WO2014200011A1 - Resistor and temperature detection device - Google Patents

Resistor and temperature detection device Download PDF

Info

Publication number
WO2014200011A1
WO2014200011A1 PCT/JP2014/065426 JP2014065426W WO2014200011A1 WO 2014200011 A1 WO2014200011 A1 WO 2014200011A1 JP 2014065426 W JP2014065426 W JP 2014065426W WO 2014200011 A1 WO2014200011 A1 WO 2014200011A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
carbon
boron
carbon material
temperature
Prior art date
Application number
PCT/JP2014/065426
Other languages
French (fr)
Japanese (ja)
Inventor
小野 泰一
阿部 宗光
豪 鈴木
勝久 長田
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2014200011A1 publication Critical patent/WO2014200011A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/0652Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component containing carbon or carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/06Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material including means to minimise changes in resistance with changes in temperature

Definitions

  • the present invention relates to a resistor having boron-containing carbon and a temperature detection device.
  • Patent Document 1 discloses an invention related to an overheat detection temperature sensor with a fuse function in which a thick film PTC resistor and a thick film fuse are formed on a single substrate.
  • the thick film PTC resistor has a resin and carbon (such as the [0019] column in Patent Document 1).
  • the resistor described in Patent Document 1 has a temperature coefficient (temperature resistance characteristic) ([0021] column, [0032] column of Patent Document 1).
  • Patent Document 1 does not describe anything about the method of adjusting the temperature coefficient. Further, Patent Document 1 does not describe means for fixing a resistor containing carbon to a fixed resistance.
  • the resistor used in the temperature sensor has a temperature coefficient, and the temperature can be detected by measuring the resistance value of the resistor.
  • the resin swells / shrinks as the humidity changes, there is a problem that resistance noise occurs, resulting in detection errors.
  • the present invention is for solving the above-described conventional problems, and in particular, an object of the present invention is to provide a resistor capable of setting the temperature coefficient to zero.
  • Another object of the present invention is to provide a temperature detection device capable of canceling resistance noise and improving detection accuracy.
  • the resistor of the present invention includes a boron-treated first carbon material and a non-boron-treated second carbon material, and the first carbon material so that the temperature coefficient of resistance change is substantially zero.
  • the mixing ratio with the second carbon material is adjusted.
  • the first carbon material includes the first carbon material that has been treated with boron, the second carbon material that has not been treated with boron, and the resin material, and the temperature coefficient of resistance change is substantially zero, The mixing ratio of the second carbon material and the resin material is adjusted.
  • boron-treated first carbon material wherein the boron content is adjusted such that the temperature coefficient of resistance change is substantially zero.
  • the resistor of the present invention includes a boron-treated first carbon material and a resin material, and the boron content is adjusted so that the temperature coefficient of resistance change is substantially zero. It is a feature.
  • “Substantially 0” in this specification includes not only the case where it is actually 0, but also a measurement error and a slight deviation from 0 (absolute value of 50 ppm / ° C. or less).
  • the boron-containing carbon (first carbon material) and the second carbon material are mixed, the boron-containing carbon (first carbon material) and the second carbon material not subjected to boron treatment
  • the sign of each temperature coefficient can be reversed. Therefore, by mixing the first carbon material and the second carbon material, the temperature coefficient can be made substantially zero easily and appropriately.
  • the material of the first carbon material before boron treatment is composed of one or more of carbon nanotubes, carbon black, graphite, graphitized carbon fiber, carbon nanohorn, and carbon nanofilament. It is preferable.
  • the second carbon material is preferably composed of at least one of carbon nanotubes, carbon black, graphite, graphitized carbon fiber, carbon nanohorn, and carbon nanofilament.
  • the second carbon material may be formed by baking a resin material.
  • the resistor of the present invention is formed in a predetermined pattern on the surface of the substrate and fixed on the surface of the substrate by the resin material.
  • the glass material is deposited in a predetermined pattern on the surface of the substrate, and the glass material is baked and fixed on the surface of the substrate. Or it is enclosed inside the glass material.
  • the temperature detection device of the present invention includes a first resistor composed of the resistor described in any one of the above, and a second resistor having an absolute value of a temperature coefficient substantially larger than zero. The temperature is detected based on a difference in resistance value between the first resistor and the second resistor.
  • the temperature detection device of the present invention includes a first resistor containing a boron-treated first carbon material, and a second resistor having an absolute value of a temperature coefficient larger than that of the first resistor. It is provided, and temperature is detected based on a difference in resistance value between the first resistor and the second resistor.
  • the first resistor may be configured to include a second carbon material that has not been treated with boron.
  • the second resistor can be configured to include at least one of a boron-treated first carbon material and a boron-treated second carbon material.
  • the present invention it is possible to cancel a resistance noise due to humidity or the like, and to provide a temperature detection device excellent in detection accuracy.
  • the resistor of the present invention contains boron-containing carbon obtained by boron treatment on a carbon material, and the temperature coefficient can be made substantially zero.
  • thermoelectric device of the present invention resistance noise due to humidity or the like can be canceled, and detection accuracy can be improved as compared with the conventional case.
  • FIG.1 (a) is a top view of the temperature detection apparatus provided with the resistor in this embodiment
  • FIG.1 (b) (c) is a circuit diagram of a temperature detection apparatus.
  • FIG. 2 is a schematic diagram showing materials used for manufacturing the resistor.
  • FIG. 3A is a graph showing the relationship between the temperature and the resistance value of the carbon nanotube
  • FIG. 3B is a graph showing the relationship between the temperature and the resistance value of the boron-treated carbon nanotube.
  • FIG. 4 is a graph showing the relationship between the temperature and resistance value of carbon obtained by mixing boron-treated carbon nanotubes and carbon nanotubes (without boron treatment), and the relationship between the temperature and resistance value of boron-treated carbon nanotubes. .
  • FIG. 1 is a top view of the temperature detection apparatus provided with the resistor in this embodiment
  • FIG.1 (b) (c) is a circuit diagram of a temperature detection apparatus.
  • FIG. 2 is a schematic diagram showing materials used for manufacturing the resistor.
  • FIG. 5 is a sectional view showing a resistor according to another embodiment of the present invention.
  • FIG. 6A shows the change in resistance value with respect to the temperature of the graphitized carbon fiber not treated with boron
  • FIG. 6B shows the change in resistance value with respect to the temperature of the graphitized carbon fiber treated with boron. It is a graph.
  • FIG. 7A shows a change in resistance value with respect to the temperature of carbon black not subjected to boron treatment
  • FIG. 7B is a graph showing a change in resistance value with respect to temperature of carbon black subjected to boron treatment.
  • FIG. 8A shows a change in resistance value with respect to the temperature of carbon black not treated with boron
  • FIG. 8B is a graph showing a change in resistance value with respect to temperature of carbon black treated with boron.
  • the temperature detection device 1 shown in FIG. 1A has a configuration in which a first resistor 3 and a second resistor 4 are printed on the surface of a substrate 2 such as a flexible substrate or a hard substrate.
  • the temperature detection device 1 is used as a means for measuring temperature in the same manner as a thermistor or a thermocouple.
  • the resistors 3 and 4 are formed in a meander shape, but the shape is not limited, and may be a comb shape, a rectangular shape, or the like. Further, the shapes of the first resistor 3 and the second resistor 4 may be different from each other.
  • the first resistor 3 is formed having a boron-containing carbon obtained by boron-treating a carbon material, a carbon material not subjected to boron treatment, and a resin material.
  • first carbon material boron-containing carbon that has been subjected to boron treatment
  • second carbon material a carbon material that has not been subjected to boron treatment
  • the first carbon material and the second carbon material are mixed and used, it is preferable that the first carbon material and the second carbon material have the same material configuration.
  • FIG. 2 illustrates the boron treatment.
  • FIG. 2A is a schematic diagram of the carbon nanotube (CNT) 5
  • FIG. 2B is a schematic diagram of the boron source 6.
  • the boron source 6 is not particularly limited, and B powder, B 4 C, B 2 O 3 , BN, and the like can be presented.
  • the mixed material of the carbon nanotube 5 and the boron source 6 is filled in, for example, a discharge plasma sintering machine (SPS) (not shown), and heat-treated while passing an electric current through the mixed material.
  • SPS discharge plasma sintering machine
  • the heating temperature is about 2000 ° C.
  • boron-containing carbon nanotube (first carbon material) in which boron is doped into the carbon nanotube 5 can be manufactured.
  • FIG. 3A is a graph showing an increase / decrease in resistance value with respect to temperature change of the carbon nanotubes 5 (second carbon material) not subjected to boron treatment
  • FIG. It is a graph which shows the increase / decrease in the resistance value with respect to the temperature change of carbon material.
  • the carbon nanotubes constituting the first carbon material and the second carbon material used in the experiments of FIGS. 3A and 3B are VGCF (product name) manufactured by Showa Denko K.K.
  • the boron-containing carbon nanotube used in the experiment in FIG. 3B is a discharge plasma sintering machine in which boron carbide as a boron source is mixed with the carbon nanotube so that boron becomes 1 wt% (in the mixed material). SPS) and processed in vacuum at 2000 ° C. for 30 minutes.
  • VGCF the resistance value of the carbon nanotube as the second carbon material (without boron treatment: hereinafter referred to as VGCF) decreases almost linearly as the temperature increases. .
  • the temperature coefficient of this VGCF was ⁇ 1000 ppm / ° C.
  • the boron-containing carbon nanotube (hereinafter referred to as B-VGCF), which is the first carbon material, shows that the resistance value increases almost linearly as the temperature increases. It was.
  • the temperature coefficient of this B-VGCF was +120 ppm / ° C.
  • the resistance value of B-VGCF / VGCF hardly changed even when the temperature increased.
  • the temperature coefficient of B-VGCF / VGCF was ⁇ 3 ppm / ° C.
  • the temperature coefficient of B-VGCF / VGCF shown in FIG. 4 is substantially zero. Note that a measurement error is included in the range of substantially zero.
  • the first resistor 3 is made of resin that is a mixture of carbon nanotubes 5 (second carbon material) and boron-containing carbon nanotubes 8 (first carbon material) having positive and negative temperature coefficients. By dispersing in the material, the temperature coefficient of the first resistor 3 can be made substantially zero.
  • the second resistor 4 has a configuration in which boron-containing carbon nanotubes 8 (first carbon material) are dispersed in a resin material.
  • B-VGCF / VGCF shown in FIG. 4 is used for the first resistor 3 and B-VGCF is used for the second resistor 4.
  • the temperature coefficient of B-VGCF / VGCF is substantially zero, whereas the absolute value of the temperature coefficient of B-VGCF is substantially larger than zero.
  • the first resistor 3 shown in FIG. 1 is a fixed resistor (reference resistor) whose resistance value does not change even with a temperature change, while the second resistor 4 has a resistance value that changes with temperature change. It is a measuring resistor.
  • a voltage based on the resistance value of the second resistor 4 is input to the positive electrode input portion 10a of the differential amplifier 10 shown in FIG. 1B, and the resistance value of the first resistor 3 is input to the negative electrode input portion 10b.
  • a differential output can be obtained from the output unit 10c.
  • This differential output is based on the difference between the resistance values of the first resistor 3 and the second resistor 4, and the temperature can be detected by the differential output.
  • the first resistor 3 and the second resistor 4 are connected in series, and the potential at the connection point 11 between the first resistor 3 and the second resistor 4.
  • the (midpoint potential) is taken out, and the temperature can be detected based on the midpoint potential.
  • a differential output can be obtained by inputting the voltage acquired at the connection point of the full bridge circuit to the differential amplifier.
  • the same type of carbon material and the same type of resin are used for the first resistor 3 and the second resistor 4.
  • the “same kind” includes not only the same material but also the same kind if the properties are almost the same even if the composition and molecular weight are somewhat different. For example, any difference in temperature coefficient of about 10% or less is included in the same type. It is more preferable to use the same material for the first resistor 3 and the second resistor 4.
  • the same carbon nanotube (VGCF) is used for B-VGCF / VGCF used for the first resistor 3 and B-VGCF used for the second resistor 4.
  • the material of the resin (binder resin) used for the first resistor 3 and the second resistor 4 is not particularly limited, and it does not matter whether it is a thermosetting resin or a thermoplastic resin.
  • epoxy resin epoxy resin, polyethylene resin, urethane resin, acrylate resin, polyester resin, styrene resin, polycarbonate resin, butadiene resin, urea resin, phenol resin, and the like can be selected.
  • the second resistor 4 whose resistance value fluctuates due to a temperature change but also the first resistor 3 whose temperature coefficient is substantially zero is used.
  • the same type of carbon material and the same type of resin are used for the first resistor 3 and the second resistor 4, for example, when the resin swells due to humidity or the like, the resistance noise generated in the first resistor 3 and the second resistor 4 is substantially the same. For this reason, for example, by taking the difference between the resistance values of the first resistor 3 and the second resistor 4. It becomes possible to cancel the resistance noise.
  • the resistance noise that cannot be canceled only by the second resistor 4 can be canceled by combining the first resistor 3 and taking the difference of the resistance values of the resistors 3 and 4. As a result, it is possible to appropriately improve the temperature detection accuracy as compared with the prior art.
  • the resistance noise component is canceled even when the midpoint potential of the connection point 11 between the first resistor 3 and the second resistor 4 connected in series is detected. be able to.
  • the temperature of the first resistor 3 using carbon (B-VGCF / VGCF in FIG. 4) in which boron-containing carbon nanotubes 8 (first carbon material) and carbon nanotubes 5 (second carbon material) are mixed is used.
  • the coefficient is substantially 0, for example, the temperature coefficient can be substantially 0 by adjusting the amount of boron acting on the carbon nanotubes 5 (the amount of boron source added).
  • the first resistor 3 is composed of a carbon nanotube (B-VGCF) with an adjusted amount of boron action and a resin material.
  • the carbon nanotubes (VGCF) having the opposite sign of the temperature coefficient and the boron-containing carbon nanotubes (B-VGCF) are mixed at a predetermined ratio, thereby simplifying the process. And suitably, the temperature coefficient can be made substantially zero. Further, as shown in FIG. 3B, a boron-containing nanotube (B-VGCF) having a positive temperature coefficient substantially larger than 0 can be produced, and this boron-containing carbon nanotube (B-VGCF) is converted into a second value. It can be used as the resistor 4.
  • the second resistor 4 may be a carbon nanotube (no boron treatment) as the second carbon material (VGCF in FIG. 3A).
  • carbon whose resistance value temperature coefficient is controlled to a predetermined value other than 0 by mixing carbon nanotubes (without boron treatment) and boron-containing nanotubes may be used.
  • carbon whose resistance temperature coefficient is controlled to a predetermined value other than 0 by adjusting the amount of boron acting on the carbon nanotube (the amount of boron source added) may be used.
  • the temperature coefficient of the first resistor 3 is set to substantially 0.
  • the second resistor 4 has an absolute temperature coefficient that is higher than that of the first resistor 3.
  • a configuration having a large value may be employed.
  • the temperature coefficient of the first resistor 3 is not substantially zero, and the absolute value of the temperature coefficient of the first resistor 3 can be substantially larger than zero.
  • VGCF shown in FIG. 3A is used for the second resistor 4 and B-VGCF shown in FIG. 3B is used for the first resistor 3.
  • B-VGCF and VGCF can be mixed as the first resistor 3, but at this time, the temperature coefficient may not be substantially 0, and the temperature coefficient of the second resistor 4 ( The temperature coefficient (absolute value) may be smaller than the absolute value. Also in this embodiment, the same kind of carbon material and the same kind of resin are used for the first resistor 3 and the fourth resistor 4.
  • the temperature coefficient (absolute value) of the first resistor 3 is larger than 0, but the temperature of the first resistor 3 is increased.
  • the coefficient (absolute value) can be made smaller than the temperature coefficient (absolute value) of the second resistor 4.
  • the temperature can be detected. Also in this embodiment, resistance noise due to humidity or the like can be canceled, and the temperature detection accuracy can be improved as compared with the prior art.
  • the first resistor 3 and the second resistor of the above-described embodiment use carbon nanotubes treated with boron as the first carbon material, and use carbon nanotubes not treated with boron as the second carbon material.
  • the carbon nanotubes of the first carbon material and the second carbon material of the above-described embodiment are converted into fibrous carbon such as graphitized carbon fiber, carbon nanohorn, or carbon nanofilament, or carbon black, Any one or a mixture of two or more types of graphite can be substituted.
  • FIG. 6 shows resistance change characteristics (characteristics corresponding to temperature coefficients) with respect to temperature changes when graphitized carbon fibers are used as the first carbon material and the second carbon material.
  • graphitized carbon fiber “K223HM” manufactured by Mitsubishi Plastics, Inc. was used.
  • FIG. 6A shows the temperature characteristics of the second carbon material in which the graphitized carbon fiber is not boron-treated
  • FIG. 6B shows the temperature of the first carbon material in which the graphitized carbon fiber is boron-treated. The characteristics are shown.
  • This second carbon material is obtained by mixing boron carbide with a carbon material, adjusting the mixture to 1 wt% boron, and performing boron treatment by heating with a discharge plasma sintering machine (SPS). It is.
  • SPS discharge plasma sintering machine
  • FIGS. 7 (a) and 7 (b) are examples in which carbon black is used as the carbon material, and acetylene black (trade name “Denka Black”) manufactured by Denki Kagaku Kogyo Co., Ltd. is used to change the resistance value with respect to temperature change. It is the result of having measured each.
  • acetylene black trade name “Denka Black” manufactured by Denki Kagaku Kogyo Co., Ltd.
  • FIGS. 8A and 8B are examples in which carbon black different from that used in FIG. 7 is used as a carbon material.
  • Ketjen black “EC300J” manufactured by Lion Co., Ltd. is used, and resistance to temperature change is shown. It is the result of measuring each change in value.
  • the second carbon material that has not been boron-treated has a negative temperature coefficient
  • the first carbon material that has been boron-treated has a temperature of It can be seen that the coefficient is positive. Therefore, by mixing these materials, a resistor having substantially zero temperature characteristics can be formed.
  • a resistor having substantially zero temperature characteristics can also be configured by using only a boron-treated carbon material and adjusting the amount of boron contained.
  • the resistance value changes due to expansion and contraction accompanying the temperature change of the resin material. That is, by using a resin material, the resistance value has temperature characteristics. However, in the said embodiment, it originates in expansion
  • the temperature characteristic of the first carbon material can be varied by adjusting the boron content of the first carbon material, and the temperature of the resin material can be changed. It becomes possible to cancel or reduce a change in resistance value caused by expansion or contraction due to the change.
  • a resin material is used as a binder, a mixture of a carbon material and a resin material is patterned on the surface of the substrate 2, and the carbon material is fixed on the substrate surface by the resin material.
  • the carbon material and the glass powder are mixed, a pattern is formed on the surface of an alumina substrate or the like, and the glass powder is sintered. It can be fixed on the surface.
  • the temperature coefficient can be made substantially zero.
  • the temperature coefficient can be made substantially zero by using only the first carbon material and adjusting the amount of boron contained.
  • FIG. 5 shows a resistor 20 according to another embodiment.
  • the resistor 20 is enclosed in a cover 23 in which both sides of a carbon pressure-molded body 21 are sandwiched between electrode portions 22 and 22 and the carbon pressure-molded body 21 and the electrode portions 22 and 22 are formed of a glass material. Has been.
  • the wiring members 24 and 24 are connected to the electrode portions 22 and 22.
  • the carbon pressure-molded body 21 is obtained by pressure-molding a mixture of the first carbon material and the second carbon material, and is adjusted so that the temperature coefficient is substantially zero. Alternatively, the carbon pressure-molded body 21 is obtained by pressure-molding the first carbon material, and the temperature coefficient is substantially set to 0 by adjusting the boron content.
  • the electrode portions 22 and 22 are formed of dumet wires, and the wiring members 24 and 24 are formed of CP wires.
  • the resistor 20 shown in FIG. 5 can maintain its shape even if the carbon pressure-molded body does not contain a resin material. Even if a resin material is used, the amount thereof may be small. Since it is not necessary to include a resin material or it may be used slightly, it is not necessary to take into account a change in resistance value due to expansion or contraction of the resin material due to a temperature change, and the first carbon material and the second carbon material By adjusting the mixing ratio, the temperature coefficient can be made substantially zero. Alternatively, the temperature coefficient can be made substantially zero by using only the first carbon material and adjusting the amount of boron contained.
  • carbon nanotubes not subjected to boron treatment are used as the second carbon material.
  • a resin material fired and carbonized can be used as the second carbon material.
  • the second carbon material is formed by impregnating an aggregate of the first carbon material subjected to the boron treatment with a phenol resin and firing the carbon to carbonize the phenol resin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

[Purpose] The purpose of the present invention is to provide a temperature detection device with which it is possible to, in particular, cancel the resistance noise component and improve detection precision. [Means for Accomplishing the Purpose] This temperature detection device is characterized by the following: comprising a first resistor which has a temperature coefficient that is substantially 0 and which has a boron-containing carbon and a resin, and a second resistor which has a carbon material and resin or a boron-containing carbon and a resin and which has an absolute temperature coefficient that is substantially greater than 0; the same type of carbon material and same type of resin are used in the first resistor and second resistor; and temperature is detected on the basis of the difference in resistance between the first resistor and the second resistor.

Description

抵抗体及び温度検出装置Resistor and temperature detector
 本発明は、ホウ素含有カーボンを有する抵抗体、及び温度検出装置に関する。 The present invention relates to a resistor having boron-containing carbon and a temperature detection device.
 下記の特許文献1には、1枚の基板に、厚膜PTC抵抗体と、厚膜ヒューズとが形成されたヒューズ機能付き過熱検知用温度センサに関する発明が開示されている。 The following Patent Document 1 discloses an invention related to an overheat detection temperature sensor with a fuse function in which a thick film PTC resistor and a thick film fuse are formed on a single substrate.
 厚膜PTC抵抗体は、樹脂とカーボンとを有して構成されている(特許文献1の[0019]欄など)。 The thick film PTC resistor has a resin and carbon (such as the [0019] column in Patent Document 1).
特開平10-318852号公報Japanese Patent Laid-Open No. 10-318852
 特許文献1に記載された抵抗体は、温度係数(温度抵抗特性)を有している(特許文献1の[0021]欄、[0032]欄)。 The resistor described in Patent Document 1 has a temperature coefficient (temperature resistance characteristic) ([0021] column, [0032] column of Patent Document 1).
 しかしながら特許文献1には、温度係数の調整方法については何も記載されていない。また特許文献1には、カーボンを含む抵抗体を固定抵抗化する手段についても記載がなされていない。 However, Patent Document 1 does not describe anything about the method of adjusting the temperature coefficient. Further, Patent Document 1 does not describe means for fixing a resistor containing carbon to a fixed resistance.
 また、上記したように温度センサに用いられる抵抗体は温度係数を有しており、抵抗体の抵抗値を測定することで温度を検出することができる。しかしながら、湿度変化に伴って樹脂が膨潤・収縮などしたとき、抵抗ノイズが生じ、その結果、検出誤差が発生する問題があった。 Also, as described above, the resistor used in the temperature sensor has a temperature coefficient, and the temperature can be detected by measuring the resistance value of the resistor. However, when the resin swells / shrinks as the humidity changes, there is a problem that resistance noise occurs, resulting in detection errors.
 そこで本発明は、上記従来の課題を解決するためのものであり、特に、温度係数を0にすることが可能な抵抗体を提供することを目的としている。 Therefore, the present invention is for solving the above-described conventional problems, and in particular, an object of the present invention is to provide a resistor capable of setting the temperature coefficient to zero.
 また本発明は、抵抗ノイズ分をキャンセルして、検出精度を向上させることが可能な温度検出装置を提供することを目的としている。 Another object of the present invention is to provide a temperature detection device capable of canceling resistance noise and improving detection accuracy.
 本発明の抵抗体は、ホウ素処理された第1カーボン材料と、ホウ素処理されていない第2カーボン材料とを含み、抵抗変化の温度係数が実質的に0となるように前記第1カーボン材料と前記第2カーボン材料との混合比が調整されていることを特徴とするものである。 The resistor of the present invention includes a boron-treated first carbon material and a non-boron-treated second carbon material, and the first carbon material so that the temperature coefficient of resistance change is substantially zero. The mixing ratio with the second carbon material is adjusted.
 または、ホウ素処理された第1カーボン材料と、ホウ素処理されていない第2カーボン材料と、樹脂材料とを含み、抵抗変化の温度係数が実質的に0となるように前記第1カーボン材料と前記第2カーボン材料および前記樹脂材料の混合比が調整されていることを特徴とするものである。 Alternatively, the first carbon material includes the first carbon material that has been treated with boron, the second carbon material that has not been treated with boron, and the resin material, and the temperature coefficient of resistance change is substantially zero, The mixing ratio of the second carbon material and the resin material is adjusted.
 または、ホウ素処理された第1カーボン材料を含み、抵抗変化の温度係数が実質的に0となるようにホウ素の含有量が調整されていることを特徴とするものである。 Or a boron-treated first carbon material, wherein the boron content is adjusted such that the temperature coefficient of resistance change is substantially zero.
 あるいは、本発明の抵抗体は、ホウ素処理された第1カーボン材料と、樹脂材料とを含み、抵抗変化の温度係数が実質的に0となるようにホウ素の含有量が調整されていることを特徴とするものである。 Alternatively, the resistor of the present invention includes a boron-treated first carbon material and a resin material, and the boron content is adjusted so that the temperature coefficient of resistance change is substantially zero. It is a feature.
 本明細書での「実質的に0」とは、実際に0である場合のみならず、測定誤差や0からのわずかなずれ(絶対値で50ppm/℃以下)を含む。 “Substantially 0” in this specification includes not only the case where it is actually 0, but also a measurement error and a slight deviation from 0 (absolute value of 50 ppm / ° C. or less).
 本発明では、前記ホウ素含有カーボン(第1カーボン材料)と、第2カーボン材料とが混合されているため、ホウ素含有カーボン(第1カーボン材料)と、ホウ素処理を行っていない第2カーボン材料との各温度係数の正負を逆にできる。したがって第1カーボン材料と第2カーボン材料とを混ぜることで、温度係数を簡単かつ適切に実質的に0にすることができる。 In the present invention, since the boron-containing carbon (first carbon material) and the second carbon material are mixed, the boron-containing carbon (first carbon material) and the second carbon material not subjected to boron treatment The sign of each temperature coefficient can be reversed. Therefore, by mixing the first carbon material and the second carbon material, the temperature coefficient can be made substantially zero easily and appropriately.
 本発明の抵抗体は、前記第1カーボン材料のホウ素処理前の材料は、カーボンナノチューブ、カーボンブラック、グラファイト、グラファイト化カーボンファイバー、カーボンナノホーン、カーボンナノフィラメントのいずれか1種以上で構成されていることが好ましい。 In the resistor of the present invention, the material of the first carbon material before boron treatment is composed of one or more of carbon nanotubes, carbon black, graphite, graphitized carbon fiber, carbon nanohorn, and carbon nanofilament. It is preferable.
 また、前記第2カーボン材料は、カーボンナノチューブ、カーボンブラック、グラファイト、グラファイト化カーボンファイバー、カーボンナノホーン、カーボンナノフィラメントのいずれか1種以上で構成されていることが好ましい。 The second carbon material is preferably composed of at least one of carbon nanotubes, carbon black, graphite, graphitized carbon fiber, carbon nanohorn, and carbon nanofilament.
 さらに、前記第2カーボン材料は、樹脂材料を焼成して形成されたものであってもよい。 Furthermore, the second carbon material may be formed by baking a resin material.
 本発明の抵抗体は、基板の表面に所定のパターンで成膜され、前記樹脂材料によって前記基板の表面に定着されているものとなる。または、基板の表面にガラス材料と共に所定のパターンで成膜され、前記ガラス材料が焼成されて、前記基板の表面に定着されているものとなる。あるいは、ガラス材料の内部に封入されている。 The resistor of the present invention is formed in a predetermined pattern on the surface of the substrate and fixed on the surface of the substrate by the resin material. Alternatively, the glass material is deposited in a predetermined pattern on the surface of the substrate, and the glass material is baked and fixed on the surface of the substrate. Or it is enclosed inside the glass material.
 本発明の温度検出装置は、前記いずれかに記載された前記抵抗体からなる第1の抵抗体と、温度係数の絶対値が実質的に0よりも大きい第2の抵抗体と、が設けられ、前記第1の抵抗体と前記第2の抵抗体との抵抗値の差に基づいて、温度が検出されることを特徴とするものである。 The temperature detection device of the present invention includes a first resistor composed of the resistor described in any one of the above, and a second resistor having an absolute value of a temperature coefficient substantially larger than zero. The temperature is detected based on a difference in resistance value between the first resistor and the second resistor.
 また、本発明の温度検出装置は、ホウ素処理された第1カーボン材料を含む第1の抵抗体と、前記第1の抵抗体よりも温度係数の絶対値が大きい第2の抵抗体と、が設けられ、前記第1の抵抗体と前記第2の抵抗体との抵抗値の差に基づいて、温度が検出されることを特徴とするものである。 Further, the temperature detection device of the present invention includes a first resistor containing a boron-treated first carbon material, and a second resistor having an absolute value of a temperature coefficient larger than that of the first resistor. It is provided, and temperature is detected based on a difference in resistance value between the first resistor and the second resistor.
 この場合に、前記第1の抵抗体に、ホウ素処理されていない第2カーボン材料が含まれているものとして構成できる。 In this case, the first resistor may be configured to include a second carbon material that has not been treated with boron.
 さらに、前記第2抵抗体が、ホウ素処理された第1カーボン材料と、ホウ素処理されていない第2カーボン材料の少なくとも一方を含んでいるものとして構成できる。 Furthermore, the second resistor can be configured to include at least one of a boron-treated first carbon material and a boron-treated second carbon material.
 本発明によれば、湿度などによる抵抗ノイズをキャンセルでき、検出精度に優れた温度検出装置を提供できる。 According to the present invention, it is possible to cancel a resistance noise due to humidity or the like, and to provide a temperature detection device excellent in detection accuracy.
 本発明の抵抗体は、カーボン材料にホウ素処理してなるホウ素含有カーボンを含み、温度係数を実質的に0にすることが可能になる。 The resistor of the present invention contains boron-containing carbon obtained by boron treatment on a carbon material, and the temperature coefficient can be made substantially zero.
 また本発明の温度検出装置によれば、湿度などによる抵抗ノイズをキャンセルでき、従来に比べて検出精度を向上させることができる。 Further, according to the temperature detection device of the present invention, resistance noise due to humidity or the like can be canceled, and detection accuracy can be improved as compared with the conventional case.
図1(a)は、本実施形態における抵抗体を備えた温度検出装置の平面図であり、図1(b)(c)は、温度検出装置の回路図である。Fig.1 (a) is a top view of the temperature detection apparatus provided with the resistor in this embodiment, and FIG.1 (b) (c) is a circuit diagram of a temperature detection apparatus. 図2は、抵抗体を製造するのに用いる材料を示す模式図である。FIG. 2 is a schematic diagram showing materials used for manufacturing the resistor. 図3(a)は、カーボンナノチューブにおける温度と抵抗値との関係を示すグラフであり、図3(b)は、ホウ素処理したカーボンナノチューブの温度と抵抗値との関係を示すグラフである。FIG. 3A is a graph showing the relationship between the temperature and the resistance value of the carbon nanotube, and FIG. 3B is a graph showing the relationship between the temperature and the resistance value of the boron-treated carbon nanotube. 図4は、ホウ素処理したカーボンナノチューブとカーボンナノチューブ(ホウ素処理なし)とを混合したカーボンの温度と抵抗値との関係、及びホウ素処理したカーボンナノチューブの温度と抵抗値との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the temperature and resistance value of carbon obtained by mixing boron-treated carbon nanotubes and carbon nanotubes (without boron treatment), and the relationship between the temperature and resistance value of boron-treated carbon nanotubes. . 図5は、本発明の他の実施の形態の抵抗体を示す断面図、FIG. 5 is a sectional view showing a resistor according to another embodiment of the present invention. 図6(a)は、ホウ素処理されていないグラファイト化カーボンファイバーの温度に対する抵抗値の変化を示し、図6(b)は、ホウ素処理されたグラファイト化カーボンファイバーの温度に対する抵抗値の変化を示すグラフである。FIG. 6A shows the change in resistance value with respect to the temperature of the graphitized carbon fiber not treated with boron, and FIG. 6B shows the change in resistance value with respect to the temperature of the graphitized carbon fiber treated with boron. It is a graph. 図7(a)は、ホウ素処理されていないカーボンブラックの温度に対する抵抗値の変化を示し、図7(b)は、ホウ素処理されたカーボンブラックの温度に対する抵抗値の変化を示すグラフである。FIG. 7A shows a change in resistance value with respect to the temperature of carbon black not subjected to boron treatment, and FIG. 7B is a graph showing a change in resistance value with respect to temperature of carbon black subjected to boron treatment. 図8(a)は、ホウ素処理されていないカーボンブラックの温度に対する抵抗値の変化を示し、図8(b)は、ホウ素処理されたカーボンブラックの温度に対する抵抗値の変化を示すグラフである。FIG. 8A shows a change in resistance value with respect to the temperature of carbon black not treated with boron, and FIG. 8B is a graph showing a change in resistance value with respect to temperature of carbon black treated with boron.
 図1(a)に示す温度検出装置1は、フレキシブル基板や硬質基板などの基板2の表面に、第1の抵抗体3と第2の抵抗体4とを印刷した構成である。温度検出装置1は、サーミスタや熱電対などと同様に温度測定する手段として用いられる。 The temperature detection device 1 shown in FIG. 1A has a configuration in which a first resistor 3 and a second resistor 4 are printed on the surface of a substrate 2 such as a flexible substrate or a hard substrate. The temperature detection device 1 is used as a means for measuring temperature in the same manner as a thermistor or a thermocouple.
 図1(a)では各抵抗体3,4をミアンダ状に形成したが、形状を限定するものでなく、櫛歯状や矩形状等であってもよい。また、第1抵抗体3と第2抵抗体4の形状が互いに相違していてもよい。 In FIG. 1A, the resistors 3 and 4 are formed in a meander shape, but the shape is not limited, and may be a comb shape, a rectangular shape, or the like. Further, the shapes of the first resistor 3 and the second resistor 4 may be different from each other.
 第1の抵抗体3は、カーボン材料にホウ素処理してなるホウ素含有カーボンと、ホウ素処理されていないカーボン材料と、樹脂材料とを有して形成される。 The first resistor 3 is formed having a boron-containing carbon obtained by boron-treating a carbon material, a carbon material not subjected to boron treatment, and a resin material.
 本明細書では、ホウ素処理されたホウ素含有カーボンを「第1カーボン材料」と呼び、ホウ素処理されていないカーボン材料を「第2カーボン材料」と呼ぶ。第1カーボン材料と第2カーボン材料とを混合して使用する場合には、第1カーボン材料の素材と第2カーボン材料とが同じ材料構成であることが好ましい。 In this specification, boron-containing carbon that has been subjected to boron treatment is referred to as a “first carbon material”, and a carbon material that has not been subjected to boron treatment is referred to as a “second carbon material”. When the first carbon material and the second carbon material are mixed and used, it is preferable that the first carbon material and the second carbon material have the same material configuration.
 図2はホウ素処理を説明している。図2(a)は、カーボンナノチューブ(CNT)5の模式図であり、図2(b)は、ホウ素源6の模式図である。ホウ素源6は特に限定するものでないが、B粉末、BC、B、BNなどを提示できる。 FIG. 2 illustrates the boron treatment. FIG. 2A is a schematic diagram of the carbon nanotube (CNT) 5, and FIG. 2B is a schematic diagram of the boron source 6. The boron source 6 is not particularly limited, and B powder, B 4 C, B 2 O 3 , BN, and the like can be presented.
 カーボンナノチューブ5とホウ素源6との混合材料を、例えば、図示しない放電プラズマ焼結機(SPS)に充填し、混合材料に電流を流しながら加熱処理する。加熱温度は2000℃程度である。 The mixed material of the carbon nanotube 5 and the boron source 6 is filled in, for example, a discharge plasma sintering machine (SPS) (not shown), and heat-treated while passing an electric current through the mixed material. The heating temperature is about 2000 ° C.
 これにより、カーボンナノチューブ5にホウ素がドープされたホウ素含有カーボンナノチューブ(第1カーボン材料)を製造することができる。 Thereby, a boron-containing carbon nanotube (first carbon material) in which boron is doped into the carbon nanotube 5 can be manufactured.
 図3(a)は、ホウ素処理されていないカーボンナノチューブ5(第2カーボン材料)の温度変化に対する抵抗値の増減を示すグラフであり、図3(b)は、ホウ素含有カーボンナノチューブ8(第1カーボン材料)の温度変化に対する抵抗値の増減を示すグラフである。 FIG. 3A is a graph showing an increase / decrease in resistance value with respect to temperature change of the carbon nanotubes 5 (second carbon material) not subjected to boron treatment, and FIG. It is a graph which shows the increase / decrease in the resistance value with respect to the temperature change of carbon material.
 図3(a)(b)の実験に用いられた第1カーボン材料と第2カーボン材料を構成するカーボンナノチューブは、昭和電工(株)製のVGCF(製品名)である。また図3(b)での実験で使用したホウ素含有カーボンナノチューブは、カーボンナノチューブにホウ素源としての炭化ホウ素をホウ素が1wt%(混合材料中)となるように混合して放電プラズマ焼結機(SPS)にて、真空中で、2000℃、30分間の条件で処理したものである。 The carbon nanotubes constituting the first carbon material and the second carbon material used in the experiments of FIGS. 3A and 3B are VGCF (product name) manufactured by Showa Denko K.K. In addition, the boron-containing carbon nanotube used in the experiment in FIG. 3B is a discharge plasma sintering machine in which boron carbide as a boron source is mixed with the carbon nanotube so that boron becomes 1 wt% (in the mixed material). SPS) and processed in vacuum at 2000 ° C. for 30 minutes.
 図3(a)に示すように、第2カーボン材料であるカーボンナノチューブ(ホウ素処理なし:以下、VGCFという)では、温度が上昇するにつれて抵抗値がほぼ直線的に低下していくことがわかった。このVGCFの温度係数は、-1000ppm/℃であった。 As shown in FIG. 3 (a), it was found that the resistance value of the carbon nanotube as the second carbon material (without boron treatment: hereinafter referred to as VGCF) decreases almost linearly as the temperature increases. . The temperature coefficient of this VGCF was −1000 ppm / ° C.
 一方、図3(b)に示すように、第1カーボン材料であるホウ素含有カーボンナノチューブ(以下、B-VGCF)では、温度が上昇するにつれて抵抗値がほぼ直線的に上昇していくことがわかった。このB-VGCFの温度係数は、+120ppm/℃であった。 On the other hand, as shown in FIG. 3B, the boron-containing carbon nanotube (hereinafter referred to as B-VGCF), which is the first carbon material, shows that the resistance value increases almost linearly as the temperature increases. It was. The temperature coefficient of this B-VGCF was +120 ppm / ° C.
 このように、VGCFとB-VGCFとでは、温度係数の正負が逆になることがわかった。 Thus, it was found that the sign of the temperature coefficient is reversed between VGCF and B-VGCF.
 次に、図2(a)に示すVGCFとB-VGCFとを混合したカーボンを製造した。実験ではB-VGCFとVGCFとの比(wt%)が26.6(=B-VGCF/VGCF)となるように混合した。そして温度と抵抗値との関係を測定した。その実験結果が図4に示されている。 Next, carbon in which VGCF and B-VGCF shown in FIG. 2 (a) were mixed was manufactured. In the experiment, mixing was performed so that the ratio (wt%) of B-VGCF to VGCF was 26.6 (= B-VGCF / VGCF). The relationship between temperature and resistance value was measured. The experimental results are shown in FIG.
 図4に示すように、B-VGCF/VGCFは、温度が上昇しても抵抗値にほとんど変化が見られなかった。そして、B-VGCF/VGCFの温度係数は-3ppm/℃であった。 As shown in FIG. 4, the resistance value of B-VGCF / VGCF hardly changed even when the temperature increased. The temperature coefficient of B-VGCF / VGCF was −3 ppm / ° C.
 ここで、温度係数において、実際に0である場合のみならず、0からわずかにずれた状態(絶対値で50ppm/℃以下)も、実質的に0と定義する。よって図4に示すB-VGCF/VGCFの温度係数は実質的に0である。なお実質的に0の範囲には測定誤差も含まれる。 Here, not only when the temperature coefficient is actually 0, but also a state slightly deviated from 0 (50 ppm / ° C. or less in absolute value) is substantially defined as 0. Therefore, the temperature coefficient of B-VGCF / VGCF shown in FIG. 4 is substantially zero. Note that a measurement error is included in the range of substantially zero.
 本実施形態では、第1の抵抗体3には、温度係数の正負が逆であるカーボンナノチューブ5(第2カーボン材料)とホウ素含有カーボンナノチューブ8(第1カーボン材料)とを混合したカーボンを樹脂材料に分散させることで、第1の抵抗体3の温度係数を実質的に0にすることが可能である。 In the present embodiment, the first resistor 3 is made of resin that is a mixture of carbon nanotubes 5 (second carbon material) and boron-containing carbon nanotubes 8 (first carbon material) having positive and negative temperature coefficients. By dispersing in the material, the temperature coefficient of the first resistor 3 can be made substantially zero.
 一方、第2の抵抗体4は、ホウ素含有カーボンナノチューブ8(第1カーボン材料)を樹脂材料に分散させた構成とする。 On the other hand, the second resistor 4 has a configuration in which boron-containing carbon nanotubes 8 (first carbon material) are dispersed in a resin material.
 すなわち図4に示すB-VGCF/VGCFを第1の抵抗体3に使用し、B-VGCFを第2の抵抗体4に用いる。 That is, B-VGCF / VGCF shown in FIG. 4 is used for the first resistor 3 and B-VGCF is used for the second resistor 4.
 図4に示すように、B-VGCF/VGCFの温度係数は実質的に0であるのに対し、B-VGCFの温度係数の絶対値は実質的に0よりも大きい値となっている。 As shown in FIG. 4, the temperature coefficient of B-VGCF / VGCF is substantially zero, whereas the absolute value of the temperature coefficient of B-VGCF is substantially larger than zero.
 したがって図1に示す第1の抵抗体3は、温度変化によっても抵抗値が変化しない固定抵抗体(基準抵抗体)であり、一方、第2の抵抗体4は、温度変化によって抵抗値が変動する測定用抵抗体である。 Therefore, the first resistor 3 shown in FIG. 1 is a fixed resistor (reference resistor) whose resistance value does not change even with a temperature change, while the second resistor 4 has a resistance value that changes with temperature change. It is a measuring resistor.
 例えば図1(b)に示す差動増幅器10の正極入力部10aに第2の抵抗体4の抵抗値に基づく電圧を入力し、負極入力部10bに第1の抵抗体3の抵抗値に基づく電圧を入力することで、出力部10cから差動出力を得ることができる。 For example, a voltage based on the resistance value of the second resistor 4 is input to the positive electrode input portion 10a of the differential amplifier 10 shown in FIG. 1B, and the resistance value of the first resistor 3 is input to the negative electrode input portion 10b. By inputting the voltage, a differential output can be obtained from the output unit 10c.
 この差動出力は第1の抵抗体3と第2の抵抗体4の各抵抗値の差に基づくものであり、差動出力により温度を検出することができる。 This differential output is based on the difference between the resistance values of the first resistor 3 and the second resistor 4, and the temperature can be detected by the differential output.
 あるいは図1(c)に示すように、第1の抵抗体3と第2の抵抗体4とを直列接続し、第1の抵抗体3と第2の抵抗体4との接続点11の電位(中点電位)を取出し、その中点電位に基づいて、温度を検出することができる。また第1の抵抗体3及び第2の抵抗体4をそれぞれ複数個、用いてフルブリッジ回路を形成することも可能である。フルブリッジ回路の接続点にて取得された電圧を差動増幅器に入力することで差動出力を得ることができる。 Alternatively, as shown in FIG. 1C, the first resistor 3 and the second resistor 4 are connected in series, and the potential at the connection point 11 between the first resistor 3 and the second resistor 4. The (midpoint potential) is taken out, and the temperature can be detected based on the midpoint potential. It is also possible to form a full bridge circuit by using a plurality of first resistors 3 and a plurality of second resistors 4 respectively. A differential output can be obtained by inputting the voltage acquired at the connection point of the full bridge circuit to the differential amplifier.
 本実施形態では、第1の抵抗体3と第2の抵抗体4には同種のカーボン材料及び同種の樹脂を用いている。ここで「同種」とは同一の材料である場合のみならず、多少、組成や分子量などが異なっていても特性がほぼ同じであれば、同種に含まれる。例えば温度係数が10%程度以下の違いであれば同種に含まれる。なお、第1の抵抗体3と第2の抵抗体4とに同じ材料を用いることがより好ましい。図4に示した実験では、第1の抵抗体3に用いられるB-VGCF/VGCFと、第2の抵抗体4に用いられるB-VGCFとに同じカーボンナノチューブ(VGCF)を用いている。また、第1の抵抗体3及び第2の抵抗体4に用いられる樹脂(バインダー樹脂)の材質は特に限定されるものでなく熱硬化性樹脂・熱可塑性樹脂の別を問わない。 In the present embodiment, the same type of carbon material and the same type of resin are used for the first resistor 3 and the second resistor 4. Here, the “same kind” includes not only the same material but also the same kind if the properties are almost the same even if the composition and molecular weight are somewhat different. For example, any difference in temperature coefficient of about 10% or less is included in the same type. It is more preferable to use the same material for the first resistor 3 and the second resistor 4. In the experiment shown in FIG. 4, the same carbon nanotube (VGCF) is used for B-VGCF / VGCF used for the first resistor 3 and B-VGCF used for the second resistor 4. Further, the material of the resin (binder resin) used for the first resistor 3 and the second resistor 4 is not particularly limited, and it does not matter whether it is a thermosetting resin or a thermoplastic resin.
 樹脂材料には、エポキシ樹脂、ポリエチレン樹脂、ウレタン系樹脂、アクリル酸エステル樹脂、ポリエステル樹脂、スチレン樹脂、ポリカーボネート樹脂、ブタジエン樹脂、尿素樹脂、フェノール樹脂等を選択できる。 As the resin material, epoxy resin, polyethylene resin, urethane resin, acrylate resin, polyester resin, styrene resin, polycarbonate resin, butadiene resin, urea resin, phenol resin, and the like can be selected.
 ところで本実施形態では、温度変化によって抵抗値が変動する第2の抵抗体4だけでなく、温度係数が実質的に0となる第1の抵抗体3も用いている。本実施形態では、上記したように、第1の抵抗体3と第2の抵抗体4には同種のカーボン材料及び同種の樹脂を用いているので、湿度などにより例えば樹脂が膨潤したときに第1の抵抗体3及び第2の抵抗体4に生じる抵抗ノイズはほぼ同等であり、このため例えば、第1の抵抗体3と第2の抵抗体4との各抵抗値の差分を取ることで、抵抗ノイズ分をキャンセルすることが可能になる。すなわち、第2の抵抗体4のみではキャンセルできない抵抗ノイズを、第1の抵抗体3を組み合わせて、各抵抗体3,4の抵抗値の差分を取ること等で、キャンセルできるようにした。これにより、従来に比べて温度検出精度を適切に向上させることが可能になる。 By the way, in this embodiment, not only the second resistor 4 whose resistance value fluctuates due to a temperature change but also the first resistor 3 whose temperature coefficient is substantially zero is used. In the present embodiment, as described above, since the same type of carbon material and the same type of resin are used for the first resistor 3 and the second resistor 4, for example, when the resin swells due to humidity or the like, The resistance noise generated in the first resistor 3 and the second resistor 4 is substantially the same. For this reason, for example, by taking the difference between the resistance values of the first resistor 3 and the second resistor 4. It becomes possible to cancel the resistance noise. That is, the resistance noise that cannot be canceled only by the second resistor 4 can be canceled by combining the first resistor 3 and taking the difference of the resistance values of the resistors 3 and 4. As a result, it is possible to appropriately improve the temperature detection accuracy as compared with the prior art.
 また図1(c)に示すように、直列接続された第1の抵抗体3と第2の抵抗体4との接続点11の中点電位を検出する構成としても、抵抗ノイズ分をキャンセルすることができる。 As shown in FIG. 1C, the resistance noise component is canceled even when the midpoint potential of the connection point 11 between the first resistor 3 and the second resistor 4 connected in series is detected. be able to.
 上記では第1の抵抗体3に、ホウ素含有カーボンナノチューブ8(第1カーボン材料)とカーボンナノチューブ5(第2カーボン材料)とを混合したカーボン(図4のB-VGCF/VGCF)を用いて温度係数を実質的に0としたが、例えば、カーボンナノチューブ5に対するホウ素作用量(ホウ素源の添加量)を調整することでも、温度係数を実質的に0にすることができる。この場合の第1の抵抗体3は、ホウ素作用量を調整したカーボンナノチューブ(B-VGCF)と樹脂材料とで構成される。 In the above, the temperature of the first resistor 3 using carbon (B-VGCF / VGCF in FIG. 4) in which boron-containing carbon nanotubes 8 (first carbon material) and carbon nanotubes 5 (second carbon material) are mixed is used. Although the coefficient is substantially 0, for example, the temperature coefficient can be substantially 0 by adjusting the amount of boron acting on the carbon nanotubes 5 (the amount of boron source added). In this case, the first resistor 3 is composed of a carbon nanotube (B-VGCF) with an adjusted amount of boron action and a resin material.
 ただし図3(a)(b)に示すように、温度係数の正負が逆であるカーボンナノチューブ(VGCF)と、ホウ素含有カーボンナノチューブ(B-VGCF)とを所定の割合で混合することで、簡単かつ適切に、温度係数を実質的に0にすることができる。また図3(b)に示すように温度係数が実質的に0よりも大きい正値となるホウ素含有ナノチューブ(B-VGCF)を製造でき、このホウ素含有カーボンナノチューブ(B-VGCF)を第2の抵抗体4として用いることが可能である。 However, as shown in FIGS. 3 (a) and 3 (b), the carbon nanotubes (VGCF) having the opposite sign of the temperature coefficient and the boron-containing carbon nanotubes (B-VGCF) are mixed at a predetermined ratio, thereby simplifying the process. And suitably, the temperature coefficient can be made substantially zero. Further, as shown in FIG. 3B, a boron-containing nanotube (B-VGCF) having a positive temperature coefficient substantially larger than 0 can be produced, and this boron-containing carbon nanotube (B-VGCF) is converted into a second value. It can be used as the resistor 4.
 また第2の抵抗体4には、第2カーボン材料であるカーボンナノチューブ(ホウ素処理なし)(図3(a)のVGCF)を用いることもできる。また、カーボンナノチューブ(ホウ素処理なし)とホウ素含有ナノチューブとを混合して0でない所定の値に抵抗値温度係数が制御されたカーボンを使用してもよい。また同様にカーボンナノチューブに対するホウ素作用量(ホウ素源の添加量)を調整して0でない所定の値に抵抗値温度係数が制御されたカーボンを使用してもよい。 Also, the second resistor 4 may be a carbon nanotube (no boron treatment) as the second carbon material (VGCF in FIG. 3A). Alternatively, carbon whose resistance value temperature coefficient is controlled to a predetermined value other than 0 by mixing carbon nanotubes (without boron treatment) and boron-containing nanotubes may be used. Similarly, carbon whose resistance temperature coefficient is controlled to a predetermined value other than 0 by adjusting the amount of boron acting on the carbon nanotube (the amount of boron source added) may be used.
 なお第2の抵抗体4には第1の抵抗体3の抵抗値に近くなるカーボンを用いることが、温度検出感度を高くできて好ましい。よって図3、図4の実施例でみると、図4に示すように、第1の抵抗体3には、B-VGCF/VGCFを用い、第2の抵抗体4には、B-VGCFを用いることが好適である。 In addition, it is preferable to use carbon close to the resistance value of the first resistor 3 for the second resistor 4 because the temperature detection sensitivity can be increased. Therefore, in the embodiment of FIGS. 3 and 4, as shown in FIG. 4, B-VGCF / VGCF is used for the first resistor 3, and B-VGCF is used for the second resistor 4. It is preferable to use it.
 上記の実施形態では、第1の抵抗体3の温度係数を実質的に0としたが、別の実施形態では、第2の抵抗体4は、第1の抵抗体3よりも温度係数の絶対値が大きい構成とすることもできる。この場合、第1の抵抗体3の温度係数は実質的に0でなく、第1の抵抗体3の温度係数の絶対値を実質的に0よりも大きくすることができる。例えば、図3(a)に示すVGCFを第2の抵抗体4に用い、図3(b)に示すB-VGCFを第1の抵抗体3に用いる。また第1の抵抗体3として、B-VGCFとVGCFとを混ぜることが可能であるが、このとき、温度係数が実質的に0でなくてもよく、第2の抵抗体4の温度係数(絶対値)よりも小さい温度係数(絶対値)となればよい。また、この実施形態においても、第1の抵抗体3及び第4の抵抗体4に同種のカーボン材料及び同種の樹脂を用いる。 In the above embodiment, the temperature coefficient of the first resistor 3 is set to substantially 0. However, in another embodiment, the second resistor 4 has an absolute temperature coefficient that is higher than that of the first resistor 3. A configuration having a large value may be employed. In this case, the temperature coefficient of the first resistor 3 is not substantially zero, and the absolute value of the temperature coefficient of the first resistor 3 can be substantially larger than zero. For example, VGCF shown in FIG. 3A is used for the second resistor 4 and B-VGCF shown in FIG. 3B is used for the first resistor 3. In addition, B-VGCF and VGCF can be mixed as the first resistor 3, but at this time, the temperature coefficient may not be substantially 0, and the temperature coefficient of the second resistor 4 ( The temperature coefficient (absolute value) may be smaller than the absolute value. Also in this embodiment, the same kind of carbon material and the same kind of resin are used for the first resistor 3 and the fourth resistor 4.
 図3(b)のB-VGCFを第1の抵抗体3として用いることで、第1の抵抗体3の温度係数(絶対値)は0よりも大きくなるが、第1の抵抗体3の温度係数(絶対値)を第2の抵抗体4の温度係数(絶対値)よりも小さくすることができる。 By using B-VGCF of FIG. 3B as the first resistor 3, the temperature coefficient (absolute value) of the first resistor 3 is larger than 0, but the temperature of the first resistor 3 is increased. The coefficient (absolute value) can be made smaller than the temperature coefficient (absolute value) of the second resistor 4.
 そして第1の抵抗体3と第2の抵抗体4との各抵抗値の差に基づいて、あるいは、直列接続された第1の抵抗体3と第2の抵抗体4との接続点11の電位に基づいて、温度を検出することができる。この実施形態においても湿度などによる抵抗ノイズ分をキャンセルでき、温度検出精度を従来に比べて向上させることができる。 And based on the difference of each resistance value of the 1st resistor 3 and the 2nd resistor 4, or of the connection point 11 of the 1st resistor 3 and the 2nd resistor 4 which were connected in series Based on the potential, the temperature can be detected. Also in this embodiment, resistance noise due to humidity or the like can be canceled, and the temperature detection accuracy can be improved as compared with the prior art.
 前記実施の形態の第1の抵抗体3と第2の抵抗体は、第1カーボン材料としてホウ素処理されたカーボンナノチューブを使用し、第2カーボン材料としてホウ素処理されていないカーボンナノチューブを使用するものとして説明したが、本発明では、前記実施の形態の第1カーボン材料と第2カーボン材料のカーボンナノチューブを、グラファイト化カーボンファイバーやカーボンナノホーンあるいはカーボンナノフィラメントなどの繊維状のカーボン、またはカーボンブラック、グラファイトのいずれか1種または2種以上の混合体に置き換えることが可能である。 The first resistor 3 and the second resistor of the above-described embodiment use carbon nanotubes treated with boron as the first carbon material, and use carbon nanotubes not treated with boron as the second carbon material. However, in the present invention, the carbon nanotubes of the first carbon material and the second carbon material of the above-described embodiment are converted into fibrous carbon such as graphitized carbon fiber, carbon nanohorn, or carbon nanofilament, or carbon black, Any one or a mixture of two or more types of graphite can be substituted.
 図6は、第1カーボン材料と第2カーボン材料としてグラファイト化カーボンファイバーを使用したときの温度変化に対する抵抗変化の特性(温度係数に相当する特性)を示している。グラファイト化カーボンファイバーは、三菱樹脂株式会社製の「K223HMを使用した。 FIG. 6 shows resistance change characteristics (characteristics corresponding to temperature coefficients) with respect to temperature changes when graphitized carbon fibers are used as the first carbon material and the second carbon material. As the graphitized carbon fiber, “K223HM” manufactured by Mitsubishi Plastics, Inc. was used.
 図6(a)は、前記グラファイト化カーボンファイバーをホウ素処理していない第2カーボン材料の温度特性を示し、図6(b)は、前記グラファイト化カーボンファイバーをホウ素処理した第1カーボン材料の温度特性を示している。この第2カーボン材料は、カーボン材料に炭化ホウ素を混合し、混合物に対してホウ素が1wt%となるように調整し、放電プラズマ焼結機(SPS)で加熱することでホウ素処理を行ったものである。 FIG. 6A shows the temperature characteristics of the second carbon material in which the graphitized carbon fiber is not boron-treated, and FIG. 6B shows the temperature of the first carbon material in which the graphitized carbon fiber is boron-treated. The characteristics are shown. This second carbon material is obtained by mixing boron carbide with a carbon material, adjusting the mixture to 1 wt% boron, and performing boron treatment by heating with a discharge plasma sintering machine (SPS). It is.
 図7(a)(b)は、カーボン材料としてカーボンブラックを使用した例であり、電気化学工業株式会社製のアセチレンブラック(商品名「デンカブラック」)を使用し、温度変化に対する抵抗値の変化をそれぞれ測定した結果である。 FIGS. 7 (a) and 7 (b) are examples in which carbon black is used as the carbon material, and acetylene black (trade name “Denka Black”) manufactured by Denki Kagaku Kogyo Co., Ltd. is used to change the resistance value with respect to temperature change. It is the result of having measured each.
 図8(a)(b)は、カーボン材料として図7で用いたものとは異なるカーボンブラックを使用した例であり、ライオン株式会社製のケッチェンブラック「EC300J」を使用し、温度変化に対する抵抗値の変化をそれぞれ測定した結果である。 FIGS. 8A and 8B are examples in which carbon black different from that used in FIG. 7 is used as a carbon material. Ketjen black “EC300J” manufactured by Lion Co., Ltd. is used, and resistance to temperature change is shown. It is the result of measuring each change in value.
 図6、図7、図8によれば、いずれのカーボン材料を使用したとしても、ホウ素処理されていない第2カーボン材料は、温度係数がマイナスで、ホウ素処理された第1カーボン材料は、温度係数がプラスであることが解る。よって、これら材料を混合することで、温度特性が実質的に0の抵抗体を構成することができる。また、ホウ素処理されたカーボン材料のみを使用し、含有するホウ素量を調整することによっても、温度特性が実質的に0の抵抗体を構成することができる。 According to FIGS. 6, 7, and 8, regardless of which carbon material is used, the second carbon material that has not been boron-treated has a negative temperature coefficient, and the first carbon material that has been boron-treated has a temperature of It can be seen that the coefficient is positive. Therefore, by mixing these materials, a resistor having substantially zero temperature characteristics can be formed. A resistor having substantially zero temperature characteristics can also be configured by using only a boron-treated carbon material and adjusting the amount of boron contained.
 ここで、カーボン材料と樹脂材料とで構成された抵抗体では、樹脂材料の温度変化に伴う膨張や収縮により抵抗値の変化を生じる。すなわち、樹脂材料を用いることで抵抗値が温度特性を有するものとなる。ただし、前記実施形態では、第1カーボン材料と第2カーボン材料との混合比を適度に設定して抵抗材料の温度特性(温度係数)を調整することで、樹脂材料の膨張や収縮に起因する抵抗値の変化を相殺し、または低減させることが可能である。 Here, in a resistor composed of a carbon material and a resin material, the resistance value changes due to expansion and contraction accompanying the temperature change of the resin material. That is, by using a resin material, the resistance value has temperature characteristics. However, in the said embodiment, it originates in expansion | swelling and shrinkage | contraction of a resin material by setting the mixing ratio of 1st carbon material and 2nd carbon material moderately, and adjusting the temperature characteristic (temperature coefficient) of resistance material. It is possible to cancel or reduce the change in resistance value.
 同様に、第1カーボン材料と樹脂材料とで構成された抵抗体においても、第1カーボン材料のホウ素の含有量を調整することで、第1カーボン材料の温度特性を可変でき、樹脂材料の温度変化に伴う膨張や収縮に起因する抵抗値の変化を相殺し、または低減させることが可能になる。 Similarly, in the resistor composed of the first carbon material and the resin material, the temperature characteristic of the first carbon material can be varied by adjusting the boron content of the first carbon material, and the temperature of the resin material can be changed. It becomes possible to cancel or reduce a change in resistance value caused by expansion or contraction due to the change.
 このように、第1カーボン材料と第2カーボン材料および樹脂材料の全ての混合比を調整することで、または第1カーボン材料と樹脂材料の混合比を調整することで、さらには、樹脂材料を選択することで、図1(a)に示すように、樹脂材料をバインダーとして、基板2の表面に抵抗体を定着させたときに、全体として温度変化に対する誤差の小さい抵抗体を構成できるようになる。 Thus, by adjusting all the mixing ratios of the first carbon material, the second carbon material, and the resin material, or by adjusting the mixing ratio of the first carbon material and the resin material, By selecting, as shown in FIG. 1A, when a resistor is fixed on the surface of the substrate 2 using a resin material as a binder, a resistor having a small error with respect to temperature change can be configured as a whole. Become.
 以下、本発明の他の実施の形態について説明する。
(1)前記実施の形態では、樹脂材料がバインダーとして使用され、カーボン材料と樹脂材料との混合体が基板2の表面にパターン化され、樹脂材料によってカーボン材料が基板表面に定着される。しかし、他の実施の形態として、樹脂材料を使用せず、前記カーボン材料とガラス粉末とを混合し、アルミナ基板などの表面にパターン形成し、ガラス粉末を焼結させることで、カーボン材料を基板表面に定着させることができる。
Hereinafter, other embodiments of the present invention will be described.
(1) In the above embodiment, a resin material is used as a binder, a mixture of a carbon material and a resin material is patterned on the surface of the substrate 2, and the carbon material is fixed on the substrate surface by the resin material. However, as another embodiment, without using a resin material, the carbon material and the glass powder are mixed, a pattern is formed on the surface of an alumina substrate or the like, and the glass powder is sintered. It can be fixed on the surface.
 この実施の形態は、樹脂材料を含ませる必要がないため、温度変化による樹脂材料の膨張や収縮による抵抗値の変化を加味する必要がなく、第1カーボン材料と第2カーボン材料との混合比を調整することで、温度係数を実質的に0にすることができる。または第1カーボン材料のみを使用し、含まれるホウ素量を調整することで温度係数を実質的に0にすることができる。 In this embodiment, since it is not necessary to include a resin material, it is not necessary to take into account a change in resistance value due to expansion or contraction of the resin material due to a temperature change, and a mixing ratio of the first carbon material and the second carbon material. By adjusting the temperature coefficient, the temperature coefficient can be made substantially zero. Alternatively, the temperature coefficient can be made substantially zero by using only the first carbon material and adjusting the amount of boron contained.
(2)図5には、他の実施の形態の抵抗体20が示されている。この抵抗体20は、カーボン加圧成形体21の両側が電極部22,22で挟まれ、カーボン加圧成形体21と電極部22,22とがガラス材料で形成されたカバー23の内部に封入されている。そして、電極部22,22に配線材24,24が接続されている。 (2) FIG. 5 shows a resistor 20 according to another embodiment. The resistor 20 is enclosed in a cover 23 in which both sides of a carbon pressure-molded body 21 are sandwiched between electrode portions 22 and 22 and the carbon pressure-molded body 21 and the electrode portions 22 and 22 are formed of a glass material. Has been. The wiring members 24 and 24 are connected to the electrode portions 22 and 22.
 カーボン加圧成形体21は、第1カーボン材料と第2カーボン材料との混合体が加圧成形されたものであり、温度係数が実質的に0となるように調整されている。または、カーボン加圧成形体21は、第1カーボン材料が加圧成形されたものであり、ホウ素の含有量を調整することで、温度係数が実質的に0に構成されている。電極部22,22はジュメット線で形成され、配線材24,24はCP線で形成されている。 The carbon pressure-molded body 21 is obtained by pressure-molding a mixture of the first carbon material and the second carbon material, and is adjusted so that the temperature coefficient is substantially zero. Alternatively, the carbon pressure-molded body 21 is obtained by pressure-molding the first carbon material, and the temperature coefficient is substantially set to 0 by adjusting the boron content. The electrode portions 22 and 22 are formed of dumet wires, and the wiring members 24 and 24 are formed of CP wires.
 図5に示す抵抗体20は、カーボン加圧成形体が樹脂材料を含まなくても形状を維持できる。また、樹脂材料を使用したとしてもその量はわずかでよい。樹脂材料を含ませる必要がなく、または使用してもわずかでよいため、温度変化による樹脂材料の膨張や収縮による抵抗値の変化を加味する必要がなく、第1カーボン材料と第2カーボン材料との混合比を調整することで、温度係数を実質的に0にすることができる。または第1カーボン材料のみを使用し、含まれるホウ素量を調整することで温度係数を実質的に0にすることができる。 The resistor 20 shown in FIG. 5 can maintain its shape even if the carbon pressure-molded body does not contain a resin material. Even if a resin material is used, the amount thereof may be small. Since it is not necessary to include a resin material or it may be used slightly, it is not necessary to take into account a change in resistance value due to expansion or contraction of the resin material due to a temperature change, and the first carbon material and the second carbon material By adjusting the mixing ratio, the temperature coefficient can be made substantially zero. Alternatively, the temperature coefficient can be made substantially zero by using only the first carbon material and adjusting the amount of boron contained.
(3)前記実施の形態では、ホウ素処理していないカーボンナノチューブなどを第2カーボン材料として使用したが、第2カーボン材料として、樹脂材料を焼成させ炭化させたものを使用することができる。例えば、ホウ素処理された第1カーボン材料の集合体にフェノール樹脂を含浸させ、フェノール樹脂を焼成して炭化させることで、第2カーボン材料を形成する。第1カーボン材料と炭化させた第2カーボン材料との体積比または質量比を調整することで、温度係数を実質的に0にすることができる。 (3) In the above-described embodiment, carbon nanotubes not subjected to boron treatment are used as the second carbon material. However, as the second carbon material, a resin material fired and carbonized can be used. For example, the second carbon material is formed by impregnating an aggregate of the first carbon material subjected to the boron treatment with a phenol resin and firing the carbon to carbonize the phenol resin. By adjusting the volume ratio or mass ratio of the first carbon material and the carbonized second carbon material, the temperature coefficient can be made substantially zero.
1 温度検出装置
2 基板
3 第1の抵抗体
4 第2の抵抗体
5 カーボンナノチューブ(CNT)
6 ホウ素源
10 差動増幅器
11 接続点
20 抵抗体
21 カーボン加圧成形体
22 電極部
23 カバー
DESCRIPTION OF SYMBOLS 1 Temperature detection apparatus 2 Board | substrate 3 1st resistor 4 2nd resistor 5 Carbon nanotube (CNT)
6 Boron source 10 Differential amplifier 11 Connection point 20 Resistor 21 Carbon pressure molded body 22 Electrode portion 23 Cover

Claims (14)

  1.  ホウ素処理された第1カーボン材料と、ホウ素処理されていない第2カーボン材料とを含み、抵抗変化の温度係数が実質的に0となるように前記第1カーボン材料と前記第2カーボン材料との混合比が調整されていることを特徴とする抵抗体。 The first carbon material and the second carbon material include a first carbon material treated with boron and a second carbon material not treated with boron, and the temperature coefficient of resistance change is substantially zero. A resistor characterized in that the mixing ratio is adjusted.
  2.  ホウ素処理された第1カーボン材料と、ホウ素処理されていない第2カーボン材料と、樹脂材料とを含み、抵抗変化の温度係数が実質的に0となるように前記第1カーボン材料と前記第2カーボン材料および前記樹脂材料の混合比が調整されていることを特徴とする抵抗体。 The first carbon material and the second carbon material include a boron-treated first carbon material, a non-boron-treated second carbon material, and a resin material so that the temperature coefficient of resistance change is substantially zero. A resistor in which a mixing ratio of the carbon material and the resin material is adjusted.
  3.  ホウ素処理された第1カーボン材料を含み、抵抗変化の温度係数が実質的に0となるようにホウ素の含有量が調整されていることを特徴とする抵抗体。 A resistor comprising a boron-treated first carbon material, wherein the boron content is adjusted so that the temperature coefficient of resistance change is substantially zero.
  4.  ホウ素処理された第1カーボン材料と、樹脂材料とを含み、抵抗変化の温度係数が実質的に0となるようにホウ素の含有量が調整されていることを特徴とする抵抗体。 A resistor comprising a boron-treated first carbon material and a resin material, wherein the boron content is adjusted so that the temperature coefficient of resistance change is substantially zero.
  5.  前記第1カーボン材料のホウ素処理前の材料は、カーボンナノチューブ、カーボンブラック、グラファイト、グラファイト化カーボンファイバー、カーボンナノホーン、カーボンナノフィラメントのいずれか1種以上で構成されている請求項1ないし4のいずれかに記載の抵抗体。 5. The material according to claim 1, wherein the material of the first carbon material before boron treatment is composed of at least one of carbon nanotubes, carbon black, graphite, graphitized carbon fiber, carbon nanohorn, and carbon nanofilament. The resistor according to crab.
  6.  前記第2カーボン材料は、カーボンナノチューブ、カーボンブラック、グラファイト、グラファイト化カーボンファイバー、カーボンナノホーン、カーボンナノフィラメントのいずれか1種以上で構成されている請求項1ないし4のいずれかに記載の抵抗体。 The resistor according to any one of claims 1 to 4, wherein the second carbon material is composed of at least one of carbon nanotubes, carbon black, graphite, graphitized carbon fiber, carbon nanohorn, and carbon nanofilament. .
  7.  前記第2カーボン材料は、樹脂材料を焼成して形成されたものである請求項1記載の抵抗体。 2. The resistor according to claim 1, wherein the second carbon material is formed by firing a resin material.
  8.  基板の表面に所定のパターンで成膜され、前記樹脂材料によって前記基板の表面に定着されている請求項2または4記載の抵抗体。 5. The resistor according to claim 2, wherein the resistor is formed in a predetermined pattern on the surface of the substrate and fixed on the surface of the substrate by the resin material.
  9.  基板の表面にガラス材料と共に所定のパターンで成膜され、前記ガラス材料が焼成されて、前記基板の表面に定着されている請求項1または3記載の抵抗体。 4. The resistor according to claim 1, wherein a film is formed in a predetermined pattern together with a glass material on the surface of the substrate, and the glass material is baked and fixed on the surface of the substrate.
  10.  ガラス材料の内部に封入されている請求項1ないし4のいずれかに記載の抵抗体。 The resistor according to any one of claims 1 to 4, which is enclosed in a glass material.
  11.  請求項1ないし4のいずれかに記載された前記抵抗体からなる第1の抵抗体と、温度係数の絶対値が実質的に0よりも大きい第2の抵抗体と、が設けられ、
     前記第1の抵抗体と前記第2の抵抗体との抵抗値の差に基づいて、温度が検出されることを特徴とする温度検出装置。
    A first resistor comprising the resistor according to any one of claims 1 to 4 and a second resistor having an absolute value of a temperature coefficient substantially larger than 0 are provided,
    A temperature detecting device, wherein a temperature is detected based on a difference in resistance value between the first resistor and the second resistor.
  12.  ホウ素処理された第1カーボン材料を含む第1の抵抗体と、前記第1の抵抗体よりも温度係数の絶対値が大きい第2の抵抗体と、が設けられ、
     前記第1の抵抗体と前記第2の抵抗体との抵抗値の差に基づいて、温度が検出されることを特徴とする温度検出装置。
    A first resistor including a boron-treated first carbon material, and a second resistor having a larger absolute value of a temperature coefficient than the first resistor;
    A temperature detecting device, wherein a temperature is detected based on a difference in resistance value between the first resistor and the second resistor.
  13.  前記第1の抵抗体に、ホウ素処理されていない第2カーボン材料が含まれている請求項12記載の温度検出装置。 13. The temperature detecting device according to claim 12, wherein the first resistor includes a second carbon material that has not been subjected to boron treatment.
  14.  前記第2抵抗体が、ホウ素処理された第1カーボン材料と、ホウ素処理されていない第2カーボン材料の少なくとも一方を含んでいる請求項12または13記載の温度検出装置。 14. The temperature detection device according to claim 12, wherein the second resistor includes at least one of a boron-treated first carbon material and a non-boron-treated second carbon material.
PCT/JP2014/065426 2013-06-12 2014-06-11 Resistor and temperature detection device WO2014200011A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-123610 2013-06-12
JP2013123610 2013-06-12

Publications (1)

Publication Number Publication Date
WO2014200011A1 true WO2014200011A1 (en) 2014-12-18

Family

ID=52022302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065426 WO2014200011A1 (en) 2013-06-12 2014-06-11 Resistor and temperature detection device

Country Status (1)

Country Link
WO (1) WO2014200011A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63211601A (en) * 1987-02-26 1988-09-02 横河電機株式会社 Temperature sensor employing semiconductor resistance element
JPH05172651A (en) * 1991-12-19 1993-07-09 Tdk Corp Thermistor element
JPH06163201A (en) * 1992-06-16 1994-06-10 Philips Electron Nv Resistance thin film
JPH06349606A (en) * 1993-06-08 1994-12-22 Kobe Steel Ltd Diamond thermistor and manufacture thereof
JP2005331486A (en) * 2004-05-21 2005-12-02 Ngk Spark Plug Co Ltd Temperature sensor
JP2007019274A (en) * 2005-07-07 2007-01-25 Sumitomo Metal Mining Co Ltd Resistance thin film, thin film resistor and its manufacturing method
JP2007234911A (en) * 2006-03-01 2007-09-13 Kobe Steel Ltd Diamond transistor device opearting under high temperatures, and thermometer and amplifier using it

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63211601A (en) * 1987-02-26 1988-09-02 横河電機株式会社 Temperature sensor employing semiconductor resistance element
JPH05172651A (en) * 1991-12-19 1993-07-09 Tdk Corp Thermistor element
JPH06163201A (en) * 1992-06-16 1994-06-10 Philips Electron Nv Resistance thin film
JPH06349606A (en) * 1993-06-08 1994-12-22 Kobe Steel Ltd Diamond thermistor and manufacture thereof
JP2005331486A (en) * 2004-05-21 2005-12-02 Ngk Spark Plug Co Ltd Temperature sensor
JP2007019274A (en) * 2005-07-07 2007-01-25 Sumitomo Metal Mining Co Ltd Resistance thin film, thin film resistor and its manufacturing method
JP2007234911A (en) * 2006-03-01 2007-09-13 Kobe Steel Ltd Diamond transistor device opearting under high temperatures, and thermometer and amplifier using it

Similar Documents

Publication Publication Date Title
Bhattacharjee et al. PEDOT: PSS microchannel‐based highly sensitive stretchable strain sensor
Dang et al. Supersensitive linear piezoresistive property in carbon nanotubes∕ silicone rubber nanocomposites
Gong et al. Electron tunnelling and hopping effects on the temperature coefficient of resistance of carbon nanotube/polymer nanocomposites
Di Bartolomeo et al. Multiwalled carbon nanotube films as small-sized temperature sensors
De Vivo et al. Simulation and experimental characterization of polymer/carbon nanotubes composites for strain sensor applications
Wang et al. Graphene/polydimethylsiloxane nanocomposite strain sensor
CN104903713B (en) A kind of device measured for temperature and fluid relative vapor pressure and associated method
Shang et al. Piezoresistive strain sensing of carbon black/silicone composites above percolation threshold
JPH10239264A (en) Electric resistance type moisture sensor
ITUB20153435A1 (en) Piezoelectric sensor for bicycle component
JK O'Neill et al. A carbon flower based flexible pressure sensor made from large‐area coating
Wang et al. A percolation model for piezoresistivity in conductor–polymer composites
Kormakov et al. A mathematical model for predicting conductivity of polymer composites with a forced assembly network obtained by SCFNA method
Stassi et al. Impedance spectroscopy analysis of the tunnelling conduction mechanism in piezoresistive composites
Wang et al. Layers dependent dielectric properties of two dimensional hexagonal boron nitridenanosheets
Kang et al. Fully flexible and transparent piezoelectric touch sensors based on ZnO nanowires and BaTiO3‐added SiO2 capping layers
WO2014200011A1 (en) Resistor and temperature detection device
Bhadra Low percolation threshold and enhanced electrical and dielectric properties of graphite powder/poly (vinyl alcohol) composites
US3808678A (en) Method of making pressure-sensitive resistor element
KR101876984B1 (en) A thick film type pressure sensor and its manufacturing method
Høyer et al. A strain sensor based on an aligned carbon particle string in a UV-cured polymer matrix
KR102059546B1 (en) Strain sensor comprising insulation structure and method of manufacturing the same
Li et al. Dielectric characteristics of polyvinylidene fluoride-polyaniline percolative composites up to microwave frequencies
Wang et al. Piezoresistivity of silicone‐rubber/carbon black composites excited by Ac electrical field
JPH07243805A (en) Resistance ink for strain gage and strain gage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14810373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP