EP0573970A1 - Omnidirectional antenna - Google Patents

Omnidirectional antenna Download PDF

Info

Publication number
EP0573970A1
EP0573970A1 EP93109227A EP93109227A EP0573970A1 EP 0573970 A1 EP0573970 A1 EP 0573970A1 EP 93109227 A EP93109227 A EP 93109227A EP 93109227 A EP93109227 A EP 93109227A EP 0573970 A1 EP0573970 A1 EP 0573970A1
Authority
EP
European Patent Office
Prior art keywords
dipoles
support tube
separating surfaces
tube
dipole units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93109227A
Other languages
German (de)
French (fr)
Other versions
EP0573970B1 (en
Inventor
Axel Stark
Berthold Klos
Ludwig Nielsen
Andreas Knüttel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohde and Schwarz GmbH and Co KG
Original Assignee
Rohde and Schwarz GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohde and Schwarz GmbH and Co KG filed Critical Rohde and Schwarz GmbH and Co KG
Publication of EP0573970A1 publication Critical patent/EP0573970A1/en
Application granted granted Critical
Publication of EP0573970B1 publication Critical patent/EP0573970B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage

Definitions

  • the invention relates to an omnidirectional antenna according to the preamble of the main claim.
  • Antennas of this type are known (news from Rohde & Schwarz, issue 111, autumn 1985, pages 26 to 28).
  • the support tube carrying the opposite dipoles of the dipole units arranged one above the other, in which the feed cables are also guided, has transverse dimensions which are small compared to the diameter of the overall antenna.
  • With omnidirectional antennas of this type especially in connection with mobile radio antennas for the PCN-E1 network at 1.8 GHz, there are increasing demands on the antenna gain and also on special courses of the vertical radiation diagram. These requirements can only be met by a significantly higher number of dipole units arranged one above the other. To do this, more and more power cables have to be accommodated in the central support tube.
  • each dipole unit consists of only two opposite dipoles connected in parallel, and in which a support tube of relatively large outer diameter suitable for several cables and at the same time a protective tube with a Inner diameter that is less than an operating wavelength is usable.
  • the invention is based on the finding that, in the case of an omnidirectional antenna, in which the individual dipole units arranged one above the other only consist of two opposite dipoles connected in parallel, in support tubes which have a relatively large diameter, the fields of the two dipoles adversely affect one another .
  • 1 shows such a dipole unit consisting of two dipoles 1 and 2, which are arranged opposite one another on the circumference of a supporting mast 3.
  • the associated protective tube made of insulating material (radome) is omitted in FIG. 1.
  • Fig. 2 shows the associated cross section.
  • a plurality of schematically indicated feed cables 4 for a plurality of such dipole units arranged one above the other are accommodated in the interior of the support tube 3. According to FIG.
  • the dipole 1 also radiates a part E2 of its field strength to the right in the direction of the dipole 2.
  • this portion of the field is influenced only relatively slightly.
  • the field component E2 of the dipole 1 which extends around the support tube 3 on the right side, is changed by diffraction in amplitude and phase such that it changes with the field component E1 radiated directly by the dipole 2 superimposed into a resulting field, through which strong diagram deformations and large side lobes occur, which reduce the antenna gain in the desired direction of use and considerably limit the feasibility of special requirements for the course of the vertical diagram, as is necessary for optimal coverage.
  • the total area for example, which is only 0.6 ⁇ wide, prevents the occurrence of unfavorable phase and amplitude relationships between the field components E1 and E2 of the two dipoles 1 and 2 operated in parallel, thus avoiding the undesired deformation of the diagram, for which only a fraction an operating wavelength of the total area is sufficient.
  • FIGS. 3 and 4 each show the cross section through an omnidirectional antenna according to the invention, which in turn is constructed from a multiplicity of dipole units arranged one above the other on a supporting mast 3, of which in FIG Fig. 1 is only shown.
  • the supporting mast 3 has an outer diameter of, for example, 0.25 ⁇
  • the dipole units arranged one above the other, each consisting of two opposite dipoles 1 and 2 are arranged in a protective tube 5 made of insulating material, which in the exemplary embodiment shown has one Has an inner diameter of only 0.6 ⁇ .
  • the two dipoles 1 and 2 are adapted in their curvature to the inner surface of the protective tube 5, their the mechanical width determining the bandwidth is, for example, approximately 0.5 ⁇ in the exemplary embodiment shown.
  • the distance between the two feed points 6 and 7 of the dipoles is A and again approx. 0.6 ⁇ .
  • two radially opposing separating surfaces 8 and 9 in the form of sheet metal strips are attached to the outer circumference of the support tube 3 and extend between the two dipoles 1 and 2.
  • the total width B of the total area resulting from the two separating surfaces 8 and 9 and the respective circumferential surface 10 of the protective tube 3, which faces the dipoles 1 and 2, is at least as large as the distance A between the two feed points 6 and 7 of the dipoles 1 and 2 chosen, the total width B is at most as large as the inside diameter of the protective tube 5.
  • Fig. 4 shows a modification of this separating total area, here the support tube 3 has a polygonal cross section and the additional separating surfaces 8 and 9 are partially realized here by corresponding shapes on the cross section of the support tube 3. In this way, a graded total area 11 is achieved, which brings about an improvement in the radiation diagrams.

Abstract

In the case of an omnidirectional antenna having a plurality of dipole units (1, 2) which are arranged one above the other in a co-linear manner on a supporting tube (3) and which each consist of two parallel-connected dipoles which are arranged on opposite sides of the supporting tube and are arranged inside a protection tube (5) which consists of insulating material and has an internal diameter which is small in comparison with an operating wavelength, additional conductive separating surfaces (8, 9) are provided for supporting tubes which have a relatively large external diameter which has a disturbing influence on the vertical polar diagram of the dipole units. These separating surfaces (8, 9) extend between those dipoles of the dipole units which have an interfering influence, the overall surface which faces the dipoles and is produced from the outer surface of the supporting tube and the additional separating surfaces having a width which is at least as large as the distance between the supply points of the two opposite dipoles and is at most as large as the internal diameter of the protection tube. <IMAGE>

Description

Die Erfindung betrifft eine Rundstrahlantenne laut Oberbegriff des Hauptanspruches.The invention relates to an omnidirectional antenna according to the preamble of the main claim.

Antennen dieser Art sind bekannt (Neues von Rohde & Schwarz, Heft 111, Herbst 1985, Seiten 26 bis 28). Das die gegenüberliegenden Dipole der übereinander angeordneten Dipoleinheiten tragende Tragrohr, in welchem auch die Speisekabel geführt sind, hat Querabmessungen, die klein gegenüber dem Durchmesser der Gesamtantenne sind. Bei Rundstrahlantennen dieser Art, vor allem im Zusammenhang mit Mobilfunk-Antennen für das PCN-E1-Netz bei 1,8 GHz werden immer höhere Anforderungen an den Antennengewinn und auch an spezielle Verläufe des vertikalen Strahlungsdiagrammes gestellt. Diese Anforderungen können nur durch eine erheblich höhere Anzahl von übereinander angeordneten Dipoleinheiten erfüllt werden. Dazu müssen in dem zentralen Tragrohr aber auch immer mehr Speisekabel untergebracht werden. Diese Kabel können nicht beliebig dünn ausgeführt werden, da sonst durch Kabelverluste der Antennengewinn unzulässig reduziert wird und bei Sendeantennen außerdem Erwärmungsprobleme auftreten. Diese Vergrößerung der Anzahl der Kabel macht jedoch auch eine Vergörßerung des Durchmessers des zentralen Tragrohres erforderlich. Eine Vergrößerung der Durchmesserabmessungen des zentralen Tragrohres widerspricht andererseits der Notwenigkeit nach Verkleinerung des Außendurchmessers des Schutzrohres einerseits bedingt durch die höheren Frequenzbereiche und auch im Hinblick auf die Verringerung der Wind- und Eislast solcher Antennen. Mit einem derart ungünstigen Verhältnis des Tragrohr-Durchmessers zum Schutzrohr-Durchmesser können Rundstrahlantennen mit nur zwei gegenüberliegenden Dipolen nicht mehr optimal realisiert werden. Es hat sich nämlich gezeigt, daß sich bei solchen nur aus zwei gegenüberliegenden parallel geschalteten Dipolen bestehenden Dipol-Einheiten und einem Tragrohr von relativ großem Durchmesser die Feldanteile der beiden Dipole sich gegenseitig störend beeinflussen. Ausweichlösungen bestehen nur darin, entweder mehr als zwei Dipole um das zentrale Tragrohr herum anzuordnen, was aber höhere Kosten bedeutet und auch einen größeren Gesamtdurchmesser und damit vergrößerte Wind- und Eislast.Antennas of this type are known (news from Rohde & Schwarz, issue 111, autumn 1985, pages 26 to 28). The support tube carrying the opposite dipoles of the dipole units arranged one above the other, in which the feed cables are also guided, has transverse dimensions which are small compared to the diameter of the overall antenna. With omnidirectional antennas of this type, especially in connection with mobile radio antennas for the PCN-E1 network at 1.8 GHz, there are increasing demands on the antenna gain and also on special courses of the vertical radiation diagram. These requirements can only be met by a significantly higher number of dipole units arranged one above the other. To do this, more and more power cables have to be accommodated in the central support tube. These cables cannot be made arbitrarily thin, since otherwise the antenna gain is inadmissibly reduced due to cable losses and heating problems also occur with transmit antennas. However, this increase in the number of cables makes an increase in the diameter of the central support tube is also required. An increase in the diameter dimensions of the central support tube, on the other hand, contradicts the need for a reduction in the outer diameter of the protective tube, on the one hand due to the higher frequency ranges and also with a view to reducing the wind and ice load of such antennas. With such an unfavorable ratio of the supporting tube diameter to the protective tube diameter, omnidirectional antennas can no longer be optimally realized with only two dipoles lying opposite one another. It has been shown that in such dipole units consisting of only two opposite dipoles connected in parallel and a support tube of relatively large diameter, the field components of the two dipoles interfere with one another. Alternative solutions consist only in arranging either more than two dipoles around the central support tube, which means higher costs and also a larger overall diameter and thus increased wind and ice load.

Es ist daher Aufgabe der Erfindung, eine Rundstrahlantenne der eingangs erwähnten Art zu schaffen, bei der jede Dipol-Einheit nur aus zwei gegentiberliegenden parallel geschalteten Dipolen besteht und bei der trotzdem ein für mehrere Kabel geeignetes Tragrohr von relativ großem Außendurchmesser und gleichzeitig ein Schutzrohr mit einem Innendurchmesser der weniger als eine Betriebswellenlänge beträgt, benutzbar ist.It is therefore an object of the invention to provide an omnidirectional antenna of the type mentioned in the introduction, in which each dipole unit consists of only two opposite dipoles connected in parallel, and in which a support tube of relatively large outer diameter suitable for several cables and at the same time a protective tube with a Inner diameter that is less than an operating wavelength is usable.

Diese Aufgabe wird ausgehend von einer Rundstrahlantenne laut Oberbegriff des Hauptanspruches durch dessen kennzeichnende Merkmale gelöst. Eine vorteilhafte Weiterbildung ergibt sich aus dem Unteranspruch.This problem is solved on the basis of an omnidirectional antenna according to the preamble of the main claim by its characteristic features. An advantageous further education results from the subclaim.

Die Erfindung geht aus von der Erkenntnis, daß bei einer Rundstrahlantenne, bei der die einzelnen übereinander angeordneten Dipol-Einheiten jeweils nur aus zwei gegenüberliegenden parallel geschalteten Dipolen bestehen, bei Tragrohren die einen relativ großen Durchmesser besitzen, die Felder der beiden Dipole sich gegenseitig ungünstig beeinflussen. Fig. 1 zeigt eine solche aus zwei Dipolen 1 und 2 bestehende Dipol-Einheit, die gegenüberliegend am Umfang eines Tragmastes 3 angeordnet sind. Das zugehörige Schutzrohr aus Isoliermaterial (Radom) ist in Fig. 1 weggelassen. Fig. 2 zeigt den zugehörigen Querschnitt. Im Inneren des Tragrohres 3 sind mehrere schematisch angedeutete Speisekabel 4 für mehrere solche übereinander angeordnete Dipol-Einheiten untergebracht. Nach Fig. 1 strahlt der Dipol 1 einen Teil E2 seiner Feldstärke auch auf die rechte Seite in Richtung des Dipoles 2 ab. Bei relativ dünnen zentralen Tragrohren wird dieser Feldanteil nur relativ gering beeinflußt. Bei relativ dicken Tragrohren gemaß Fig. 1 und 2 wird dagegen der um das Tragrohr 3 herum auf die rechte Seite übergreifende Feldanteil E2 des Dipols 1 durch Beugung in der Amplitude und Phase so verändert, daß er sich mit dem vom Dipol 2 direkt abgestrahlten Feldanteil E1 zu einem resultierenden Feld überlagert, durch welches starke Diagrammverformungen und große Nebenkeulen auftreten, die den Antennengewinn in der gewünschten Nutzrichtung reduzieren und die Realisierbarkeit spezieller Anforderungen an den Verlauf des Vertikaldiagramms, wie dies zur optimalen Versorgung nötig ist, beträchtlich einschränken. Ebenso werden im Horizontaldiagramm die Abweichungen von der angestrebten Kreisform unannehmbar groß. Ausgehend von dieser Erkenntnis wird gemäß der Erfindung vorgeschlagen, zwischen den sich störenden Dipolen zusätzlich leitende Trennflächen anzuordnen, wobei die sich aus der Außenfläche des Tragrohres 3 und diesen zusätzlichen leitenden Tragflächen ergebende Gesamtfläche, die den Dipolen zugewandt ist, eine Breite von nur einem Bruchteil der Betriebswellenlänge λ besitzt, diese Gesamtfläche also nicht als Reflektor wirkt, wozu eine Breite von mindestens einer Betriebswellenlänge λ nötig wäre. Durch die beispielsweise nur insgesamt 0,6 λ breite Gesamtfläche wird verhindert, daß zwischen den Feldanteilen E1 und E2 der beiden parallel betriebenen Dipole 1 und 2 ungünstige Phasen- und Amplitudenverhältnisse bestehen, es werden damit die unerwünschten Diagrammverformungen vermieden, wozu bereits die nur einen Bruchteil einer Betriebswellenlänge betragende Breite der Gesamtfläche ausreicht.The invention is based on the finding that, in the case of an omnidirectional antenna, in which the individual dipole units arranged one above the other only consist of two opposite dipoles connected in parallel, in support tubes which have a relatively large diameter, the fields of the two dipoles adversely affect one another . 1 shows such a dipole unit consisting of two dipoles 1 and 2, which are arranged opposite one another on the circumference of a supporting mast 3. The associated protective tube made of insulating material (radome) is omitted in FIG. 1. Fig. 2 shows the associated cross section. A plurality of schematically indicated feed cables 4 for a plurality of such dipole units arranged one above the other are accommodated in the interior of the support tube 3. According to FIG. 1, the dipole 1 also radiates a part E2 of its field strength to the right in the direction of the dipole 2. In the case of relatively thin central support tubes, this portion of the field is influenced only relatively slightly. In the case of relatively thick support tubes according to FIGS. 1 and 2, on the other hand, the field component E2 of the dipole 1, which extends around the support tube 3 on the right side, is changed by diffraction in amplitude and phase such that it changes with the field component E1 radiated directly by the dipole 2 superimposed into a resulting field, through which strong diagram deformations and large side lobes occur, which reduce the antenna gain in the desired direction of use and considerably limit the feasibility of special requirements for the course of the vertical diagram, as is necessary for optimal coverage. Likewise, the deviations from the desired circular shape become unacceptable in the horizontal diagram large. Based on this finding, it is proposed according to the invention to additionally arrange conductive separating surfaces between the interfering dipoles, the total area resulting from the outer surface of the support tube 3 and these additional conductive supporting surfaces, which faces the dipoles, being only a fraction of the width Has operating wavelength λ, so this total area does not act as a reflector, which would require a width of at least one operating wavelength λ. The total area, for example, which is only 0.6 λ wide, prevents the occurrence of unfavorable phase and amplitude relationships between the field components E1 and E2 of the two dipoles 1 and 2 operated in parallel, thus avoiding the undesired deformation of the diagram, for which only a fraction an operating wavelength of the total area is sufficient.

Die Erfindung wird anhand der Fig. 3 und 4 an zwei Ausführungsbeispielen näher erläutert, die Fig. 3 und 4 zeigen jeweils den Querschnitt durch eine erfindungsgemäße Rundstrahlantenne, die wiederum aufgebaut ist aus einer Vielzahl von an einem Tragmast 3 übereinander angeordneten Dipoleinheiten, von denen in Fig 1 nur eine dargestellt ist. In dem Schnittbild nach Fig. 3 besitzt der Tragmast 3 einen Außendurchmesser von beispielsweise 0,25 λ, die übereinander angeordneten Dipol-Einheiten jeweils bestehend aus zwei gegenüberliegenden Dipolen 1 und 2 sind in einem Schutzrohr 5 aus Isoliermaterial angeordnet, das in dem gezeigten Ausführungsbeispiel einen Innendurchmesser von nur 0,6 λ besitzt. Die beiden Dipole 1 und 2 sind in ihrer Krümmung an die Innenfläche des Schutzrohres 5 angepaßt, ihre die Bandbreite bestimmende mechanische Breite beträgt in dem gezeigten Ausführungsbeispiel beispielsweise ca. 0,5 λ. Der Abstand zwischen den beiden Speisepunkten 6 und 7 der Dipole beträgt A und wiederum ca. 0,6 λ.The invention is explained in more detail with reference to FIGS. 3 and 4 using two exemplary embodiments, FIGS. 3 and 4 each show the cross section through an omnidirectional antenna according to the invention, which in turn is constructed from a multiplicity of dipole units arranged one above the other on a supporting mast 3, of which in FIG Fig. 1 is only shown. In the sectional view according to FIG. 3, the supporting mast 3 has an outer diameter of, for example, 0.25 λ, the dipole units arranged one above the other, each consisting of two opposite dipoles 1 and 2, are arranged in a protective tube 5 made of insulating material, which in the exemplary embodiment shown has one Has an inner diameter of only 0.6 λ. The two dipoles 1 and 2 are adapted in their curvature to the inner surface of the protective tube 5, their the mechanical width determining the bandwidth is, for example, approximately 0.5λ in the exemplary embodiment shown. The distance between the two feed points 6 and 7 of the dipoles is A and again approx. 0.6 λ.

Gemäß der Erfindung sind am Außenumfang des Tragerohres 3 zwei radial gegenübeliegend abstehende Trennflächen 8 und 9 in Form von Blechstreifen angebracht, die sich zwischen die beiden Dipole 1 und 2 erstrecken. Die Gesamtbreite B der sich aus den beiden Trennflächen 8 und 9 und der jeweiligen Umfangsfläche 10 des Schutzrohres 3 ergebenden Gesamtfläche, die den Dipolen 1 und 2 gegenübersteht, ist mindestens so groß wie der Abstand A der beiden Speisepunkte 6 und 7 der Dipole 1 und 2 gewählt, die Gesamtbreite B ist maximal so groß wie der Innendurchmesser des Schutzrohres 5. Durch diese zusätzlichen Trennflächen 8 und 9 werden die erwähnten ungünstigen Interferenzen der Felder der beiden Dipole 1 und 2 vermieden, ohne daß der Durchmesser des Schutzrohres 5 vergrößert werdn muß.According to the invention, two radially opposing separating surfaces 8 and 9 in the form of sheet metal strips are attached to the outer circumference of the support tube 3 and extend between the two dipoles 1 and 2. The total width B of the total area resulting from the two separating surfaces 8 and 9 and the respective circumferential surface 10 of the protective tube 3, which faces the dipoles 1 and 2, is at least as large as the distance A between the two feed points 6 and 7 of the dipoles 1 and 2 chosen, the total width B is at most as large as the inside diameter of the protective tube 5. These additional separating surfaces 8 and 9 avoid the aforementioned unfavorable interference of the fields of the two dipoles 1 and 2 without the diameter of the protective tube 5 having to be increased.

Fig. 4 zeigt eine Abwandlung dieser trennenden Gesamtfläche, hier besitzt das Tragrohr 3 einen mehreckigen Querschnitt und auch die zusätzlichen Trennflächen 8 und 9 werden hier teilweise durch entsprechende Ausformungen am Querschnitt des Tragrohres 3 verwirklicht. Auf diese Weise wird eine abgestufte Gesamtfläche 11 erreicht, die eine Verbesserung der Strahlungsdiagramme bewirkt.Fig. 4 shows a modification of this separating total area, here the support tube 3 has a polygonal cross section and the additional separating surfaces 8 and 9 are partially realized here by corresponding shapes on the cross section of the support tube 3. In this way, a graded total area 11 is achieved, which brings about an improvement in the radiation diagrams.

Claims (2)

Rundstrahlantenne mit mehreren an einem Tragrohr kollinear übereinander angeordneten Dipoleinheiten jeweils bestehend aus zwei auf gegenüberliegenden Seiten des Tragrohres angeordneten parallelgeschalteten Dipolen, die innerhalb eines Schutzrohres aus Isoliermaterial mit einem gegenüber einer Betriebswellenlänge kleinen Innendurchmesser angeordnet sind, dadurch gekennzeichnet, daß für Tragrohre, die einen das Vertikaldiagramm der Dipoleinheiten storend beeinflussenden relativ großen Außendurchmesser aufweisen, an dem Tragrohr zusätzliche leitende Trennflächen angeordnet sind, die sich zwischen die sich störend beeinflussenden Dipole der Dipoleinheiten erstrecken, wobei die sich aus Außenfläche des Tragrohres und den zusätzlichen Trennflächen ergebende, den Dipolen zugewandte Gesamtfläche eine Breite (B) besitzt, die mindestens so groß wie der Abstand (A) der Speisepunkte der beiden gegenüberliegenden Dipole und maximal so groß wie der Innendurchmesser des Schutzrohres ist.Omnidirectional antenna with a plurality of dipole units arranged collinearly one above the other on a support tube, each consisting of two dipoles arranged in parallel on opposite sides of the support tube, which are arranged within a protective tube made of insulating material with an inner diameter that is small compared to an operating wavelength, characterized in that for support tubes which have a vertical diagram of the dipole units having a relatively large outside diameter, on which additional supporting separating surfaces are arranged on the support tube, which extend between the dipoles of the dipole units which have an interference effect, the total area resulting from the outer surface of the support tube and the additional separating surfaces facing the dipoles having a width ( B), which is at least as large as the distance (A) between the feed points of the two opposite dipoles and at most as large as the inner diameter of the protective tubes s is. Rundstrahlantenne nach Anspruch 1, dadurch gekennzeichnet, daß die sich aus Außenfläche des Tragrohres und den zusätzlichen Trennflächen ergebende, den Dipolen zugewandte Gesamtfläche so geformt sind, daß sie ein gewünschtes Strahlungsdiagramm ergeben.Omnidirectional antenna according to Claim 1, characterized in that the overall surface which results from the outer surface of the support tube and the additional separating surfaces and which faces the dipoles is shaped in such a way that they produce a desired radiation pattern.
EP93109227A 1992-06-11 1993-06-08 Omnidirectional antenna Expired - Lifetime EP0573970B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4219168A DE4219168A1 (en) 1992-06-11 1992-06-11 Omnidirectional antenna
DE4219168 1992-06-11

Publications (2)

Publication Number Publication Date
EP0573970A1 true EP0573970A1 (en) 1993-12-15
EP0573970B1 EP0573970B1 (en) 1997-05-02

Family

ID=6460815

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93109227A Expired - Lifetime EP0573970B1 (en) 1992-06-11 1993-06-08 Omnidirectional antenna

Country Status (2)

Country Link
EP (1) EP0573970B1 (en)
DE (2) DE4219168A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0843904A1 (en) * 1995-08-10 1998-05-27 E-Systems Inc. Low profile antenna array for land-based, mobile radio frequency communication system
DE19962461A1 (en) * 1999-12-22 2001-07-05 Daimler Chrysler Ag Antenna arrangement e.g. for mobile radio, has radii of dipole circular planes decreasing in vertical direction
RU2713069C2 (en) * 2015-06-04 2020-02-03 Зе Боинг Компани Omnidirectional antenna system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19931907C2 (en) 1999-07-08 2001-08-09 Kathrein Werke Kg antenna

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1183976B (en) * 1961-10-24 1964-12-23 Telefunken Patent Antenna arrangement, consisting of stacked omnidirectional groups
US3681770A (en) * 1970-01-14 1972-08-01 Andrew Alford Isolating antenna elements
US4446465A (en) * 1978-11-02 1984-05-01 Harris Corporation Low windload circularly polarized antenna

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD61026A (en) *
US2691102A (en) * 1950-08-14 1954-10-05 Rca Corp High gain vhf antenna system
US2808585A (en) * 1952-06-11 1957-10-01 Andrew Corp Skew antenna system
US2888677A (en) * 1953-12-31 1959-05-26 Rca Corp Skewed antenna array
DE1125014B (en) * 1960-08-16 1962-03-08 Telefunken Patent Antenna arrangement for horizontal omnidirectional radiation
NL296766A (en) * 1962-08-17
US3975733A (en) * 1974-11-22 1976-08-17 Bogner Richard D Transmitting antenna employing radial fins
GB8431701D0 (en) * 1984-12-14 1985-01-30 British Broadcasting Corp Mixed polarization panel aerial

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1183976B (en) * 1961-10-24 1964-12-23 Telefunken Patent Antenna arrangement, consisting of stacked omnidirectional groups
US3681770A (en) * 1970-01-14 1972-08-01 Andrew Alford Isolating antenna elements
US4446465A (en) * 1978-11-02 1984-05-01 Harris Corporation Low windload circularly polarized antenna

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0843904A1 (en) * 1995-08-10 1998-05-27 E-Systems Inc. Low profile antenna array for land-based, mobile radio frequency communication system
EP0843904A4 (en) * 1995-08-10 1998-12-02 E Systems Inc Low profile antenna array for land-based, mobile radio frequency communication system
DE19962461A1 (en) * 1999-12-22 2001-07-05 Daimler Chrysler Ag Antenna arrangement e.g. for mobile radio, has radii of dipole circular planes decreasing in vertical direction
DE19962461B4 (en) * 1999-12-22 2005-07-21 Eads Deutschland Gmbh antenna array
RU2713069C2 (en) * 2015-06-04 2020-02-03 Зе Боинг Компани Omnidirectional antenna system

Also Published As

Publication number Publication date
EP0573970B1 (en) 1997-05-02
DE4219168A1 (en) 1993-12-16
DE59306310D1 (en) 1997-06-05

Similar Documents

Publication Publication Date Title
DE60022630T2 (en) SECONDARY FREQUENCY ANTENNA, MULTI FREQUENCY ANTENNA, TWO OR MORE FREQUENCY ANTENNA GROUP
EP3220480B1 (en) Dipole-shaped radiator assembly
EP2929589B1 (en) Dual polarized, omnidirectional antenna
DE10304911B4 (en) Combination antenna arrangement for multiple radio services for vehicles
DE112004001506T5 (en) Broadband, dual polarized base station antenna for optimal horizontal radiation pattern and variable vertical beam tilt
EP2406851B1 (en) Method for operating a phase-controlled group antenna and a phase shifter assembly and an associated phase-controlled group antenna
DE202021106120U1 (en) Radiating elements with angled feed shafts and base station antennas including the same
EP3178129B1 (en) Multi-structure broadband monopole antenna for two frequency bands in the decimeter wave range separated by a frequency gap, for motor vehicles
DE3218690C1 (en) Biconical omnidirectional antenna
DE602005001108T2 (en) Antenna arrangement with dipoles and four metal bars
DE2427505A1 (en) ANTENNA SYSTEM WITH AN OPEN REFLECTOR
DE3217437A1 (en) MICROWAVE DIRECTIONAL ANTENNA FROM A DIELECTRIC LINE
DE102018120612A1 (en) Multiband antenna arrangement for mobile radio applications
DE102020001427A1 (en) Combination antenna for mobile radio services for vehicles
DE60019412T2 (en) ANTENNA WITH VERTICAL POLARIZATION
DE2700325A1 (en) NON-DIRECTIONAL FM BROADBAND ANTENNA
EP0573970B1 (en) Omnidirectional antenna
EP0021193B1 (en) Combined antenna system
WO2004102742A1 (en) Multiband antenna
DE4032891C2 (en) Broadband antenna arrangement
EP0573971B1 (en) Antenna
DE2139257C3 (en) Omnidirectional transmission antenna with radiating elements emanating from a central support arrangement
DE3728976A1 (en) Cassegrain antenna for the microwave band
DE1491925B1 (en) Vertical slot antenna
DE1491925C (en) Vertical slot antenna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19940609

17Q First examination report despatched

Effective date: 19960507

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19970502

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970502

REF Corresponds to:

Ref document number: 59306310

Country of ref document: DE

Date of ref document: 19970605

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970802

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990519

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990616

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990830

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000608

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010403