EP0576053A1 - Verfahren zum Trocknen wasserhaltiger Feststoffe im Wirbelbett - Google Patents

Verfahren zum Trocknen wasserhaltiger Feststoffe im Wirbelbett Download PDF

Info

Publication number
EP0576053A1
EP0576053A1 EP93201455A EP93201455A EP0576053A1 EP 0576053 A1 EP0576053 A1 EP 0576053A1 EP 93201455 A EP93201455 A EP 93201455A EP 93201455 A EP93201455 A EP 93201455A EP 0576053 A1 EP0576053 A1 EP 0576053A1
Authority
EP
European Patent Office
Prior art keywords
condensate
cleaning zone
stripping medium
fluidized bed
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93201455A
Other languages
English (en)
French (fr)
Other versions
EP0576053B1 (de
Inventor
Hans-Jürgen Dr. Weiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Publication of EP0576053A1 publication Critical patent/EP0576053A1/de
Application granted granted Critical
Publication of EP0576053B1 publication Critical patent/EP0576053B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/005Treatment of dryer exhaust gases

Definitions

  • the invention relates to a process for drying a water-containing solid in a fluidized bed, which is indirectly heated by at least one heat exchanger device, thereby withdrawing vapor rich in vapor from the fluidized bed and passing some of the vapors as fluidizing medium through the fluidized bed, the rest or one another part of the vapors is cooled to form vapor condensate.
  • the solid to be dried can e.g. are coal, brown coal, peat, a water-based waste material or sludge.
  • the invention has for its object to sufficiently clean the vapor condensate formed in the process mentioned at the beginning in a simple and effective manner. According to the invention, this is done by bringing at least part of the vapor condensate into direct contact with gaseous or vaporous stripping medium in a cleaning zone and withdrawing partially cleaned condensate and stripping medium containing contaminants from the cleaning zone.
  • the inventive method of cleaning the vapor condensate can be designed in various ways. It is particularly useful to use water vapor as the stripping medium. It can be recommended that Guide the condensate into the cleaning zone at a temperature that is 0 to 10 ° C below the boiling temperature. As a result, the amount of water vapor used as the stripping medium can be kept low and, for example, in the range from 1 to 10% by weight of the amount of condensate.
  • the stripping medium water vapor
  • the stripping medium is generated by boiling and evaporating vapor condensate in the cleaning zone itself.
  • the vapors can be condensed under excess pressure (e.g. 1.5 to 10 bar) in the drying process itself, as described in German Patent 36 44 806. However, it is also possible to remove the vapor condensate to be cleaned outside the drying process at about atmospheric pressure (i.e. about the pressure at which the vapors leave the fluidized bed) or else at a pressure of 0.01 to 0.5 bar, e.g. after relaxation in a condensation turbine.
  • excess pressure e.g. 1.5 to 10 bar
  • the water-containing solids to be dried are fed through line (1) to a reactor (2) in which a fluidized bed (3) is located.
  • a heat exchanger device (4) through which a heating medium flows is arranged in the region of the fluidized bed (3).
  • Eddy medium emerges through pipes (5), which form a nozzle grate.
  • the fluidizing medium which is introduced in line (6) is a part of the water vapor-rich vapors which arise in the fluidized bed (3) during drying of the solid.
  • Vapors containing solids leave the fluidized bed (3) through the channel (9) and first reach a dedusting device (10), e.g. an electrostatic filter or a bag filter.
  • the solids separated out are led back through line (11) into the fluidized bed (3) or removed through line (11a).
  • the largely dedusted vapors leave the dedusting device (10) through line (12) and are divided between lines (13) and (14).
  • the vapors of line (13) are led back through the blower (15) and line (6) as fluidizing medium into the reactor (2).
  • these vapors are passed through line (17) to a compressor (16), which is preferably designed in several stages.
  • a compressor (16) By injecting water through line (20), saturated steam conditions are established in the condensed vapors of line (21).
  • These compressed vapors serve as heating medium and are fed through the line (21) to the heat exchanger device (4), the vapors at least partially condensing when flowing through the heat exchanger device.
  • the heat of condensation released serves as an effective energy source for indirect heating of the fluidized bed (3). Largely dried solid material slides down between the tubes (5) into the collecting chamber (2a) of the reactor (2) and is drawn off by the metering device (23).
  • the vapor condensate leaving the heat exchanger device (4) in line (25) contains various types of impurities.
  • a stripping column (26) which e.g. Contains bottoms or packing.
  • a gaseous or vaporous stripping medium is fed through the line (27) into the lower region of the column (26).
  • Steam is recommended as the stripping medium if the condensate led through the line (25) into the column (26) has a temperature which is 0 to 10 ° C and preferably at most 5 ° C below the boiling temperature.
  • the water vapor can also be generated by indirectly heating the vapor condensate. Boiling and evaporating vapor condensate can e.g. take place in the lower region of the stripping column (26) or outside.
  • the stripping medium containing impurities is drawn off at the top of the column (26) through line (29) and disposed of, for example by thermal treatment, in particular in an incineration plant. Another possibility is to pass the stripping medium drawn off in line (29) over activated carbon or activated coke for cleaning. If steam was used as the stripping medium, the cleaned water vapor can be dried continue to use, eg as a vortex medium. Alternatively, the contaminated stripping medium can also be condensed and the condensate can be disposed of by distributing it on the dried solid material.
  • Fig. 2 the reactor (2) with the fluidized bed (3) and the heat exchanger device (4) is again shown to dry the water-containing solids introduced in the line (1).
  • Low-water solids are drawn off in line (24).
  • the heating medium which is fed to the heat exchanger device through line (30) is now not compressed vapors, but e.g. Extraneous steam or thermal oil.
  • Dedusted vapors are led through line (31) to an expansion turbine (32), which is followed by a condenser (33).
  • the turbine (32) is preferably used to generate electrical energy.
  • the vapor condensate coming from the condenser (33) passes through the line (34) into the stripping column (26), to which stripping medium, in particular water vapor, is fed through the line (27a).
  • This stripping medium can be a partial flow of the dedusted vapors.
  • At least partially cleaned condensate leaves the column (26) in line (28) and stripping medium containing impurities is drawn off in line (29) via a vacuum pump (37).
  • Fig. 3 shows a modification of the method of Fig. 2, wherein the column (26) is operated at approximately atmospheric pressure.
  • the dedusted vapors from the lines (12) and (31) are led according to FIG. 3 to a condensation device (36), the heat of condensation being released being used as desired.
  • the vapor condensate formed passes through line (34) for purification into the stripping column (26), to which stripping medium, for example water vapor, is fed through line (27).
  • a fluidized bed dryer (2) shown in FIG. 2 100 t / h of lignite with grain sizes approximately below 8 mm and with a raw moisture content of 62.3% by weight are fed through line (1). 73.5 t / h of saturated steam with a temperature of 160 ° C. and a pressure of 6 bar are used as the heating medium, which is passed through the line (30) into the heat exchanger device (4), where the water vapor condenses. The heat required for drying is transferred to the fluidized bed (3), which is heated to approximately 105 ° C.
  • the chemical oxygen demand (COD) of the vapor condensate in line (34) is 110 mg O2 / l.
  • COD chemical oxygen demand
  • the vapor condensate in the stripping column (26) which has 12 trays, is cleaned to a COD of 50 mg O2 / l, so that it can be placed in a receiving water can.
  • Via line (29) 1 t / h of contaminated stripping steam is withdrawn from the column with a COD of 3.37 g of O2 / l and burned.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

Das Wirbelbett (3), in welchem die wasserhaltigen Feststoffe getrocknet werden, wird durch mindestens eine Wärmetauscher-Einrichtung (4) indirekt beheizt. Aus dem Wirbelbett (3) zieht man wasserdampfreiche Brüden ab und leitet einen Teil der Brüden als Wirbelmedium durch das Wirbelbett (3). Die restlichen Brüden werden unter Bildung von Brüdenkondensat abgekühlt. Mindestens ein Teil des Brüdenkondensats wird in einer Reinigungszone (26) mit gas- oder dampfförmigem Strippmedium in direkten Kontakt gebracht. Aus der Reinigungszone (26) zieht man gereinigtes Kondensat und getrennt davon Verunreinigungen enthaltendes Strippmedium ab. Vorzugsweise wird in der Reinigungszone (26) Wasserdampf als Strippmedium verwendet. <IMAGE>

Description

  • Die Erfindung betrifft ein Verfahren zum Trocknen eines wasserhaltigen Feststoffes in einem Wirbelbett, das durch mindestens eine Wärmetauscher-Einrichtung indirekt beheizt wird, dabei zieht man aus dem Wirbelbett wasserdampfreiche Brüden ab und leitet einen Teil der Brüden als Wirbelmedium durch das Wirbelbett, den Rest oder einen weiteren Teil der Brüden kühlt man unter Bildung von Brüdenkondensat ab. Bei dem zu trocknenden Feststoff kann es sich z.B. um Kohle, Braunkohle, Torf, einen wasserhaltigen Abfallstoff oder Schlamm handeln.
  • Ein Verfahren dieser Art ist im deutschen Patent 29 01 723 und im dazu korrespondierenden US-Patent 4 295 281 sowie im deutschen Patent 36 44 806 und in der deutschen Offenlegungsschrift 39 43 366 beschrieben. Bei diesem Verfahren entsteht zwangsläufig ein Brüdenkondensat, das gewisse Verunreinigungen enthält, so daß das Kondensat zumeist nicht direkt in den Vorfluter einer Kanalisation geleitet werden kann.
  • Der Erfindung liegt die Aufgabe zugrunde, das beim eingangs genannten Verfahren entstehende Brüdenkondensat auf einfache und wirksame Weise ausreichend zu reinigen. Erfindungsgemäß geschieht dies dadurch, daß man mindestens einen Teil des Brüdenkondensats in einer Reinigungszone mit gas- oder dampfförmigem Strippmedium in direkten Kontakt bringt und aus der Reinigungszone teilweise gereinigtes Kondensat und Verunreinigungen enthaltendes Strippmedium abzieht.
  • Das erfindungsgemäße Verfahren der Reinigung des Brüdenkondensats kann auf verschiedene Weise ausgestaltet werden. Es ist besonders zweckmäßig, als Strippmedium Wasserdampf zu verwenden. Dabei kann es sich empfehlen, das Kondensat mit einer Temperatur, die 0 bis 10°C unter der Siedetemperatur liegt, in die Reinigungszone zu leiten. Dadurch kann die Menge des als Strippmedium eingesetzten Wasserdampfs niedrig und z.B. im Bereich von 1 bis 10 Gew.% der Kondensatmenge gehalten werden.
  • Um das Brüdenkondensat beim Eintritt in die Reinigungszone in der Nähe der Siedetemperatur zu halten, kann es ferner zweckmäßig sein, das heiße Kondensat in die Reinigungszone hinein zu entspannen. Hierbei stellt sich die dem Entspannungsdruck entsprechende Siedetemperatur automatisch ein. Dies führt zu einer Teilverdampfung und dadurch zum teilweisen Strippen des Kondensats.
  • Bei einer weiteren Verfahrensvariante erzeugt man das Strippmedium, Wasserdampf, durch Aufkochen und Verdampfen von Brüdenkondensat in der Reinigungszone selbst.
  • Die Kondensation der Brüden kann unter Überdruck (z.B. 1,5 bis 10 bar) im Trocknungsverfahren selbst erfolgen, wie es im deutschen Patent 36 44 806 beschrieben ist. Es ist aber auch möglich, das zu reinigende Brüdenkondensat außerhalb des Trocknungsverfahrens bei etwa Atmosphärendruck (d.h. etwa dem Druck, mit dem die Brüden das Wirbelbett verlassen) oder aber bei einem Druck von 0,01 bis 0,5 bar, z.B. nach Entspannung in einer Kondensationsturbine, zu erzeugen.
  • Ausgestaltungsmöglichkeiten des Verfahrens werden mit Hilfe der Zeichnung erläutert. Es zeigt
  • Fig. 1
    das Fließschema einer ersten Verfahrensvariante,
    Fig. 2
    das Fließschema einer zweiten Verfahrensvariante und
    Fig. 3
    eine Abwandlung des Verfahrens der Fig. 2.
  • Gemäß Fig. 1 werden die wasserhaltigen, zu trocknenden Feststoffe durch die Leitung (1) einem Reaktor (2) aufgegeben, in welchem sich ein Wirbelbett (3) befindet. Im Bereich des Wirbelbettes (3) ist eine Wärmetauscher-Einrichtung (4) angeordnet, die von einem Heizmedium durchströmt wird. Wirbelmedium tritt durch Rohrleitungen (5) aus, die einen Düsenrost bilden. Bei dem Wirbelmedium, das in der Leitung (6) herangeführt wird, handelt es sich um einen Teil der wasserdampfreichen Brüden, die bei der Trocknung des Feststoffes im Wirbelbett (3) entstehen.
  • Feststoffe enthaltende Brüden verlassen das Wirbelbett (3) durch den Kanal (9) und gelangen zunächst zu einer Entstaubungseinrichtung (10), z.B. ein Elektrofilter oder ein Schlauchfilter. Die darin abgeschiedenen Feststoffe werden durch die Leitung (11) zurück in das Wirbelbett (3) geführt oder durch die Leitung (11a) abgeführt. Die weitgehend entstaubten Brüden verlassen die Entstaubungseinrichtung (10) durch die Leitung (12) und werden auf die Leitungen (13) und (14) aufgeteilt. Die Brüden der Leitung (13) führt man durch das Gebläse (15) und die Leitung (6) als Wirbelmedium zurück in den Reaktor (2).
  • Für die restlichen Brüden in der Leitung (14) bietet es sich an, ihren Wärmeinhalt auszunutzen. Beim Verfahren der Fig. 1 leitet man diese Brüden durch die Leitung (17) zu einem Verdichter (16), der vorzugsweise mehrstufig ausgebildet ist. Durch Wassereinspritzung durch die Leitung (20) stellt man in den verdichteten Brüden der Leitung (21) Sattdampfbedingungen ein. Diese verdichteten Brüden dienen als Heizmedium und werden durch die Leitung (21) der Wärmetauscher-Einrichtung (4) zugeführt, wobei die Brüden beim Durchströmen durch die Wärmetauscher-Einrichtung mindestens teilweise kondensieren. Dabei dient die freigesetzte Kondensationswärme als wirksame Energiequelle zum indirekten Erhitzen des Wirbelbettes (3). Weitgehend getrocknetes Feststoffmaterial rutscht zwischen den Röhren (5) hindurch nach unten in die Sammelkammer (2a) des Reaktors (2) und wird durch das Dosierorgan (23) abgezogen.
  • Das die Wärmeaustauscher-Einrichtung (4) in der Leitung (25) verlassende Brüdenkondensat enthält verschiedenartige Verunreinigungen. Um dieses Kondensat mindestens teilweise zu reinigen, gibt man es einer Strippkolonne (26) auf, die z.B. Böden oder Füllkörper enthält. In den unteren Bereich der Kolonne (26) speist man durch die Leitung (27) ein gas- oder dampfförmiges Strippmedium ein. Als Strippmedium ist Wasserdampf dann empfehlenswert, wenn das durch die Leitung (25) in die Kolonne (26) geführte Kondensat eine Temperatur aufweist, die 0 bis 10°C und vorzugsweise höchstens 5°C unter der Siedetemperatur liegt. Dadurch wird in der Kolonne (26) nur wenig des als Strippmedium benutzten Wasserdampfs dadurch verbraucht, daß dieser Wasserdampf in der Kolonne (26) kondensiert.
  • Anstatt von einer Fremdquelle Wasserdampf als Strippmedium heranzuführen, kann man den Wasserdampf auch durch indirekt beheiztes Aufkochen des Brüdenkondensats selbst erzeugen. Das Aufkochen und Verdampfen von Brüdenkondensat kann z.B. im unteren Bereich der Strippkolonne (26) oder außerhalb erfolgen.
  • Weitgehend gereinigtes Kondensat verläßt die Kolonne (26) in der Leitung (28) und kann z.B. in einen Vorfluter geleitet werden. Das Verunreinigungen enthaltende Strippmedium zieht man am Kopf der Kolonne (26) durch die Leitung (29) ab und entsorgt es z.B. durch thermische Behandlung insbesondere in einer Verbrennungsanlage. Eine andere Möglichkeit besteht darin, das in der Leitung (29) abgezogene Strippmedium zum Reinigen über Aktivkohle oder Aktivkoks zu leiten. Wenn als Strippmedium Wasserdampf verwendet wurde, kann man den gereinigten Wasserdampf im Trocknungsverfahren weiterverwenden, z.B. als Wirbelmedium. Alternativ kann das verunreinigte Strippmedium auch kondensiert und das Kondensat durch Verteilen auf das getrocknete Feststoffmaterial entsorgt werden.
  • In Fig. 2 ist wieder der Reaktor (2) mit dem Wirbelbett (3) und der Wärmetauscher-Einrichtung (4) dargestellt, um die in der Leitung (1) herangeführten wasserhaltigen Feststoffe zu trocknen. Wasserarme Feststoffe werden in der Leitung (24) abgezogen. Soweit gleiche Bezugsziffern verwendet sind, gelten auch hier die bereits zusammen mit Fig. 1 gegebenen Erläuterungen. Das Heizmedium, das man der Wärmetauscher-Einrichtung durch die Leitung (30) zuführt, sind nunmehr nicht verdichtete Brüden, sondern z.B. Fremddampf oder Thermoöl. Entstaubte Brüden werden durch die Leitung (31) zu einer Entspannungsturbine (32) geführt, der ein Kondensator (33) nachgeschaltet ist. Die Turbine (32) dient bevorzugt der Erzeugung elektrischer Energie. Das aus dem Kondensator (33) kommende Brüdenkondensat gelangt durch die Leitung (34) in die Strippkolonne (26), der man Strippmedium, insbesondere Wasserdampf, durch die Leitung (27a) zuführt. Bei diesem Strippmedium kann es sich um einen Teilstrom der entstaubten Brüden handeln. Zumindest teilweise gereinigtes Kondensat verläßt die Kolonne (26) in der Leitung (28) und Verunreinigungen enthaltendes Strippmedium zieht man in der Leitung (29) über eine Vakuumpumpe (37) ab.
  • Fig. 3 zeigt eine Abwandlung des Verfahrens der Fig. 2, wobei die Kolonne (26) etwa unter Atmosphärendruck betrieben wird. Die entstaubten Brüden aus den Leitungen (12) und (31) werden gemäß Fig. 3 zu einer Kondensationseinrichtung (36) geführt, wobei die frei werdende Kondensationswärme beliebig genutzt wird. Das gebildete Brüdenkondensat gelangt über die Leitung (34) zum Reinigen in die Strippkolonne (26), der man Strippmedium, z.B. Wasserdampf, durch die Leitung (27) zuführt.
  • Beispiel
  • In einem in Fig. 2 dargestellten Wirbelbett-Trockner (2) werden durch die Leitung (1) 100 t/h Braunkohle mit Korngrößen etwa unterhalb von 8 mm und mit einer Rohfeuchte von 62,3 Gew.% aufgegeben. Als Heizmedium dienen 73,5 t/h Sattdampf mit einer Temperatur von 160°C und einem Druck von 6 bar, der durch die Leitung (30) in die Wärmetauscher-Einrichtung (4) geleitet wird, wo der Wasserdampf kondensiert. Hierbei wird die für die Trocknung benötigte Wärme an das Wirbelbett (3) abgegeben, welches auf etwa 105°C aufgeheizt wird.
  • Aus dem Trockner werden durch die Leitung (24) 43,8 t/h Trockenbraunkohle mit einer Restfeuchte von 14 Gew.% und 155,6 t/h Brüden durch den Kanal (9) abgezogen. Nach ihrer Entstaubung im Elektrofilter (10) werden pro Stunde 99,4 t als Teilstrom der Brüden über Leitung (13), Gebläse (15) und Leitung (6) in den Wirbelbett-Trockner als Wirbeldampf zurückgeführt. Die restlichen 56,2 t/h Brüden werden, wie in Fig. 3 dargestellt, durch die Leitung (31) einer Kondensationseinrichtung (36) zugeführt, wo die Brüden unter Abgabe ihrer Kondensationswärme bei etwa 100°C kondensiert werden.
  • Der chemische Sauerstoffbedarf (CSB) des Brüdenkondensats in Leitung (34) liegt bei 110 mg O₂/l. Durch Strippen mit 1 t/h Niederdruck-Sattdampf aus der Leitung (27) wird das Brüdenkondensat in der Strippkolonne (26), welche 12 Böden aufweist, auf einen CSB von 50 mg O₂/l gereinigt, so daß es in einen Vorfluter gegeben werden kann. Über die Leitung (29) wird 1 t/h verunreinigter Strippdampf aus der Kolonne mit einem CSB von 3,37 g O₂/l abgezogen und verbrannt.

Claims (10)

  1. Verfahren zum Trocknen eines wasserhaltigen Feststoffes in einem Wirbelbett, das durch mindestens eine Wärmetauscher-Einrichtung indirekt beheizt wird, dabei zieht man aus dem Wirbelbett wasserdampfreiche Brüden ab und leitet einen Teil der Brüden als Wirbelmedium durch das Wirbelbett, den Rest oder einen weiteren Teil der Brüden kühlt man unter Bildung von Brüdenkondensat ab, dadurch gekennzeichnet, daß man mindestens einen Teil des Brüdenkondensats in einer Reinigungszone mit gas- oder dampfförmigem Strippmedium in direkten Kontakt bringt und aus der Reinigungszone teilweise gereinigtes Kondensat und Verunreinigungen enthaltendes Strippmedium abzieht.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Strippmedium in der Reinigungszone Wasserdampf verwendet wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man das Strippmedium durch Aufkochen und Verdampfen von Brüdenkondensat in der Reinigungszone erzeugt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Brüdenkondensat mit einer Temperatur, die 0 bis 10°C unter der Siedetemperatur liegt, in die Reinigungszone geleitet wird.
  5. Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß die Menge an Wasserdampf, die in die Reinigungszone geleitet wird, 1 bis 20 Gew.% der Kondensatmenge entspricht.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Brüdenkondensat in die Reinigungszone hinein entspannt wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Verunreinigungen enthaltende, aus der Reinigungszone abgezogene Strippmedium einer thermischen Behandlung unterzogen wird.
  8. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Verunreinigungen enthaltende, aus der Reinigungszone abgezogene Strippmedium über Aktivkohle oder Aktivkoks gereinigt wird.
  9. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß man das Verunreinigungen enthaltende, aus der Reinigungszone abgezogene Strippmedium kondensiert und das so gebildete Kondensat dem getrockneten Feststoff zumischt.
  10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß das über Aktivkohle oder Aktivkoks gereinigte Strippmedium Wasserdampf ist, den man in das Trocknungsverfahren leitet.
EP93201455A 1992-06-26 1993-05-21 Verfahren zum Trocknen wasserhaltiger Feststoffe im Wirbelbett Expired - Lifetime EP0576053B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4220953A DE4220953A1 (de) 1992-06-26 1992-06-26 Verfahren zum Trocknen wasserhaltiger Feststoffe im Wirbelbett
DE4220953 1992-06-26

Publications (2)

Publication Number Publication Date
EP0576053A1 true EP0576053A1 (de) 1993-12-29
EP0576053B1 EP0576053B1 (de) 1996-01-31

Family

ID=6461871

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93201455A Expired - Lifetime EP0576053B1 (de) 1992-06-26 1993-05-21 Verfahren zum Trocknen wasserhaltiger Feststoffe im Wirbelbett

Country Status (7)

Country Link
US (1) US5353517A (de)
EP (1) EP0576053B1 (de)
AU (1) AU659317B2 (de)
CA (1) CA2097011A1 (de)
DE (2) DE4220953A1 (de)
ES (1) ES2085104T3 (de)
GR (1) GR3019080T3 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10392575B2 (en) 2015-05-26 2019-08-27 General Electric Company Lignite drying with closed loop heat pump
BE1027666A1 (de) 2019-10-14 2021-05-07 Thyssenkrupp Ind Solutions Ag Kühler zum Kühlen von Schüttgut
BE1027675A1 (de) 2019-10-14 2021-05-07 Thyssenkrupp Ind Solutions Ag Kühler und Verfahren zum Kühlen von Schüttgut

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPO546497A0 (en) * 1997-03-05 1997-03-27 Technological Resources Pty Limited Process vessel and method of treating a charge of material
AUPO663297A0 (en) * 1997-05-07 1997-05-29 Technological Resources Pty Limited Enhanced heat transfer
AU9348601A (en) 2000-09-26 2002-04-08 Tech Resources Pty Ltd Upgrading solid material
DE10323774A1 (de) * 2003-05-26 2004-12-16 Khd Humboldt Wedag Ag Verfahren und Anlage zur thermischen Trocknung eines nass vermahlenen Zementrohmehls
CN100422677C (zh) * 2006-05-19 2008-10-01 登封电厂集团铝合金有限公司 煤粉干燥工艺及设备
CN101693843B (zh) * 2009-10-27 2013-01-23 山东天力干燥股份有限公司 一种煤的蒸汽回转调湿工艺系统及其方法
CN103644709A (zh) * 2013-12-25 2014-03-19 山东奥诺能源科技有限公司 一种过热蒸汽干燥装置和方法
CN104457210A (zh) * 2014-12-09 2015-03-25 成都丽雅纤维股份有限公司 烘干冷凝水回收装置
PL3098549T3 (pl) 2015-05-26 2018-12-31 General Electric Technology Gmbh Suszenie lignitu z użyciem obwodu odzyskiwania ciepła
EP3098509A1 (de) 2015-05-26 2016-11-30 Alstom Technology Ltd Braunkohletrocknung in einem mit braunkohle befeuerten kraftwerk mit einer wärmepumpe
EP3098397A1 (de) 2015-05-26 2016-11-30 Alstom Technology Ltd Braunkohletrocknungsintegration mit einem wasser-/dampfkraftzyklus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3258846A (en) * 1963-05-01 1966-07-05 Jr William Ward Powell Drying of web materials
US3654705A (en) * 1971-01-11 1972-04-11 Combustion Power Fluidized bed vapor compression drying apparatus and method
US4171243A (en) * 1975-06-17 1979-10-16 The Chemithon Corporation Spray drying method
DE2837309A1 (de) * 1978-08-26 1980-03-13 Duerr Otto Anlagen Gmbh Verfahren und anlage zur reinigung schadstoffhaltiger abluft aus trocknern von lackier- oder aehnlichen anlagen unter verwendung eines adsorptionsstoffes
DE3017778A1 (de) * 1979-05-11 1980-11-20 Gabriele Gavioli Vorrichtung zum reinigen von abgasen und verunreinigten daempfen
EP0203059A2 (de) * 1985-05-22 1986-11-26 Waagner-Biro Aktiengesellschaft Verfahren zur Trocknung von körnigen Feststoffen und Wirbelbetttrockner
US4715965A (en) * 1986-05-19 1987-12-29 Sigerson Adam L Method for separating and recovering volatilizable contaminants from soil
DE3943366A1 (de) * 1989-04-18 1990-10-25 Orgreb Inst Kraftwerke Verfahren und vorrichtung zum trocknen von feststoffmaterialien in einem indirekt beheizten wirbelschichtbett

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2467435A (en) * 1944-08-25 1949-04-19 Anderson Co V D Solvent recovery distillation system
US2813823A (en) * 1956-09-19 1957-11-19 Maurice W Putman Destructive distillation of hydrocarbonaceous materials
US3212197A (en) * 1961-06-08 1965-10-19 James R Crawford Drying method and apparatus
AU4296978A (en) * 1978-02-10 1979-08-16 Monash University Drying particulate materials
DE3343366A1 (de) * 1983-11-30 1985-06-05 Schaumburg-Lippische Baubeschlag-Fabrik W. Hautau GmbH, 3061 Helpsen Beschlag fuer den schiebefluegel von fenstern oder tueren
CS273337B2 (en) * 1986-12-31 1991-03-12 Rheinische Braunkohlenw Ag Method of damp loose materials drying in a drier with a whirling bed and equipment for carrying out this method
DE4029525A1 (de) * 1990-09-18 1992-03-19 Umwelt & Energietech Verfahren und vorrichtung zum trocknen von feststoffmaterialien in einem indirekt beheizten wirbelschichtbett
US5230167A (en) * 1991-10-30 1993-07-27 Westinghouse Electric Corp. Removal or organics and volatile metals from soils using thermal desorption

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3258846A (en) * 1963-05-01 1966-07-05 Jr William Ward Powell Drying of web materials
US3654705A (en) * 1971-01-11 1972-04-11 Combustion Power Fluidized bed vapor compression drying apparatus and method
US4171243A (en) * 1975-06-17 1979-10-16 The Chemithon Corporation Spray drying method
DE2837309A1 (de) * 1978-08-26 1980-03-13 Duerr Otto Anlagen Gmbh Verfahren und anlage zur reinigung schadstoffhaltiger abluft aus trocknern von lackier- oder aehnlichen anlagen unter verwendung eines adsorptionsstoffes
DE3017778A1 (de) * 1979-05-11 1980-11-20 Gabriele Gavioli Vorrichtung zum reinigen von abgasen und verunreinigten daempfen
EP0203059A2 (de) * 1985-05-22 1986-11-26 Waagner-Biro Aktiengesellschaft Verfahren zur Trocknung von körnigen Feststoffen und Wirbelbetttrockner
US4715965A (en) * 1986-05-19 1987-12-29 Sigerson Adam L Method for separating and recovering volatilizable contaminants from soil
DE3943366A1 (de) * 1989-04-18 1990-10-25 Orgreb Inst Kraftwerke Verfahren und vorrichtung zum trocknen von feststoffmaterialien in einem indirekt beheizten wirbelschichtbett

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10392575B2 (en) 2015-05-26 2019-08-27 General Electric Company Lignite drying with closed loop heat pump
BE1027666A1 (de) 2019-10-14 2021-05-07 Thyssenkrupp Ind Solutions Ag Kühler zum Kühlen von Schüttgut
BE1027675A1 (de) 2019-10-14 2021-05-07 Thyssenkrupp Ind Solutions Ag Kühler und Verfahren zum Kühlen von Schüttgut

Also Published As

Publication number Publication date
US5353517A (en) 1994-10-11
GR3019080T3 (en) 1996-05-31
CA2097011A1 (en) 1993-12-27
AU659317B2 (en) 1995-05-11
DE4220953A1 (de) 1994-01-05
EP0576053B1 (de) 1996-01-31
DE59301529D1 (de) 1996-03-14
AU4149493A (en) 1994-01-06
ES2085104T3 (es) 1996-05-16

Similar Documents

Publication Publication Date Title
EP0576053B1 (de) Verfahren zum Trocknen wasserhaltiger Feststoffe im Wirbelbett
EP0358006B1 (de) Verfahren zur Reinigung von aus Trocknungsanlagen stammenden Abgas und Anlage zur Durchführung des Verfahrens
EP0393179B1 (de) Verfahren zur erzeugung elektrischer energie und/oder heiz- und prozesswärme
DE3102819A1 (de) Verfahren fuer die rueckgwinnung von waerme bei der kohlevergasung und vorrichtung dafuer
EP0519225A1 (de) Verfahren und Vorrichtung zum Reinigen von Abgasen aus Ofenanlagen
DE2853989C2 (de) Verfahren zum Behandeln von wasserhaltigem Kondensat aus der Kühlung des Rohgases der Druckvergasung
EP0716264B1 (de) Verfahren zur Verbrennung von Klärschlamm und Anlage zur Durchführung des Verfahrens
DE2726302A1 (de) Verfahren und anlage zur reinigung von abwaessern
EP0203059B1 (de) Verfahren zur Trocknung von körnigen Feststoffen und Wirbelbetttrockner
EP0432812A1 (de) Verfahren zur Reinigung von kontaminierten Böden
DE10319477A1 (de) Verfahren zum Betreiben eines Dampfturbinenkraftwerks sowie Einrichtung zum Erzeugen von Dampf
DE2626653B2 (de) Verfahren und Vorrichtung zum Vorerhitzen von Kokskohle
WO1997008495A1 (de) Verfahren zur verbrennung von klärschlamm und anlage zur durchführung des verfahrens
DE3943366C2 (de) Verfahren und Vorrichtung zum Trocknen von Feststoffmaterialien in einem indirekt beheizten Wirbelschichtbett
DD142085A5 (de) Verfahren und vorrichtung zum trocknen eines festen materials
AT390018B (de) Verfahren und regenerationseinrichtung zur thermischen behandlung wie z.b. trocknung, verschwelung, vergasung pastoeser oder schlammartiger substanzen
EP0625924B1 (de) Verfahren zur verbesserten brüdenentsorgung bei der heissdampftrocknung
DD262559A3 (de) Verfahren und einrichtung zur trocknung und verbrennung von brenn- und abfallstoffen, insbesondere feuchter rohbraunkohle
EP0844916B1 (de) Verfahren zur dekontaminierung von schluff, schadstoffe und wasser enthaltenden suspensionen
DE2928138A1 (de) Verfahren zum reinigen von abgas
DE3242651A1 (de) Verfahren zur abtrennung von trockener flugasche aus einem gas
DE4419194C2 (de) Verfahren zur thermischen Abtrennung von organischen und/oder anorganischen Stoffen aus kontaminiertem Material
DE19605146A1 (de) Verfahren zum Trocknen einer Substanz
DE2701166A1 (de) Verfahren und anlage fuer die druckvergasung von festen brennstoffen, insbesondere fuer die kohledruckvergasung im festbettreaktor zur gewinnung eines der erzeugung von elektrischer energie dienenden reingases
AT323118B (de) Verfahren und einrichtung zur abscheidung von schwefeloxyden

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB GR NL

17P Request for examination filed

Effective date: 19940122

17Q First examination report despatched

Effective date: 19950622

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB GR NL

REF Corresponds to:

Ref document number: 59301529

Country of ref document: DE

Date of ref document: 19960314

ET Fr: translation filed
REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3019080

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2085104

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960424

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990429

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19990430

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20001201

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080529

Year of fee payment: 16

Ref country code: DE

Payment date: 20080523

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080522

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090521

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090602

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080425

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090522