EP0573864A2 - Process for the preparation of polyether siloxanes - Google Patents

Process for the preparation of polyether siloxanes Download PDF

Info

Publication number
EP0573864A2
EP0573864A2 EP93108726A EP93108726A EP0573864A2 EP 0573864 A2 EP0573864 A2 EP 0573864A2 EP 93108726 A EP93108726 A EP 93108726A EP 93108726 A EP93108726 A EP 93108726A EP 0573864 A2 EP0573864 A2 EP 0573864A2
Authority
EP
European Patent Office
Prior art keywords
radical
process according
radicals
polyether
epoxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93108726A
Other languages
German (de)
French (fr)
Other versions
EP0573864A3 (en
EP0573864B1 (en
Inventor
Georg Dr. Burkhart
Dietmar Dr. Schaefer
Andreas Dr. Weier
Dietmar Dr. Wewers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
TH Goldschmidt AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TH Goldschmidt AG filed Critical TH Goldschmidt AG
Publication of EP0573864A2 publication Critical patent/EP0573864A2/en
Publication of EP0573864A3 publication Critical patent/EP0573864A3/en
Application granted granted Critical
Publication of EP0573864B1 publication Critical patent/EP0573864B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/46Block-or graft-polymers containing polysiloxane sequences containing polyether sequences

Definitions

  • the invention relates to a process for the preparation of polyether siloxanes which are free from excess polyethers and whose polyether residues are bound to the polysiloxane skeleton by Si-C bonds.
  • polyether siloxanes In the production of polyether siloxanes by reacting chloropolysiloxanes with polyether diols, it is necessary to use an excess of polyether diols, measured in terms of the molar ratio of OH groups to SiCl groups, in order to form A [BA] x polymers or crosslinked polymers to avoid. In most cases, however, it is not possible to remove the excess polyether diol from the reaction mixture. Distillative separation generally fails because of the high molecular weight of the polyether diol and its physical properties. A selective removal of the polyether diol by washing out is not economically feasible and is often not possible because of the surfactant properties of the polyether siloxane.
  • polyethers with an olefinic double bond such as, for example, allyl polyether
  • it is also necessary to work with an excess of polyether since part of the polyether escapes from the addition by isomerization and the addition occurs only in the presence of excess amounts of polyether economically reasonable time with respect to the SiH groups expires quantitatively. Even with such a procedure, there is the problem of separating the isomerized or excess, unreacted amounts of allyl polyether.
  • the present invention is concerned with the technical problem of the production of polyethersiloxanes of defined functionality in as pure as possible, i.e. of excess, unreacted polyol components of free form.
  • the radicals R1 can be the same or different. They are alkyl radicals with 1 to 4 carbon atoms or phenyl radicals. However, the condition must be fulfilled that at least 90% of the R 1 radicals are methyl radicals.
  • the radicals R2 can also be the same or different within the polymeric molecule and assume the meaning of the radicals R1. At least one radical R2 must be a radical of the general formula II be.
  • R3 has the meaning of a hydrogen or an alkyl radical having 1 to 4 carbon atoms.
  • R3 is preferably a hydrogen radical.
  • R4 is a bridge link that connects the carbon of the CHR3 group with one or more OH groups.
  • R4 is thus an (n + 1) -valent aliphatic hydrocarbon radical, the carbon chain of which can be interrupted by an oxygen atom and then takes on the meaning of an ether radical.
  • n has a value of 1, 2 or 3.
  • the radical R2 is preferably a radical of the formula - (CH2) x -OH, where x has a value from 2 to 6. Particularly preferred as radicals R2 are - (CH2) 3-OH and - (CH2) 3-O-C2H4OH.
  • the index a denotes the content of difunctional
  • a has a value from 1 to 1000.
  • b denotes the number of units with a trifunctional siloxy unit, where b has a value from 0 to 10.
  • a polysiloxane of the formula I is now reacted with a compound which has at least one epoxy group, with at least two epoxy groups having to be accounted for by each OH group of the remainder of the formula II.
  • ethylene oxide, propylene oxide and butylene oxide can be used first. These can each be added alone or in the form of a mixture or in blocks to the OH group of the radical R 2. Among these epoxides, ethylene oxide and propylene oxide are preferred.
  • Suitable and advantageously used epoxides are the cycloaliphatic epoxides.
  • suitable cycloaliphatic epoxides are cyclohexene oxide, vinylcyclohexene oxide, limonene oxide, cyclopentene oxide and cyclododecene oxide, vinylcyclohexene oxide and limonene oxide being particularly preferred.
  • a particular advantage of the process according to the invention is that epoxyalkenes or epoxyalkenethers can also be used as epoxides.
  • the addition of these epoxy compounds gives polyether siloxanes which have olefinic double bonds bonded laterally in the polyether chain.
  • an epoxy alkene the general formula polysiloxanes are obtained which contain, for example, the following polyether grouping on one or more Si atoms: Compounds of this type could not be produced by the methods known hitherto. They have the great advantage of being accessible to further reactions due to the olefinic double bond. It is possible to copolymerize such polyether siloxanes with vinyl or (meth) acrylic monomers. They can also be used to modify epoxides.
  • epoxy alkenes of the general formula can also be used be used.
  • p is a number from 0 to 4 and q is a number from 1 to 4.
  • a preferred example of an epoxyalkene ether is the allyl glycidyl ether.
  • Lewis acid An example of a particularly suitable Lewis acid is BF3.
  • suitable Lewis acids are AlCl3, SnCl4, bis (1-methoxy-2-propoxy) zinc.
  • Double metal complex catalysts with cyano ligands are preferably used as complex catalysts.
  • Examples of such catalysts are Zn3 [Co (CN) 6] 2, Zn3 [Ir (CN) 6] 2, Fe3 [Co (CN) 6] 2.
  • a solvent must be inert to the reactants.
  • tetrahydrofuran is unsuitable as a solvent, since it is split up and incorporated in substantial proportions into the polyether group.
  • Suitable solvents are, for example, dimethoxyethane, toluene, diethylene glycol dimethyl ether.
  • the polyether siloxanes produced by the process according to the invention can be used for the same purposes as the polyether siloxanes known from the prior art.
  • a preferred use is the use of these compounds as stabilizers in polyurethane foaming. Due to the production process, however, the compounds have the advantage that they are free from unreacted polyether mono- or diols, e.g. would react with isocyanates in the production of polyurethane foams.
  • the polyether siloxanes which still have at least one olefinic double bond in the polyether radical are suitable as macromonomers and are compounds accessible to copolymerization. They can therefore be used to modify polymers. It is also possible to carry out the reactions familiar to the chemist with the olefinic double bond, e.g. the addition reactions. An example of such a reaction is the reaction with sodium bisulfite.
  • the silicone polyethers obtained are mixed in a self-curing lacquer system in a concentration of 1% and the mixture is applied to a Bonder steel sheet using a 40 ⁇ m wire doctor. After a hardening time of 48 hours, the paint behavior is checked for release behavior by a peel test with Tesa ® 4154 (test 1).
  • a measure of the scratch resistance of the lacquers obtained is the tensile force required to pull a 500 g specimen resting on three screws over the lacquer at 30 cm / min (test 2).
  • the foam-stabilizing properties of the resulting silicone polyethers are tested in a soft foam formulation with 100 parts of a polyether polyol, 4.0 parts of water, 0.1 part of a tertiary amine catalyst, 0.1 part of tin octoate and 0.5 part of a foam stabilizer.
  • 0.5 parts of the substance to be tested are mixed into the formulation and the rise height of the foam is measured (test 3).
  • Test 1 Test 2 Test 3 no apply 11.6 N 3.5 N 31.1 cm Substance from example 1 6.4 N 1.8 N collapse Substance from example 2 7.1 N 2.3 N collapse Substance from example 3 6.2 N 1.6 N 23.2 cm Substance from example 4 5.9 N 1.9 N collapse Substance from example 5 5.9 N 2.1 N collapse Substance from example 6 9.7 N. 3.2 N 32.6 cm Substance from example 7 8.5 N 2.7 N 31.7 cm Substance from example 8 5.1 N 1.4 N collapse

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Silicon Polymers (AREA)

Abstract

A process for the preparation of polyether siloxanes whose polyether radicals are bonded to the polysiloxane structure via Si-C bonds, in which polysiloxanes having the average formula <IMAGE> in which at least one radical R<2> is a radical of the formula <IMAGE> is reacted with a compound containing at least one epoxide group in such amounts that at least two epoxide groups are present per OH group, in the presence of Lewis acids at temperatures of </= 60 DEG C or in the presence of complex catalysts which accelerate the addition reaction between epoxide groups and hydroxyl groups, at temperatures of up to 140 DEG C, and the reaction is optionally carried out in the presence of an inert solvent. The polyether siloxanes obtained have a defined functionality and contain no excess, unreacted polyol components.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Polyethersiloxanen, die frei von überschüssigen Polyethern sind und deren Polyetherreste durch Si-C-Bindungen an das Polysiloxangerüst gebunden sind.The invention relates to a process for the preparation of polyether siloxanes which are free from excess polyethers and whose polyether residues are bound to the polysiloxane skeleton by Si-C bonds.

Bei der Herstellung von Polyethersiloxanen durch Umsetzung von Chlorpolysiloxanen mit Polyetherdiolen ist man gezwungen, einen Überschuß an Polyetherdiolen, gemessen an dem molaren Verhältnis von OH-Gruppen zu SiCl-Gruppen, einzusetzen, um die Bildung von A[ BA ]x -Polymeren oder vernetzten Polymeren zu vermeiden. Es ist jedoch in den meisten Fällen nicht möglich, das überschüssige Polyetherdiol aus dem Reaktionsgemisch zu entfernen. Eine destillative Abtrennung scheitert im allgemeinen an dem hohen Molekulargewicht des Polyetherdiols und dessen hierdurch bedingte physikalische Eigenschaften. Eine selektive Abtrennung des Polyetherdiols durch Auswaschen ist wirtschaftlich nicht durchführbar und ist häufig wegen der tensidischen Eigenschaften des Polyethersiloxans nicht möglich.In the production of polyether siloxanes by reacting chloropolysiloxanes with polyether diols, it is necessary to use an excess of polyether diols, measured in terms of the molar ratio of OH groups to SiCl groups, in order to form A [BA] x polymers or crosslinked polymers to avoid. In most cases, however, it is not possible to remove the excess polyether diol from the reaction mixture. Distillative separation generally fails because of the high molecular weight of the polyether diol and its physical properties. A selective removal of the polyether diol by washing out is not economically feasible and is often not possible because of the surfactant properties of the polyether siloxane.

Lagert man Polyether mit einer olefinischen Doppelbindung, wie z.B. Allylpolyether, an Wasserstoffsiloxane an, ist es ebenfalls notwendig, mit einem Überschuß an Polyether zu arbeiten, da ein Teil des Polyethers sich der Anlagerung durch Isomerisierung entzieht und die Anlagerung nur in Gegenwart überschüssiger Mengen Polyether in wirtschaftlich vertretbarer Zeit in bezug auf die SiH-Gruppen quantitativ abläuft. Auch bei einer solchen Verfahrensweise besteht das Problem der Abtrennung der isomerisierten oder überschüssigen, nicht umgesetzten Mengen Allylpolyether.If polyethers with an olefinic double bond, such as, for example, allyl polyether, are added to hydrogen siloxanes, it is also necessary to work with an excess of polyether, since part of the polyether escapes from the addition by isomerization and the addition occurs only in the presence of excess amounts of polyether economically reasonable time with respect to the SiH groups expires quantitatively. Even with such a procedure, there is the problem of separating the isomerized or excess, unreacted amounts of allyl polyether.

Die vorliegende Erfindung befaßt sich mit dem technischen Problem der Herstellung von Polyethersiloxanen definierter Funktionalität in möglichst reiner, d.h. von überschüssigen, nicht umgesetzten Polyolkomponenten freier Form.The present invention is concerned with the technical problem of the production of polyethersiloxanes of defined functionality in as pure as possible, i.e. of excess, unreacted polyol components of free form.

Dieses Problem wird durch das erfindungsgemäße Verfahren gelöst, welches dadurch gekennzeichnet ist, daß man Polysiloxane der allgemeinen durchschnittlichen Formel

Figure imgb0001

in der die Reste

gleich oder verschieden sind und Alkylreste mit 1 bis 4 Kohlenstoffatomen oder Phenylreste bedeuten, mindestens 90 % der Reste R¹ aber Methylreste sind,
die Bedeutung der Reste R¹ haben können, aber mindestens ein Rest R² ein Rest der allgemeinen Formel
Figure imgb0002
ist, in der
ein Wasserstoff- oder ein Alkylrest mit 1 bis 4 Kohlenstoffatomen ist,
R⁴
ein (n+1)-wertiger aliphatischer Kohlenwasserstoff- oder Etherrest ist, und
n
einen Wert von 1, 2 oder 3 hat,
a
einen Wert von 1 bis 1000 und
b
einen Wert von 0 bis 10 hat,
mit einer mindestens eine Epoxidgruppe aufweisenden Verbindung in solchen Mengen, daß auf eine OH-Gruppe mindestens zwei Epoxidgruppen entfallen, in Gegenwart von Lewis-Säuren bei Temperaturen von ≦ 60°C oder in Gegenwart von Komplexkatalysatoren, die die Anlagerung von Epoxidgruppen an Hydroxylgruppen beschleunigen, bei Temperaturen bis zu 140°C umsetzt und die Umsetzung gegebenenfalls in Gegenwart eines inerten Lösungsmittels durchführt.This problem is solved by the process according to the invention, which is characterized in that polysiloxanes of the general average formula
Figure imgb0001

in which the leftovers
are identical or different and are alkyl radicals having 1 to 4 carbon atoms or phenyl radicals, but at least 90% of the radicals R 1 are methyl radicals,
may have the meaning of the radicals R¹, but at least one radical R² is a radical of the general formula
Figure imgb0002
is in the
is a hydrogen or an alkyl radical with 1 to 4 carbon atoms,
R⁴
is an (n + 1) -valent aliphatic hydrocarbon or ether radical, and
n
has a value of 1, 2 or 3,
a
a value from 1 to 1000 and
b
has a value from 0 to 10,
with a compound having at least one epoxy group in amounts such that at least two epoxy groups are present in one OH group, in the presence of Lewis acids at temperatures of ≦ 60 ° C. or in the presence of complex catalysts which accelerate the attachment of epoxy groups to hydroxyl groups, reacted at temperatures up to 140 ° C and the reaction is carried out, if appropriate, in the presence of an inert solvent.

In der Formel I können die Reste R¹ gleich oder verschieden sein. Sie sind Alkylreste mit 1 bis 4 Kohlenstoffatomen oder Phenylreste. Es muß jedoch die Bedingung erfüllt sein, daß mindestens 90 % der Reste R¹ Methylreste sind.In the formula I, the radicals R¹ can be the same or different. They are alkyl radicals with 1 to 4 carbon atoms or phenyl radicals. However, the condition must be fulfilled that at least 90% of the R 1 radicals are methyl radicals.

Die Reste R² können ebenfalls innerhalb des polymeren Moleküls gleich oder verschieden sein und die Bedeutung der Reste R¹ annehmen. Mindestens ein Rest R² muß aber ein Rest der allgemeinen Formel II

Figure imgb0003

sein. In dieser Formel II hat R³ die Bedeutung eines Wasserstoff- oder eines Alkylrestes mit 1 bis 4 Kohlenstoffatomen. Vorzugsweise ist R³ ein Wasserstoffrest. R⁴ ist ein Brückenglied, welches den Kohlenstoff der CHR³-Gruppe mit einer oder mehreren OH-Gruppen verbindet. R⁴ ist somit ein (n+1)-wertiger aliphatischer Kohlenwasserstoffrest, dessen Kohlenstoffkette durch ein Sauerstoffatom unterbrochen sein kann und dann die Bedeutung eines Etherrestes annimmt. n hat einen Wert von 1, 2 oder 3.The radicals R² can also be the same or different within the polymeric molecule and assume the meaning of the radicals R¹. At least one radical R² must be a radical of the general formula II
Figure imgb0003

be. In this formula II, R³ has the meaning of a hydrogen or an alkyl radical having 1 to 4 carbon atoms. R³ is preferably a hydrogen radical. R⁴ is a bridge link that connects the carbon of the CHR³ group with one or more OH groups. R⁴ is thus an (n + 1) -valent aliphatic hydrocarbon radical, the carbon chain of which can be interrupted by an oxygen atom and then takes on the meaning of an ether radical. n has a value of 1, 2 or 3.

Der Rest R² ist vorzugsweise ein Rest der Formel -(CH₂)x-OH, wobei x einen Wert von 2 bis 6 aufweist. Besonders bevorzugt sind als Reste R² die Reste -(CH₂)₃-OH und -(CH₂)₃-O-C₂H₄OH.The radical R² is preferably a radical of the formula - (CH₂) x -OH, where x has a value from 2 to 6. Particularly preferred as radicals R² are - (CH₂) ₃-OH and - (CH₂) ₃-O-C₂H₄OH.

Der Index a kennzeichnet den Gehalt an difunktionellen

Figure imgb0004

Dabei hat a einen Wert von 1 bis 1000. b kennzeichnet die Anzahl der Einheiten mit einer trifunktionellen Siloxyeinheit, wobei b einen Wert von 0 bis 10 hat.The index a denotes the content of difunctional
Figure imgb0004

Here a has a value from 1 to 1000. b denotes the number of units with a trifunctional siloxy unit, where b has a value from 0 to 10.

Es ergibt sich somit, daß das durchschnittliche Molekül bei einem Wert von b = 0 mindestens 4 Si-Atome aufweist. Dabei ist zu beachten, daß es sich bei dieser Formel um eine allgemeine durchschnittliche Formel handelt, die die durchschnittliche Struktur und Zusammensetzung des Polyethersiloxans kennzeichnet.It follows that the average molecule has at least 4 Si atoms at a value of b = 0. It should be noted that this formula is a general average formula that characterizes the average structure and composition of the polyether siloxane.

Bei dem erfindungsgemäßen Verfahren wird nun ein Polysiloxan der Formel I mit einer Verbindung umgesetzt, welche mindestens eine Epoxidgruppe aufweist, wobei auf jede OH-Gruppe des Restes der Formel II mindestens zwei Epoxidgruppen entfallen müssen.In the process according to the invention, a polysiloxane of the formula I is now reacted with a compound which has at least one epoxy group, with at least two epoxy groups having to be accounted for by each OH group of the remainder of the formula II.

Als Verbindungen mit Epoxidgruppen kommen zunächst Ethylenoxid, Propylenoxid und Butylenoxid in Frage. Diese können jeweils alleine oder in Form eines Gemisches oder blockweise an die OH-Gruppe des Restes R² angelagert werden. Unter diesen Epoxiden sind Ethylenoxid und Propylenoxid bevorzugt.As compounds with epoxy groups, ethylene oxide, propylene oxide and butylene oxide can be used first. These can each be added alone or in the form of a mixture or in blocks to the OH group of the radical R 2. Among these epoxides, ethylene oxide and propylene oxide are preferred.

Weitere geeignete und mit Vorteil einzusetzende Epoxide sind die cycloaliphatischen Epoxide. Beispiele geeigneter cycloaliphatischer Epoxide sind Cyclohexenoxid, Vinylcyclohexenoxid, Limonenoxid, Cyclopentenoxid und Cyclododecenoxid, wobei Vinylcyclohexenoxid und Limonenoxid besonders bevorzugt sind.Other suitable and advantageously used epoxides are the cycloaliphatic epoxides. Examples of suitable cycloaliphatic epoxides are cyclohexene oxide, vinylcyclohexene oxide, limonene oxide, cyclopentene oxide and cyclododecene oxide, vinylcyclohexene oxide and limonene oxide being particularly preferred.

Ein besonderer Vorteil des erfindungsgemäßen Verfahrens besteht darin, daß man als Epoxide auch Epoxyalkene oder Epoxyalkenether verwenden kann. Man erhält bei der Anlagerung dieser Epoxyverbindungen Polyethersiloxane, welche in der Polyetherkette seitenständig gebundene olefinische Doppelbindungen aufweisen. Bei Verwendung eines Epoxyalkens der allgemeinen Formel

Figure imgb0005

erhält man Polysiloxane, welche an einem oder mehreren Si-Atomen z.B. die folgende Polyethergruppierung enthalten:
Figure imgb0006

Verbindungen dieser Art waren nach den bisher bekannten Methoden nicht herstellbar. Sie haben den großen Vorteil, aufgrund der olefinischen Doppelbindung weiteren Reaktionen zugänglich zu sein. So ist es möglich, derartige Polyethersiloxane mit Vinyl- oder (Meth)acrylmonomeren zu copolymerisieren. Sie können auch zur Modifizierung von Epoxiden dienen.A particular advantage of the process according to the invention is that epoxyalkenes or epoxyalkenethers can also be used as epoxides. The addition of these epoxy compounds gives polyether siloxanes which have olefinic double bonds bonded laterally in the polyether chain. When using an epoxy alkene the general formula
Figure imgb0005

polysiloxanes are obtained which contain, for example, the following polyether grouping on one or more Si atoms:
Figure imgb0006

Compounds of this type could not be produced by the methods known hitherto. They have the great advantage of being accessible to further reactions due to the olefinic double bond. It is possible to copolymerize such polyether siloxanes with vinyl or (meth) acrylic monomers. They can also be used to modify epoxides.

Anstelle der Epoxyalkene können auch Epoxyalkenether der allgemeinen Formel

Figure imgb0007

eingesetzt werden. In dieser Formel ist p eine Zahl von 0 bis 4 und q eine Zahl von 1 bis 4. Bevorzugtes Beispiel eines Epoxyalkenethers ist der Allylglycidether.Instead of the epoxy alkenes, epoxy alkenes of the general formula can also be used
Figure imgb0007

be used. In this formula, p is a number from 0 to 4 and q is a number from 1 to 4. A preferred example of an epoxyalkene ether is the allyl glycidyl ether.

Die Umsetzung der Polysiloxane der Formel I mit den Verbindungen mit Epoxidgruppen erfolgt in Gegenwart von Katalysatoren. Dabei kann man als Katalysatoren sowohl Lewis-Säuren oder Komplexkatalysatoren verwenden. Im Falle der Verwendung von Lewis-Säuren ist eine Temperatur von ≦ 60°C einzuhalten, da sich bei höheren Temperaturen Spaltungs- und Äquilibrierungsreaktionen am Polysiloxangerüst störend bemerkbar machen.The reaction of the polysiloxanes of the formula I with the compounds with epoxy groups takes place in the presence of catalysts. Both Lewis acids or complex catalysts can be used as catalysts. If Lewis acids are used, a temperature of ≦ 60 ° C must be maintained, since cleavage and equilibration reactions on the polysiloxane structure are noticeable at higher temperatures.

Beispiel einer besonders geeigneten Lewis-Säure ist BF₃. Weitere geeignete Lewis-Säuren sind AlCl₃, SnCl₄, Bis(1-methoxy-2-propoxy)zink.An example of a particularly suitable Lewis acid is BF₃. Other suitable Lewis acids are AlCl₃, SnCl₄, bis (1-methoxy-2-propoxy) zinc.

Als Komplexkatalysatoren sind bevorzugt Doppelmetallkomplexkatalysatoren mit Cyanoliganden einzusetzen. Beispiele solcher Katalysatoren sind Zn₃[ Co(CN)₆ ]₂, Zn₃[ Ir(CN)₆ ]₂, Fe₃[ Co(CN)₆ ]₂.Double metal complex catalysts with cyano ligands are preferably used as complex catalysts. Examples of such catalysts are Zn₃ [Co (CN) ₆] ₂, Zn₃ [Ir (CN) ₆] ₂, Fe₃ [Co (CN) ₆] ₂.

Es kann ferner von Vorteil sein, die Umsetzung in Gegenwart eines Lösungsmittels durchzuführen. Das Lösungsmittel muß jedoch gegenüber den Reaktionspartnern inert sein. Im Falle der Verwendung von Lewis-Säuren und insbesondere von BF₃ ist Tetrahydrofuran als Lösungsmittel ungeeignet, da es aufgespalten und in erheblichen Anteilen in die Polyethergruppe eingebaut wird. Geeignete Lösungsmittel sind zum Beispiel Dimethoxyethan, Toluol, Diethylenglykoldimethylether.It may also be advantageous to carry out the reaction in the presence of a solvent. However, the solvent must be inert to the reactants. In the case of the use of Lewis acids and in particular of BF₃, tetrahydrofuran is unsuitable as a solvent, since it is split up and incorporated in substantial proportions into the polyether group. Suitable solvents are, for example, dimethoxyethane, toluene, diethylene glycol dimethyl ether.

Die nach dem erfindungsgemäßen Verfahren hergestellten Polyethersiloxane können für die gleichen Verwendungszwecke, wie die aus dem Stand der Technik bekannten Polyethersiloxane, eingesetzt werden. Dabei ist ein bevorzugter Verwendungszweck die Verwendung dieser Verbindungen als Stabilisatoren bei der Polyurethanverschäumung. Die Verbindungen weisen herstellungsbedingt jedoch den Vorteil auf, daß sie frei von nicht umgesetzten Polyethermono- oder -diolen sind, welche z.B. bei der Herstellung von Polyurethanschäumen mit Isocyanaten reagieren würden. Wie bereits ausgeführt, eignen sich die Polyethersiloxane, welche im Polyetherrest noch mindestens eine olefinische Doppelbindung aufweisen, als Makromonomere und sind einer Copolymerisation zugängliche Verbindungen. Sie können deshalb zur Modifizierung von Polymeren verwendet werden. Es ist außerdem möglich, die dem Chemiker geläufigen Reaktionen mit der olefinischen Doppelbindung durchzuführen, wie z.B. die Additionsreaktionen. Beispiel einer solchen Reaktion ist die Umsetzung mit Natriumhydrogensulfit.The polyether siloxanes produced by the process according to the invention can be used for the same purposes as the polyether siloxanes known from the prior art. A preferred use is the use of these compounds as stabilizers in polyurethane foaming. Due to the production process, however, the compounds have the advantage that they are free from unreacted polyether mono- or diols, e.g. would react with isocyanates in the production of polyurethane foams. As already stated, the polyether siloxanes which still have at least one olefinic double bond in the polyether radical are suitable as macromonomers and are compounds accessible to copolymerization. They can therefore be used to modify polymers. It is also possible to carry out the reactions familiar to the chemist with the olefinic double bond, e.g. the addition reactions. An example of such a reaction is the reaction with sodium bisulfite.

In den folgenden Beispielen wird das erfindungsgemäße Verfahren noch näher erläutert, und es werden die Eigenschaften der erhaltenen Verbindungen gezeigt.The process according to the invention is explained in more detail in the following examples and the properties of the compounds obtained are shown.

Beispiel 1example 1

Zu einer Mischung von 92,6 g (0,1 Mol) eines über Si-C-Gruppen gebundene Hydroxygruppen enthaltenden Siloxans der durchschnittlichen Formel

Figure imgb0008

und 20 ml Toluol werden 0,5 ml Bortrifluorid als 48 %ige Mischung in Diethylether zugegeben. Dann werden 46,4 g (0,8 Mol) Propylenoxid langsam zugetropft, so daß die Temperatur der Reaktionsmischung 60°C nicht überschreitet. Nach Beendigung der Zugabe wird noch 1/2 h gerührt, dann mit Wasser und Natriumhydrogencarbonat neutralisiert. Filtration und Abziehen der flüchtigen Reaktionsprodukte bei 120°C/0,1 Torr liefert 133 g (96 % d. Th.) eines mittelviskosen Öls, bei dem es sich laut spektroskopischer Daten um einen Silikonpolyether der durchschnittlichen Formel
Figure imgb0009

handelt.To a mixture of 92.6 g (0.1 mol) of a siloxane of the average formula containing hydroxyl groups bonded via Si-C groups
Figure imgb0008

and 20 ml of toluene, 0.5 ml of boron trifluoride are added as a 48% mixture in diethyl ether. Then 46.4 g (0.8 mol) of propylene oxide are slowly added dropwise so that the temperature of the reaction mixture does not exceed 60.degree. After the addition has ended, the mixture is stirred for a further 1/2 h, then neutralized with water and sodium hydrogen carbonate. Filtration and stripping of the volatile reaction products at 120 ° C / 0.1 Torr gives 133 g (96% of theory) of a medium-viscosity oil, which according to spectroscopic data is a silicone polyether of the average formula
Figure imgb0009

acts.

Beispiel 2Example 2

Zu einer Mischung von 92,6 g (0,1 Mol) eines über Si-C-Gruppen gebundene Hydroxygruppen enthaltenden Siloxans der durchschnittlichen Formel

Figure imgb0010

und 20 ml Toluol werden 0,5 ml Bortrifluorid als 48 %ige Mischung in Diethylether zugegeben. Dann werden 91,2 g (0,8 Mol) Allylglycidether langsam zugetropft, so daß die Temperatur der Reaktionsmischung 60°C nicht überschreitet. Nach Beendigung der Zugabe wird noch 1/2 h gerührt, dann mit Wasser und Natriumhydrogencarbonat neutralisiert. Filtration und Abziehen der flüchtigen Reaktionsprodukte bei 120°C/0,1 Torr liefert 171 g (93 % d. Th.) eines mittelviskosen Öls, bei dem es sich laut spektroskopischer Daten um einen Silikonpolyether der durchschnittlichen Formel
Figure imgb0011

handelt.To a mixture of 92.6 g (0.1 mol) of a siloxane of the average formula containing hydroxyl groups bonded via Si-C groups
Figure imgb0010

and 20 ml of toluene, 0.5 ml of boron trifluoride are added as a 48% mixture in diethyl ether. Then 91.2 g (0.8 mol) of allyl glycidyl ether are slowly added dropwise so that the temperature of the reaction mixture does not exceed 60.degree. After the addition has ended, the mixture is stirred for a further 1/2 h, then neutralized with water and sodium hydrogen carbonate. Filtration and stripping of the volatile reaction products at 120 ° C / 0.1 Torr provides 171 g (93% of theory) of a medium-viscosity oil, which according to spectroscopic data is a silicone polyether of the average formula
Figure imgb0011

acts.

Beispiel 3Example 3

Zu einer Mischung von 92,6 g (0,1 Mol) eines über Si-C-Gruppen gebundene Hydroxygruppen enthaltenden Siloxans der durchschnittlichen Formel

Figure imgb0012

und 20 ml Toluol werden 0,5 ml Bortrifluorid als 48 %ige Mischung in Diethylether zugegeben. Dann werden 116 g (2,0 Mol) Propylenoxid und 88 g (2,0 Mol) Ethylenoxid als Gemisch langsam zugetropft, so daß die Temperatur der Reaktionsmischung 60°C nicht überschreitet. Nach Beendigung der Zugabe wird noch 1/2 h gerührt, dann mit Wasser und Natriumhydrogencarbonat neutralisiert. Filtration und Abziehen der flüchtigen Reaktionsprodukte bei 120°C/0,1 Torr liefert 282 g (95 % d. Th.) eines mittelviskosen Öls, bei dem es sich laut spektroskopischer Daten um einen Silikonpolyether der durchschnittlichen Formel
Figure imgb0013

handelt.To a mixture of 92.6 g (0.1 mol) of a siloxane of the average formula containing hydroxyl groups bonded via Si-C groups
Figure imgb0012

and 20 ml of toluene, 0.5 ml of boron trifluoride are added as a 48% mixture in diethyl ether. Then 116 g (2.0 mol) of propylene oxide and 88 g (2.0 mol) of ethylene oxide are slowly added dropwise as a mixture so that the temperature of the reaction mixture does not exceed 60.degree. After the addition has ended, the mixture is stirred for a further 1/2 h, then neutralized with water and sodium hydrogen carbonate. Filtration and stripping of the volatile reaction products at 120 ° C / 0.1 Torr provides 282 g (95% of theory) of a medium-viscosity oil, which according to spectroscopic data is a silicone polyether of the average formula
Figure imgb0013

acts.

Beispiel 4Example 4

Zu einer Mischung von 92,6 g (0,1 Mol) eines über Si-C-Gruppen gebundene Hydroxygruppen enthaltenden Siloxans der durchschnittlichen Formel

Figure imgb0014

und 20 ml Toluol werden 0,5 ml Bortrifluorid als 48 %ige Mischung in Diethylether zugegeben. Dann werden 124 g (1,0 Mol) Vinylcyclohexenoxid langsam zugetropft, so daß die Temperatur der Reaktionsmischung 60°C nicht überschreitet. Nach Beendigung der Zugabe wird noch 1/2 h gerührt, dann mit Wasser und Natriumhydrogencarbonat neutralisiert. Filtration und Abziehen der flüchtigen Reaktionsprodukte bei 120°C/0,1 Torr liefert 210 g (97 % d. Th.) eines mittelviskosen Öls, bei dem es sich laut spektroskopischer Daten um einen Silikonpolyether der durchschnittlichen Formel
Figure imgb0015

handelt.To a mixture of 92.6 g (0.1 mol) of a siloxane of the average formula containing hydroxyl groups bonded via Si-C groups
Figure imgb0014

and 20 ml of toluene, 0.5 ml of boron trifluoride are added as a 48% mixture in diethyl ether. Then 124 g (1.0 mol) of vinylcyclohexene oxide are slowly added dropwise so that the temperature of the reaction mixture does not exceed 60.degree. After the addition has ended, the mixture is stirred for a further 1/2 h, then neutralized with water and sodium hydrogen carbonate. Filtration and stripping of the volatile reaction products at 120 ° C / 0.1 Torr provides 210 g (97% of theory) of a medium-viscosity oil, which according to spectroscopic data is a silicone polyether of the average formula
Figure imgb0015

acts.

Beispiel 5Example 5

Zu einer Mischung von 84,2 g (0,1 Mol) eines über Si-C-Gruppen gebundene Hydroxygruppen enthaltenden Siloxans der durchschnittlichen Formel

Figure imgb0016

und 20 ml Toluol werden 0,5 ml Bortrifluorid als 48 %ige Mischung in Diethylether zugegeben. Dann werden 121,8 g (0,8 Mol) Limonenoxid langsam zugetropft, so daß die Temperatur der Reaktionsmischung 60°C nicht überschreitet. Nach Beendigung der Zugabe wird noch 1/2 h gerührt, dann mit Wasser und Natriumhydrogencarbonat neutralisiert. Filtration und Abziehen der flüchtigen Reaktionsprodukte bei 120°C/0,1 Torr liefert 190 g (92 % d. Th.) eines mittelviskosen Öls, bei dem es sich laut spektroskopischer Daten um einen Silikonpolyether der durchschnittlichen Formel
Figure imgb0017

handelt.To a mixture of 84.2 g (0.1 mol) of a siloxane of the average formula containing hydroxyl groups bonded via Si-C groups
Figure imgb0016

and 20 ml of toluene, 0.5 ml of boron trifluoride are added as a 48% mixture in diethyl ether. Then 121.8 g (0.8 mol) of limonene oxide are slowly added dropwise so that the temperature of the reaction mixture does not exceed 60.degree. After the addition has ended, the mixture is stirred for a further 1/2 h, then neutralized with water and sodium hydrogen carbonate. Filtration and stripping of the volatile reaction products at 120 ° C / 0.1 Torr provides 190 g (92% of theory) of a medium-viscosity oil, which according to spectroscopic data is a silicone polyether of the average formula
Figure imgb0017

acts.

Beispiel 6Example 6

Zu einer Mischung von 236 g (0,05 Mol) eines über Si-C-Gruppen gebundene Hydroxygruppen enthaltenden Siloxans der durchschnittlichen Formel

Figure imgb0018

mit 40 ml Dimethoxyethan und 0,1 g eines Zinkhexacyanokobaltatkomplexes werden in einem Druckgefäß bei 120°C 290 g (5,0 Mol) Propylenoxid zugetropft. Nach Beendigung der Reaktion werden weitere 228 g (2,0 Mol) Allylglycidether zugegeben. Dann wird noch 1 h bei 130°C gerührt. Filtration und Abziehen der flüchtigen Reaktionsprodukte bei 120°C/0,1 Torr liefert 686 g (91 % d. Th.) eines Öls, bei dem es sich laut spektroskopischer Daten um einen Silikonpolyether der durchschnittlichen Formel
Figure imgb0019

handelt.To a mixture of 236 g (0.05 mol) of a siloxane of the average formula containing hydroxyl groups bonded via Si-C groups
Figure imgb0018

With 40 ml of dimethoxyethane and 0.1 g of a zinc hexacyanocobaltate complex, 290 g (5.0 mol) of propylene oxide are added dropwise in a pressure vessel at 120 ° C. After the reaction has ended, a further 228 g (2.0 mol) of allyl glycidyl ether are added. The mixture is then stirred at 130 ° C for 1 h. Filtration and stripping of the volatile reaction products at 120 ° C / 0.1 Torr gives 686 g (91% of theory) of an oil which, according to spectroscopic data, is a silicone polyether of the average formula
Figure imgb0019

acts.

Beispiel 7Example 7

Zu einer Mischung von 416 g (0,1 Mol) eines über Si-C-Gruppen gebundene Hydroxygruppen enthaltenden Siloxans der durchschnittlichen Formel

Figure imgb0020

und 100 ml Toluol wird 1 ml Bortrifluorid als 48 %ige Mischung in Diethylether zugegeben. Dann werden 446,4 g (3,6 Mol) Vinylcyclohexenoxid langsam zugetropft, so daß die Temperatur der Reaktionsmischung 60°C nicht überschreitet. Nach Beendigung der Zugabe wird noch 1/2 h gerührt, dann mit Wasser und Natriumhydrogencarbonat neutralisiert. Filtration und Abziehen der flüchtigen Reaktionsprodukte bei 120°C/0,1 Torr liefert 810 g (94 % d. Th.) eines mittelviskosen Öls, bei dem es sich laut spektroskopischer Daten um einen Silikonpolyether der durchschnittlichen Formel
Figure imgb0021

handelt.To a mixture of 416 g (0.1 mol) of a siloxane of the average formula containing hydroxyl groups bonded via Si-C groups
Figure imgb0020

and 100 ml of toluene, 1 ml of boron trifluoride is added as a 48% mixture in diethyl ether. Then 446.4 g (3.6 mol) of vinylcyclohexene oxide are slowly added dropwise so that the temperature of the reaction mixture does not exceed 60.degree. After the addition is complete, 1/2 h stirred, then neutralized with water and sodium hydrogen carbonate. Filtration and stripping of the volatile reaction products at 120 ° C / 0.1 Torr provides 810 g (94% of theory) of a medium-viscosity oil, which according to spectroscopic data is a silicone polyether of the average formula
Figure imgb0021

acts.

Beispiel 8Example 8

Zu einer Mischung von 92,6 g (0,1 Mol) eines über Si-C-Gruppen gebundene Hydroxygruppen enthaltenden Siloxans der durchschnittlichen Formel

Figure imgb0022

und 20 ml Toluol werden 0,5 ml Bortrifluorid als 48 %ige Mischung in Diethylether zugegeben. Dann werden 152 g (1,0 Mol) Limonenoxid und 120 g (0,5 Mol) 1,2-Hexadecenoxid im Gemisch langsam zugetropft, so daß die Temperatur der Reaktionsmischung 60°C nicht überschreitet. Nach Beendigung der Zugabe wird noch 1/2 h gerührt, dann mit Wasser und Natriumhydrogencarbonat neutralisiert. Filtration und Abziehen der flüchtigen Reaktionsprodukte bei 120°C/0,1 Torr liefert 365 g (97 % d. Th.) eines Öls, bei dem es sich laut spektroskopischer Daten um einen Silikonpolyether der durchschnittlichen Formel
Figure imgb0023

handelt.To a mixture of 92.6 g (0.1 mol) of a siloxane of the average formula containing hydroxyl groups bonded via Si-C groups
Figure imgb0022

and 20 ml of toluene, 0.5 ml of boron trifluoride are added as a 48% mixture in diethyl ether. Then 152 g (1.0 mol) of limonene oxide and 120 g (0.5 mol) of 1,2-hexadecene oxide are slowly added dropwise in the mixture, so that the temperature of the reaction mixture does not exceed 60.degree. After the addition has ended, the mixture is stirred for a further 1/2 h, then neutralized with water and sodium hydrogen carbonate. Filtration and stripping of the volatile reaction products at 120 ° C / 0.1 Torr provides 365 g (97% of theory) of an oil which, according to spectroscopic data, is a silicone polyether of the average formula
Figure imgb0023

acts.

Anwendungstechnische PrüfungenApplication tests

Zur anwendungstechnischen Prüfung werden die erhaltenen Silikonpolyether einem selbsthärtenden Lacksystem in einer Konzentration von 1 % beigemischt und die Mischung mit einem 40-µm-Drahtrakel auf Bonder-Stahlblech aufgetragen. Nach einer Aushärtezeit von 48 h wird der Lack durch einen Abzugstest mit Tesa ® 4154 auf sein Release-Verhalten überprüft (Test 1).For the application test, the silicone polyethers obtained are mixed in a self-curing lacquer system in a concentration of 1% and the mixture is applied to a Bonder steel sheet using a 40 µm wire doctor. After a hardening time of 48 hours, the paint behavior is checked for release behavior by a peel test with Tesa ® 4154 (test 1).

Ein Maß für die Kratzfestigkeit der erhaltenen Lacke ist die Zugkraft, die nötig ist, um einen 500 g schweren Probenkörper, der auf drei Schrauben ruht, mit 30 cm/min über den Lack zu ziehen (Test 2).A measure of the scratch resistance of the lacquers obtained is the tensile force required to pull a 500 g specimen resting on three screws over the lacquer at 30 cm / min (test 2).

Die schaumstabilisierenden Eigenschaften der entstandenen Silikonpolyether werden in einer Weichschaumformulierung mit 100 Teilen eines Polyetherpolyols, 4,0 Teilen Wasser, 0,1 Teilen eines tertiären Aminkatalysators, 0,1 Teilen Zinnoktoat und 0,5 Teilen eines Schaumstabilisators getestet. Dafür werden jeweils 0,5 Teile der zu testenden Substanz zu der Formulierung zugemischt und die Steighöhe des Schaumes gemessen (Test 3). Test 1 Test 2 Test 3 keine Zugabe 11,6 N 3,5 N 31,1 cm Substanz aus Beispiel 1 6,4 N 1,8 N Kollaps Substanz aus Beispiel 2 7,1 N 2,3 N Kollaps Substanz aus Beispiel 3 6,2 N 1,6 N 23,2 cm Substanz aus Beispiel 4 5,9 N 1,9 N Kollaps Substanz aus Beispiel 5 5,9 N 2,1 N Kollaps Substanz aus Beispiel 6 9,7 N 3,2 N 32,6 cm Substanz aus Beispiel 7 8,5 N 2,7 N 31,7 cm Substanz aus Beispiel 8 5,1 N 1,4 N Kollaps The foam-stabilizing properties of the resulting silicone polyethers are tested in a soft foam formulation with 100 parts of a polyether polyol, 4.0 parts of water, 0.1 part of a tertiary amine catalyst, 0.1 part of tin octoate and 0.5 part of a foam stabilizer. For this purpose, 0.5 parts of the substance to be tested are mixed into the formulation and the rise height of the foam is measured (test 3). Test 1 Test 2 Test 3 no encore 11.6 N 3.5 N 31.1 cm Substance from example 1 6.4 N 1.8 N collapse Substance from example 2 7.1 N 2.3 N collapse Substance from example 3 6.2 N 1.6 N 23.2 cm Substance from example 4 5.9 N 1.9 N collapse Substance from example 5 5.9 N 2.1 N collapse Substance from example 6 9.7 N. 3.2 N 32.6 cm Substance from example 7 8.5 N 2.7 N 31.7 cm Substance from example 8 5.1 N 1.4 N collapse

Claims (10)

Verfahren zur Herstellung von Polyethersiloxanen, deren Polyetherreste durch Si-C-Bindungen an das Polysiloxangerüst gebunden sind, dadurch gekennzeichnet, daß man Polysiloxane der allgemeinen durchschnittlichen Formel
Figure imgb0024
in der die Reste R¹   gleich oder verschieden sind und Alkylreste mit 1 bis 4 Kohlenstoffatomen oder Phenylreste bedeuten, mindestens 90 % der Reste R¹ aber Methylreste sind, R²   die Bedeutung der Reste R¹ haben können, aber mindestens ein Rest R² ein Rest der allgemeinen Formel
Figure imgb0025
ist, in der
R³   ein Wasserstoff- oder ein Alkylrest mit 1 bis 4 Kohlenstoffatomen ist, R⁴   ein (n+1)-wertiger aliphatischer Kohlenwasserstoff- oder Etherrest ist, und n   einen Wert von 1, 2 oder 3 hat, a   einen Wert von 1 bis 1000 und b   einen Wert von 0 bis 10 hat, mit einer mindestens eine Epoxidgruppe aufweisenden Verbindung in solchen Mengen, daß auf eine OH-Gruppe mindestens zwei Epoxidgruppen entfallen, in Gegenwart von Lewis-Säuren bei Temperaturen von ≦ 60°C oder in Gegenwart von Komplexkatalysatoren, die die Anlagerung von Epoxidgruppen an Hydroxylgruppen beschleunigen, bei Temperaturen bis zu 140°C umsetzt und die Umsetzung gegebenenfalls in Gegenwart eines inerten Lösungsmittels durchführt.
Process for the preparation of polyether siloxanes whose polyether residues are bonded to the polysiloxane skeleton by Si-C bonds, characterized in that polysiloxanes of the general average formula
Figure imgb0024
in which the leftovers R¹ are identical or different and are alkyl radicals having 1 to 4 carbon atoms or phenyl radicals, but at least 90% of the radicals R¹ are methyl radicals, R² can have the meaning of the radicals R¹, but at least one radical R² can be a radical of the general formula
Figure imgb0025
is in the
R³ is a hydrogen or an alkyl radical with 1 to 4 carbon atoms, R⁴ is an (n + 1) -valent aliphatic hydrocarbon or ether radical, and n has a value of 1, 2 or 3, a a value from 1 to 1000 and b has a value from 0 to 10, with a compound having at least one epoxy group in such quantities that at least two epoxy groups per OH group omitted, in the presence of Lewis acids at temperatures of ≦ 60 ° C or in the presence of complex catalysts which accelerate the addition of epoxy groups to hydroxyl groups, reacted at temperatures up to 140 ° C and, if appropriate, the reaction is carried out in the presence of an inert solvent.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß mindestens ein Rest R² der Rest -(CH₂)₃-OH ist.Process according to Claim 1, characterized in that at least one R² radical is the - (CH₂) ₃-OH radical. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß mindestens ein Rest R² der Rest -(CH₂)₃-O-C₂H₄OH ist.Process according to Claim 1, characterized in that at least one R² radical is the - (CH₂) ₃-O-C₂H₄OH radical. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als Epoxide Alkylenoxide mit 2 bis 4 Kohlenstoffatomen einsetzt.Process according to Claim 1, characterized in that alkylene oxides having 2 to 4 carbon atoms are used as epoxides. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als Epoxide cycloaliphatische Epoxide einsetzt.Process according to Claim 1, characterized in that cycloaliphatic epoxides are used as epoxides. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als Epoxide Epoxyalkene der allgemeinen Formel
Figure imgb0026
wobei o eine Zahl von 0 bis 8 ist, einsetzt.
Process according to Claim 1, characterized in that epoxyalkenes of the general formula are used as epoxides
Figure imgb0026
where o is a number from 0 to 8.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als Epoxide Epoxyalkenether der allgemeinen Formel
Figure imgb0027
wobei p eine Zahl von 0 bis 4 und q eine Zahl von 1 bis 4 ist, einsetzt.
Process according to Claim 1, characterized in that epoxyalkene ethers of the general formula are used as epoxides
Figure imgb0027
where p is a number from 0 to 4 and q is a number from 1 to 4.
Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß man Allylglycidether einsetzt.Process according to claim 7, characterized in that allyl glycidyl ether is used. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man als Katalysator BF₃ einsetzt.Process according to one or more of the preceding claims, characterized in that BF₃ is used as the catalyst. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man als Komplexkatalysator einen Doppelmetallkomplexkatalysator mit Cyanoliganden einsetzt.Process according to one or more of the preceding claims, characterized in that a double metal complex catalyst with cyano ligands is used as the complex catalyst.
EP93108726A 1992-06-11 1993-05-29 Process for the preparation of polyether siloxanes Expired - Lifetime EP0573864B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4219070A DE4219070A1 (en) 1992-06-11 1992-06-11 Process for the preparation of polyether siloxanes
DE4219070 1992-06-11

Publications (3)

Publication Number Publication Date
EP0573864A2 true EP0573864A2 (en) 1993-12-15
EP0573864A3 EP0573864A3 (en) 1994-08-17
EP0573864B1 EP0573864B1 (en) 1997-10-01

Family

ID=6460760

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93108726A Expired - Lifetime EP0573864B1 (en) 1992-06-11 1993-05-29 Process for the preparation of polyether siloxanes

Country Status (3)

Country Link
US (1) US5391679A (en)
EP (1) EP0573864B1 (en)
DE (2) DE4219070A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0879840A2 (en) * 1997-05-22 1998-11-25 Th. Goldschmidt AG Organopolysiloxanes containing polyhhydroxyorganyl groups, especially sugar or sugar derivative groups , and polyoxyalkylene groups
US5856369A (en) * 1996-07-30 1999-01-05 Osi Specialties, Inc. Polyethers and polysiloxane copolymers manufactured with double metal cyanide catalysts
EP2107077A1 (en) * 2008-04-01 2009-10-07 Evonik Goldschmidt GmbH New polyether alcohols containing organosiloxane groups by means of alkoxylisation of epoxide functional (poly) organosiloxanes to double metal cyanide (DMC) catalysts and method for its production
EP2138526A1 (en) * 2008-06-27 2009-12-30 Evonik Goldschmidt GmbH New alkoxylisation products containing polyether siloxanes by means of direct alkoxylisation of organomodified alpha, omega dihydroxy siloxanes to double metal cyanide (DMC) catalysts and method for its production
EP2196487A1 (en) * 2008-10-29 2010-06-16 Evonik Goldschmidt GmbH Silicone polyether copolymer systems and method for production of same using alkoxylation reaction

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4411079A1 (en) * 1994-03-30 1995-10-05 Bayer Ag Novel polysiloxane polyether-based copolymers, a process for their preparation and their use
EP0924239B1 (en) * 1997-12-22 2004-11-24 General Electric Company Durable hydrophilic coating for textiles
NZ509436A (en) * 2000-03-24 2002-05-31 Goldschmidt Ag Th Siloxane-containing oil compositions with good spreading properties
US20020091219A1 (en) 2001-01-08 2002-07-11 Clement Katherine Sue Certain silicone polyethers, methods for making them and uses
DE102006030531A1 (en) * 2006-07-01 2008-01-03 Goldschmidt Gmbh Silicone stabilizers for flame-retardant rigid polyurethane or polyisocyanurate foams
DE102008043343A1 (en) * 2008-10-31 2010-05-06 Evonik Goldschmidt Gmbh Silicone polyether block copolymers with defined polydispersity in the polyoxyalkylene part and their use as stabilizers for the production of polyurethane foams
EP3663371B1 (en) * 2018-12-06 2024-03-13 Henkel AG & Co. KGaA Preparation of polysiloxane polyalkyleneglycol brush copolymers
ES2977551T3 (en) * 2018-12-06 2024-08-26 Henkel Ag & Co Kgaa Curable composition comprising brush-like polysiloxane polyalkylene glycol copolymers
US11732092B2 (en) 2020-10-19 2023-08-22 Evonik Operations Gmbh Upcycling process for processing silicone wastes
WO2023201138A1 (en) 2022-04-13 2023-10-19 Dow Global Technologies Llc Preparation of polyether-functional organosilicon compounds

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0485637A1 (en) * 1990-05-11 1992-05-20 Asahi Glass Company Ltd. Process for producing polyoxyalkylene compound
EP0499051A2 (en) * 1991-02-13 1992-08-19 Th. Goldschmidt AG Organopolysiloxanes comprising polyether and ester groups attached to the same spacer group
US5175327A (en) * 1992-01-27 1992-12-29 Siltech Inc. Process for the preparation of silonal alkoxylates

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2293868A (en) * 1939-12-29 1942-08-25 Carbide & Carbon Chem Corp Polymerization products
US2538072A (en) * 1947-06-11 1951-01-16 Devoe & Raynolds Co Epoxide preparation
US2819245A (en) * 1955-03-07 1958-01-07 Dow Corning Siloxane-epoxide resin reaction products
US2846458A (en) * 1956-05-23 1958-08-05 Dow Corning Organosiloxane ethers
US3057901A (en) * 1960-05-13 1962-10-09 Dow Corning Hydroxyether organosilicon compounds
US4665239A (en) * 1979-10-22 1987-05-12 Basf Corporation Polyethers modified with alpha olefin oxides
GB8314125D0 (en) * 1983-05-21 1983-06-29 Dow Corning Ltd Polysiloxane-polyoxyalkylene copolymers
US5026810A (en) * 1990-02-16 1991-06-25 Gaf Chemicals Corporation Vinyl ether siloxanes
DE4009889C1 (en) * 1990-03-28 1991-06-13 Th. Goldschmidt Ag, 4300 Essen, De

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0485637A1 (en) * 1990-05-11 1992-05-20 Asahi Glass Company Ltd. Process for producing polyoxyalkylene compound
EP0499051A2 (en) * 1991-02-13 1992-08-19 Th. Goldschmidt AG Organopolysiloxanes comprising polyether and ester groups attached to the same spacer group
US5175327A (en) * 1992-01-27 1992-12-29 Siltech Inc. Process for the preparation of silonal alkoxylates

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5856369A (en) * 1996-07-30 1999-01-05 Osi Specialties, Inc. Polyethers and polysiloxane copolymers manufactured with double metal cyanide catalysts
US5877268A (en) * 1996-07-30 1999-03-02 Osi Specialties, Inc. Polyethers and polysiloxane copolymers manufactured with double metal cyanide catalysts
EP0879840A2 (en) * 1997-05-22 1998-11-25 Th. Goldschmidt AG Organopolysiloxanes containing polyhhydroxyorganyl groups, especially sugar or sugar derivative groups , and polyoxyalkylene groups
EP0879840A3 (en) * 1997-05-22 1999-02-10 Th. Goldschmidt AG Organopolysiloxanes containing polyhhydroxyorganyl groups, especially sugar or sugar derivative groups , and polyoxyalkylene groups
EP2107077A1 (en) * 2008-04-01 2009-10-07 Evonik Goldschmidt GmbH New polyether alcohols containing organosiloxane groups by means of alkoxylisation of epoxide functional (poly) organosiloxanes to double metal cyanide (DMC) catalysts and method for its production
EP2138526A1 (en) * 2008-06-27 2009-12-30 Evonik Goldschmidt GmbH New alkoxylisation products containing polyether siloxanes by means of direct alkoxylisation of organomodified alpha, omega dihydroxy siloxanes to double metal cyanide (DMC) catalysts and method for its production
US8309673B2 (en) 2008-06-27 2012-11-13 Evonik Goldschmidt Gmbh Polyether siloxane-containing alkoxylation products by direct alkoxylation of organomodified α,ω-dihydroxysiloxanes over double metal cyanide (DMC) catalysts, and also process for producing them
EP2196487A1 (en) * 2008-10-29 2010-06-16 Evonik Goldschmidt GmbH Silicone polyether copolymer systems and method for production of same using alkoxylation reaction
US8309664B2 (en) 2008-10-29 2012-11-13 Evonik Goldschmidt Gmbh Silicone-polyether copolymer systems and process for preparing them by means of an alkoxylation reaction

Also Published As

Publication number Publication date
EP0573864A3 (en) 1994-08-17
EP0573864B1 (en) 1997-10-01
DE4219070A1 (en) 1993-12-16
DE59307444D1 (en) 1997-11-06
US5391679A (en) 1995-02-21

Similar Documents

Publication Publication Date Title
EP1679335B1 (en) Siloxane block-copolymers
EP0573864B1 (en) Process for the preparation of polyether siloxanes
EP0867465B1 (en) Use of block copolymers having linked siloxane blocks for the preparation of polyrethane foams
EP0585771B1 (en) Polysiloxane-polyoxyalkylene block copolymer containing different polyoxyalkylene blocks in the average molecule
EP2042542B1 (en) Application of linear siloxanes and method for their manufacture
DE60015147T2 (en) Moisture-curable compositions containing silane end groups
EP0261409B1 (en) Process for the preparation of alkoxysilane-terminated, moisture-curable polyurethanes and their use as adhesives and sealants
DE102012210553A1 (en) Silicone polyethers and process for their preparation from methylidene-bearing polyethers
EP0168713A2 (en) (Meth)acrylic acid ester modified organopolysiloxanes, their preparation and use as abhesive coating compositions
DE1260150B (en) Process for the production of organopolysiloxane-polyaether urethane copolymers
DE2215393B2 (en) Siloxane-polyoxyalkylene block copolymers, their preparation and use
DE69419885T2 (en) Composition of organopolysiloxane copolymers in a phenyl ether solvent
DE3786326T2 (en) Curing composition.
DE68927817T2 (en) Polysiloxane-polyether copolymers and process for their preparation
DE2323398C3 (en) Process for the preparation of hydrolyzable siloxane-polyoxyalkylene block copolymers of high molecular weight
DE69813488T2 (en) Curable compositions and hardened gel articles therefrom
DE19707970A1 (en) Poly:carboxylic acid functionalised poly:organo:siloxane
EP0305737A2 (en) Process for condensing and/or equilibrating organopolysiloxanes
DE2618418C3 (en) Siloxane copolymer
CH455295A (en) Process for the production of block copolymers, of polysiloxanes and polyalkylene oxides and the use thereof for the production of polyurethane foams
EP0867462B1 (en) Novel siloxane block copolymers with linked siloxane blocks
EP0499051B1 (en) Organopolysiloxanes comprising polyether and ester groups attached to the same spacer group
EP0867461B1 (en) Novel siloxane block copolymers having rigid spacers and their use
CH452186A (en) Process for the production of polyurethane foams
DE1593567C3 (en) Process for the preparation of alkyl carbanils which are substituted on the nitrogen by alkyl tin groups

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930607

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19960220

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59307444

Country of ref document: DE

Date of ref document: 19971106

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971203

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010507

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030428

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030514

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041201

GBPC Gb: european patent ceased through non-payment of renewal fee