor not shown in the figures which makes it possible to wind and unwind the suspension cables. This hoist motor could be placed on the point of attachment 10.

Le mouvement de translation, respectivement de rotation, est commandé par le conducteur de la grue 5, ce conducteur fournissant un signal de consigne de vitesse de translation Vcx, respectivement un signal de consigne de vitesse de rotation Vcy, à l'aide par exemple de combinateur(s) - de type joystick, comme indiqué sur la figure 3. Néanmoins, dans certaines applications où les engins de levage seraient pilotés en automatique, on pourrait aussi envisager que les consignes de vitesse Vcx, Vcy proviennent directement d'un équipement d'automatisme.The translation or rotation movement is controlled by the driver of the crane 5, this conductor providing a translation speed reference signal Vcx, respectively a rotation speed reference signal Vcy, using, for example, combinator (s) - of the joystick type, as indicated on the figure 3 . Nevertheless, in certain applications where the lifting gear would be controlled automatically, it could also be envisaged that the speed instructions Vcx, Vcy come directly from automation equipment.

Par ailleurs, contrairement aux mouvements linéaires, un mouvement de rotation génère un ballant dont l'angle présente des composantes Θx et Θy non nulles dans les deux axes perpendiculaires, respectivement X et Y. La deuxième composante Θy selon l'axe Y est générée par l'accélération/décélération du point d'accroche et peut être combattue en agissant sur la commande du mouvement de rotation. Par contre, la première composante Θx selon l'axe X est générée par la force centrifuge qui provoque un déplacement de la charge 15 qui n'est pas dirigé dans le plan tangentiel YZ, mais qui est dirigé suivant un plan perpendiculaire XZ. Cette première composante Θx ne peut donc pas être combattue en agissant sur la commande du mouvement de rotation, mais implique d'agir également sur la commande du mouvement de translation suivant l'axe X.Moreover, unlike linear movements, a rotational movement generates a ballant whose angle has components Θx and Θy nonzero in the two perpendicular axes, respectively X and Y. The second component Θy along the Y axis is generated by the acceleration / deceleration of the point of attachment and can be fought by acting on the control of the rotational movement. By cons, the first component Θx along the X axis is generated by the centrifugal force which causes a displacement of the load 15 which is not directed in the tangential plane YZ, but which is directed along a perpendicular plane XZ. This first component Θx can not therefore be fought by acting on the control of the rotational movement, but involves also acting on the control of the translational movement along the axis X.

De plus, la force centrifuge provoque le déplacement de la charge 15 selon l'axe X, même lorsque le mouvement de rotation se fait à vitesse constante (c'est-à-dire à accélération/décélération nulle).In addition, the centrifugal force causes the load to move along the X axis, even when the rotational movement is at constant speed (i.e., at zero acceleration / deceleration).

Le but de l'invention est donc d'aider au pilotage d'un engin de levage 5 susceptible d'effectuer un mouvement de translation et un mouvement de rotation du point d'accroche 10, ces deux mouvements pouvant évidemment être effectués simultanément. De même, les mouvements de translation et de rotation peuvent être effectués simultanément avec un mouvement de levage de la charge 15 selon l'axe Z.The object of the invention is therefore to assist in the control of a hoist 5 capable of performing a translational movement and a rotational movement of the point of attachment 10, these two movements can obviously be performed simultaneously. Similarly, the translation and rotation movements can be performed simultaneously with a lifting movement of the load 15 along the axis Z.

La nature du ballant généré par la rotation et l'interaction entre les différents mouvements compliquent la maîtrise du ballant et la régulation du déplacement de la charge suspendue 15.The nature of the dangling generated by the rotation and the interaction between the different movements complicates the control of the dangling and the regulation of the displacement of the suspended load 15.

L'invention permet d'amortir de façon simple et automatique le ballant selon l'axe X et selon l'axe Y durant le déplacement de la charge 15, de façon transparente pour le conducteur de l'engin. Avantageusement, l'invention ne nécessite pas de phase d'apprentissage et ne nécessite pas de mesure de l'angle de ballant Θx et/ou Θy, de mesure du courant moteur ou du couple moteur qui peuvent s'avérer coûteuses et plus longues à mettre en oeuvre.The invention makes it possible to simply and automatically damp the ballant along the X axis and along the Y axis during the displacement of the load 15, in a manner that is transparent to the driver of the machine. Advantageously, the invention does not require a learning phase and does not require measurement of the swing angle Θx and / or Θy, measurement of the motor current or the motor torque which can prove to be expensive and longer to enforce.

En référence à la figure 3, un dispositif de régulation 20 a pour but d'amortir le mouvement oscillant de la charge 15 lors de son déplacement en rotation et/ou en translation, ce déplacement pouvant évidemment être effectué en même temps qu'un mouvement de levage de la charge 15.With reference to the figure 3 a regulating device 20 is intended to damp the oscillating movement of the load 15 during its displacement in rotation and / or in translation, this displacement obviously being able to be performed at the same time as a lifting movement of the load 15 .

Le dispositif de régulation 20 comporte des moyens de détermination d'une information représentative de la longueur L des câbles de suspension. Ces moyens de détermination comprennent par exemple un capteur ou codeur associé à l'arbre du moteur de levage ou au tambour d'enroulement des câbles. D'autres moyens de détermination de la longueur L sont envisageables : par exemple plusieurs fins de course répartis sur l'ensemble de la course des câbles, la longueur L étant alors déterminée par des valeurs paliers prédéterminées en fonction du déclenchement de ces fins de course. Cette solution est néanmoins moins précise évidemment.The regulating device 20 comprises means for determining information representative of the length L of the suspension cables. These determination means comprise, for example, a sensor or encoder associated with the lifting motor shaft or with the winding drum of the cables. Other means for determining the length L are conceivable: for example, several limit switches distributed over the entire race of the cables, the length L being then determined by predetermined bearing values as a function of the triggering of these limit switches. . This solution is nevertheless less precise obviously.

Le dispositif de régulation 20 comporte des moyens de détermination d'une information représentative de la distance R entre le point d'accroche 10 et l'axe de rotation Z. Différentes moyens de détermination sont possibles :

  • Selon une première variante, la distance R est obtenue à l'aide d'un capteur qui peut être un codeur rotatif associé à l'arbre du moteur de translation Mx ou au tambour d'enroulement des câbles, ou qui peut être un codeur absolu, par un exemple un codeur linéaire de type potentiomètre le long de la flèche 6.
  • Selon une deuxième variante, la distance R est obtenue par intégration à partir d'une mesure de la vitesse de référence Vxref du mouvement de translation, puis par intégration de cette vitesse de référence. Cette vitesse de référence Vxref est facilement disponible car elle est en effet utilisée par le variateur Dx en charge de piloter le moteur de translation Mx. Un ou plusieurs détecteurs, de type fin de course ou détecteur de proximité, peuvent en plus être utiles pour fournir des valeurs de réinitialisation de R.
  • Selon une troisième variante, la distance R peut également être obtenue à l'aide de plusieurs détecteurs répartis sur l'ensemble de la course le long de la flèche 6, la distance R étant alors déterminée par des valeurs paliers prédéterminées en fonction du déclenchement de ces fins de course. Cette solution est néanmoins moins précise évidemment.
The regulating device 20 comprises means for determining information representative of the distance R between the point of attachment 10 and the axis of rotation Z. Various determination means are possible:
  • According to a first variant, the distance R is obtained by means of a sensor which may be a rotary encoder associated with the shaft of the translation motor Mx or with the winding drum of the cables, or which may be an absolute encoder , for example, a linear potentiometer type encoder along the arrow 6.
  • According to a second variant, the distance R is obtained by integration from a measurement of the reference speed Vx ref of the translational movement, then by integration of this reference speed. This reference speed Vx ref is easily available because it is indeed used by the Dx drive in charge of control the translation motor Mx. One or more detectors, of end-of-travel type or proximity detector, may additionally be useful for providing resetting values of R.
  • According to a third variant, the distance R can also be obtained using several detectors distributed over the entire stroke along the arrow 6, the distance R being then determined by predetermined bearing values as a function of the triggering of these ends of the race. This solution is nevertheless less precise obviously.

Le dispositif de régulation 20 comporte également des moyens de détermination d'une information représentative de la vitesse de rotation Vy du point d'accroche 10. Différentes moyens de détermination sont possibles :

  • Selon une première variante, la vitesse de rotation Vy est obtenue par une mesure de la vitesse réelle de rotation du point d'accroche 10. Cette solution nécessite cependant l'utilisation d'un capteur de vitesse ou de déplacement.
  • Selon une deuxième variante, la vitesse de rotation Vy est obtenue directement par la référence de vitesse Vyref qui est fournie en entrée du variateur Dy en charge de piloter le moteur de rotation My. On suppose dans ce cas que le variateur Dy s'assure du suivi de la référence vitesse avec une grande rapidité. Cette solution est très simple à mettre en oeuvre car la référence de vitesse Vyref est facilement disponible.
  • Selon une troisième variante, la vitesse de rotation Vy est obtenue par une estimation de vitesse élaborée dans le variateur de vitesse Dy en charge de piloter le moteur My. Dans certains cas, cette estimation de vitesse est en effet plus proche de la vitesse réelle que la référence de vitesse Vyref, à cause de phénomènes tels que écart de suivi de rampe ou phénomènes mécaniques. Cette solution peut donc être intéressante notamment pour une application utilisant un moteur conique. Le paramètre interne au variateur d'estimation de vitesse est souvent disponible sur une sortie analogique du variateur.
The regulating device 20 also comprises means for determining information representative of the speed of rotation Vy of the point of attachment 10. Various means of determination are possible:
  • According to a first variant, the speed of rotation Vy is obtained by measuring the actual rotation speed of the point of attachment 10. This solution however requires the use of a speed or displacement sensor.
  • According to a second variant, the rotation speed Vy is obtained directly by the speed reference Vy ref which is supplied at the input of the drive Dy in charge of controlling the rotation motor My. It is assumed in this case that the drive Dy ensures the tracking of the speed reference with great speed. This solution is very simple to implement because the speed reference Vy ref is easily available.
  • According to a third variant, the speed of rotation Vy is obtained by a speed estimation elaborated in the variable speed drive Dy in charge of controlling the motor My. In some cases, this speed estimate is indeed closer to the actual speed than the speed reference Vy ref , because of phenomena such as ramp tracking deviation or mechanical phenomena. This solution can therefore be of interest especially for an application using a conical motor. The parameter internal to the speed estimation drive is often available on an analog output of the drive.

Le dispositif de régulation 20 comporte un module estimateur 21 relié à un module correcteur 22. Le module estimateur 21 reçoit en entrée les informations représentatives de la longueur L des câbles, de la distance R et de la vitesse de rotation Vy et comporte des moyens de calcul qui calculent en temps réel le premier angle de ballant Θx et la vitesse (ou variation) Θ'x de ce premier angle Θx, ainsi que le second angle de ballant Θy et la vitesse (ou variation) Θ'y de ce second angle Θy. Le module estimateur 21 transmet ensuite ces valeurs calculées au module correcteur 22 qui calcule et délivre en sortie un premier signal de correction ΔVy qui est additionné à la consigne de vitesse Vcy du mouvement de rotation, ainsi qu'un second signal de correction ΔVx qui est additionné à la consigne de vitesse Vcx du mouvement de translation.The regulation device 20 comprises an estimator module 21 connected to a correction module 22. The estimator module 21 receives as input the information representative of the length L of the cables, the distance R and the speed of rotation Vy and comprises means for calculating which compute in real time the first swinging angle Θx and the speed (or variation) Θ'x of this first angle Θx, as well as the second swing angle Θy and the speed (or variation) Θ'y of this second angle .theta.y. The estimator module 21 then transmits these calculated values to the correction module 22 which calculates and outputs a first correction signal ΔVy which is added to the instruction of speed Vcy of the rotational movement, and a second correction signal ΔVx which is added to the speed reference Vcx of the translational movement.

Pour calculer les angles de ballant Θx et Θy et les vitesses Θ'x et Θ'y, le module estimateur 21 utilise un modèle mathématique de pendule avec amortissement, qui répond aux deux équations suivantes :

  1. a) L*Θ"x = - g*sinΘx - V'x*cosΘx + Vy2*(R + L*sinΘx)*cosΘx + (Vz - Kf)*Θ'x
  2. b) L*Θ"y = - g*sinΘy - V'y*R*cosΘy + Vy2*L*sinΘy*cosΘy + (Vz - Kf)*Θ'y
    dans lequel :
    • Θx représente le premier angle de ballant de la charge selon l'axe X,
    • Θ'x représente la vitesse de l'angle de ballant Θx,
    • Θ"x représente l'accélération de l'angle de ballant Θx,
    • Θy représente le second angle de ballant de la charge selon l'axe Y,
    • Θ'y représente la vitesse de l'angle de ballant Θy,
    • Θ"y représente l'accélération de l'angle de ballant Θy,
    • L représente la longueur des câbles,
    • R représente la distance entre le point d'accroche des câbles et l'axe de rotation Z,
    • Vz représente la vitesse du mouvement de levage, calculée comme étant la dérivée de la longueur L,
    • Vx représente la vitesse linéaire du mouvement de translation selon l'axe X, calculée préférentiellement comme étant la dérivée de la distance R, ou mesurée à partir de la vitesse de référence Vxref fournie en entrée du variateur Dx en charge de piloter le moteur de rotation Mx (voir flèche en pointillés dans la figure 3),
    • V'x représente l'accélération du mouvement de translation selon l'axe X, calculée comme étant la dérivée de la vitesse Vx,
    • Vy représente la vitesse angulaire du mouvement de rotation du point d'accroche 10,
    • V'y représente l'accélération angulaire du mouvement de rotation, calculée comme étant la dérivée de la vitesse Vy,
    • Kf représente un coefficient de frottement fixe,
    • g représente la pesanteur.
To calculate the swinging angles Θx and Θy and the velocities Θ'x and Θ'y, the estimator module 21 uses a damping pendulum mathematical model, which satisfies the following two equations:
  1. a) L * Θ "x = - g * sinΘx - V'x * cosΘx + Vy 2 * (R + L * sinΘx) * cosΘx + (Vz - K f ) * Θ'x
  2. b) L * Θ "y = - g * sinΘy - V'y * R * cosΘy + Vy 2 * L * sinΘy * cosΘy + (Vz - K f ) * Θ'y
    in which :
    • Θx represents the first bending angle of the load along the X axis,
    • Θ'x represents the speed of the swinging angle Θx,
    • Θ "x represents the acceleration of the swinging angle Θx,
    • Θy represents the second swing angle of the load along the Y axis,
    • Θ'y represents the speed of the swinging angle Θy,
    • Θ "y represents the acceleration of the swinging angle Θy,
    • L represents the length of the cables,
    • R represents the distance between the point of attachment of the cables and the axis of rotation Z,
    • Vz represents the speed of the lifting movement, calculated as the derivative of the length L,
    • Vx represents the linear velocity of the translation movement along the X axis, preferably calculated as the derivative of the distance R, or measured from the reference speed Vx ref supplied to the input of the Dx drive in charge of controlling the motor of Mx rotation (see dashed arrow in the figure 3 )
    • V'x represents the acceleration of the translation movement along the X axis, calculated as the derivative of the speed V x ,
    • Vy represents the angular velocity of the rotation movement of the point of attachment 10,
    • V'y represents the angular acceleration of the rotational movement, calculated as the derivative of the velocity Vy,
    • Kf represents a fixed coefficient of friction,
    • g represents gravity.

L'équation a) montre que le dispositif de régulation utilise l'accélération Θ"x de l'angle Θx comme variable interne et que les seules variables d'entrée fournies au module estimateur 21 sont la longueur des câbles L, la distance R et la vitesse angulaire de rotation Vy. Le premier angle de ballant Θx et la vitesse Θ'x sont calculés à l'aide d'un processus itératif dans le temps, c'est-à-dire que les résultats sont recalculés de façon périodique à chaque instant t, en utilisant notamment les résultats obtenus à l'instant précédent t-1. Ce processus itératif utilise l'accélération Θ"x et peut se représenter à tout instant t de la façon suivante :

  • ■ Vxt = (Rt - Rt-1) / Δt
  • ■ V'xt = (Vxt - Vxt-1) / Δt
  • ■ Vzt = (Lt - Lt-1) / Δt
  • ■ Θ"xt = (-g*sinΘxt - V'xt*cosΘxt + Vyt 2*(Rt + Lt*sinΘxt)*cosΘxt + (Vzt - Kf)*Θ'xt)/ Lt
  • ■ Θ'xt = Θ'xt-1 + Θ"xt-1 * Δt
  • ■ ΘXt = Θxt-1 + Θ'xt-1 * Δt
dans lequel Θxt et Θxt-1 représentent le premier angle de ballant respectivement à un instant t et à un instant précédent t-1, Θ'xt et Θ'xt-1 représentent la vitesse de l'angle de ballant Θx respectivement aux instants t et t-1, Θ"xt et Θ"xt-1 représentent l'accélération de l'angle de ballant Θx respectivement aux instants t et t-1, V'xt représente l'accélération du mouvement de translation à l'instant t, Vxt et Vxt-1 représentent la vitesse du mouvement de translation respectivement aux instants t et t-1, Vzt représente la vitesse de levage à l'instant t, Rt et Rt-1 représentent la distance R respectivement aux instants t et t-1, Vyt représente la vitesse de rotation à l'instant t, Lt et Lt-1 représentent la longueur des câbles respectivement aux instants t et t-1 et Δt représente l'écart de temps entre l'instant t et l'instant t-1.Equation a) shows that the control device uses the Θ "x acceleration of the angle Θx as the internal variable and that the only input variables supplied to the estimator module 21 are the length of the cables L, the distance R and the angular velocity of rotation Vy.The first skew angle Θx and the velocity Θ'x are calculated using an iterative process over time, that is, the results are recalculated periodically to each moment t, using in particular the results obtained at the moment previous t-1. This iterative process uses the acceleration Θ "x and can be represented at any time t as follows:
  • ■ Vx t = (R t -R t-1 ) / Δt
  • ■ V'x t = (Vx t - Vx t-1 ) / Δt
  • ■ Vz t = (L t - L t-1 ) / Δt
  • ■ Θ "x t = (-g * sinΘx t - V'x t * cosΘx t + Vy t 2 * (R t + L t * sinΘx t ) * cosΘx t + (Vz t - K f ) * Θ'x t ) / L t
  • ■ Θ'x t = Θ'x t-1 + Θ "x t-1 * Δt
  • ■ ΘX t = Θx t-1 + Θ'x t-1 * Δt
where Θx t and Θx t-1 represent the first dangling angle respectively at a time t and at a previous instant t-1, Θ'x t and Θ'x t-1 represent the speed of the dangling angle Θx respectively at times t and t-1, Θ "x t and Θ" x t-1 represent the acceleration of the swinging angle Θx respectively at times t and t-1, V'x t represents the acceleration of the movement translation time at time t, Vx t and Vx t-1 represent the speed of the translational movement respectively at times t and t-1, Vz t represents the lifting speed at time t, R t and R t- 1 represent the distance R respectively at times t and t-1, Vy t represents the speed of rotation at time t, L t and L t-1 represent the length of the cables respectively at times t and t-1 and Δt represents the time difference between time t and time t-1.

Le processus itératif part de l'hypothèse qu'au démarrage, les valeurs de Θx, Θ'x et Θ"x sont nulles, c'est-à-dire qu'à l'instant t = 0, on a : Θx0 = Θ'x0 = Θ"x0 = 0.The iterative process starts from the assumption that at startup, the values of Θx, Θ'x and Θ "x are zero, that is to say that at time t = 0, we have: Θx 0 = Θ'x 0 = Θ "x 0 = 0.

De même, l'équation b) montre que le dispositif de régulation utilise l'accélération Θ"y de l'angle Θy comme variable interne et que les seules variables d'entrée fournies au module estimateur 21 sont la longueur des câbles L, la distance R et la vitesse angulaire de rotation Vy. Le second angle de ballant Θy et la vitesse Θ'y sont calculés à l'aide d'un processus itératif dans le temps, c'est-à-dire que les résultats sont recalculés de façon périodique à chaque instant t, en utilisant notamment les résultats obtenus à l'instant précédent t-1. Ce processus itératif utilise l'accélération Θ"y et peut se représenter à tout instant t de la façon suivante :

  • ■ V'yt (Vyt - Vyt-1) / Δt
  • ■ Vzt = (Lt - Lt-1) / Δt
  • ■ Θ"yt = (-g*sinΘyt - V'yt*R*cosΘyt + Vyt 2 *Lt*sinΘyt*cosΘyt + (Vzt - Kf)*Θ'yt) / Lt
  • ■ Θ'yt = Θ'yt-1 + Θ"yt-1 * Δt
  • ■ Θyt = Θyt-1 + Θ'yt-1 * Δt
dans lequel Θyt et Θyt-1 représentent le second angle de ballant respectivement à un instant t et à un instant précédent t-1, Θ'yt et Θ'yt-1 représentent la vitesse de l'angle Θy respectivement aux instants t et t-1, Θ"yt et Θ"yt-1 représentent l'accélération de l'angle Θy respectivement aux instants t et t-1, V'yt représente l'accélération angulaire du mouvement de rotation à l'instant t, Vzt représente la vitesse de levage à l'instant t, Vyt et Vyt-1 représentent la vitesse angulaire de rotation respectivement aux instants t et t-1, Lt et Lt-1 représentent la longueur des câbles respectivement aux instants t et t-1 et Δt représente l'écart de temps entre l'instant t et l'instant t-1.Equally, equation b) shows that the regulator uses the Θ "y acceleration of the angle Θy as the internal variable and that the only input variables supplied to the estimator module 21 are the length of the cables L, the distance R and the rotational angular velocity Vy.The second dangling angle Θy and the velocity Θ'y are calculated using an iterative process over time, that is, the results are recalculated from periodically at each instant t, using in particular the results obtained at the previous instant t-1 This iterative process uses the acceleration Θ "y and can be represented at any time t as follows:
  • ■ V'y t (Vy t - Vy t-1 ) / Δt
  • ■ Vz t = (L t - L t-1 ) / Δt
  • ■ Θ "y t = (-g * sinΘy t - V'y t * R * cosΘy t + Vy t 2 * L t * sinΘy t * cosΘy t + (Vz t - K f ) * Θ'y t ) / L t
  • ■ Θ'y t = Θ ' yt-1 + Θ "y t-1 * Δt
  • ■ Θy t = Θy t-1 + Θ'y t-1 * Δt
where Θy t and Θy t-1 represent the second swing angle respectively at a time t and at a previous instant t-1, Θ'y t and Θ'y t-1 represent the speed of the angle Θy respectively at instants t and t-1, Θ "y t and Θ" y t-1 represent the acceleration of the angle Θy respectively at times t and t-1, V'y t represents the angular acceleration of the rotational movement at time t, Vz t represents the lifting speed at time t, Vy t and Vy t-1 represent the rotational angular velocity respectively at times t and t-1, L t and L t-1 represent the length of the cables respectively at times t and t-1 and Δt represents the time difference between the moment t and the moment t-1.

Le processus itératif part de l'hypothèse qu'au démarrage, les valeurs de Θy, Θ'y et Θ"y sont nulles, c'est-à-dire qu'à l'instant t = 0, on a : Θy0 = Θ'y0 = Θ"y0 = 0.The iterative process starts from the assumption that at startup, the values of Θy, Θ'y and Θ "are zero, that is to say that at time t = 0, we have: Θy 0 = Θ'y 0 = Θ "y 0 = 0.

L'équation a) comporte un terme spécifique "Vy2 *R*cosΘx" qui est toujours positif lorsque la vitesse de rotation Vy est non nulle. Cela traduit l'influence de la force centrifuge qui fait que, dès qu'un mouvement de rotation est en cours (même avec une accélération V'y nulle), il se crée un premier angle de ballant Θx dans la direction X, perpendiculaire à l'axe tangentiel Y. L'objectif de la régulation n'est donc pas d'annuler ce ballant durant le mouvement de rotation mais seulement d'atteindre une position d'équilibre avec un ballant non nul de la charge 15 correspondant à un angle d'équilibre non nul durant la rotation, puis de revenir à un angle de ballant Θx nul à la fin du mouvement de rotation, lorsque la vitesse de rotation Vy est nulle. Durant le mouvement de rotation, cet angle d'équilibre correspond donc à une valeur d'offset, notée Θxeq. Quand le mouvement de rotation est en cours, on ne cherche pas à annuler cette valeur d'offset Θxeq, mais on cherche à stabiliser la charge sans oscillation avec une inclinaison correspondant à la valeur d'offset Θxeq. Après approximation, la valeur d'offset Θxeq peut être déterminée par l'équation suivante (Θxeq exprimé en radians) : Θx eq = R * Vy 2 / g - L * Vy 2

Figure imgb0001
Equation a) has a specific term "Vy 2 * R * cosΘx" which is always positive when the rotation speed Vy is non-zero. This translates the influence of the centrifugal force which makes that, as soon as a rotation movement is in progress (even with a zero acceleration V'y), a first bending angle Θx is created in the X direction, perpendicular to the tangential axis Y. The objective of the regulation is not to cancel this ballant during the rotational movement but only to reach a position of equilibrium with a non-zero ballad of the load 15 corresponding to an angle non-zero equilibrium during the rotation, then return to a swing angle Θx zero at the end of the rotational movement, when the rotation speed Vy is zero. During the rotational movement, this equilibrium angle therefore corresponds to an offset value, denoted by Θx eq . When the rotational movement is in progress, we do not try to cancel this offset value Θx eq , but we try to stabilize the load without oscillation with an inclination corresponding to the offset value Θx eq . After approximation, the offset value Θx eq can be determined by the following equation (Θx eq expressed in radians): .theta.x eq = R * Vy 2 / boy Wut - The * Vy 2
Figure imgb0001

Cette équation montre bien que la valeur d'offset Θxeq est proportionnelle à la vitesse de rotation Vy et est nulle quand la vitesse de rotation Vy est nulle.This equation shows that the offset value Θx eq is proportional to the rotation speed Vy and is zero when the rotation speed Vy is zero.

Le module correcteur 22 reçoit en entrée les estimations calculées de Θx, Θy, Θ'x, Θ'y provenant du module estimateur 21 et leur applique un coefficient de correction KΘ, respectivement K'Θ, pour fournir les signaux de correction ΔVx et ΔVy, selon les équations suivantes :

  • ■ ΔVx = KΘx * (Θx - Θxeq) + K'Θx * Θ'x
  • ■ ΔVy = KΘy * Θy + K'Θy * Θ'y
dans lequel KΘx et KΘy sont des coefficients de correction appliqués respectivement aux angles de ballant Θx et Θy pour les mouvements de translation et de rotation, K'Θx et K'Θy sont des coefficients de correction appliqués respectivement aux vitesses des angles de ballant Θ'x et Θ'y pour les mouvements de translation et de rotation, ΔVx et ΔVy sont les signaux de correction à appliquer respectivement aux consignes de vitesse Vcx et Vcy, et Θxeq est la valeur d'offset de l'angle Θx durant le mouvement de rotation.The corrector module 22 receives as input the calculated estimates of Θx, Θy, Θ'x, Θ'y from the estimator module 21 and applies to them a correction coefficient K Θ , respectively K ' Θ , to provide the correction signals ΔVx and ΔVy, according to the following equations:
  • ■ ΔVx = K Θx * (Θx - Θx eq ) + K ' Θx * Θ'x
  • ■ ΔVy = K Θy * Θy + K ' Θy * Θ'y
in which K Θx and K Θy are correction coefficients respectively applied to the swinging angles Θx and Θy for translation and rotation movements, K ' Θx and K' Θy are correction coefficients respectively applied to speeds of the swinging angles Θ'x and Θ'y for the translational and rotational movements, ΔVx and ΔVy are the correction signals to be applied respectively to the speed commands Vcx and Vcy, and Θx eq is the offset value of the angle Θx during the rotational movement.

Le premier signal de correction ΔVx dépend donc non pas directement du premier angle de ballant Θx mais de la différence entre le premier angle de ballant Θx et la valeur d'offset Θxeq. Ainsi, lorsqu'un mouvement de rotation est en cours (vitesse Vyref non nulle), la valeur d'offset Θxeq est non nulle et donc le dispositif de régulation 20 délivre un signal de correction ΔVx qui tient compte de la valeur d'offset généré par la force centrifuge sur l'angle de ballant Θx. Lorsque le mouvement de rotation est arrêté (vitesse Vyref nulle), la valeur d'offset Θxeq devient automatiquement nulle et le dispositif de régulation 20 applique alors un signal de correction ΔVx qui est proportionnel à Θx et Θ'x.The first correction signal ΔVx therefore does not depend directly on the first swing angle Θx but on the difference between the first swing angle Θx and the offset value Θx eq . Thus, when a rotational movement is in progress (speed Vy ref not zero), the offset value Θx eq is non-zero and therefore the regulating device 20 delivers a correction signal ΔVx which takes into account the value of offset generated by the centrifugal force on the swinging angle Θx. When the rotational movement is stopped (zero Vyref speed), the offset value Θx eq automatically becomes zero and the regulator 20 then applies a correction signal ΔVx which is proportional to Θx and Θ'x.

La référence de vitesse Vxref appliquée en entrée du variateur Dx pilotant le moteur de translation Mx est donc égale à la consigne de vitesse du mouvement de translation Vcx provenant du système d'automatisme de commande de la grue 5, augmentée du premier signal de correction ΔVx délivrée par le dispositif de régulation 20, c'est-à-dire: Vxref = Vcx + ΔVx.The speed reference Vx ref applied to the input of the converter Dx driving the translation motor Mx is therefore equal to the speed reference of the translational movement Vcx originating from the control automation system of the crane 5, increased by the first correction signal ΔVx delivered by the regulating device 20, that is to say: Vx ref = Vcx + ΔVx.

De même, la référence de vitesse Vyref appliquée en entrée du variateur Dy pilotant le moteur de rotation My est égale à la consigne de vitesse du mouvement de rotation Vcy provenant du système d'automatisme de commande de la grue 5, augmentée du second signal de correction ΔVy délivrée par le dispositif de régulation 20, c'est-à-dire : Vyref = Vcy + ΔVy.Similarly, the speed reference Vy ref applied to the input of the drive Dy driving the rotation motor My is equal to the speed reference of the rotational movement Vcy coming from the control automation system of the crane 5, increased by the second signal correction ΔVy delivered by the regulating device 20, that is to say: Vy ref = Vcy + ΔVy.

Selon un premier mode de réalisation simplifié, les valeurs des coefficients de correction KΘ, K'Θ sont fixes. Selon un second mode de réalisation préféré, les valeurs des coefficients de correction KΘ, K'Θ sont modifiables en fonction de la longueur L des câbles déterminée par le dispositif 20, de façon à optimiser les corrections de vitesse à apporter suivant la hauteur du pendule formé par la charge 15. Dans ce cas, le module correcteur 22 reçoit en entrée une information représentative de la longueur L et est donc capable de mémoriser plusieurs valeurs de KΘ, K'Θ suivant la longueur L.According to a first simplified embodiment, the values of the correction coefficients K Θ , K ' Θ are fixed. According to a second preferred embodiment, the values of the correction coefficients K Θ , K ' Θ are modifiable as a function of the length L of the cables determined by the device 20, so as to optimize the speed corrections to be made according to the height of the pendulum formed by the load 15. In this case, the correction module 22 receives as input information representative of the length L and is therefore capable of storing several values of K Θ , K ' Θ along the length L.

Dans une première situation, on suppose que le système d'automatisme de la grue 5 commande uniquement un déplacement en rotation, c'est-à-dire qu'il fournit une consigne de vitesse de translation Vcx qui est nulle. Le mouvement de rotation génère donc un premier angle de ballant Θx suivant l'axe de translation X provoqué par la force centrifuge appliquée sur la charge 15, ainsi qu'un second angle de ballant Θy suivant l'axe tangentiel Y provoqué par l'accélération/décélération du mouvement de rotation. Comme indiqué précédemment, le premier angle de ballant ne peut être annulé qu'en agissant sur le mouvement de translation.In a first situation, it is assumed that the automation system of the crane 5 controls only a displacement in rotation, that is to say that it provides a translation speed setpoint Vcx which is zero. The rotational movement thus generates a first swinging angle Θx along the translation axis X caused by the centrifugal force applied to the load 15, as well as a second swinging angle Θy along the tangential axis Y caused by the acceleration / deceleration of the rotational movement. As indicated above, the first swinging angle can be canceled only by acting on the translational movement.

Or, si aucun déplacement en translation n'est demandé par le système d'automatisme, il faut que la position finale du point d'accroche soit identique à sa position initiale, c'est-à-dire que la distance R finale en fin de mouvement de rotation soit égale à la distance R initiale en début de mouvement, quelle que soit les corrections appliquées en translation pour annuler le premier angle de ballant Θx dû à la rotation. C'est pourquoi le module correcteur 22 du dispositif de régulation 20 mémorise la distance R initiale et applique en fin de mouvement de rotation un signal de correction ΔVx approprié pour ramener le point d'accroche 10 à sa position initiale, de telle sorte que R finale = R initiale.However, if no displacement in translation is requested by the automation system, it is necessary that the final position of the point of attachment is identical to its initial position, that is to say that the final distance R at the end rotational movement is equal to the initial distance R at the start of movement, regardless of the corrections applied in translation to cancel the first swinging angle Θx due to rotation. This is why the corrector module 22 of the regulating device 20 stores the initial distance R and applies, at the end of the rotational movement, a correction signal ΔVx suitable for bringing the attachment point 10 back to its initial position, so that R final = initial R.

Dans une deuxième situation, le système d'automatisme de la grue 5 commande en plus un mouvement de translation, c'est-à-dire qu'il fournit également une consigne de vitesse de translation Vcx non nulle. Ce mouvement de translation crée lui aussi un ballant suivant l'axe X provoqué par l'accélération/décélération du mouvement de translation. Le premier angle de ballant Θx représente alors le cumul du ballant généré par les mouvements de translation et de rotation.In a second situation, the automation system of the crane 5 also controls a translational movement, that is to say that it also provides a non-zero translation speed reference Vcx. This translational movement also creates a swinging along the X axis caused by the acceleration / deceleration of the translational movement. The first dangling angle Θx then represents the accumulation of the dangling generated by the translation and rotation movements.

Avantageusement, le dispositif de régulation ne comporte aucune étape préalable de modélisation, qui nécessiterait de mesurer d'autres paramètres physiques tels qu'une mesure de l'angle de ballant ou une mesure du courant circulant dans le moteur, dans le but de déterminer ou d'affiner un modèle mathématique particulier ou dans le but d'établir une fonction de transfert entre la vitesse du chariot et l'angle de ballant mesuré par un capteur pour une longueur de câbles donnée.Advantageously, the control device does not include any preliminary modeling step, which would require measuring other physical parameters such as a measurement of the swing angle or a measurement of the current flowing in the motor, for the purpose of determining or to refine a particular mathematical model or for the purpose of establishing a transfer function between the speed of the carriage and the dangling angle measured by a sensor for a given cable length.

Le dispositif de régulation ainsi décrit est destiné à être implanté dans un système d'automatisme de la grue 5, chargé notamment de piloter et surveiller les déplacements de la charge 15. Ce système d'automatisme comporte notamment un variateur de vitesse Dx pour le mouvement de translation et un variateur de vitesse Dy pour le mouvement de rotation. Vu sa simplicité, le dispositif de régulation peut être implanté directement dans les variateurs de vitesse Dx et Dy, par exemple à l'aide d'un module spécifique du variateur. Le système d'automatisme peut aussi comporte un automate programmable qui sert notamment à fournir les consignes de vitesse Vcx et Vcy. Dans ce cas, le dispositif de régulation peut aussi être facilement intégré dans un programme application de l'automate programmable.The control device thus described is intended to be implanted in an automation system of the crane 5, responsible in particular for controlling and monitoring the movements of the load 15. This automation system comprises in particular a speed variator Dx for the movement translation and a variable speed drive Dy for the rotational movement. Due to its simplicity, the control device can be installed directly in the variable speed drives Dx and Dy, for example by means of a specific module of the drive. The automation system may also include a programmable controller which serves in particular to provide the Vcx and Vcy speed instructions. In this case, the control device can also be easily integrated into an application program of the programmable controller.

Le dispositif de régulation met en oeuvre un procédé de régulation du déplacement de la charge 15 selon un mouvement de rotation autour de l'axe Z associé éventuellement à un mouvement de translation suivant l'axe X. Le procédé de régulation comporte une étape de calcul, effectuée par le module estimateur 21, qui permet de déterminer un premier angle de ballant Θx et une vitesse Θ'x de cet angle de ballant. L'étape de calcul utilise uniquement la longueur L, la distance R et la vitesse de rotation Vy du point d'accroche 10 comme variables d'entrée et utilise l'accélération Θ"x comme variable interne. L'étape de calcul utilise directement un modèle de pendule avec amortissement.The regulating device implements a method for regulating the displacement of the load 15 in a rotational movement around the Z axis possibly associated with a translation movement along the X axis. The regulation method comprises a calculation step , carried out by the estimator module 21, which makes it possible to determine a first swinging angle Θx and a speed Θ'x of this swinging angle. The calculation step uses only the length L, the distance R and the rotation speed Vy of the hook point 10 as input variables and uses the acceleration Θ "x as an internal variable. a pendulum model with damping.

Le procédé de régulation comporte également une étape de correction, effectuée par le module correcteur 22. L'étape de correction calcule une valeur d'offset Θxeq de l'angle Θx qui est proportionnelle à la vitesse de rotation Vy et délivre un premier signal de correction ΔVx de la vitesse de translation qui tient compte de la valeur d'offset Θxeq. Le premier signal de correction ΔVx est calculé en appliquant un coefficient de correction KΘx à la différence entre le premier angle de ballant Θx et la valeur d'offset Θxeq et un coefficient de correction K'Θx à la vitesse Θ'x.The control method also comprises a correction step performed by the correction module 22. The correction step calculates an offset value Θx eq of the angle Θx which is proportional to the rotation speed Vy and delivers a first signal correction ΔVx of the translation speed which takes into account the offset value Θx eq . The first correction signal ΔVx is calculated by applying a correction coefficient K Θx to the difference between the first swinging angle Θx and the offset value Θx eq and a correction coefficient K ' Θx at the speed Θ'x.

Claims (22)

  1. A control device for controlling the movement of a load (15) suspended by suspension cables (14) from a suspension point (10) of a hoisting machine (5), the suspension point (10) being capable of performing a rotation movement about a vertical rotation axis (Z) and a translation movement along a translation axis (X), the rotation movement generating a first sway angle (Θx) of the load (15) along the translation axis (X), characterized in that the control device (20) comprises calculation means that determine the first sway angle (Θx) and a speed (Θ'x) of the first sway angle (Θx), using as the only input variables information representative of a length (L) of the suspension cables (14), information representative of a distance (R) between the rotation axis (Z) and the suspension point (10) and information representative of a rotation speed (Vy) of the suspension point (10), and using as internal variable an acceleration (Θ"x) of the first sway angle (Θx).
  2. The control device as claimed in claim 1, characterized in that the calculation means determine the first sway angle (Θx) and the speed (Θ'x) of the first sway angle (Θx) by means of an iterative process using the acceleration (Θ"x) of the first sway angle (Θx).
  3. The control device as claimed in claim 2, characterized in that the calculation means determine the first sway angle (Θx) of the load (15) by also taking into account the translation movement made by the suspension point (10) along the translation axis (X).
  4. The control device as claimed in claim 2, characterized in that the control device (20) calculates an offset value (Θxeq) of the first sway angle (Θx) which is a function of the rotation speed (Vy) of the suspension point (10) and delivers a first correction signal (ΔVx) for the speed of the translation movement of the suspension point (10) which takes into account the offset value (Θxeq).
  5. The control device as claimed in claim 4, characterized in that the first correction signal (ΔVx) is proportional to the difference between the first sway angle (Θx) and the offset value (Θxeq) and is proportional to the speed (Θ'x) of the first sway angle (Θx).
  6. The control device as claimed in claim 5, characterized in that the first correction signal (ΔVx) is added to a speed setpoint (Vcx) in order to supply a speed reference (Vxref) for the translation movement of the suspension point (10), the first correction signal (ΔVx) being calculated by applying a correction coefficient (KΘx, K'Θx) to the difference between the first sway angle (Θx) and the offset value (Θxeq) and to the speed (Θ'x) of the first sway angle (Θx).
  7. The control device as claimed in claim 6, characterized in that the correction coefficients (KΘx, K'Θx) are variable as a function of the length (L) of the suspension cables (14) of the load (15).
  8. The control device as claimed in claim 4, characterized in that the calculation means calculate a second sway angle (Θy) of the load (15) along a tangential axis (Y) perpendicular to the translation axis (X) and a speed (Θ'y) of the second sway angle (Θy), using as the only input variables the information representative of the length (L), the information representative of the distance (R) and the information representative of the rotation speed (Vy) and using as internal variable an acceleration (Θ"y) of the second sway angle (Θy).
  9. The control device as claimed in claim 8, characterized in that the calculation means (21) determine the second sway angle (Θy) and the speed (Θ'y) of the second sway angle (Θy) by means of an iterative process using the acceleration (Θ"y) of the second sway angle (Θy).
  10. The control device as claimed in claim 9, characterized in that the control device (20) supplies a second correction signal (ΔVy) for the rotation speed calculated by applying a correction coefficient (KΘy, K'Θy) to the second sway angle (Θy) and to the speed (Θ'y) of the second sway angle.
  11. An automation system designed to control the movement of a load (15) suspended by suspension cables (14) from a suspension point (10) of a hoisting machine (5), characterized in that the automation system comprises a control device as claimed in one of the preceding claims.
  12. A method for controlling the movement of a load (15) suspended by suspension cables (14) from a suspension point (10) of a hoisting machine (5), the suspension point (10) being capable of performing a rotation movement about a vertical rotation axis (Z) and a translation movement along a translation axis (X), the rotation movement generating a first sway angle (Θx) of the load (15) along the translation axis (X), characterized in that the method comprises a calculation step which determines the first sway angle (Θx) and a speed (Θ'x) of the first sway angle (Θx), using as the only input variables information representative of a length (L) of the suspension cables (14), information representative of a distance (R) between the rotation axis (Z) and the suspension point (10) and information representative of a rotation speed (Vy) of the suspension point (10), and using as internal variable an acceleration (Θ"x) of the first sway angle (Θx).
  13. The control method as claimed in claim 12, characterized in that the calculation step determines the first sway angle (Θx) and the speed (Θ'x) of the first sway angle (Θx) by means of an iterative process using the acceleration (Θ"x) of the first sway angle (Θx).
  14. The control method as claimed in claim 13, characterized in that the calculation step determines the first sway angle (Θx) of the load (15) by also taking into account the translation movement made by the suspension point (10) along the translation axis (X).
  15. The control method as claimed in claim 13, characterized in that the method comprises a correction step which calculates an offset value (Θxeq) of the first sway angle (Θx) which is proportional to the rotation speed (Vy) of the suspension point (10) and which delivers a first correction signal (ΔVx) for the speed of the translation movement of the suspension point (10) which takes into account the offset value (Θxeq).
  16. The control method as claimed in claim 15, characterized in that the first correction signal (ΔVx) is proportional to the difference between the first sway angle (Θx) and the offset value (Θxeq) and is proportional to the speed (Θ'x) of the first sway angle (Θx).
  17. The control method as claimed in claim 16, characterized in that the first correction signal (ΔVx) is added to a speed setpoint (Vcx) in order to supply a speed reference (Vxref) for the translation movement of the suspension point (10), the first correction signal (ΔVx) being calculated by applying a correction coefficient (KΘx, K'Θx) to the difference between the first sway angle (Θx) and the offset value (Θxeq) and to the speed (Θ'x) of the first sway angle (Θx).
  18. The control method as claimed in claim 17, characterized in that the correction coefficients (KΘx, K'Θx) are variable as a function of the length (L) of the suspension cables (14) of the load (15).
  19. The control method as claimed in claim 13, characterized in that the calculation step determines a second sway angle (Θy) of the load (15) along a tangential axis (Y) perpendicular to the translation axis (X) and a speed (Θ'y) of the second sway angle (Θy), using as the only input variables the information representative of the length (L), the information representative of the distance (R) and the information representative of the rotation speed (Vy), and using as internal variable an acceleration (Θ"y) of the second sway angle (Θy).
  20. The control method as claimed in claim 19, characterized in that the calculation step determines the second sway angle (Θy) and the speed (Θ'y) of the second sway angle (Θy) by means of an iterative process using the acceleration (Θ"y) of the second sway angle (Θy).
  21. The control method as claimed in claim 19, characterized in that the method comprises a correction step which supplies a second correction signal (ΔVy) for the rotation speed calculated by applying a correction coefficient (KΘy, K'Θy) to the second sway angle (Θy) and to the speed (Θ'y) of the second sway angle.
  22. The control method as claimed in claim 13, characterized in that the calculation step uses a pendulum mathematical model with damping.
EP09771368.9A 2008-12-15 2009-12-14 Device for controlling the movement of a load suspended from a crane Active EP2361216B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0858598A FR2939783B1 (en) 2008-12-15 2008-12-15 DEVICE FOR CONTROLLING THE DISPLACEMENT OF A LOAD SUSPENDED TO A CRANE
PCT/EP2009/067008 WO2010069890A1 (en) 2008-12-15 2009-12-14 Device for controlling the movement of a load suspended from a crane

Publications (2)

Publication Number Publication Date
EP2361216A1 EP2361216A1 (en) 2011-08-31
EP2361216B1 true EP2361216B1 (en) 2013-12-25

Family

ID=40873226

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09771368.9A Active EP2361216B1 (en) 2008-12-15 2009-12-14 Device for controlling the movement of a load suspended from a crane

Country Status (6)

Country Link
US (1) US8504253B2 (en)
EP (1) EP2361216B1 (en)
JP (1) JP2012512111A (en)
CN (1) CN102245490B (en)
FR (1) FR2939783B1 (en)
WO (1) WO2010069890A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110775819A (en) * 2019-11-21 2020-02-11 湖南沃森电气科技有限公司 Anti-swing control method and system for tower crane

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8930091B2 (en) * 2010-10-26 2015-01-06 Cmte Development Limited Measurement of bulk density of the payload in a dragline bucket
CN102285592A (en) * 2011-04-08 2011-12-21 中交第三航务工程局有限公司 Lifting bucket control system and control method
EP2562125B1 (en) 2011-08-26 2014-01-22 Liebherr-Werk Nenzing GmbH Crane control apparatus
CN102367159B (en) * 2011-09-15 2013-05-15 济南富友慧明监控设备有限公司 Method for determining missed drawing of tower crane
CN102431912B (en) * 2011-09-15 2013-10-30 济南富友慧明监控设备有限公司 Method for assessing balance weight of tower crane
CN102431918B (en) * 2011-09-15 2013-09-04 济南富友慧明监控设备有限公司 Method for judging damage position on steel structure of tower body of tower crane
CN102367158B (en) * 2011-09-15 2013-05-15 济南富友慧明监控设备有限公司 Method for determining tower crane roll-over critical state base on rigidity of tower body
CN102502403B (en) * 2011-10-28 2013-09-18 河南卫华重型机械股份有限公司 Sway-prevention control method for crane
CN102491178B (en) * 2011-12-15 2014-07-09 中联重科股份有限公司 Method and system for controlling rotation of crane
CN102530729B (en) * 2012-02-14 2014-05-21 三一重工股份有限公司 Method and system for controlling pendulum of suspender
CN102530725B (en) * 2012-03-29 2014-07-02 苏州市思玛特电力科技有限公司 Automobile crane anti-swing control technology
ITMI20131958A1 (en) * 2013-11-25 2015-05-26 Milano Politecnico DEVICE AND PROCEDURE FOR CHECKING THE PENDULUM OF A LOAD SUSPENDED BY A LIFTING EQUIPMENT
EP2896590A1 (en) 2014-01-16 2015-07-22 Caporali Roberto Paolo Luigi Method and device to control in open-loop the sway of payload for slewing cranes
CN103991801B (en) * 2014-05-12 2016-02-17 中联重科股份有限公司 Tower crane and anti-swing control method, device and system for lifting hook of tower crane
US9422139B1 (en) 2014-05-19 2016-08-23 Google Inc. Method of actively controlling winch swing via modulated uptake and release
NO20160103A1 (en) * 2016-01-20 2016-08-15 Frode Olsen High speed rotor. Motor units (M) that will make it possible to mount several units together into a larger and more powerful unit. The motor unit is then used in series to provide high rotational speed
JP7180966B2 (en) 2016-01-29 2022-11-30 マニタウォック クレイン カンパニーズ, エルエルシー visual outrigger monitoring system
US10829347B2 (en) 2016-11-22 2020-11-10 Manitowoc Crane Companies, Llc Optical detection system for lift crane
CN106595553B (en) * 2016-12-30 2019-05-03 杭州后博科技有限公司 A kind of steel tower connection structure gap detection method and system strong and weak based on swing
EP3566998B1 (en) * 2018-05-11 2023-08-23 ABB Schweiz AG Control of overhead cranes
CN111268564B (en) * 2020-02-10 2021-05-28 河北工业大学 Intelligent overhead traveling crane anti-swing control system based on iteration-genetic algorithm

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2188686A (en) * 1939-02-25 1940-01-30 Dravo Corp Luffing crane
US2589172A (en) * 1947-05-26 1952-03-11 George P Wagner Level luffing crane
US2805781A (en) * 1955-01-24 1957-09-10 Arthur L Senn Load stabilized crane
US3148548A (en) * 1959-03-20 1964-09-15 Northrop Corp Velocity measuring device
GB1132967A (en) * 1964-12-08 1968-11-06 Davy And United Instr Ltd Control systems for preventing swinging of suspended loads
JPS6241189A (en) * 1985-08-16 1987-02-23 株式会社日立製作所 Crane control system
JP2512821B2 (en) * 1989-03-27 1996-07-03 株式会社神戸製鋼所 Crane turning stop control method and device
EP0473784B1 (en) * 1990-03-23 1996-02-21 Kabushiki Kaisha Kobe Seiko Sho Method of and apparatus for controlling stopping of turning of upper swing unit for construction machines, and angle of inclination computing apparatus
JPH07110759B2 (en) * 1990-10-18 1995-11-29 株式会社神戸製鋼所 Method and apparatus for controlling turning stop of upper swing body in construction machine
FI91058C (en) * 1991-03-18 1996-01-10 Kci Kone Cranes Int Oy Procedure for controlling a crane
JP2564060B2 (en) * 1991-10-24 1996-12-18 株式会社神戸製鋼所 Safety equipment for construction machinery
JP2837313B2 (en) * 1992-05-22 1998-12-16 川鉄マシナリー株式会社 Crane steady rest / positioning control device
KR970003508B1 (en) * 1994-03-25 1997-03-18 한국원자력연구소 Speed control process for swing prevention of crane
DE19519368A1 (en) * 1995-05-26 1996-11-28 Bilfinger Berger Bau Method for determining the position of weight
JP3850520B2 (en) * 1997-08-19 2006-11-29 住友重機械工業株式会社 Klean deflection angle measuring device
US6072127A (en) * 1998-08-13 2000-06-06 General Electric Company Indirect suspended load weighing apparatus
JP2000034093A (en) * 1998-07-21 2000-02-02 Kobe Steel Ltd Slewing type working machinery and its safety working area and setting method of rated load
JP2000219482A (en) * 1999-01-28 2000-08-08 Hitachi Service & Engineering (West) Ltd Crane control method and control device
EP1326798B1 (en) * 2000-10-19 2006-04-05 Liebherr-Werk Nenzing GmbH Crane or digger for swinging a load hanging on a support cable with damping of load oscillations
US8005598B2 (en) * 2003-08-05 2011-08-23 Sintokogio, Ltd. Crane and controller thereof
JP4472949B2 (en) * 2003-08-21 2010-06-02 秀和 西村 Jib crane control method and apparatus
CN2663386Y (en) * 2003-12-10 2004-12-15 武汉港迪自动化系统有限责任公司 Intelligent-control electronic anti-rolling equipment of ship unloader
CN101233070B (en) * 2005-06-28 2012-09-26 Abb公司 Load control device for a crane
DE102007039408A1 (en) * 2007-05-16 2008-11-20 Liebherr-Werk Nenzing Gmbh Crane control system for crane with cable for load lifting by controlling signal tower of crane, has sensor unit for determining cable angle relative to gravitational force
US7832126B2 (en) * 2007-05-17 2010-11-16 Siemens Industry, Inc. Systems, devices, and/or methods regarding excavating
US7736415B2 (en) * 2007-09-05 2010-06-15 Specialty Minerals (Michigan) Inc. Rotary lance
FR2923818A1 (en) * 2007-11-19 2009-05-22 Schneider Toshiba Inverter DEVICE FOR REGULATING THE DISPLACEMENT OF A SUSPENDED LOAD.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110775819A (en) * 2019-11-21 2020-02-11 湖南沃森电气科技有限公司 Anti-swing control method and system for tower crane

Also Published As

Publication number Publication date
US8504253B2 (en) 2013-08-06
US20110218714A1 (en) 2011-09-08
JP2012512111A (en) 2012-05-31
CN102245490B (en) 2013-07-24
CN102245490A (en) 2011-11-16
FR2939783A1 (en) 2010-06-18
EP2361216A1 (en) 2011-08-31
FR2939783B1 (en) 2013-02-15
WO2010069890A1 (en) 2010-06-24

Similar Documents

Publication Publication Date Title
EP2361216B1 (en) Device for controlling the movement of a load suspended from a crane
EP2219988B1 (en) Device and method for regulating the displacement of a suspended load
EP0578280B1 (en) Pending charge movement control procedure and arrangement for implementing the same
EP1935732B1 (en) Adaptive braking control method for a vehicle
FR2591957A1 (en) PROPULSION CONTROL APPARATUS FOR MOTOR VEHICLES
FR2698344A1 (en) Device for regulating the transfer of a suspended load.
EP0713474B1 (en) Method for controlling the swinging motion of an oscillating load and device for applying same
EP1753947B1 (en) Method for controlling a set torque to be applied to wheels of an automatic transmission for a motor vehicle and corresponding device
EP0394147B1 (en) Device for controlling automatically the position and the oscillations of a suspended load during its transportation by a lifting device
EP3571466B1 (en) Autonomous method and device for determining the pitch attidude of a motor vehicle
EP0197989A1 (en) Method and device for limiting the swinging of a load freely hanging from a moving support
EP0611211B1 (en) System to control the speed of displacement of a swaying load and lifting device comprising such a system
FR2598141A1 (en) Control device for suppressing oscillations in a suspension-type crane
FR2704847A1 (en) Process and device for limiting the swing of a load suspended from a motorised support
FR2461676A1 (en) Control system for loading crane - calculates optimum trajectory using uniform acceleration and deceleration phases
EP1310768A1 (en) Method and device for displaying a velocity vector of an aircraft
WO2016038296A1 (en) System and method for controlling an electrical asynchronous machine
FR2775678A1 (en) Regulation of displacement of suspended load carried by crane
EP1094594B1 (en) Converter to control an electric hoisting motor
TWI804983B (en) Full-time anti-sway control method of bridge crane system based on inverter
WO2010003740A2 (en) Method for setting the speed loop of a speed variator
WO2023135373A1 (en) System for adapting the control of an electric bicycle motor to the resistance to forward travel
JP2006076685A (en) Anti-slip controller for trolley and crane equipped with it
FR2743058A1 (en) Anti-sliding device for mobile load carrier running on crane jib
CH694502A5 (en) Device for controlling a motor speed variator hoist having anti-sway function.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110503

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130926

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 646516

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009021015

Country of ref document: DE

Effective date: 20140213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140325

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131225

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 646516

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131225

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140428

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009021015

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140926

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009021015

Country of ref document: DE

Effective date: 20140926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141214

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141214

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091214

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231219

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231226

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231227

Year of fee payment: 15