EP0575003B1 - Electrical resistive layer - Google Patents

Electrical resistive layer Download PDF

Info

Publication number
EP0575003B1
EP0575003B1 EP93201714A EP93201714A EP0575003B1 EP 0575003 B1 EP0575003 B1 EP 0575003B1 EP 93201714 A EP93201714 A EP 93201714A EP 93201714 A EP93201714 A EP 93201714A EP 0575003 B1 EP0575003 B1 EP 0575003B1
Authority
EP
European Patent Office
Prior art keywords
layer
carbon
metals
resistance
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93201714A
Other languages
German (de)
French (fr)
Other versions
EP0575003A2 (en
EP0575003A3 (en
Inventor
Eckart Boettger
Heinz Prof. Dr. Dimigen
Claus-Peter Dr. Klages
Klaus Dr. Taube
Rudolf Thyen
Hubertus Hübsch
Rainer Veyhl
Andreas Dr. Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Philips Corporate Intellectual Property GmbH
Philips Patentverwaltung GmbH
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6461103&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0575003(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV, Philips Corporate Intellectual Property GmbH, Philips Patentverwaltung GmbH, Koninklijke Philips Electronics NV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP0575003A2 publication Critical patent/EP0575003A2/en
Publication of EP0575003A3 publication Critical patent/EP0575003A3/xx
Application granted granted Critical
Publication of EP0575003B1 publication Critical patent/EP0575003B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/006Thin film resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/075Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thin film techniques
    • H01C17/12Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thin film techniques by sputtering

Definitions

  • the invention relates to a Me-C: H layer as a high-resistance electrical resistance layer as well as a discrete electrical resistance and use the electrical resistance layer.
  • DE-OS 25 09 623 describes a method for producing electrical resistance layers made of Ta-C X with 0.35>X> 0.8 by sputtering.
  • Resistance layers are also described in EP 0 247 413 A1 by atomizing zircon / palladium, titanium / gold, zircon / gold, hafnium / gold or titanium / palladium can be produced in a reactive gas atmosphere. It should according to the teaching of this document, layers in the form of nitrides (claim 3) or carbides or carbonitrides can be produced (description column 3, lines 16-19).
  • the layers produced according to this document therefore consist of metallic conductive inclusions (gold, palladium or platinum) in a metallic conductive Matrix (carbide or nitride).
  • metallic conductive inclusions gold, palladium or platinum
  • metallic conductive Matrix carbbide or nitride
  • Such metal composite layers are accordingly also not suitable as layers with a high specific resistance. The The temperature dependence of the resistance is not specified.
  • TK temperature coefficient of resistance
  • Thin Solid Films 201 (1991) 109 discloses a method for producing Cr-Si-C films for thin-film resistors by means of a DC magnetron sputtering method in an Ar-CH 4 atmosphere, in which hydrogen is incorporated into the film and films, for example the composition Si 0.30 Cr 0.12 C 0.28 H 0.30 arise. These films have a negative temperature coefficient which is larger than that of Cr-Si-O layers.
  • the resistance value of a discrete electrical resistance can be a microstructuring process (coils in cylindrical, meandering in flat Resistance bodies) can be increased.
  • the one to be achieved in this process The final value / basic value ratio is due to the limited total area of the resistor set an upper limit because the conductor track does not become arbitrarily narrow may.
  • the trend in the development of discrete electrical resistances continues Towards miniaturization.
  • the area of the smallest designs is currently just around 1 x 2 mm2.
  • the demand for high impedance is therefore only through an increase in the specific resistance of the layer material used to fulfill.
  • Another object of the invention is to provide a corresponding one electrical resistance that can be used as a discrete component can specify.
  • an electrical resistance layer It is proposed that a highly cross-linked carbon-hydrogen matrix with 40 to 95 atom% carbon, 1 to 30 atom% Hydrogen and 4 to 60 atomic% of one or more metals selected from the 1st and / or 8th subgroup of the Periodic Table of the Elements (according to the new IUPAC nomenclature from the 8th and / or 9th and / or 10th and / or 11th group of the Periodic table of the elements), the metal or metals in the form of crystalline There are particles with a particle size in the nanometer range.
  • Me-C H layers unite specific resistance of greater than 1,000 ⁇ cm and a TK between -50 and +50 ppm / K, with no carbide formation between metal and carbon has taken place.
  • a preferred embodiment provides that as metals Metals from the copper group and / or platinum group can be selected. As Ag, Pt, Au and / or Cu has proven particularly suitable here.
  • Another advantageous variant provides that part of the carbon through Silicon and / or boron and / or nitrogen is replaced. It has proven to be cheap between 1 and 95%, advantageously between 1 and 40%, of the carbon content to be substituted by silicon and / or boron and / or nitrogen.
  • the layers according to the invention consist of a highly crosslinked hydrocarbon matrix with preferably embedded nanocrystalline, metallically conductive Particles. They behave at high electrical properties Metal contents metallic (positive TC), with a sufficiently low metal content like Semiconductors (negative TC).
  • TC Metal contents metallic
  • negative TC Semiconductors
  • the one to a layer with a TC Specific resistance estimated by interpolation is 0 ppm / K for the layer systems Ti-C: H, Ta-C: H and Nb-C: H approx. 200 - 300 ⁇ cm for the Layer systems Pt-C: H, Au-C: H and Cu-C: H around 10,000 ⁇ cm.
  • Me-C H layers are produced using the methods of the prior art Technology, i.e. with CVD or with PVD. Through a subsequent annealing process, preferably in air, the layer properties are subsequently stabilized (Pre-aging).
  • the changes in the layer structure increase particle size, healing of lattice defects, increase in matrix crosslinking
  • changes in chemical composition incorporation of oxygen, expulsion of hydrogen and carbon
  • can suitable tempering conditions temperature, time, surrounding medium
  • one TC close to 0 ppm / K can be achieved.
  • a passivation layer e.g. an approx. 100 nm thick amorphous, silicon-containing hydrocarbon layer (a-CSi: H).
  • a-CSi amorphous, silicon-containing hydrocarbon layer
  • the new thin-layer material according to the invention accordingly makes higher specific resistances than with CrSi (approx. 1,000 ⁇ cm) with the same TC. Due to the special microstructure of the material (dense amorphous network) there is also significantly improved long-term stability.
  • the invention further relates to an electrical resistance as a discrete component with the features of claim 5.
  • the electrical resistance layer described is then applied to a substrate in a layer thickness of 10 nanometers to 10 ⁇ m, preferably 50 nanometers to 5 ⁇ m, using the known method .
  • AIN, BN, Al 2 O 3 , SiC or silicate is used as the substrate.
  • the invention also relates to the use of the electrical resistance layer for producing electrical resistances as discrete and / or integrated components.
  • the invention is explained in more detail using three exemplary embodiments.
  • Pt-C H layers were produced by reactive HF sputtering.
  • the Traget-substrate distance was 5.5 cm, the total pressure was 0.020 mbar.
  • the proportion of ethyne in the gas phase was 2% (rest: argon), the target bias voltage 1.5 kV. That was how Ceramic substrates in 30 min. Obtain layers 0.5 ⁇ m thick.
  • the elementary analysis showed an atomic platinum fraction (Pt / (Pt + C)) of 0.09, the hydrogen content is lower overall than 30 at%.
  • the electrical characterization of the layer after an annealing process (1h, air, 300 ° C) gave a specific resistance of 19,000 ⁇ cm and a TK of 40 ppm / K at room temperature.
  • Pt-CSi H layers are produced by reactive HF sputtering with tetramethylsilane (TMS) been.
  • TMS tetramethylsilane
  • the target-substrate distance was 5.5 cm, the target bias voltage 2.0 kV.
  • the TMS partial pressure was 0.001 mbar (rest: argon).
  • the Elemental analysis showed an atomic platinum fraction (Pt / Pt + Si + C) of 0.33, one atomic silicon content (Si / (Pt + Si + C)) of 0.12 and an atomic carbon content (C / (Pt + Si + C)) of 0.55.
  • the total hydrogen content is less than 30 at%.
  • the electrical characterization of the layer after an annealing process (8h, air, 300 ° C) resulted a specific resistance of 63,000 ⁇ cm and a TK of -46 ppm / K Room temperature.

Description

Die Erfindung betrifft eine Me-C:H-Schicht als hochohmige elektrische Widerstandsschicht sowie einen diskreten elektrischen Widerstand und die Verwendung der elektrischen Widerstandsschicht.The invention relates to a Me-C: H layer as a high-resistance electrical resistance layer as well as a discrete electrical resistance and use the electrical resistance layer.

Elektrische Widerstandsschichten sind bereits bekannt. Die DE-OS 25 09 623 beschreibt ein Verfahren zur Herstellung von elektrischen Widerstandsschichten aus Ta-CX mit 0,35 > X > 0,8 durch Kathodenzerstäubung.Electrical resistance layers are already known. DE-OS 25 09 623 describes a method for producing electrical resistance layers made of Ta-C X with 0.35>X> 0.8 by sputtering.

Aus dieser Schrift geht hervor, daß im System Ta-C der geringe TK von -25 ppm/K mit einem spezifischen Widerstand von 200 - 300 µΩcm einhergeht (z.B. siehe Figur 3). Diese Schichten sind demnach für hochohmige Präzisionswiderstände, d.h. für Präzisionswiderstände mit einem spezifischen Widerstand von größer 1.000 µΩcm, nicht geeignet.This document shows that in the Ta-C system the low TC of -25 ppm / K with a specific resistance of 200 - 300 µΩcm (e.g. see figure 3). These layers are therefore for high-resistance precision resistors, i.e. For Precision resistors with a specific resistance greater than 1,000 µΩcm, not suitable.

In der EP 0 247 413 A1 werden ebenfalls Widerstandsschichten beschrieben, die durch Zerstäubung von Zirkon/Palladium, Titan/Gold, Zirkon/Gold, Hafnium/Gold oder Titan/Palladium in reaktiver Gasatmosphäre hergestellt werden. Es sollen gemäß der Lehre dieser Schrift ausdrücklich Schichten in Form von Nitriden (Anspruch 3) oder Karbiden oder Karbonitriden hergestellt werden (Beschreibung Spalte 3, Zeilen 16 - 19).Resistance layers are also described in EP 0 247 413 A1 by atomizing zircon / palladium, titanium / gold, zircon / gold, hafnium / gold or titanium / palladium can be produced in a reactive gas atmosphere. It should according to the teaching of this document, layers in the form of nitrides (claim 3) or carbides or carbonitrides can be produced (description column 3, lines 16-19).

Die nach dieser Druckschrift hergestellten Schichten bestehen demnach aus metallisch leitenden Einschlüssen (Gold, Palladium oder Platin) in einer metallisch leitenden Matrix (Carbid oder Nitrid). Derartige Metallkompositschichten sind demnach ebenfalls als Schichten mit einem hohen spezifischen Widerstand nicht geeignet. Die Temperaturabhängigkeit des Widerstandes wird nicht näher spezifiziert. The layers produced according to this document therefore consist of metallic conductive inclusions (gold, palladium or platinum) in a metallic conductive Matrix (carbide or nitride). Such metal composite layers are accordingly also not suitable as layers with a high specific resistance. The The temperature dependence of the resistance is not specified.

Moderne mikroelektronische Anwendungen erfordern aber gerade Widerstandswerte von mehr als 1 MΩ bei möglichst geringen Temperaturkoeffizienten des Widerstandes (im folgenden mit TK abgekürzt). Voraussetzung für die Realisierung solcher Komponenten sind Schichtmaterialien mit einem hohen spezifischen Widerstand von mindestens 1.000 µΩcm bei sehr geringem TK. Wie aus der Diskussion des Standes der Technik hervorgeht, sind diese Metall-Metallcarbid-Schichten nicht in der Lage, diese Anforderungen zu erfüllen. Deshalb werden z.Z. auch Systeme CrSi realisiert und für hochohmige Schichtwiderstände eingesetzt.However, modern microelectronic applications require resistance values of more than 1 MΩ with the lowest possible temperature coefficient of resistance (hereinafter abbreviated as TK). Prerequisite for the realization of such Components are layer materials with a high specific resistance of at least 1,000 µΩcm with very low TC. As from the discussion of the stand technology, these metal-metal carbide layers are unable to to meet these requirements. Therefore, currently CrSi systems also implemented and used for high-resistance film resistors.

Aus Thin Solid Films 201 (1991) 109 ist ein Verfahren zur Herstellung von Cr-Si-C- Filmen für Dünnschichtwiderstände durch ein D.C. Magnetron - Sputterverfahren in Ar-CH4- Atmosphäre bekannt, bei dem Wasserstoff in den Film eingebaut wird und Filme beispielsweise der Zusammensetzung Si0.30Cr0.12C0.28H0.30 entstehen. Diese Filme haben einen negativen Temperaturkoeffizenten, der größer ist als der von Cr-Si-O-Schichten.Thin Solid Films 201 (1991) 109 discloses a method for producing Cr-Si-C films for thin-film resistors by means of a DC magnetron sputtering method in an Ar-CH 4 atmosphere, in which hydrogen is incorporated into the film and films, for example the composition Si 0.30 Cr 0.12 C 0.28 H 0.30 arise. These films have a negative temperature coefficient which is larger than that of Cr-Si-O layers.

Der Widerstandswert eines diskreten elektrischen Widerstandes kann zwar durch einen Mikrostrukturierungsprozeß (Wendeln bei zylindrischen, Mändrieren bei flachen Widerstandskörpern) erhöht werden. Dem bei diesem Prozeß zu erzielenden Endwert/Grundwertverhältnis ist aber durch die begrenzte Gesamtfläche des Widerstandes eine obere Grenze gesetzt, da die Leiterbahn nicht beliebig schmal werden darf. Der Trend bei der Entwicklung diskreter elektrischer Widerstände geht aber in Richtung Miniaturisierung. Die Fläche der kleinsten Bauformen beträgt z.Z. nur noch rund 1 x 2 qmm. Die Forderung nach Hochohmigkeit ist deshalb nur durch eine Vergrößerung des spezifischen Widerstandes des verwendeten Schichtmaterials zu erfüllen.The resistance value of a discrete electrical resistance can be a microstructuring process (coils in cylindrical, meandering in flat Resistance bodies) can be increased. The one to be achieved in this process The final value / basic value ratio is due to the limited total area of the resistor set an upper limit because the conductor track does not become arbitrarily narrow may. However, the trend in the development of discrete electrical resistances continues Towards miniaturization. The area of the smallest designs is currently just around 1 x 2 mm². The demand for high impedance is therefore only through an increase in the specific resistance of the layer material used to fulfill.

Es ist deshalb die Aufgabe der vorliegenden Erfindung, ein Schichtwiderstandsmaterial zu realisieren, welches einen hohen spezifischen Widerstand, vorzugsweise von mehr als 1.000 µΩcm, mit einem niedrigen TK, vorzugsweise zwischen -100 und +100 ppm/K, verbindet. Eine weitere Aufgabe der Erfindung ist es, einen entsprechenden elektrischen Widerstand, der als diskretes Bauelement verwendet werden kann, anzugeben. It is therefore the object of the present invention to provide a sheet resistance material to realize which has a high specific resistance, preferably of more than 1,000 µΩcm, with a low TK, preferably between -100 and +100 ppm / K, connects. Another object of the invention is to provide a corresponding one electrical resistance that can be used as a discrete component can specify.

Die Aufgabe wird erfindungsgemäß dadurch gelöst, daß eine elektrische Widerstandsschicht vorgeschlagen wird, die aus einer hochvernetzten Kohlenstoff-Wasserstoff-Matrix mit 40 bis 95 Atom-% Kohlenstoff, 1 bis 30 Atom-% Wasserstoff und 4 bis 60 Atom-% eines oder mehrerer Metalle, ausgewählt aus der 1. und/oder 8. Nebengruppe des Periodensystems der Elemente (nach neuer IUPAC-Nomenklatur aus der 8. und/oder 9. und/oder 10. und/oder 11. Gruppe des Periodensystems der Elemente), wobei das oder die Metalle in Form von kristallinen Partikeln mit einer Partikelgröße im Nanometerbereich vorliegen, besteht. Überraschenderweise wurde gefunden, daß diese Me-C:H-Schichten einen spezifischen Widerstand von größer 1.000 µΩcm und einen TK zwischen -50 und +50 ppm/K aufweisen, wobei zwischen Metall und Kohlenstoff keine Carbidbildung stattgefunden hat. Eine bevorzugte Ausführungsform sieht vor, daß als Metalle Metalle aus der Kupfer-Gruppe und/oder Platin-Gruppe, ausgewählt werden. Als besonders geeignet hat sich hier Ag, Pt, Au und/oder Cu erwiesen.The object is achieved in that an electrical resistance layer It is proposed that a highly cross-linked carbon-hydrogen matrix with 40 to 95 atom% carbon, 1 to 30 atom% Hydrogen and 4 to 60 atomic% of one or more metals selected from the 1st and / or 8th subgroup of the Periodic Table of the Elements (according to the new IUPAC nomenclature from the 8th and / or 9th and / or 10th and / or 11th group of the Periodic table of the elements), the metal or metals in the form of crystalline There are particles with a particle size in the nanometer range. Surprisingly, it was found that these Me-C: H layers unite specific resistance of greater than 1,000 µΩcm and a TK between -50 and +50 ppm / K, with no carbide formation between metal and carbon has taken place. A preferred embodiment provides that as metals Metals from the copper group and / or platinum group can be selected. As Ag, Pt, Au and / or Cu has proven particularly suitable here.

Eine weitere vorteilhafte Variante sieht vor, daß ein Teil des Kohlenstoffes durch Silicium und/oder Bor und/oder Stickstoff ersetzt ist. Als günstig hat es sich erwiesen, zwischen 1 und 95 %, vorteilhafterweise zwischen 1 und 40 %, des Kohlenstoffanteiles durch Silicium und/oder Bor und/oder Stickstoff zu substituieren.Another advantageous variant provides that part of the carbon through Silicon and / or boron and / or nitrogen is replaced. It has proven to be cheap between 1 and 95%, advantageously between 1 and 40%, of the carbon content to be substituted by silicon and / or boron and / or nitrogen.

Die erfindungsgemäßen Schichten bestehen aus einer hochvernetzten Kohlenwasserstoff-Matrix mit bevorzugt eingebetteten nanocristallinen, metallisch leitenden Partikeln. Sie verhalten sich bezüglich ihrer elektrischen Eigenschaften bei hohen Metallgehalten metallisch (positiver TK), bei genügend niedrigem Metallgehalt wie Halbleiter (negativer TK). Für jedes Me-C:H-System gibt es demnach eine Zusammensetzung, bei der der TK = 0 ppm/K ist. Der zu einer Schicht mit einem TK = 0 ppm/K gehörende, durch Interpolation abgeschätzte spezifische Widerstand beträgt für die Schichtsysteme Ti-C:H, Ta-C:H und Nb-C:H ca. 200 - 300 µΩcm für die Schichtsysteme Pt-C:H, Au-C:H und Cu-C:H rund 10.000 µΩcm. Demnach weisen Schichten mit Metallen, die keine metallischen Carbide bilden, wie z.B. Platin, Gold und Kupfer, erhebliche Abweichungen von der als "Mooijschen Regel" bekannten empirischen Gesetzmäßigkeiten auf, wonach für die ganz überwiegende Zahl elektrischer Leiter ein TK zwischen -100 und +100 ppm/K mit einem spezifischen Widerstand zwischen etwa 100 und 200 µΩcm einhergeht. The layers according to the invention consist of a highly crosslinked hydrocarbon matrix with preferably embedded nanocrystalline, metallically conductive Particles. They behave at high electrical properties Metal contents metallic (positive TC), with a sufficiently low metal content like Semiconductors (negative TC). For each Me-C: H system there is a composition where the TK = 0 ppm / K. The one to a layer with a TC = Specific resistance estimated by interpolation is 0 ppm / K for the layer systems Ti-C: H, Ta-C: H and Nb-C: H approx. 200 - 300 µΩcm for the Layer systems Pt-C: H, Au-C: H and Cu-C: H around 10,000 µΩcm. Accordingly point Layers with metals that do not form metallic carbides, e.g. Platinum, gold and copper, significant deviations from what is known as "Mooij's rule" empirical laws according to which the vast majority of electrical Conduct a TC between -100 and +100 ppm / K with a specific resistance is between about 100 and 200 µΩcm.

Die Herstellung dieser Me-C:H-Schichten erfolgt mit den Methoden des Standes der Technik, d.h. mit CVD oder mit PVD. Durch einen anschließenden Temperprozeß, vorzugsweise an Luft, werden die Schichteigenschaften nachträglich stabilisiert (Voralterung). Die so hervorgerufenen Änderungen der Schichtstruktur (Erhöhung der Partikelgröße, Ausheilung von Gitterfehlern, Erhöhung der Matrixvernetzung) sowie Änderungen der chemischen Zusammensetzung (Einbau von Sauerstoff, Austreibung von Wasserstoff und Kohlenstoff) haben auch eine Änderung der elektrischen Eigenschaften zur Folge. Je nach Schichtsystem und Metallgehalt kann durch geeignete Temperbedingungen (Temperatur, Zeit, umgebendes Medium) ein TK nahe 0 ppm/K erreicht werden. Um die Schicht beim Tempern vor einer thermischen Zersetzung mit dem Luftsauerstoff zu schützen, kann zusätzlich auf die eigentliche Funktionsschicht eine Passivierungsschicht, z.B. eine ca. 100 nm dicke, amorphe, siliciumhaltige Kohlenwasser-stoffschicht (a-CSi:H), aufgebracht werden. Durch das neue erfindungsgemäße Dünnschichtmaterial werden demnach höhere spezifische Widerstände als bei CrSi (ca. 1.000 µΩcm) bei gleichem TK ermöglicht. Aufgrund der besonderen Mikrostruktur des Materials (dichtes amorphes Netzwerk) ergibt sich zudem eine wesentlich verbesserte Langzeitstabilität.These Me-C: H layers are produced using the methods of the prior art Technology, i.e. with CVD or with PVD. Through a subsequent annealing process, preferably in air, the layer properties are subsequently stabilized (Pre-aging). The changes in the layer structure (increase particle size, healing of lattice defects, increase in matrix crosslinking) as well as changes in chemical composition (incorporation of oxygen, expulsion of hydrogen and carbon) also have a change in electrical Properties. Depending on the layer system and the metal content, can suitable tempering conditions (temperature, time, surrounding medium) one TC close to 0 ppm / K can be achieved. To heat the layer before tempering Protecting decomposition with atmospheric oxygen can also affect the actual Functional layer a passivation layer, e.g. an approx. 100 nm thick amorphous, silicon-containing hydrocarbon layer (a-CSi: H). The new thin-layer material according to the invention accordingly makes higher specific resistances than with CrSi (approx. 1,000 µΩcm) with the same TC. Due to the special microstructure of the material (dense amorphous network) there is also significantly improved long-term stability.

Die Erfindung betrifft weiterhin noch einen elektrischen Widerstand als diskretes Bauelement mit den Merkmalen des Anspruchs 5. Erfindungsgemäß wird danach die beschriebene elektrische Widerstandsschicht auf ein Substrat in einer Schichtdicke von 10 Nanometer bis 10 µm, vorzugsweise 50 Nanometer bis 5 µm, mit dem bekannten Verfahren aufgebracht. In einer bevorzugten Ausführungsform wird als Substrat AIN, BN, Al2O3, SiC oder Silicat verwendet.The invention further relates to an electrical resistance as a discrete component with the features of claim 5. According to the invention, the electrical resistance layer described is then applied to a substrate in a layer thickness of 10 nanometers to 10 μm, preferably 50 nanometers to 5 μm, using the known method . In a preferred embodiment, AIN, BN, Al 2 O 3 , SiC or silicate is used as the substrate.

Letztlich betrifft die Erfindung auch die Verwendung der elektrischen Widerstandsschicht zum Herstellen von elektrischen Widerständen als diskrete und/oder integrierte Bauelemente.
Die Erfindung wird anhand von drei Ausführungsbeispielen näher erläutert.
Ultimately, the invention also relates to the use of the electrical resistance layer for producing electrical resistances as discrete and / or integrated components.
The invention is explained in more detail using three exemplary embodiments.

AusführungsbeispieleEmbodiments 1. Au-C:H1. Au-C: H

In einer mit einem Goldtarget (15 cm) ausgestatteten Parallelplatten-HF-Sputteranlage (13.56 MHz, 800 W, 1,5 kV Target-Biasspannung) (siehe Skizze 1) wird bei einem Druck von 0.03 mbar in einer Gasatmosphäre aus Argon (46 sccm, wobei sccm Standardkubikzentimeter pro Minute bedeutet und mit cm3/min. unter Standardbedingungen gleichzusetzen ist) und Ethylen (3 sccm) ein Plasma gezündet. Auf einem in 6 cm Abstand vom Target angebrachten Quarzsubstrat scheidet sich in 17 Minuten eine Au-C:H-Schicht von 1.5 µm Dicke ab. Die Elementaranalyse (Elektronenstrahl-Mikrosonde) ergibt einen atomaren Goldanteil (Au/(Au+C)) von 0,55, der Wasserstoffgehalt ist insgesamt kleiner als 30 at-%. Die elektrische Charakterisierung der Schicht ergibt einen spezifischen Widerstand von 2.500 µΩcm und einen TK von 45 ppm/K bei Raumtemperatur.In a parallel plate HF sputtering system (13.56 MHz, 800 W, 1.5 kV target bias voltage) equipped with a gold target (15 cm) (see sketch 1), argon (46 sccm , where sccm means standard cubic centimeters per minute and is equivalent to cm 3 / min under standard conditions) and ethylene (3 sccm) ignites a plasma. An Au-C: H layer with a thickness of 1.5 µm is deposited on a quartz substrate at a distance of 6 cm from the target. The elementary analysis (electron beam microsensor) shows an atomic gold content (Au / (Au + C)) of 0.55, the hydrogen content is less than 30 at%. The electrical characterization of the layer gives a specific resistance of 2,500 µΩcm and a TK of 45 ppm / K at room temperature.

2. Pt-C:H2. Pt-C: H

Pt-C:H-Schichten wurden durch reaktives HF-Sputtern hergestellt. Der Traget-Substratabstand betrug 5.5 cm, der Gesamtdruck 0.020 mbar. Der Ethin-Anteil der Gasphase betrug 2% (Rest: Argon), die Target-Biasspannung 1.5 kV. Auf diese Weise wurden auf Keramiksubstraten in 30 min. 0.5 µm dicke Schichten erhalten. Die Elementaranalyse ergab einen atomaren Platinanteil (Pt/(Pt+C)) von 0,09, der Wasserstoffgehalt ist insgesamt kleiner als 30 at-%. Die elektrische Charakterisierung der Schicht nach einem Temperprozeß (1h, Luft, 300°C) ergab einen spezifischen Widerstand von 19.000 µΩcm und einen TK von 40 ppm/K bei Raumtemperatur.Pt-C: H layers were produced by reactive HF sputtering. The Traget-substrate distance was 5.5 cm, the total pressure was 0.020 mbar. The proportion of ethyne in the gas phase was 2% (rest: argon), the target bias voltage 1.5 kV. That was how Ceramic substrates in 30 min. Obtain layers 0.5 µm thick. The elementary analysis showed an atomic platinum fraction (Pt / (Pt + C)) of 0.09, the hydrogen content is lower overall than 30 at%. The electrical characterization of the layer after an annealing process (1h, air, 300 ° C) gave a specific resistance of 19,000 µΩcm and a TK of 40 ppm / K at room temperature.

3. Pt-CSi:H3. Pt-CSi: H

Pt-CSi:H-Schichten sind durch reaktives HF-Sputtern mit Tetramethylsilan (TMS) hergestellt worden. Der Target-Substratabstand betrug 5.5 cm, die Target-Biasspannung 2.0 kV. Bei einem Prozeßdruck von 0.01 mbar betrug der TMS-Partialdruck 0.001 mbar (Rest: Argon). Bei einer Beschichtungszeit von 1 Stunde wurden 2 µm dicke Schichten hergestellt. Die Elementaranalyse ergab einen atomaren Platinanteil (Pt/Pt+Si+C) von 0.33, einen atomaren Silicium-anteil (Si/(Pt+Si+C)) von 0.12 und einen atomaren Kohlenstoffanteil (C/(Pt+Si+C)) von 0.55. Der Wasserstoffgehalt ist insgesamt kleiner als 30 at%. Die elektrische Charakterisierung der Schicht nach einem Temperprozeß (8h, Luft, 300°C) ergab einen spezifischen Widerstand von 63.000 µΩcm und einen TK von -46 ppm/K bei Raumtemperatur.Pt-CSi: H layers are produced by reactive HF sputtering with tetramethylsilane (TMS) been. The target-substrate distance was 5.5 cm, the target bias voltage 2.0 kV. At At a process pressure of 0.01 mbar, the TMS partial pressure was 0.001 mbar (rest: argon). With a coating time of 1 hour, 2 µm thick layers were produced. The Elemental analysis showed an atomic platinum fraction (Pt / Pt + Si + C) of 0.33, one atomic silicon content (Si / (Pt + Si + C)) of 0.12 and an atomic carbon content (C / (Pt + Si + C)) of 0.55. The total hydrogen content is less than 30 at%. The electrical characterization of the layer after an annealing process (8h, air, 300 ° C) resulted a specific resistance of 63,000 µΩcm and a TK of -46 ppm / K Room temperature.

Claims (7)

  1. A resistive film of a highly cross-linked carbon-hydrogen matrix comprising 40 to 95 at. % carbon, 1 to 30 at. % hydrogen and 4 to 60 at. % of one or more metals, selected from the 1st and/or 8th auxiliary group of the periodic table of elements, the metal(s) being present in the form of crystalline particles having a size in the nanometer range.
  2. A resistive film as claimed in Claim 1, characterized in that the metals are Ag, Au, Cu, Pt and/or Pd.
  3. A resistor as claimed in Claim 1, characterized in that the metals are present in the form of crystalline particles having a size ranging between 1 and 500 nm.
  4. A resistive film as claimed in Claim 1, characterized in that between 1-95 % of carbon is replaced by silicon and/or boron and/or nitrogen.
  5. A resistor for use as a discrete component, comprising a substrate and a resistive film having a thickness of 10 nm to 10 µm, which is composed of a highly cross-linked carbon-hydrogen matrix comprising 40 to 95 at. % carbon, 1 to 30 at. % hydrogen and 4 to 60 at. % of one or more metals, selected from the 1st and/or 8th auxiliary group of the periodic table of elements, the metal(s) being present in the form of crystalline particles having a size in the nanometer range.
  6. A resistor for use as a discrete component as claimed in Claim 5, characterized in that the substrate is composed of AlN, BN, Al2O3, SiC and/or silicate ceramic.
  7. The use of the resistive film as claimed in Claim 2 for manufacturing resistors for use as discrete and/or integrated components.
EP93201714A 1992-06-16 1993-06-15 Electrical resistive layer Expired - Lifetime EP0575003B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4219649 1992-06-16
DE4219649 1992-06-16

Publications (3)

Publication Number Publication Date
EP0575003A2 EP0575003A2 (en) 1993-12-22
EP0575003A3 EP0575003A3 (en) 1994-08-03
EP0575003B1 true EP0575003B1 (en) 1999-02-17

Family

ID=6461103

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93201714A Expired - Lifetime EP0575003B1 (en) 1992-06-16 1993-06-15 Electrical resistive layer

Country Status (6)

Country Link
US (2) US5677070A (en)
EP (1) EP0575003B1 (en)
JP (1) JPH06163201A (en)
DE (1) DE59309376D1 (en)
ES (1) ES2130212T3 (en)
TW (1) TW240321B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59605278D1 (en) * 1995-03-09 2000-06-29 Philips Corp Intellectual Pty Electrical resistance component with CrSi resistance layer
TW430827B (en) * 1998-05-22 2001-04-21 Advanced Refractory Tech Resistors with low temperature coefficient of resistance and methods of making
DE19834968A1 (en) * 1998-08-03 2000-02-17 Fraunhofer Ges Forschung Coating for tools for processing heat-treated glass
US6462467B1 (en) * 1999-08-11 2002-10-08 Sony Corporation Method for depositing a resistive material in a field emission cathode
WO2009129930A1 (en) * 2008-04-24 2009-10-29 Hochschule Für Technik Und Wirtschaft Des Saarlandes Film resistor with a constant temperature coefficient and production of a film resistor of this type
WO2014200011A1 (en) * 2013-06-12 2014-12-18 アルプス電気株式会社 Resistor and temperature detection device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2509623A1 (en) * 1975-03-05 1976-09-16 Siemens Ag Tantalum carbide electrical resistance films prodn. - by reactive cathodic sputtering with ring discharge plasma in ethylene-argon atmos
US4118788A (en) * 1977-03-07 1978-10-03 Bell Telephone Laboratories, Incorporated Associative information retrieval
US4159459A (en) * 1977-06-23 1979-06-26 Angstrohm Precision, Inc. Non-inductive cylindrical thin film resistor
DE2812497C3 (en) * 1978-03-22 1982-03-11 Preh, Elektrofeinmechanische Werke, Jakob Preh, Nachf. Gmbh & Co, 8740 Bad Neustadt Printed circuit
US4495524A (en) * 1983-06-21 1985-01-22 Nitto Electric Industrial Co., Ltd. Part for a slide variable resistor
US4599193A (en) * 1983-06-30 1986-07-08 Director-General Of The Agency Of Industrial Science And Technology, An Organ Of The Ministry Of International Trade And Industry Of Japan Highly electroconductive pyrolyzed product retaining its original shape and composition formed therefrom
GB2176443B (en) * 1985-06-10 1990-11-14 Canon Kk Liquid jet recording head and recording system incorporating the same
US4774151A (en) * 1986-05-23 1988-09-27 International Business Machines Corporation Low contact electrical resistant composition, substrates coated therewith, and process for preparing such
US5106538A (en) * 1987-07-21 1992-04-21 Raychem Corporation Conductive polymer composition
US5111178A (en) * 1990-06-15 1992-05-05 Bourns, Inc. Electrically conductive polymer thick film of improved wear characteristics and extended life
US5510823A (en) * 1991-03-07 1996-04-23 Fuji Xerox Co., Ltd. Paste for resistive element film

Also Published As

Publication number Publication date
TW240321B (en) 1995-02-11
EP0575003A2 (en) 1993-12-22
DE59309376D1 (en) 1999-03-25
EP0575003A3 (en) 1994-08-03
ES2130212T3 (en) 1999-07-01
JPH06163201A (en) 1994-06-10
US5677070A (en) 1997-10-14
US5748069A (en) 1998-05-05

Similar Documents

Publication Publication Date Title
DE2507731C3 (en) Measuring resistor for resistance thermometer and process for its manufacture
DE69635745T2 (en) Electrostatic holding device and manufacturing method thereof
CH626468A5 (en)
DD243514B1 (en) HARD COATINGS FOR MECHANICAL AND CORROSIVE CLADDED PARTS
EP0736881B1 (en) Electrical resistance device with CrSi resistance layer
DE102007026243A1 (en) Capacitive pressure sensor
DE102008054982A1 (en) Wafer chuck for EUV lithography
EP0337007B1 (en) Hard material protection layer with a homogeneous element distribution
EP0575003B1 (en) Electrical resistive layer
DE102012211746B4 (en) LOW-FRICTION COATING LAYER FOR A VEHICLE PART AND METHOD FOR PRODUCING THE SAME
WO2003087423A1 (en) Method for coating metal surfaces and substrate having a coated metal surface
DE102007011878A1 (en) Insulator layer system for a sensor and sensor with such an insulator layer system
WO1996016200A1 (en) Packing element, in particular for shutting-off and regulating means, and process for producing the same
DE2054069A1 (en) Process for the metallization of semiconductor components
DE4319144A1 (en) Low temp. coefft. resistive film
DE4441132A1 (en) Sealing element, in particular for shut-off and control elements and methods for its manufacture
EP3779526A1 (en) Method of manufacturing an aluminum layer and optical element
DE102009024608A1 (en) Ceramic heater and process for its production
DE102010055659A1 (en) Method for depositing dielectric layers in vacuum and use of the method
DE3445380A1 (en) Process for fabricating high-precision thin-film resistors
DE2262022C2 (en) Process for the production of sputtered resistance layers from tantalum-aluminum alloys
DE102020120107A1 (en) Electrically insulating, corrosion-resistant composite material and method for its manufacture
EP0405304A2 (en) Thin film resistors whose surface resistance values are comprised between 1M-ohms and several G-ohms and process of making it
DE10305109B4 (en) Component with an electrically highly insulating layer and method for its production
DE3400272A1 (en) Electrical resistor and method for the fabrication thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWA

Owner name: PHILIPS PATENTVERWALTUNG GMBH

17P Request for examination filed

Effective date: 19950203

17Q First examination report despatched

Effective date: 19970130

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWA

Owner name: PHILIPS PATENTVERWALTUNG GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB

REF Corresponds to:

Ref document number: 59309376

Country of ref document: DE

Date of ref document: 19990325

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990315

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2130212

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWA

Owner name: PHILIPS CORPORATE INTELLECTUAL PROPERTY GMBH

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020625

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020628

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020821

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030606

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040227

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040616

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040616