EP0573760B1 - Verfahren zum Identifizieren von Sprach- und Rufverlaufsignalen - Google Patents

Verfahren zum Identifizieren von Sprach- und Rufverlaufsignalen Download PDF

Info

Publication number
EP0573760B1
EP0573760B1 EP93106482A EP93106482A EP0573760B1 EP 0573760 B1 EP0573760 B1 EP 0573760B1 EP 93106482 A EP93106482 A EP 93106482A EP 93106482 A EP93106482 A EP 93106482A EP 0573760 B1 EP0573760 B1 EP 0573760B1
Authority
EP
European Patent Office
Prior art keywords
largest
speech
maxima
digitized signal
correlation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93106482A
Other languages
English (en)
French (fr)
Other versions
EP0573760A1 (de
Inventor
Drory Eatamar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VMX Inc
Original Assignee
VMX Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VMX Inc filed Critical VMX Inc
Publication of EP0573760A1 publication Critical patent/EP0573760A1/de
Application granted granted Critical
Publication of EP0573760B1 publication Critical patent/EP0573760B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q1/00Details of selecting apparatus or arrangements
    • H04Q1/18Electrical details
    • H04Q1/30Signalling arrangements; Manipulation of signalling currents
    • H04Q1/44Signalling arrangements; Manipulation of signalling currents using alternate current
    • H04Q1/444Signalling arrangements; Manipulation of signalling currents using alternate current with voice-band signalling frequencies
    • H04Q1/46Signalling arrangements; Manipulation of signalling currents using alternate current with voice-band signalling frequencies comprising means for distinguishing between a signalling current of predetermined frequency and a complex current containing that frequency, e.g. speech current

Definitions

  • the present invention relates to digital signal processing and to methods for identifying speech and tone energy on a signal line. More particularly, the present invention relates to methods for identifying and discriminating between tones, such as DTMF tones, dial tones, busy signals and other tones used in telephone systems, and speech energy on a signal line.
  • tones such as DTMF tones, dial tones, busy signals and other tones used in telephone systems, and speech energy on a signal line.
  • DE 31 01 851 A1 discloses a method for sampling speech wherein a zero order autocorrelation coefficient and a partial first order autocorrelation coefficient are derived from a speech signal. If either a first state, wherein the zero order autocorrelation coefficient exceeds a first threshold value, or a second state, wherein the zero order autocorrelation coefficient exceeds a second threshold value and the partial first order autocorrelation coefficient is smaller than a third threshold value are present for a predetermined number of extraction intervals, the beginning of a speech signal has been detected. If a state is detected, which is neither the first state nor the second state, the end of a speech signal is detected. This method is used to discriminate between speech signals and noise signals.
  • US 4,439,639 B1 discloses a digital circuit and a method for the detection of call progress tones in telephone systems.
  • the PCM signal is linearized and normalized and the level of the linear signal is measured. Then the number of zero level passes are counted. Moreover, the envelope frequency of the signal is detected. The results of the level measurement, the zero level pass counts and the envelope frequency are then evaluated to provide an output signal representing the identity of the input PCM signal.
  • US 3,944,753 B1 discloses an apparatus for distinguishing voice and other noise signals from legitimate multi-frequency tone signals present on telephone or similar communication lines.
  • a frequency drop detector is used to detect data and control signals, voice and other noise signals, as they appear on the line. Upon the occurence of any signal on the line, the frequency drop detector provides a output, which terminates only if the frequency of that signal rapidly drops at a predetermined amount. Depending on the duration of the output signal, the signal on the line is defined as noise or as a legitimate signal.
  • a method as claimed in claim 1 for real-time identification of electrical energy on a signal line as human speech or as call-progression tone energy achieves a higher degree of accuracy than is possible using prior art techniques.
  • a method for real-time recognition of speech and call-progression tone energy includes the steps of digitizing an analog signal present on a signal line, correlating N neighboring portions of the digitized signal, performing frequency analysis using fast fourier transform (FFT) analysis on the digitized signal, identifying the three largest frequency-domain maxima, determining whether the two largest maxima are above a threshold frequency, and determining whether the ratio of the largest to the third largest maxima exceeds a predetermined value.
  • the steps of the method may be performed in real time using fixed-point hardware by approximating the correlation and FFT functions.
  • Fig. 1 is a functional block diagram of apparatus for performing the method of the present invention.
  • FIG. 2 is a flow diagram showing the steps of a method according to a presently preferred embodiment of the invention.
  • FIG. 3 is a block diagram illustrating a presently preferred method for sharpening the FFT maxima.
  • Speech may be divided into two components.
  • a first voiced component comprises the English language vowel sounds, and consonants such as "m” "n” etc.
  • a second unvoiced component comprises sounds such as "sh” "th” "p” and "t”. While the unvoiced sounds are characterized by little or no correlation, the voiced sounds in speech are highly correlated in the intervals of their pitch. Such a feature recommends the use of correlation techniques as a component of a speech identification method.
  • Certain applications notably telecommunications, require reliable detection and identification of both speech sounds and tones, such as call progression tones. Because call progression tones, usually unmodulated sinusoidal tones, are ideally perfectly correlated and practically highly correlated, correlation techniques alone cannot be used to discriminate between speech sounds and tones such as call-progression signals on communications lines.
  • a combination of digital real-time signal processing techniques implemented in fixed-point hardware may be employed to readily differentiate between speech sounds and call progression tones.
  • the method of the present invention provides a reliable and economically viable solution to the speech recognition problem. From the description presented herein, those of ordinary skill in the art will recognize that the method of the present invention could be performed by an appropriately programmed personal computer, such as an IBM compatible computer equipped with a 386 processor. Particular software coded instruction routines for carrying out an actual embodiment of the present invention may be easily provided by those of ordinary skill in the art as a routine exercise.
  • a signal line 10 to be monitored carries a digitized signal which is to be identified.
  • this digitized signal may be in PCM format, sampled at a rate of 8,000 samples/sec.
  • Codec apparatus for creating such signals from analog signals is well known and widely used in the art and consequently need not be disclosed herein.
  • low-pass digital filter 12 may have a linear rolloff characteristic curve in which attenuation begins at 700 Hz and is complete at 800 Hz. Digital filter technology for provision of such a filter is conventional and well understood.
  • the filtered digital signal is then decimated in circuit block 14 using conventional decimation techniques, preferably by taking every fifth sample, resulting in a data sample rate out of block 14 of 1,600 samples/sec.
  • data samples may be placed in a register 16 for holding while they are processed according to the present method.
  • the digital signal is then subjected to both correlation (block 18) and FFT analysis (block 20).
  • correlation block 18
  • FFT analysis block 20
  • Both of these forms of digital signal processing are well known to those of ordinary skill in the art and are described in texts such as L. R. Rabiner and R. W. Schafer, Digital Processing of Speech Signals, Prentice Hall, 1978, and R. E. Blahut, Fast Algorithms for Digital Signal Processing, Addison Wesley, 1987. Both of these works are expressly incorporated by reference herein.
  • the results of both the correlation and FFT signal processing steps are evaluated to determine if the energy represented by the digital signal on line 12 comprises speech, tone energy, or noise.
  • FIG. 2 A flow diagram representing a method according to a presently preferred embodiment of the invention is depicted in FIG. 2.
  • correlation is performed on a first block of the data samples.
  • Correlation R xx (k) of two signal samples may be expressed as:
  • the correlation lag k is chosen to be within the range of human pitch, i.e., between about 2.5 to 20 msec.
  • the correlation length is chosen to be at least as long as the maximum human pitch, i.e., about 20 msec. At a sample rate of 1,600 samples/sec., the correlation length should be preferably at least 32 samples.
  • the maximum R is first determined by employing only the numerator of eq. [1].
  • the function R(k) may be estimated by taking the arithmetic mean rather than the geometric mean specified by the denominator of eq. [1], thus significantly simplifying the amount of processing necessary.
  • the correlation result is compared with a predetermined threshold ⁇ to determine if there is a possibility that the energy on the line comprises speech.
  • the threshold may be between about 0.6 and 0.8.
  • Steps 36 and 38 illustrate the repetition of the correlation step for N blocks. As previously stated, the presently preferred value for N is 3.
  • the results of the correlation operation indicate the possibility of speech energy, but can also indicate the presence of call-progression tone energy. Therefore, according to the present energy, the digital signal is also subjected to FFT analysis at step 40 to make the final determination regarding whether speech or tone energy is present on the line.
  • FFT analysis of digital signals is well known.
  • the FFT analysis results may be "sharpened” according to a presently preferred embodiment of the invention under some conditions. Because of the overlapping band coverage of the FFT process, the frequency response at frequencies between the center bandwidth points defined by the FFT are attenuated and may introduce some ambiguity into the determination. According to this aspect of the invention, the maxima are "sharpened” before the maxima are evaluated.
  • the three highest frequency maxima M1, M2, and M3 are identified at step 44. If the largest or second largest maxima are found to fall below 300 Hz at step 46, speech is identified at step 48 because call progression tones having a frequency of less than 300 Hz are not likely to be employed. If none of the two highest maxima M1 and M2, fall below 300 Hz, the largest maxima M1 is compared with the third highest maxima M3 at step 50. If the ratio exceeds the threshold, the third maxima is significantly lower energy than the first maxima and the energy is identified as a dual tone at step 52. If the ratio of the first and third maxima is below a preselected threshold (i.e., about 8-10 db) the energy may be identified as speech.
  • a preselected threshold i.e., about 8-10 db
  • FIG. 3 a block diagram illustrates a presently preferred method for sharpening the FFT maxima.
  • the amplitude of the FFT results in adjacent frequency bands are evaluated in groups of three selected in step 60.
  • the magnitude of each band is compared with its right and left hand neighbors in step 62. If, at step 64, it is determined that the center bandwidth has the largest magnitude and the ratio of the center bandwidth to one of its right or left hand immediate neighbors is greater than 9 db and the ratio to the other immediate neighbor is less than 6 db, then the amplitude of the second highest value is added to the amplitude of the highest value and then that second highest band is zeroed out in step 66.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Selective Calling Equipment (AREA)
  • Telephonic Communication Services (AREA)

Claims (10)

  1. Ein Verfahren zum Ausführen einer Echtzeit-Erkennung von Sprache und Rufweiterleitungssignalen aus elektrischer Energie in einer Signalleitung (10) mit folgenden Schritten:
    - Bereitstellen eines digitalisierten Signals, das die Energie wiedergibt;
    - Korrelieren (18) N benachbarter Abschnitte des digitalisierten Signals und "keine Sprache vorhanden"-Ausgeben falls die Korrelation (R) eine vorherbestimmte Schwelle (α) nicht überschreitet;
    - Ausführen einer FFT-Analyse (20) an dem digitalisierten Signal und Identifizieren größter (M1), zweitgrößter (M2) und drittgrößter (M3) Maxima im Frequenzbereich;
    - Bestimmen ob das größte (M1) und das zweitgrößte (M2) Maximum oberhalb einer Schwellenfrequenz liegen und "Sprache vorhanden"-Ausgeben, falls entweder das größte (M1) oder das zweitgrößte (M2) Maximum unterhalb der Schwellenfrequenz liegen und
    - Bestimmen, ob das Verhältnis des größten (M1) zu den drittgrößten (M3) Maximum einen vorbestimmten Wert überschreitet, "Ton vorhanden"-Ausgeben, falls das Verhältnis größer als der vorbestimmte Wert (Th) ist, und "Rauschen vorhanden"-Ausgeben, falls das Verhältnis kleiner ist als der vorbestimmte Wert (Th).
  2. Verfahren nach Anspruch 1, bei dem das digitalisierte Signal im PCM-Format mit einer Abtastrate von 8000 Proben/sec. vorliegt.
  3. Verfahren nach Anspruch 2, bei dem das digitalisierte Signal durch ein Tiefpaßfilter (12) verarbeitet wird, das eine lineare Abfall-Kennkurve hat, in der die Dämpfung bei 700 Hz beginnt und bei 800 Hz vollständig ist.
  4. Verfahren nach Anspruch 2 oder 3, bei dem das digitalisierte Signal verringert (14) wird, indem jede fünfte Probe genommen wird, um eine Abtastrate von 1600 Proben/sec. zu erzielen.
  5. Verfahren nach Anspruch 1 bis 4, bei dem der Schritt des Korrelierens von N benachbarten Abschnitten des digitalisierten Signals das Ausführen der folgenden Berechnung umfaßt:
    Figure imgb0003
    wobei die Korrelationsverschiebung k zwischen 2,5 und 20 msec und die Korrelationslänge N als wenigstens 32 Proben gewählt wird.
  6. Verfahren nach einem der Ansprüche nach Anspruch 1 bis 5, bei dem das "keine Sprache vorhanden" Ausgeben ausgeführt wird, falls die Korrelation eine vorbestimmte Schwelle (α) von 0,6 bis 0,8 nicht überschreitet.
  7. Verfahren nach einem der Ansprüche 1 bis 6, bei dem die FFT-Analyse mit einer Abtastrate von 1600 Proben/sec. bei einer FFT-Länge von 128 ausgeführt wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, bei dem das Ergebnis der FFT-Analyse durch die folgenden Schritte schärfer gemacht wird:
    - die Amplitude der FFT-Ergebnisse in aneinander angrenzenden Frequenzbändern werden in drei Gruppen bewertet;
    - für alle Gruppen von drei aneinander angrenzenden Maxima werden die folgenden Vergleichsschritte ausgeführt:
    - die Größe jedes Frequenzbandes C wird mit seinen rechten (R) und linken (L) Nachbarn verglichen;
    - falls bestimmt wird, daß das mittlere Frequenzband (C) die größte Größe hat und das Verhältnis des mittleren Frequenzbandes (C) zu einem seiner angrenzenden linken oder rechten (L, R) Nachbarn größer als 9 dB ist und das Verhältnis von dem mittleren Frequenzband (C) zu seinem anderen angrenzenden linken oder rechten Nachbar (L, R) weniger als 6 dB beträgt, dann wird die Amplitude des zweitgrößten Wertes zu der Amplitude des größten Wertes addiert und das zweitgrößte Frequenzband wird ausgelöscht.
  9. Verfahren nach einem der Ansprüche 1 bis 8, bei dem die Schwellenfrequenz 300 Hz beträgt.
  10. Verfahren nach einem der Ansprüche 1 bis 9, bei dem der vorbestimmte Verhältniswert etwa 8 - 10 dB beträgt.
EP93106482A 1992-05-26 1993-04-21 Verfahren zum Identifizieren von Sprach- und Rufverlaufsignalen Expired - Lifetime EP0573760B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US889513 1986-07-25
US07/889,513 US5319703A (en) 1992-05-26 1992-05-26 Apparatus and method for identifying speech and call-progression signals

Publications (2)

Publication Number Publication Date
EP0573760A1 EP0573760A1 (de) 1993-12-15
EP0573760B1 true EP0573760B1 (de) 1995-08-30

Family

ID=25395260

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93106482A Expired - Lifetime EP0573760B1 (de) 1992-05-26 1993-04-21 Verfahren zum Identifizieren von Sprach- und Rufverlaufsignalen

Country Status (4)

Country Link
US (1) US5319703A (de)
EP (1) EP0573760B1 (de)
AT (1) ATE127303T1 (de)
DE (1) DE69300413T2 (de)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5459784A (en) * 1992-09-28 1995-10-17 Comsat Corporation Dual-tone multifrequency (DTMF) signalling transparency for low-data-rate vocoders
US5483579A (en) * 1993-02-25 1996-01-09 Digital Acoustics, Inc. Voice recognition dialing system
US5450484A (en) * 1993-03-01 1995-09-12 Dialogic Corporation Voice detection
UA41913C2 (uk) * 1993-11-30 2001-10-15 Ейті Енд Ті Корп. Спосіб шумозаглушення у системах зв'язку
US5416836A (en) * 1993-12-17 1995-05-16 At&T Corp. Disconnect signalling detection arrangement
CA2116043C (en) * 1994-02-21 1997-09-23 Alexander F. Tulai Programmable digital call progress tone detector
US5692040A (en) * 1994-06-30 1997-11-25 Greenblatt; Richard David Method of and apparatus for exchanging compatible universal identification telephone protocols over a public switched telephone network
US5644634A (en) * 1995-11-29 1997-07-01 Advanced Micro Devices System and method for dual tone multifrequency detection using variable frame widths
US5588053A (en) * 1995-11-29 1996-12-24 Advanced Micro Devices DTMF detector system and method which performs static and dynamic thresholding
SE506034C2 (sv) * 1996-02-01 1997-11-03 Ericsson Telefon Ab L M Förfarande och anordning för förbättring av parametrar representerande brusigt tal
US5875234A (en) 1996-02-14 1999-02-23 Netphone, Inc. Computer integrated PBX system
US5719921A (en) 1996-02-29 1998-02-17 Nynex Science & Technology Methods and apparatus for activating telephone services in response to speech
US5946649A (en) * 1997-04-16 1999-08-31 Technology Research Association Of Medical Welfare Apparatus Esophageal speech injection noise detection and rejection
GB2330727B (en) * 1997-10-24 2002-10-09 Mitel Corp Tone and periodical signal detection
US6370244B1 (en) 1998-04-03 2002-04-09 Board Of Regents Of The University Of Texas System Efficient digital ITU-compliant zero-buffering DTMF detection using the non-uniform discrete fourier transform
US6233315B1 (en) 1998-05-21 2001-05-15 Bell Atlantic Network Services, Inc. Methods and apparatus for increasing the utility and interoperability of peripheral devices in communications systems
US6229880B1 (en) 1998-05-21 2001-05-08 Bell Atlantic Network Services, Inc. Methods and apparatus for efficiently providing a communication system with speech recognition capabilities
US6744860B1 (en) 1998-12-31 2004-06-01 Bell Atlantic Network Services Methods and apparatus for initiating a voice-dialing operation
US6321194B1 (en) 1999-04-27 2001-11-20 Brooktrout Technology, Inc. Voice detection in audio signals
DE19934990A1 (de) * 1999-07-26 2001-02-01 Deutsche Telekom Ag Verfahren und Kommunikationsendeinrichtung zum Detektieren einer Teilnehmersignalisierung in einer analogen Kommunikationsendeinrichtung
US7110525B1 (en) 2001-06-25 2006-09-19 Toby Heller Agent training sensitive call routing system
US7035394B2 (en) * 2001-12-17 2006-04-25 Ricoh Company, Ltd. Tone detector judging a detection of a predetermined tone signal by comparing a characteristic quantity of the tone signal with characteristic quantities of other signals
US7372952B1 (en) 2002-03-07 2008-05-13 Wai Wu Telephony control system with intelligent call routing
US7023979B1 (en) 2002-03-07 2006-04-04 Wai Wu Telephony control system with intelligent call routing
US9818136B1 (en) 2003-02-05 2017-11-14 Steven M. Hoffberg System and method for determining contingent relevance
US7676034B1 (en) 2003-03-07 2010-03-09 Wai Wu Method and system for matching entities in an auction
CN1816164B (zh) * 2005-02-04 2010-07-07 华为技术有限公司 用于多频信号音检测中的抗噪声方法
US8874477B2 (en) 2005-10-04 2014-10-28 Steven Mark Hoffberg Multifactorial optimization system and method
US8300798B1 (en) 2006-04-03 2012-10-30 Wai Wu Intelligent communication routing system and method
CN101635865B (zh) * 2008-07-22 2012-07-04 中兴通讯股份有限公司 一种双音多频信号抗误检测的系统及方法
EP3215637B1 (de) 2014-11-03 2019-07-03 F. Hoffmann-La Roche AG Verfahren und biomarker zur vorhersage der effizienz der behandlung mit ox40 agonisten

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3944753A (en) * 1974-10-31 1976-03-16 Proctor & Associates Company Apparatus for distinguishing voice and other noise signals from legitimate multi-frequency tone signals present on telephone or similar communication lines
FR2409652A1 (fr) * 1977-11-18 1979-06-15 Materiel Telephonique Recepteur de signaux numeriques multifrequences codes
US4354248A (en) * 1979-11-28 1982-10-12 Motorola, Inc. Programmable multifrequency tone receiver
JPS56104399A (en) * 1980-01-23 1981-08-20 Hitachi Ltd Voice interval detection system
US4534041A (en) * 1982-02-12 1985-08-06 Northern Telecom Limited Digital circuit for determining the envelope frequency of PCM encoded call progress tones in a telephone system
CA1177588A (en) * 1982-02-12 1984-11-06 Ernst A. Munter Digital circuit and method for the detection of call progress tones in telephone systems
US4477698A (en) * 1982-09-07 1984-10-16 Melita Electronics Labs, Inc. Apparatus for detecting pick-up at a remote telephone set
US4521647A (en) * 1984-02-17 1985-06-04 Octel Communications, Inc. Tone detection system and method
US4689760A (en) * 1984-11-09 1987-08-25 Digital Sound Corporation Digital tone decoder and method of decoding tones using linear prediction coding
US4599495A (en) * 1985-02-28 1986-07-08 Northern Telecom Limited Apparatus for multifrequency signalling tone detection
US4677665A (en) * 1985-03-08 1987-06-30 Tii Computer Systems, Inc. Method and apparatus for electronically detecting speech and tone
US4979214A (en) * 1989-05-15 1990-12-18 Dialogic Corporation Method and apparatus for identifying speech in telephone signals

Also Published As

Publication number Publication date
EP0573760A1 (de) 1993-12-15
ATE127303T1 (de) 1995-09-15
DE69300413T2 (de) 1996-02-01
US5319703A (en) 1994-06-07
DE69300413D1 (de) 1995-10-05

Similar Documents

Publication Publication Date Title
EP0573760B1 (de) Verfahren zum Identifizieren von Sprach- und Rufverlaufsignalen
US5323337A (en) Signal detector employing mean energy and variance of energy content comparison for noise detection
EP0575725A2 (de) Adaptives Signalerkennungsverfahren zur Auswertung von Mehrfrequenz-Kodezeichen-Signalen
CA2094412C (en) Multi-frequency signal detector and classifier
US4821325A (en) Endpoint detector
US4764966A (en) Method and apparatus for voice detection having adaptive sensitivity
EP0763811B1 (de) Vorrichtung zur Sprachsignalverarbeitung für die Bestimmung eines Sprachsignals
US6061647A (en) Voice activity detector
KR950013551B1 (ko) 잡음신호예측장치
US6950511B2 (en) Detection of both voice and tones using Goertzel filters
AU2002252143A1 (en) Segmenting audio signals into auditory events
WO2002097792A1 (en) Segmenting audio signals into auditory events
US4817158A (en) Normalization of speech signals
EP0423787B1 (de) Mehrfrequenzsignal-Empfänger und Verfahren zu dessen Erkennung
US4864307A (en) Method and device for the automatic recognition of targets from "Doppler" ec
CA2117053C (en) Detection of glass breakage
US4920568A (en) Method of distinguishing voice from noise
EP0092611B1 (de) Sprachanalysesystem
EP0530645B1 (de) Telefonsignalklassifizierung und Verfahren und System zur Telefonnachrichtenablieferung
EP0092612B1 (de) Sprachanalysesystem
EP0535570B1 (de) Verarbeitung transienter Detektion, insbesondere Erkennung akustischer Signale unter Wasser
JP2648779B2 (ja) 通話信号識別装置
US5058168A (en) Overflow speech detecting apparatus for speech recognition
WO1995020216A1 (en) Method and apparatus for indicating the emotional state of a person
KR960007843B1 (ko) 음성신호처리장치

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930621

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19941215

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: ING. C. SPANDONARI

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 127303

Country of ref document: AT

Date of ref document: 19950915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69300413

Country of ref document: DE

Date of ref document: 19951005

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19960401

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960422

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960423

Year of fee payment: 4

Ref country code: SE

Payment date: 19960423

Year of fee payment: 4

Ref country code: AT

Payment date: 19960423

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970421

Ref country code: AT

Effective date: 19970421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970430

Ref country code: BE

Effective date: 19970430

BERE Be: lapsed

Owner name: VMX INC.

Effective date: 19970430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19971101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19971101

EUG Se: european patent has lapsed

Ref document number: 93106482.8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990318

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990325

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990630

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000421

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050421