EP0573585B1 - Procede chimique/electrochimique a deux etapes d'application d'un revetement sur du magnesium - Google Patents

Procede chimique/electrochimique a deux etapes d'application d'un revetement sur du magnesium Download PDF

Info

Publication number
EP0573585B1
EP0573585B1 EP92907909A EP92907909A EP0573585B1 EP 0573585 B1 EP0573585 B1 EP 0573585B1 EP 92907909 A EP92907909 A EP 92907909A EP 92907909 A EP92907909 A EP 92907909A EP 0573585 B1 EP0573585 B1 EP 0573585B1
Authority
EP
European Patent Office
Prior art keywords
article
magnesium
fluoride
coating
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92907909A
Other languages
German (de)
English (en)
Other versions
EP0573585A1 (fr
Inventor
Duane E. Bartak
Brian E. Lemieux
Earl R. Woolsey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technology Applications Group Inc
Original Assignee
Technology Applications Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technology Applications Group Inc filed Critical Technology Applications Group Inc
Publication of EP0573585A1 publication Critical patent/EP0573585A1/fr
Application granted granted Critical
Publication of EP0573585B1 publication Critical patent/EP0573585B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/30Anodisation of magnesium or alloys based thereon

Definitions

  • the invention relates to a process for forming an inorganic coating on a magnesium alloy and to a product formed by this process.
  • the invention relates to a method comprising pretreating an article comprising a magnesium alloy in a chemical bath at a neutral pH followed by an electrolytically coating the pretreated article in an aqueous solution.
  • Magnesium is generally alloyed with any of aluminum, manganese, thorium, lithium, tin, zirconium, zinc, rare earth metals or other alloys to increase its structural stability. Such magnesium alloys are often used where a high strength to weight ratio is required. The appropriate magnesium alloy can also offer the highest strength to weight ratio of the ultra light metals at elevated temperatures. Further, alloys with rare earth or thorium can retain significant strength up to temperatures of 315°C and higher. Structural magnesium alloys may be assembled in many of the conventional manners including riveting and bolting, arc and electric resistance welding, braising, soldering and adhesive bonding.
  • the magnesium-containing articles have uses in the aircraft and aerospace industries, military equipment, electronics, automotive bodies and parts, hand tools and in materials handling. While magnesium and its alloys exhibit good stability in the presence of a number of chemical substances, there is a need to further protect the metal, especially in acidic environments and in salt water conditions. Therefore, especially in marine applications, it is necessary to provide a coating to protect the metal from corrosion.
  • coatings for magnesium There are many different types of coatings for magnesium which have been developed and used. The most common coatings are chemical treatments or conversion coatings which are used as a paint base and provide some corrosion protection. Both chemical and electrochemical methods are used for the conversion of magnesium surfaces. Chromate films are the most commonly used surface treatment for magnesium alloys. These films of hydrated, gel-like structures of polychromates provide a surface which is a good paint base but which provides limited corrosion protection.
  • Anodization of magnesium alloys is an alternative electrochemical approach to provide a protective coating.
  • At least two low voltage anodic processes, Dow 17 and HAE have been commercially employed.
  • the Dow 17 process utilizes potassium dichromate, a chromium (VI) compound, which is acutely toxic and strictly regulated.
  • the key ingredient in the HAE anodic coating is potassium permanganate, it is necessary to use a chromate sealant with this coating in order to obtain acceptable corrosion resistance.
  • chromium (VI) is necessary in the overall process in order to achieve a desirable corrosion resistant coating. This use of chromium (VI) means that waste disposal from these processes is a significant problem.
  • metallic and ceramic-like coatings have been developed. These coatings may be formed by electroless or electrochemical processes.
  • the electroless deposition of nickel on magnesium and magnesium alloys using chemical reducing agents in coating formulation is well known in the art.
  • this process also results in the creation of large quantities of hazardous heavy metal contaminated waste water which must be treated before it can be discharged.
  • Electrochemical coating processes can be used to produce both metallic and nonmetallic coatings. The metallic coating processes again suffer from the creation of heavy metal contaminated waste water.
  • Non-metallic coating processes have been developed, in part, to overcome problems involving the heavy metal contamination of waste water.
  • Kozak, U.S. Patent No. 4,184,926, discloses a two-step process for forming an anti-corrosive coating on magnesium and its alloys.
  • the first step is an acidic chemical pickling or treatment of the magnesium work piece using hydrofluoric acid at about room temperature to form a fluoro-magnesium layer on the metal surface.
  • the second step involves the electrochemical coating of the work piece in a solution comprising an alkali metal silicate and an alkali metal hydroxide.
  • a voltage potential from about 150-300 volts is applied across the electrodes, and a current density of about 50-200 mA/cm2 is maintained in the bath.
  • the first step of this process is a straight forward acid pickling step, while the second step proceeds in an electrochemical bath which contains no source of fluoride. Tests of this process indicate that there is a need for increased corrosion resistance and coating integrity.
  • U.S. Patent No. 4,620,904 discloses a one-step method of coating articles of magnesium using an electrolytic bath comprising an alkali metal silicate, an alkali metal hydroxide and a fluoride.
  • the bath is maintained at a temperature of about 5-70°C and a pH of about 12-14.
  • the electrochemical coating is carried out under a voltage potential from about 150-400 volts. Tests of this process also indicates that there remains a need for increased corrosion resistance.
  • the present invention is directed to a process for coating a magnesium-containing article.
  • the article is pretreated in an aqueous solution comprising 0.2 to 5 molar ammonium fluoride having a pH of 5 to 8 and a temperature of 40 to 100°C. This pretreatment step cleans the article and creates an ammonium fluoride-containing layer at the surface of the article to form a pretreated article.
  • the pretreated article is immersed in an aqueous electrolytic solution having a pH of at least 12.5 and which solution comprises 2 to 12 g/L of a aqueous soluble hydroxide, 2 to 15 g/L of a fluoride-containing composition selected from the group consisting of fluorides and fluorosilicates, and 5 to 30 g/L of a alkali metal silicate.
  • a voltage differential of at least 100 volts is established between an anode comprising the pretreated article and a cathode also in contact with the electrolytic solution to create a current density of 2 to 90 mA/cm2.
  • a silicon oxide-containing coating is formed on the magnesium-containing article.
  • magnesium-containing article means a metallic article having surfaces which are in whole or in part metallic magnesium per se or a magnesium alloy.
  • the article is formed of metallic magnesium or a magnesium alloy and comprises a significant amount of magnesium. More preferably, the article comprises a magnesium-rich alloy comprising at least about 50 wt-% magnesium, and most preferably, the article comprises at least about 80 wt-% magnesium.
  • Figure 1 illustrates the coated magnesium-containing article of the invention.
  • FIG. 2 is a block diagram of the present invention.
  • FIG. 3 is a diagram of the electrochemical process of the invention.
  • Figure 4 is a scanning electron photomicrograph of a cross section through the magnesium-containing substrate and a coating according to the invention.
  • FIG. 1 illustrates a cross section of a magnesium-containing article having been coated using the process of the present invention.
  • the magnesium-containing article 10 is shown with a first ammonium fluoride-containing layer 12 and a second ceramic-like layer 14.
  • the layers 12 and 14 combine to form a corrosion resistant coating on the surface of the magnesium-containing article.
  • Coatings include ceramic-like, silicon oxide containing coatings.
  • Figure 2 illustrates the steps used to produce these coated articles.
  • An untreated article 20 is first placed in a chemical bath 22 which cleans and forms an ammonium fluoride-containing layer on the article.
  • the article is treated in an electrochemical bath 24 resulting in the production of a coated article 26.
  • the chemical bath 22 comprises an aqueous ammonium fluoride solution.
  • the bath comprises 0.2 to 5 molar ammonium fluoride in water, preferably, 0.3 to 2.0 molar ammonium fluoride and, more preferably, about 0.5 to 1.2 molar ammonium fluoride.
  • the reaction conditions are indicated below in Table I.
  • Table I Condition According to the invention Preferred More Preferred pH 5-8 5-7 6-7 Temperature (°C) 40-100 55-90 70-85 Time (minutes) 15-60 30-45 30-40
  • the magnesium-containing article is maintained in the chemical bath for a time sufficient to clean impurities at the surface of the article and to form an ammonium fluoride-containing base layer on the magnesium-containing article.
  • Too brief a residence time in the chemical bath results in an insufficient fluoride containing base layer and/or insufficient cleaning of the magnesium-containing article. This will ultimately result in the reduced corrosion resistance of the coated article. Longer residence times tend to be uneconomical as the process time is increased with little improvement of the base layer.
  • This base layer is generally uniform in composition and thickness across the surface of the article and provides an excellent base upon which a second, ceramic-like layer may be deposited.
  • the thickness of this fluoride containing layer is about 1 to 2 ⁇ m.
  • the first chemical bath is beneficial as it provides a base layer which firmly bonds to and protects the substrate, which is compatible with the composition which will form the second layer and which adheres the second layer to the substrate.
  • the base layer comprises metal ammonium fluorides and oxofluorides which strongly adhere to the metallic substrate. It appears that the compatibility of these compounds with those of the second layer permits the deposition of silicon oxide, among other compounds, in a uniform manner without appreciable etching of the metal substrate.
  • This base layer provides some protection to the metallic substrate, but it does not provide the abrasion resistance and hardness that the complete, two-layered coating provides.
  • the silicon oxide-containing layer is applied to the metallic substrate without first depositing the base layer, the corrosion and abrasion resistance of the coating is reduced as the silicon oxide-containing layer does not adhere well to the substrate.
  • the pretreated article is preferably thoroughly washed with water to remove any unreacted ammonium fluoride. This cleaning prevents the contamination of the electrochemical bath 24.
  • the cleaned, pretreated article is then subjected to an electrochemical coating process shown in Figure 3.
  • the electrochemical bath 26 comprises an aqueous electrolytic solution comprising 2 to 12 g/L of a soluble hydroxide compound, 2 to 15 g/L of a soluble fluoride-containing compound selected from the group consisting of fluorides and fluorosilicates and 5 to 30 g/L of an alkali metal silicate.
  • Preferred hydroxides include alkali metal hydroxides. More preferably, the alkali metal is lithium, sodium or potassium, and most preferably, the hydroxide is potassium hydroxide.
  • the fluoride-containing compound may be a fluoride such as an alkali metal fluoride, such as lithium, sodium and potassium fluoride or an acid fluoride such as hydrogen fluoride or ammonium bifluoride. Fluorosilicates such as potassium fluorosilicate or sodium fluorosilicate may also be used.
  • the fluoride-containing compound comprises an alkali metal fluoride, an alkali metal fluorosilicate, hydrogen fluoride or mixtures thereof. Most preferably, the fluoride-containing compound comprises potassium fluoride.
  • the electrochemical bath also contains a silicate.
  • silicates include alkali metal silicates and/or alkali metal fluorosilicates. More preferably, the silicate comprises lithium, sodium or potassium silicate, and most preferably, the silicate is potassium silicate.
  • Table II Composition ranges for the aqueous electrolytic solution are shown below in Table II.
  • Table II Component According to the invention Preferred More Preferred Hydroxide 2-12 g/L 4-8 g/L 5-7 g/L Fluoride 2-15 g/L 3-10 g/L 8-10 g/L Silicate 5-30 g/L 10-25 g/L 15-20 g/L
  • the pretreated article 30 is immersed in the electrochemical bath 24 as an anode.
  • the vessel 32 which contains the electrochemical bath 24 may be used as the cathode.
  • the anode may be connected through a switch 34 to a rectifier 36 while the vessel 32 may be directly connected to the rectifier 36.
  • the rectifier 36 rectifies the voltage from a voltage source 38, to provide a direct current source to the electrochemical bath.
  • the rectifier 36 and switch 34 may be placed in communication with a microprocessor control 40 for purposes of controlling the electrochemical composition.
  • the rectifier provides a pulsed DC signal to drive the deposition process.
  • the conditions of the electrochemical deposition process are a pH of at least 12.5 and a current density of 2-90 mA/cm2, preferably they are as illustrated below in Table III.
  • Table III Component Preferred More Preferred Most Preferred pH 12.5-14 12.5-13 12.5-13 Temperature (°C) 5-30 10-25 10-20 Time (minutes) 5-80 15-60 20-30 Current Density (mA/cm2) 2-90 5-70 10-50
  • Coatings produced according to the above-described process are ceramic-like and have excellent corrosion and abrasion resistance and hardness characteristics. While not wishing to be held to this theory, it appears that these properties are the result of the morphology and adhesion of the coating on the metal substrate.
  • the preferred coatings comprise a mixture of fused silicon oxide and fluoride along with an alkali metal oxide.
  • the adhesion of the coating of the invention appears to perform considerably better than any known commercial coatings. This is a result of a coherent interface between the metal substrate and the coating.
  • coherent interface it is meant that the interface comprises a continuum of magnesium, magnesium oxides, magnesium oxofluorides, magnesium fluorides and silicon oxides.
  • the continuous interface is shown in Figure 4, a scanning electron photomicrograph.
  • the metal substrate has an irregular surface, and an interfacial boundary comprising an ammonium fluoride-containing base layer is formed at the surface of the substrate.
  • the silicon oxide-containing layer formed on the base layer shows excellent integrity, and both coating layers and therefore provide a superior corrosion and abrasion resistant surface.
  • Abrasion resistance can be measured according to Federal Test Method Std. No. 141C, Method 6192.1.
  • coatings produced according to the invention having a thickness of 12.7-25.4 ⁇ m (0.5 to 1.0 mil) will withstand at least 1,000 wear cycles before the appearance of the bare metal substrate using a 1.0 kg load on a CS-17 abrading wheel. More preferably, the coatings will withstand at least about 2,000 wear cycles before the appearance of the metal substrate, and most preferably, the coatings will withstand at least about 4,000 wear cycles using a 1.0 kg load on a CS-17 abrading wheel.
  • Corrosion resistance can be measured according to ASTM standards. Included in these tests is the salt fog test, ASTM B117, as evaluated by ASTM D1654, procedures A and B.
  • coatings produced according to the invention achieve a rating of at least about 9 after 24 hours in salt fog. More preferably, the coatings achieve a rating of at least about 9 after 100 hours, and most preferably, at least about 9 after 200 hours in salt fog.
  • the magnesium-containing articles may be used as is, offering a superb finish and excellent corrosion resistant properties, or they may be further coated using an optional finish coating such as a paint or a sealant.
  • an optional finish coating such as a paint or a sealant.
  • the structure and morphology of the silicon oxide-containing coating readily permit the use of a wide number of additional finish coatings which offer further corrosion resistance or decorative properties to the magnesium containing articles.
  • the silicon oxide-containing coating provides an excellent paint base having excellent corrosion resistance and offering excellent adhesion under both wet and dry conditions, for instance, the water immersion test, ASTM D3359, test method B.
  • the optional finish coatings may include organic and inorganic compositions as well as paints and other decorative and protective organic coatings.
  • any paint which adheres well to glassy and metallic surfaces may be used as the optional finish coating.
  • Representative, non-limiting inorganic compositions for use as an outer coating include additional alkali metal silicates, phosphates, borates, molydates and vanadates.
  • Representative, non-limiting organic outer coatings include polymers such as polyfluoroethylene, polyurethane and polyglycol. Additional finish coating materials will be known to those skilled in the art. Again, these optional finish coatings are not necessary to obtain excellent corrosion resistance, their use may achieve decorative or further improve the protective qualities of the coating.
  • coatings produced according to the invention having an optional finish coating, achieve a rating of at least about 8 after 700 hours in salt fog. More preferably, the coatings achieve a rating of at least about 9 after 700 hours, and most preferably, at least about 10 after 700 hours in salt fog.
  • Magnesium test panels (AZ91D) were cleaned immersing them in an aqueous solution of sodium pyrophosphate, sodium borate and sodium fluoride at about 70°C and a pH of about 10.5 for about 5 minutes. The panels were then placed in a 0.5 M ammonium fluoride bath at 70° for 30 minutes. The panels were then rinsed and placed in a silicate-containing bath. The silicate bath was prepared by first dissolving 50 g potassium hydroxide in 10 L water. 200 milliliters of a commercially available potassium silicate concentrate (20% w/w SiO2) was then added to the above solution. Finally 50 g of potassium fluoride was added to the above solution.
  • the bath then has a pH of about 12.5 and a concentration of potassium hydroxide about 5 g/L, about 16 g/L potassium silicate and about 5 g/L potassium fluoride.
  • the panels were then placed in the bath and connected to the positive lead of a rectifier.
  • a stainless steel panel served as the cathode and was connected to the negative lead of the rectifier capable of delivering a pulsed DC signal.
  • the voltage was increased over a 30 second period to 150 V and then the current adjusted to sustain a current density of 30 mA/cm2. After 30 minutes, the silicon oxide-containing coating was approximately 20 ⁇ m thick.
  • Examples II-VIII were prepared according to the process of Example I with the quantities of components as shown in Tables IV and V below.
  • Abrasion resistance testing (141C) of these test panels resulted in wear cycles of at least about 2,000 before the appearance of the metal substrate using a 1.0 kg load on CS-17 abrading wheels.
  • Test panels coated according to Examples I and IX were primed with an acid catalyst primer and then painted with a high temperature enamel. The panels were then immersed in water for four (4) days at 38°C (100°F) and subjected to ASTM D3359, method B. The panels achieved a rating of 5/5, the highest possible rating as no flaking of the coatings could be observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Claims (30)

  1. Procédé de formation d'un revêtement amélioré résistant à la corrosion sur un article contenant du magnésium, ledit procédé comprenant les étapes consistant à :
    (a) traiter ledit article avec une première solution aqueuse, ayant un pH compris entre 5 et 8 et à une température comprise entre 40 et 100 °C, ladite solution comprenant entre 0,2 et 5 moles par litre de fluorure d'ammonium, afin de former une couche métallique contenant de fluorure d'ammonium à la surface dudit article pour obtenir un article prétraité ;
    (b) placer ledit article prétraité dans une seconde solution aqueuse électrolytique ayant un pH d'au moins 12,5 comprenant :
    (i) de 2 à 12 g/l d'un hydroxyde soluble dans l'eau ;
    (ii) de 2 à 15 g/l d'une composition soluble dans l'eau contenant du fluorure choisie dans le groupe des fluorures, fluorosilicates et leur mélange ; et
    (iii) entre 5 et 30 g/L d'un silicate de métal alcalin ;
    (c) établir une tension différentielle d'au moins 100 volts entre une anode comprenant ledit article prétraité et une cathode placée dans la solution électrolytique, afin de produire une densité de courant comprise entre 2 et 90mA/cm² ;
       ledit procédé étant caractérisé en ce qu'un revêtement contenant de l'oxyde de silicium est formé sur ledit article.
  2. Procédé selon la revendication 1, caractérisé en ce que le pH de la solution de l'étape (a) est compris entre 6,3 et 6,7.
  3. Procédé selon la revendication 1, caractérisé en ce que la température de la première solution est comprise entre 55 et 85°C.
  4. Procédé selon la revendication 1 comprenant entre 0,3 et 2 moles par litre de fluorure d'ammonium.
  5. Procédé selon la revendication 1, caractérisé en ce que le pH de la solution de l'étape (b) est compris entre 12,5 et 13.
  6. Procédé selon la revendication 1, caractérisé en ce que l'hydroxyde de l'étape (b) est un hydroxyde de métal alcalin.
  7. Procédé selon la revendication 1, caractérisé en ce que la composition de l'étape (b) contenant du fluorure est choisie dans le groupe des fluorure de sodium, fluorure de potassium, acide hydrofluorique, fluorure de lithium, fluorure de rubidium, fluorure de césium, et le mélange de ceux-ci.
  8. Procédé selon la revendication 1, caractérisé en ce que le fluorosilicate de l'étape (b) est choisi dans le groupe du fluorosilicate de potassium, du fluorosilicate de sodium, du fluorosilicate de lithium et du mélange de ceux-ci.
  9. Procédé selon la revendication 1, caractérisé en ce que le silicate de l'étape (b) est choisi dans le groupe des silicate de potassium, silicate de sodium, silicate de lithium et du mélange de ceux-ci.
  10. Procédé selon la revendication 1, caractérisé en ce que la température de la seconde solution est comprise entre 5 et 30°C.
  11. Procédé selon la revendication 1, caractérisé en ce que la tension différentielle de l'étape (c) est compris entre 200 et 400 volts.
  12. Procédé selon la revendication 1, caractérisé en ce que la densité de courant de l'étape (c) est comprise entre 5 et 70 mA/cm².
  13. Procédé selon la revendication 1 comprenant de plus l'étape consistant à connecter l'anode et la cathode à une source d'énergie.
  14. Procédé selon la revendication 13, caractérisé en ce que la source d'énergie est une source d'énergie à courant alternatif redressé.
  15. Procédé selon la revendication 14, caractérisé en ce que la source d'énergie à courant alternatif redressé est une source d'énergie à redressement double alternance par impulsions.
  16. Procédé selon la revendication 1 comprenant de plus une étape de colmatage du revêtement contenant un oxyde de silicium.
  17. Procédé selon la revendication 16, caractérisé en ce que le revêtement contenant de l'oxyde de silicium est colmaté avec un revêtement inorganique.
  18. Procédé selon la revendication 16, caractérisé en ce que le revêtement contenant de l'oxyde de silicium est colmaté avec un revêtement organique.
  19. Procédé selon la revendication 1, caractérisé en ce que ledit procédé est pratiquement exempt de chrome (VI).
  20. Substrat contenant du magnésium recouvert selon le procédé de la revendication 1.
  21. Procédé de formation d'un revêtement amélioré résistant à la corrosion sur un article contenant du magnésium, ledit procédé comprenant les étapes consistant à :
    (a) traiter ledit article avec une première solution aqueuse, présentant un pH compris entre 5 et 8 et à une température comprise entre 40 et 100°C, ladite solution comprenant entre 0,2 et 5 moles par litre de fluorure d'ammonium afin de former une couche métallique contenant du fluorure d'ammonium à la surface dudit article pour obtenir un article prétraité ;
    (b) placer ledit article prétraité dans une seconde solution aqueuse électrolytique ayant un pH d'au moins 12,5 comprenant :
    (i) de 2 à 12 g/l d'un hydroxyde soluble dans l'eau ;
    (ii) de 2 à 30 g/l d'un fluorosilicate de métal alcalin ;
    (c) établir une tension différentielle d'au moins 100 volts entre une anode comprenant ledit article prétraité et une cathode placée dans la solution électrolytique, afin de produire une densité de courant comprise entre 2 et 90mA/cm² ;
       ledit procédé étant caractérisé en ce qu'un revêtement contenant de l'oxyde de silicium est formé sur ledit article.
  22. Article contenant du magnésium présentant une résistance améliorée à la corrosion et à l'abrasion, ledit article comprenant un substrat contenant du magnésium, une première couche, de base, comprenant un fluorure d'ammonium métallique et une seconde couche, externe, comprenant de l'oxyde de silicium.
  23. Article selon la revendication 22, caractérisé en ce que le fluorure d'ammonium métallique contient du fluorure d'ammonium de magnésium.
  24. Article selon la revendication 22, caractérisé en ce que la couche de base comprend de plus un oxofluorure d'ammonium métallique.
  25. Article selon la revendication 24, caractérisé en ce que l'oxofluorure d'ammonium métallique comprend de l'oxofluorure d'ammonium de magnésium.
  26. Article selon la revendication 22 caractérisé en ce qu'il comprend de plus une troisième couche, de colmatage, posée sur la seconde couche, externe.
  27. Article selon la revendication 22, caractérisé en ce qu'il comprend de plus une quatrième couche d'apprêt posée sur la seconde couche, externe.
  28. Article selon la revendication 27, caractérisé en ce qu'il comprend de plus une quatrième couche d'apprêt posée sur la troisième couche, de colmatage.
  29. Article selon la revendication 22, caractérisé en ce qu'il est pratiquement exempt de chrome (VI).
  30. Article contenant du magnésium comprenant un substrat contenant du magnésium, une première couche, de base, comprenant du fluorure d'ammonium métallique et une seconde couche, externe, comprenant de l'oxyde de silicium, caractérisé en ce que ledit article a une épaisseur de revêtement de 12,7 µm (0,5 mil) résistant à au moins 1000 cycles d'usure avant l'apparition du substrat, en utilisant une charge de 1,0 kg sur une roue à abraser CS-17, selon le standard de méthode de test fédéral N° 141 C, méthode 6192.1.
EP92907909A 1991-02-26 1992-02-25 Procede chimique/electrochimique a deux etapes d'application d'un revetement sur du magnesium Expired - Lifetime EP0573585B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US66150391A 1991-02-26 1991-02-26
US661503 1991-02-26
PCT/US1992/001495 WO1992014868A1 (fr) 1991-02-26 1992-02-25 Procede chimique/electrochimique a deux etapes d'application d'un revetement sur du magnesium
CN92105170A CN1049701C (zh) 1991-02-26 1992-06-26 在含镁工件上形成改进了耐蚀性的镀层的方法及含镁工件

Publications (2)

Publication Number Publication Date
EP0573585A1 EP0573585A1 (fr) 1993-12-15
EP0573585B1 true EP0573585B1 (fr) 1994-12-14

Family

ID=25742761

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92907909A Expired - Lifetime EP0573585B1 (fr) 1991-02-26 1992-02-25 Procede chimique/electrochimique a deux etapes d'application d'un revetement sur du magnesium

Country Status (13)

Country Link
EP (1) EP0573585B1 (fr)
JP (1) JP3183512B2 (fr)
CN (1) CN1049701C (fr)
AT (1) ATE115653T1 (fr)
AU (1) AU1535392A (fr)
BR (1) BR9205679A (fr)
CA (1) CA2100168C (fr)
DE (1) DE69200922T2 (fr)
DK (1) DK0573585T3 (fr)
ES (1) ES2068710T3 (fr)
GR (1) GR3015377T3 (fr)
NO (1) NO308907B1 (fr)
WO (1) WO1992014868A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112009001005B4 (de) * 2008-04-25 2017-06-14 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verfahren zum Schützen eines Gegenstandes gegen Korrosion und Verfahren zum Schützen einer Magnesiumoberfläche

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266412A (en) * 1991-07-15 1993-11-30 Technology Applications Group, Inc. Coated magnesium alloys
GB2395491B (en) * 2001-08-14 2006-03-01 Magnesium Technology Ltd Magnesium anodisation system and methods
US7569132B2 (en) 2001-10-02 2009-08-04 Henkel Kgaa Process for anodically coating an aluminum substrate with ceramic oxides prior to polytetrafluoroethylene or silicone coating
US7578921B2 (en) 2001-10-02 2009-08-25 Henkel Kgaa Process for anodically coating aluminum and/or titanium with ceramic oxides
US6916414B2 (en) 2001-10-02 2005-07-12 Henkel Kommanditgesellschaft Auf Aktien Light metal anodization
US7452454B2 (en) 2001-10-02 2008-11-18 Henkel Kgaa Anodized coating over aluminum and aluminum alloy coated substrates
US6495267B1 (en) * 2001-10-04 2002-12-17 Briggs & Stratton Corporation Anodized magnesium or magnesium alloy piston and method for manufacturing the same
JP2007009319A (ja) * 2005-06-01 2007-01-18 Meira Corp 保護被膜形成用組成物、金属成型体の製造方法および金属成型体
US9701177B2 (en) 2009-04-02 2017-07-11 Henkel Ag & Co. Kgaa Ceramic coated automotive heat exchanger components
JP5595874B2 (ja) * 2010-11-04 2014-09-24 三井金属鉱業株式会社 マグネシウム合金の表面処理方法
CN103088385A (zh) * 2012-12-01 2013-05-08 江门市华恒灯饰有限公司 微弧氧化电解液配方
JPWO2014203919A1 (ja) * 2013-06-19 2017-02-23 堀金属表面処理工業株式会社 マグネシウム合金製品の製造方法
CA2955317A1 (fr) * 2014-07-17 2016-01-21 Henkel Ag & Co. Kgaa Revetement electroceramique pour alliages de magnesium
JP6659961B2 (ja) * 2016-08-10 2020-03-04 富士通株式会社 マグネシウム合金基体、電子機器及び耐食性被膜の形成方法
CN106835227B (zh) * 2016-12-05 2018-11-13 浙江工业大学 一种基于卤素效应和陶瓷涂层提高钛基合金抗高温氧化性能的方法
CN106906505B (zh) * 2016-12-31 2019-01-08 浙江工业大学 一种基于卤素效应和预处理得到陶瓷涂层提高钛基合金抗高温氧化性能的方法
JP7418117B2 (ja) * 2018-12-17 2024-01-19 キヤノン株式会社 マグネシウム-リチウム系合金部材及びその製造方法
US11180832B2 (en) 2018-12-17 2021-11-23 Canon Kabushiki Kaisha Magnesium-lithium alloy member, manufacturing method thereof, optical apparatus, imaging apparatus, electronic apparatus and mobile object

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4184926A (en) * 1979-01-17 1980-01-22 Otto Kozak Anti-corrosive coating on magnesium and its alloys
US4620904A (en) * 1985-10-25 1986-11-04 Otto Kozak Method of coating articles of magnesium and an electrolytic bath therefor
US4744872A (en) * 1986-05-30 1988-05-17 Ube Industries, Ltd. Anodizing solution for anodic oxidation of magnesium or its alloys
JPS63277793A (ja) * 1987-05-08 1988-11-15 Ube Ind Ltd マグネシウムまたはその合金の陽極酸化処理液

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112009001005B4 (de) * 2008-04-25 2017-06-14 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verfahren zum Schützen eines Gegenstandes gegen Korrosion und Verfahren zum Schützen einer Magnesiumoberfläche

Also Published As

Publication number Publication date
EP0573585A1 (fr) 1993-12-15
JP3183512B2 (ja) 2001-07-09
NO933024L (no) 1993-10-14
GR3015377T3 (en) 1995-06-30
CA2100168C (fr) 2004-09-14
NO933024D0 (no) 1993-08-25
JPH06504815A (ja) 1994-06-02
CN1049701C (zh) 2000-02-23
ATE115653T1 (de) 1994-12-15
CN1080671A (zh) 1994-01-12
CA2100168A1 (fr) 1992-08-27
DE69200922D1 (de) 1995-01-26
DK0573585T3 (da) 1995-03-06
BR9205679A (pt) 1994-06-21
WO1992014868A1 (fr) 1992-09-03
NO308907B1 (no) 2000-11-13
AU1535392A (en) 1992-09-15
ES2068710T3 (es) 1995-04-16
DE69200922T2 (de) 1995-05-04

Similar Documents

Publication Publication Date Title
US5264113A (en) Two-step electrochemical process for coating magnesium alloys
US5470664A (en) Hard anodic coating for magnesium alloys
EP0573585B1 (fr) Procede chimique/electrochimique a deux etapes d'application d'un revetement sur du magnesium
US5240589A (en) Two-step chemical/electrochemical process for coating magnesium alloys
EP0688370B1 (fr) Procede electrochimique en deux etapes pour appliquer un revetement sur le magnesium
US7160630B2 (en) Corrosion resistant article and method of production thereof
US7578921B2 (en) Process for anodically coating aluminum and/or titanium with ceramic oxides
KR100768565B1 (ko) 전도성 표면을 처리하는 에너지 개선방법
EP0958410B1 (fr) Procede electrolytique pour former un revetement contenant un mineral
EP2604429A1 (fr) Procédé de revêtement anodique d'un substrat en aluminium avec des oxydes céramiques avant un revêtement organique ou inorganique
EP0243473A4 (fr) Bain electrolytique et procede de revetement d'articles en magnesium.
WO1998033960A9 (fr) Procede electrolytique pour former un revetement contenant un mineral
WO2006110756A1 (fr) Article resistant a la corrosion et son procede de production
US5503733A (en) Process for phosphating galvanized steel surfaces
Yerokhin et al. Anodising of light alloys
CA2155566C (fr) Procede electrochimique de revetement en deux etapes de surfaces de magnesium
KR100226274B1 (ko) 화학/전기 화학적 2단계 마그네슘 코팅방법
AU2011211399B2 (en) Article of manufacturing and process for anodically coating aluminum and/or titanium with ceramic oxides
Pearlstein et al. Selection & Application of Inorganic Finishes: Anodic Coatings for" Other" Metals
MXPA99006963A (en) An electrolytic process for forming a mineral containing coating
EP1785510A1 (fr) Milieu d'électrodéposition
MX2007004380A (en) Article of manufacturing and process for anodically coating aluminum and/or titanium with ceramic oxides

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930911

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE

17Q First examination report despatched

Effective date: 19940202

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE

REF Corresponds to:

Ref document number: 115653

Country of ref document: AT

Date of ref document: 19941215

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19950101

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 19950116

Year of fee payment: 4

Ref country code: DK

Payment date: 19950116

Year of fee payment: 4

REF Corresponds to:

Ref document number: 69200922

Country of ref document: DE

Date of ref document: 19950126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19950127

Year of fee payment: 4

EAL Se: european patent in force in sweden

Ref document number: 92907909.3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2068710

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3015377

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960225

Ref country code: DK

Effective date: 19960225

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Effective date: 19960831

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19960831

REG Reference to a national code

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3015377

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090216

Year of fee payment: 18

Ref country code: AT

Payment date: 20090107

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090210

Year of fee payment: 18

Ref country code: DE

Payment date: 20090227

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090106

Year of fee payment: 18

Ref country code: CH

Payment date: 20090122

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090318

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20090206

Year of fee payment: 18

Ref country code: IT

Payment date: 20090213

Year of fee payment: 18

BERE Be: lapsed

Owner name: *TECHNOLOGY APPLICATIONS GROUP INC.

Effective date: 20100228

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100901

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100901

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100225

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100226

REG Reference to a national code

Ref country code: FR

Ref legal event code: D3

Effective date: 20131202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090206

Year of fee payment: 18

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: FR

Effective date: 20131202

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140213

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: FR

Effective date: 20131202