EP0021193B1 - Combined antenna system - Google Patents

Combined antenna system Download PDF

Info

Publication number
EP0021193B1
EP0021193B1 EP80103160A EP80103160A EP0021193B1 EP 0021193 B1 EP0021193 B1 EP 0021193B1 EP 80103160 A EP80103160 A EP 80103160A EP 80103160 A EP80103160 A EP 80103160A EP 0021193 B1 EP0021193 B1 EP 0021193B1
Authority
EP
European Patent Office
Prior art keywords
reflector
micro
antenna
strip
antenna system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80103160A
Other languages
German (de)
French (fr)
Other versions
EP0021193A1 (en
Inventor
Francesco Alia
Stefano Barbati
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Contraves Italiana SpA
Original Assignee
Contraves Italiana SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Contraves Italiana SpA filed Critical Contraves Italiana SpA
Publication of EP0021193A1 publication Critical patent/EP0021193A1/en
Application granted granted Critical
Publication of EP0021193B1 publication Critical patent/EP0021193B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • the invention relates to an integrated antenna system according to the preamble of the claim.
  • Integrated radar antenna systems are well known per se. They consist of spotlights and reflector screens, which simultaneously carry a number of dipoles or slotted bars. These systems have the advantage of saving weight and space compared to the systems formed from individual antennas which are independent of one another, but suffer from the disadvantage that the energy emitted by the radiator is partially shadowed by the dipoles attached to the reflector. Under certain circumstances, this shading can enlarge the side lobes or reduce or distort the main lobe, depending on the design and arrangement of the dipoles or slotted bars. It is known that shading can be avoided by using slotted steel inserts embedded in the reflector surface, but the slotted steel forming so-called "blind spots" on the reflector, which at least hinder the perfect reflection of the primary radiation. In addition, the polarization of the dipoles or slot steel can only be changed with a relatively high technical effort. However, this in turn reduces the aforementioned advantages (see, for example, DE-B 1 766 002).
  • Micro-strip antennas are also known. These are specially designed and dimensioned electrically conductive surfaces which are arranged parallel to larger, conductive, earthed surfaces and are held by layers of dielectric material lying between the two surfaces. Depending on the design, antennas created can work with a wide variety of frequencies and with variable polarization. In addition, their structure can be built very lightly and robustly, and they require much less effort in production, installation and maintenance than antennas of conventional design that are comparable in terms of performance.
  • the invention has for its object to provide an integrated antenna system in which the advantages of micro-strip antennas are combined with those of conventional antennas so that the aforementioned disadvantages are avoided and an integrated antenna arises, the scope of which, primarily in mobile use, is significantly increased, namely by reducing the weight, simplifying maintenance, reducing the susceptibility to interference, interchangeability of the micro-strip beam surfaces, whereby a wide range of frequencies and the most varied polarizations can be used, and by reducing the costs .
  • an integrated antenna system of the type mentioned characterized by the features listed in the claim, has been created.
  • FIG. 1 shows a radiator, arranged in the focal point of a double-curved reflector 2 of unequal height and width dimensions.
  • a double-curved reflector 2 of unequal height and width dimensions.
  • two groups of four micro-strip beam surfaces 3 each, one group to the left of the vertical center line ML and the other group, are attached in the opposite direction to the first, to the right of the aforementioned center line. This inverted arrangement is intended to obtain a symmetrical radiation pattern.
  • the shape of the individual micro-strip beam surface 3 is reminiscent of the letter “H”, the two vertical strips, each with different dimensions, being assigned to a specific frequency.
  • the central bar of the "H” is used for the power supply, which comes from the rear of the reflector.
  • the reflector is drilled through at a location that is favorable for the attachment of the micro-strip beam surface.
  • a stop ring 7 is attached to the reflector 2 by means of rivets 9.
  • the reflector 2 and the stop ring 7 are milled at one point 10 in order to later accommodate a centering cam.
  • a support ring 6 with a centering cam 6 a corresponding to the point 10 is now inserted into the mounting thus created and fastened by means of a ring nut 8.
  • the nut carries two pins 8a, which allow it to be fixed by hand.
  • a recess 11 In the interior of the support ring 6 there is a recess 11 with a bore into which a high-frequency socket 5 is inserted.
  • the example shown in the drawing is an RF socket of type »N «, which is fastened with screws not shown in the drawing.
  • the surface of the support ring 6 pointing to the inside of the reflector is adapted to the double curvature of the reflector. Only the inner conductor of the HF socket 5 protrudes through the hole beyond the surface.
  • the dielectric layer 4 carrying the Micr p- strip radiation area 3 is pierced exactly around the feed point of the micro-strip radiation area and is positioned and glued on the support ring 6 such that the inner conductor of the HF socket 5 passes through this bore and can be soldered to the micro-strip beam surface 3.
  • the soldered micro-strip beam surface can either be provided with a protective coating or, if the mechanical rigidity of the dielectric layer 4 is not sufficient, a further dielectric layer can be glued on from the outside.
  • Fig. 3 shows a view of the front of the bracket on the back of the reflector.
  • the enlarged partial view of the section through the reflector according to FIG. 2 shows in FIG. 4 how a micro-strip beam surface 3 is attached with the layer 4 consisting of dielectric material at a certain distance d exactly parallel to the surface of the reflector 2.
  • the factor k is set at 1, 2, 3 or n, the phase shift is k ⁇ 360 °; thus the signals reflected by the two surfaces 2 and 3 again run in the same phase and there are no changes in the radiation diagram.
  • the micro-strip beam surfaces 3 can be fed individually or in any grouping.
  • the radiation diagram shown in FIG. 5 can be generated.
  • micro-strip beam surfaces 3 described above are detachably attached to the reflector 2. They can easily be attached to existing antenna reflectors, whose curvatures allow them to adapt precisely due to their flexibility. In this way, radar devices can be expanded with additional antenna systems for special purposes.

Description

Die Erfindung betrifft ein integriertes Antennensystem gemäß dem Oberbegriff des Patentanspruches.The invention relates to an integrated antenna system according to the preamble of the claim.

Integrierte Radar-Antennensysteme sind an sich wohlbekannt. Sie bestehen aus Strahlern und Reflektorschirmen, die gleichzeitig eine Reihe von Dipolen oder auch Schlitzstahlern tragen. Diese Systeme haben gegenüber den aus einzelnen, voneinander unabhängigen Antennen gebildeten Systemen den Vorteil der Gewichts- und Raumersparnis, leiden jedoch unter dem Nachteil, daß die vom Strahler ausgehende Energie durch die auf dem Reflektor befestigten Dipole teilweise abgeschattet wird. Diese Abschattung kann unter Umständen die Nebenkeulen vergrößern bzw. die Hauptkeule verkleinern oder verzerren, je nach Bauart und Anordnung der Dipole bzw. Schlitzstahler. Es ist bekannt, daß durch Anwendung von in der Reflektoroberfläche eingelassenen Schlitzstahlern eine Abschattung vermieden werden kann, jedoch bilden die Schlitzstahler sogenannte »Blinde Flecken« auf dem Reflektor, die die einwandfreie Spiegelung der Primärstrahlung zumindest behindern. Hinzu kommt, daß die Polarisation der Dipole bzw. Schlitzstahler nur mit einem relativ hohen technischen Aufwand geändert werden kann. Dadurch werden jedoch die vorgenannten Vorteile wiederum geschmälert (siehe z. B. DE-B 1 766 002).Integrated radar antenna systems are well known per se. They consist of spotlights and reflector screens, which simultaneously carry a number of dipoles or slotted bars. These systems have the advantage of saving weight and space compared to the systems formed from individual antennas which are independent of one another, but suffer from the disadvantage that the energy emitted by the radiator is partially shadowed by the dipoles attached to the reflector. Under certain circumstances, this shading can enlarge the side lobes or reduce or distort the main lobe, depending on the design and arrangement of the dipoles or slotted bars. It is known that shading can be avoided by using slotted steel inserts embedded in the reflector surface, but the slotted steel forming so-called "blind spots" on the reflector, which at least hinder the perfect reflection of the primary radiation. In addition, the polarization of the dipoles or slot steel can only be changed with a relatively high technical effort. However, this in turn reduces the aforementioned advantages (see, for example, DE-B 1 766 002).

Ebenso sind Micro-Strip-Antennen bekannt. Es handelt sich dabei um speziell gestaltete und dimensionierte elektrisch leitende Flächen, die parallel zu größeren, leitenden, geerdeten Flächen angeordnet sind und von zwischen den beiden Flächen liegenden Schichten aus dielektrischem Material gehalten sind. Je nach Gestaltung können damit geschaffene Antennen mit den verschiedensten Frequenzen und mit variabler Polarisation arbeiten. Außerdem können sie in ihrer Struktur sehr leicht und robust gebaut werden, und sie erfordern einen wesentlich geringeren Aufwand in der Herstellung, Installation und Wartung als leistungsmäßig vergleichbare Antennen herkömmlicher Bauart.Micro-strip antennas are also known. These are specially designed and dimensioned electrically conductive surfaces which are arranged parallel to larger, conductive, earthed surfaces and are held by layers of dielectric material lying between the two surfaces. Depending on the design, antennas created can work with a wide variety of frequencies and with variable polarization. In addition, their structure can be built very lightly and robustly, and they require much less effort in production, installation and maintenance than antennas of conventional design that are comparable in terms of performance.

Der Erfindung liegt die Aufgabe zu Grunde, ein integriertes Antennensystem zu schaffen, bei dem die Vorteile der Micro-Strip-Antennen mit denen von herkömmlichen Antennen so vereint werden, daß die vorgenannten Nachteile vermieden werden und eine integrierte Antenne entsteht, deren Anwendungsbereich, vornehmlich im mobilen Einsatz, wesentlich vergrößert wird, und zwar durch die Verringerung des Gewichtes, Vereinfachung der Wartung, Reduzierung der Störanfälligkeit, Austauschbarkeit der Micro-Strip-Strahlflächen, wodurch ein weiter Bereich von Frequenzen sowie die verschiedensten Polarisationen nutzbar werden, und durch die Verringerung der Kosten. Zur Lösung der Aufgabe ist ein integriertes Antennensystem der eingangs genannten Art, gekennzeichnet durch die im Anspruch aufgeführten Merkmale, geschaffen worden.The invention has for its object to provide an integrated antenna system in which the advantages of micro-strip antennas are combined with those of conventional antennas so that the aforementioned disadvantages are avoided and an integrated antenna arises, the scope of which, primarily in mobile use, is significantly increased, namely by reducing the weight, simplifying maintenance, reducing the susceptibility to interference, interchangeability of the micro-strip beam surfaces, whereby a wide range of frequencies and the most varied polarizations can be used, and by reducing the costs . To solve the problem, an integrated antenna system of the type mentioned, characterized by the features listed in the claim, has been created.

Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und im folgenden näher beschrieben. Es zeigen dabei:

  • Fig. 1 eine Vorderansicht einer möglichen Ausführungsform des integrierten Antennensystems, l e
  • Fig. 2 eine Seitenansicht"des Antennenreflektors mit aufgebrachter Micro-Strip-Strahlfläche und Halterung in axialem Schnitt,
  • Fig. 3 eine Vorderansicht auf die Halterung auf der Rückseite des Reflektors,
  • Fig. 4 eine vergrößerte Teilansicht des Schnittes durch den Reflektor gemäß Fig. 2,
  • Fig. 5 ein Beispiel eines Strahlungsdiagrammes einer mit Micro-Strip-Strahlflächen geschaffenen Antenne.
An embodiment of the invention is shown in the drawings and described in more detail below. It shows:
  • Fig. 1 is a front view of a possible embodiment of the integrated antenna system, l e
  • 2 is a side view "of the antenna reflector with an applied micro-strip beam area and holder in axial section,
  • 3 is a front view of the bracket on the back of the reflector,
  • 4 is an enlarged partial view of the section through the reflector according to FIG. 2,
  • 5 shows an example of a radiation diagram of an antenna created with micro-strip radiation surfaces.

Im integrierten Antennensystem, wie dies in Fig. 1 dargestellt ist, zeigt 1 einen Strahler, im Brennpunkt eines doppeltgekrümmten Reflektors 2 ungleicher Höhen- und Breitenabmessung angeordnet. Auf diesem Reflektor sind zwei Gruppen zu je vier Micro-Strip-Strahlflächen 3, die eine Gruppe links der senkrechten Mittellinie ML und die andere Gruppe, seitenverkehrt zur ersten, rechts der vorgenannten Mittellinie befestigt. Diese seitenverkehrte Anordnung ist beabsichtigt, um ein symmetrisches Strahlungsdiagramm zu erhalten.In the integrated antenna system, as shown in FIG. 1, 1 shows a radiator, arranged in the focal point of a double-curved reflector 2 of unequal height and width dimensions. On this reflector, two groups of four micro-strip beam surfaces 3 each, one group to the left of the vertical center line ML and the other group, are attached in the opposite direction to the first, to the right of the aforementioned center line. This inverted arrangement is intended to obtain a symmetrical radiation pattern.

Die einzelne Micro-Strip-Strahlfläche 3 erinnert in ihrer Form an den Buchstaben »H«, wobei die beiden senkrechten Streifen, ungleich in ihren Dimensionen, jeweils einer bestimmten Frequenz zugeordnet sind. Der Mittelbalken des »H« dient der Speisung, die von der Rückseite des Reflektors her erfolgt. Wie die Fig. 2 und 3 weiter zeigen, wird der Reflektor an einer für das Anbringen der Micro-Strip-Strahlfläche günstigen Stelle durchbohrt. Danach wird ein Anschlagring 7 mittels Nieten 9 auf dem Reflektor 2 befestigt. Reflektor 2 und Anschlagring 7 sind an einer Stelle 10 eingefräst, um später einen Zentriernocken aufzunehmen. In die so geschaffene Lagerung wird nun ein Tragring 6 mit einem der Stelle 10 entsprechenden Zentriernocken 6a eingeführt und mittels einer Ringmutter 8 befestigt. Die Mutter trägt zwei Zapfen 8a, die ein Festsetzen von Hand ermöglichen. Im Innern des Tragringes 6 befindet sich eine Aussparung 11 mit Bohrung, in die eine Hochfrequenzbuchse 5 eingesetzt wird. Bei dem in der Zeichnung dargestellten Beispiel handelt es sich um eine HF-Buchse des Types »N«, die mit in der Zeichnung nicht dargestellten Schrauben befestigt ist.The shape of the individual micro-strip beam surface 3 is reminiscent of the letter “H”, the two vertical strips, each with different dimensions, being assigned to a specific frequency. The central bar of the "H" is used for the power supply, which comes from the rear of the reflector. As FIGS. 2 and 3 further show, the reflector is drilled through at a location that is favorable for the attachment of the micro-strip beam surface. Then a stop ring 7 is attached to the reflector 2 by means of rivets 9. The reflector 2 and the stop ring 7 are milled at one point 10 in order to later accommodate a centering cam. A support ring 6 with a centering cam 6 a corresponding to the point 10 is now inserted into the mounting thus created and fastened by means of a ring nut 8. The nut carries two pins 8a, which allow it to be fixed by hand. In the interior of the support ring 6 there is a recess 11 with a bore into which a high-frequency socket 5 is inserted. The example shown in the drawing is an RF socket of type »N«, which is fastened with screws not shown in the drawing.

Die auf die Reflektorinnenseite zeigende Fläche des Tragringes 6 ist der Doppelkrümmung des Reflektors angepaßt. Nur der Innenleiter der HF-Buchse 5 ragt durch die Bohrung über die Fläche hinaus. Die die Micrp-Strip-Strahlfläche 3 tragende dielektrische Schicht 4 ist genau um den Einspeispunkt der Micro-Strip-Strahlfläche durchbohrt und auf dem Tragring 6 so positioniert und aufgeklebt, daß der Innenleiter der HF-Buchse 5 durch diese Bohrung hindurchgeht und mit der Micro-Strip-Strahlfläche 3 verlötet werden kann. Die verlötete Micro-Strip-Strahlfläche kann entweder mit einer Schutzlackierung versehen werden, oder, falls die mechanische Steifheit der dielektrischen Schicht 4 nicht ausreichend ist, kann von Außen eine weitere dielektrische Schicht aufgeklebt werden.The surface of the support ring 6 pointing to the inside of the reflector is adapted to the double curvature of the reflector. Only the inner conductor of the HF socket 5 protrudes through the hole beyond the surface. The dielectric layer 4 carrying the Micr p- strip radiation area 3 is pierced exactly around the feed point of the micro-strip radiation area and is positioned and glued on the support ring 6 such that the inner conductor of the HF socket 5 passes through this bore and can be soldered to the micro-strip beam surface 3. The soldered micro-strip beam surface can either be provided with a protective coating or, if the mechanical rigidity of the dielectric layer 4 is not sufficient, a further dielectric layer can be glued on from the outside.

Fig. 3 zeigt einen Blick auf die Vorderseite der Halterung auf der Rückseite des Reflektors.Fig. 3 shows a view of the front of the bracket on the back of the reflector.

Die vergrößerte Teilansicht des Schnittes durch den Reflektor gemäß der Fig. 2 zeigt in Fig.4, wie eine Micro-Strip-Strahlfläche 3 mit der aus dielektrischem Material bestehenden Schicht 4 in einem bestimmten Abstand d genau parallel zur Oberfläche des Reflektors 2 befestigt wird. Dieser Abstand d wird bestimmt nach der Formel

Figure imgb0001
wobei k = 0, 1, 2, 3 ... n sein kann und λ = Wellenlänge der Frequenz des Strahlers 1 ist. Wenn k = 0 ist, bedeutet dies, daß die dielektrische Schicht 4 äußerst dünn gefertigt ist, so daß die Phasenverschiebung der vom Strahler 1 ausgesandten und von der Micro-Strip-Strahlfläche 3 reflektierten Signale zu den vom Reflektor 2 selbst gespiegelten Signalen vernachlässigbar gering bleibt. Wenn der Faktor k mit 1, 2, 3 oder n angesetzt wird, ist die Phasenverschiebung gleich k · 360°; somit verlaufen die von den beiden Oberflächen 2 und 3 reflektierten Signale wieder in gleicher Phase, und es treten keinerlei Veränderungen des Strahlungsdiagrammes auf.The enlarged partial view of the section through the reflector according to FIG. 2 shows in FIG. 4 how a micro-strip beam surface 3 is attached with the layer 4 consisting of dielectric material at a certain distance d exactly parallel to the surface of the reflector 2. This distance d is determined according to the formula
Figure imgb0001
where k = 0, 1, 2, 3 ... n and λ = wavelength of the frequency of the radiator 1. If k = 0, this means that the dielectric layer 4 is made extremely thin, so that the phase shift of the signals emitted by the radiator 1 and reflected by the micro-strip beam surface 3 to the signals reflected by the reflector 2 itself remains negligibly small . If the factor k is set at 1, 2, 3 or n, the phase shift is k · 360 °; thus the signals reflected by the two surfaces 2 and 3 again run in the same phase and there are no changes in the radiation diagram.

Ihrerseits können die Micro-Strip-Strahlflächen 3 einzeln oder in beliebiger Gruppierung gespeist werden. Bei einer üblichen Anwendung als IFF-Antenne kann das in Fig. 5 gezeigte Strahlungsdiagramm erzeugt werden.For their part, the micro-strip beam surfaces 3 can be fed individually or in any grouping. In a typical application as an IFF antenna, the radiation diagram shown in FIG. 5 can be generated.

Von besonderem Vorteil ist die Tatsache, daß die oben beschriebenen Micro-Strip-Strahlflächen 3 am Reflektor 2 lösbar befestigt sind. Sie können ohne weiteres auf bereits vorhandene Antennenreflektoren angebracht werden, an deren Krümmungen sie sich auf Grund ihrer Flexibilität genau anpassen. Auf diese Weise können Radargeräte mit zusätzlichen Antennensystemen für besondere Zwecke erweitert werden.Of particular advantage is the fact that the micro-strip beam surfaces 3 described above are detachably attached to the reflector 2. They can easily be attached to existing antenna reflectors, whose curvatures allow them to adapt precisely due to their flexibility. In this way, radar devices can be expanded with additional antenna systems for special purposes.

Claims (1)

  1. An integrated radar antenna array consisting of a first antenna, in which an exciter (1) for a predetermined frequency is positioned at the focal length of a double curvature reflector (2) with different hight and width dimensions to generate a first directional radiation pattern, and a second antenna comprising the reflector (2) of the first antenna and a plurality of radiationg elements (3) fitted to the double curvature of the reflector (2) and suitably secured thereon, characterized in that the radiating elements are micro strip surfaces which are know per se and are positioned at a distance
    Figure imgb0003
    from the reflector (2), where λ = wavelength of the exciter frequency and k = 1, 2, 3 ... n or is substantially zero.
EP80103160A 1979-06-14 1980-06-09 Combined antenna system Expired EP0021193B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT2356779 1979-06-14
IT23567/79A IT1166889B (en) 1979-06-14 1979-06-14 ARRANGEMENT OF INTEGRATED ANTENNAS FOR RADAR EQUIPMENT THAT ALLOWS THE CONTEMPORARY GENERATION OF TWO OR MORE IRRADIATION DIAGRAMS, ONE DIFFERENT FROM THE OTHER

Publications (2)

Publication Number Publication Date
EP0021193A1 EP0021193A1 (en) 1981-01-07
EP0021193B1 true EP0021193B1 (en) 1985-03-27

Family

ID=11208193

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80103160A Expired EP0021193B1 (en) 1979-06-14 1980-06-09 Combined antenna system

Country Status (9)

Country Link
US (1) US4328500A (en)
EP (1) EP0021193B1 (en)
JP (1) JPS5673903A (en)
BR (1) BR8003731A (en)
DE (1) DE3070377D1 (en)
EG (1) EG13860A (en)
ES (1) ES8101819A1 (en)
IN (1) IN152705B (en)
IT (1) IT1166889B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130605A (en) * 1982-01-29 1983-08-04 Toshiba Corp Microstrip antenna
EP0237110A1 (en) * 1986-03-05 1987-09-16 THORN EMI Electronics Limited Direction-finding antenna system
JP2840323B2 (en) * 1989-09-28 1998-12-24 キヤノン株式会社 Color image recording device
US5070786A (en) * 1990-09-26 1991-12-10 Honeywell Inc. Standoff sensor antennae for munitions having explosively formed penetrators
JP2000505632A (en) * 1996-02-27 2000-05-09 トムソン コンシユーマ エレクトロニクス インコーポレイテツド Combined antenna for satellite and VHF / UHF reception
JP6089941B2 (en) * 2013-05-08 2017-03-08 株式会社デンソー Radar equipment
JP6556273B2 (en) 2018-01-19 2019-08-07 株式会社フジクラ antenna

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3550135A (en) * 1967-03-22 1970-12-22 Hollandse Signaalapparaten Bv Dual beam parabolic antenna

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3445850A (en) * 1965-11-08 1969-05-20 Canoga Electronics Corp Dual frequency antenna employing parabolic reflector
US3482248A (en) * 1967-07-31 1969-12-02 Us Army Multifrequency common aperture manifold antenna
DE1941268B2 (en) * 1969-08-13 1972-04-13 Siemens AG, 1000 Berlin u. 8000 München RADAR ANTENNA ARRANGEMENT WITH PRIMARY RADAR ANTENNA AND TWO SECONDARY ANTENNAS AND SIDE-LOBE INQUIRY AND REPLY SUPPRESSION
FR2284997A1 (en) * 1974-09-13 1976-04-09 Thomson Csf COMMON ANTENNA FOR PRIMARY RADAR AND SECONDARY RADAR WITH INTERROGATION CONTROL MEANS
US4095230A (en) * 1977-06-06 1978-06-13 General Dynamics Corporation High accuracy broadband antenna system
US4195301A (en) * 1977-08-01 1980-03-25 Motorola, Inc. Disc antenna feed for parabolic reflector
US4142190A (en) * 1977-09-29 1979-02-27 The United States Of America As Represented By The Secretary Of The Army Microstrip feed with reduced aperture blockage
FR2445629A1 (en) * 1978-12-27 1980-07-25 Thomson Csf COMMON ANTENNA FOR PRIMARY RADAR AND SECONDARY RADAR

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3550135A (en) * 1967-03-22 1970-12-22 Hollandse Signaalapparaten Bv Dual beam parabolic antenna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Microwave, J. Okt, 1976, S. 47 *

Also Published As

Publication number Publication date
EG13860A (en) 1983-03-31
IT7923567A0 (en) 1979-06-14
US4328500A (en) 1982-05-04
EP0021193A1 (en) 1981-01-07
JPS5673903A (en) 1981-06-19
ES492452A0 (en) 1980-12-16
IN152705B (en) 1984-03-17
JPS634362B2 (en) 1988-01-28
ES8101819A1 (en) 1980-12-16
IT1166889B (en) 1987-05-06
BR8003731A (en) 1981-01-13
DE3070377D1 (en) 1985-05-02

Similar Documents

Publication Publication Date Title
DE102009054526B4 (en) Dielectric loaded antenna with inner cavity section
DE10335216B4 (en) In the area of an outer surface of an aircraft arranged phased array antenna
DE3536581A1 (en) DOUBLE GRID ANTENNA REFLECTOR SYSTEM AND METHOD FOR PRODUCING THE SAME
DE60107939T2 (en) REFLECTOR ANTENNA WITH COMMON APERTURE AND IMPROVED FEEDING DRAFT
DE10339675A1 (en) Multiband ring-focus dual reflector antenna system
DE3218690C1 (en) Biconical omnidirectional antenna
DE3217437A1 (en) MICROWAVE DIRECTIONAL ANTENNA FROM A DIELECTRIC LINE
EP0021193B1 (en) Combined antenna system
DE69833070T2 (en) Group antennas with a large bandwidth
DE2604750A1 (en) CIRCULAR ANTENNA GROUP AND ELECTROMAGNETIC LOCATION ARRANGEMENT INCLUDING SUCH ANTENNA GROUP
DE60019412T2 (en) ANTENNA WITH VERTICAL POLARIZATION
EP0021251B1 (en) Pillbox-radar antenna with integrated iff antenna
DE2339533A1 (en) ARTIFICIAL DIELECTRIC FOR CONTROL OF ANTENNA DIAGRAMS
DE2802585A1 (en) ANTENNA
DE2139216C3 (en) Directional antenna arrangement, consisting of a main reflector mirror and two primary radiator systems and a method for producing a dielectric reflector plate
DE1791195A1 (en) Directional antenna
DE2821699C2 (en) Antenna with at least two independent radiation sources
DE3529914A1 (en) Microwave aerial
EP0042611B1 (en) Conductive screen for circularly polarising electromagnetic waves
EP0192048B1 (en) Reflector antenna with struts in the radiating area
EP0135742B1 (en) Omnidirectional antenna
DE102017201321A1 (en) Zig zag antenna
EP0573970A1 (en) Omnidirectional antenna
AT502159B1 (en) MICROSTRAP PATCHANTENNE AND INJECT INTO THIS ANTENNA
DE3840931B3 (en) Combined IFF radar antenna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB NL SE

17P Request for examination filed

Effective date: 19810319

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB LI NL SE

REF Corresponds to:

Ref document number: 3070377

Country of ref document: DE

Date of ref document: 19850502

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 80103160.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990611

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19990616

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990630

Year of fee payment: 20

Ref country code: FR

Payment date: 19990630

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990712

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19990715

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990827

Year of fee payment: 20

BE20 Be: patent expired

Free format text: 20000609 *CONTRAVES ITALIANA S.P.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000608

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20000608

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20000609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000610

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 20000608

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20000609

EUG Se: european patent has lapsed

Ref document number: 80103160.0