EP0572648B1 - Procede de production d'une emulsion d'un liant bitumineux permettant le controle de la viscosite et des qualites de rupture de l'emulsion - Google Patents

Procede de production d'une emulsion d'un liant bitumineux permettant le controle de la viscosite et des qualites de rupture de l'emulsion Download PDF

Info

Publication number
EP0572648B1
EP0572648B1 EP93902354A EP93902354A EP0572648B1 EP 0572648 B1 EP0572648 B1 EP 0572648B1 EP 93902354 A EP93902354 A EP 93902354A EP 93902354 A EP93902354 A EP 93902354A EP 0572648 B1 EP0572648 B1 EP 0572648B1
Authority
EP
European Patent Office
Prior art keywords
emulsion
bituminous binder
use according
aqueous phase
bitumen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93902354A
Other languages
German (de)
English (en)
Other versions
EP0572648A1 (fr
Inventor
Pierre Chaverot
Francis Demangeon
Régis VINCENT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elf Antar France
Original Assignee
Elf Antar France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9420346&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0572648(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Elf Antar France filed Critical Elf Antar France
Publication of EP0572648A1 publication Critical patent/EP0572648A1/fr
Application granted granted Critical
Publication of EP0572648B1 publication Critical patent/EP0572648B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/625Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis the receptacle being divided into compartments, e.g. with porous divisions

Definitions

  • the invention relates to the use of an emulsion forming chamber of the dynamic mixer type for the production of an aqueous emulsion of a bituminous binder having a controlled viscosity and breaking qualities.
  • aqueous emulsions of bituminous binders in the construction and repair of roads, for paving roads, stabilizing the ground, making waterproofing in civil engineering or in buildings or for similar applications is well known.
  • the aqueous emulsions suitable for these applications are emulsions of the "oil in water” type, which consist of a dispersion of an organic phase formed of fine globules of the bituminous binder in a continuous aqueous phase, said aqueous phase containing an emulsifying system.
  • aqueous phase which promotes the dispersion of the globules of the bituminous binder in the aqueous phase and consists of one or more emulsifying agents, and optionally a pH regulating agent, which can be, as the case may be, an acid, a water-soluble salt or a base.
  • Such emulsions are usually classified according to the nature of the emulsifying system used to ensure the dispersion of the bituminous binder in the aqueous phase and according to whether said emulsifying system is constituted of one or more anionic, cationic, nonionic or amphoteric emulsifying agents, the corresponding emulsions will be called anionic, cationic, nonionic or amphoteric respectively.
  • the aqueous emulsion of the bituminous binder is considered to be a convenient means making it possible to reduce the apparent viscosity of said binder during the operations for using this bituminous binder. After rupture, the emulsion restores the bituminous binder added with part of the emulsifying system and other additives present in the aqueous phase.
  • aqueous emulsions of bituminous binders used for the production of impregnation layers, bonding layers or even surface coatings require completely different viscosity levels according to the use concerned.
  • the emulsion must have a sufficiently low viscosity to be able to penetrate as deeply as possible into the structure to be stabilized before the emulsion breaks, resulting in the release of the binder.
  • the emulsion In the case of a bonding layer or a surface coating, the emulsion must on the contrary have a sufficiently high viscosity so that the slope of the ground, on which this emulsion is spread, does not cause the formation of sagging , which have the double disadvantage of simultaneously causing local underdoses by binding bituminous and an overdose or soiling in other places.
  • Increasing the viscosity of the emulsions is the solution generally adapted to minimize the problems of sagging.
  • Said increase in viscosity can be carried out either by adding thickening products in the aqueous phase, or by adjusting the manufacturing parameters of the emulsion to control the average size and the particle size distribution of the bituminous binder globules which it contains, or even through an increase in the binder content of the emulsion.
  • the aqueous emulsion at 80% by weight or more of bituminous binder must make it possible to solve the problems of sagging at conventional dosages and for uses requiring a higher dosage of emulsion as is the case, for example, for monolayer coatings.
  • the aqueous emulsion has 80% by weight or more of bituminous binder also has an economic advantage, since it makes it possible to transport more active material (bituminous binder) for the same quantity of emulsion, this playing aspect favorably to reduce transport costs to the site.
  • the emulsification of the hydrocarbon binders is generally carried out by bringing to an emulsion forming chamber of the colloid mill or turbine type, on the one hand, a bituminous binder in the form of a melt having a temperature between 80 ° C and 180 ° C and preferably between 110 ° C and 160 ° C and, on the other hand, an aqueous phase containing an emulsifying system or at least one of its components, the complement being present in the bituminous binder, and optionally an agent regulating the pH of the emulsion and having a temperature between 10 ° C and 90 ° C and preferably between 20 ° C and 80 ° C and the assembly is kept in said enclosure for a sufficient time to form the emulsion.
  • the emulsion forming chambers of the colloid mill or turbine type used for emulsifying bituminous binders are for the most part rotor / stator devices of the cone / cone type or discs / discs with smooth or grooved surfaces.
  • the rotor (mobile part of the device) and the stator (fixed part of the device) are separated by a very narrow air gap, namely between a few tenths of a millimeter and a few millimeters, which ensures the shearing and causes the dispersion of the bituminous binder in the form of globules separated in the continuous medium consisting of the aqueous phase.
  • bituminous binders consisting of bitumens modified by polymers and in particular in bitumens modified by in situ crosslinking of styrene / butadiene / styrene block copolymers
  • the use of emulsification devices of the aforementioned type leads to the production of emulsions having too low viscosities and it is necessary to make certain adjustments in the internal architecture of said devices to remedy this drawback.
  • the rotor and the stator generally covered with grooves or completely devoid of roughness on their surface, said devices have been replaced by rotors and stators having these two characteristics, such an architecture being said to have non-emerging grooves.
  • aqueous emulsions containing 80% by weight or more of bituminous binder by using such emulsifying devices leads to a very fine particle size distribution of the bituminous binder globules dispersed in the continuous aqueous phase. , which results in a very high viscosity of the emulsion produced. This increase in viscosity leads to progressive blockage of the tubular exchangers during the production of such emulsions. Indeed, emulsions with 80% by weight or more of bituminous binder must be produced at a temperature above 100 ° C.
  • the quotation DE-A-1103301 describes a dispersion enclosure of the dynamic mixer type having an inlet and an outlet separated by a plurality of shear zones of the rotor / stator type arranged in series and each consisting of at least one circular groove formed in a face of a fixed element, integral with the wall of the enclosure and playing the role of stator, and into which penetrate a plurality of lugs each having, in section through a plane containing the axis of the groove, a shape complementary to that of the corresponding section of said groove, so as to define between each lug and the groove a space forming an air gap, said lugs being integral with one of the faces of a support disc playing the role of rotor centered on the axis of the groove and movable in rotation about said axis, which disk is crossed by orifices arranged between the axis of the groove and said pins, the grooves of two shear zones co nsecutives being arranged so as to be either formed in the opposite faces of the same stat
  • bituminous binder in particular 80% and more
  • bituminous binder in particular 80% and more
  • bituminous binder at a lower temperature makes it possible to substantially increase the viscosity of an aqueous emulsion which would be too fluid under the usual production conditions, as is the case in particular for aqueous emulsions of which the bituminous binder content is between 60% and 75% by weight.
  • an aqueous emulsion obtained from a bitumen or a modified bitumen by crosslinking in situ of a styrene / butadiene / styrene block copolymer has a particle size distribution of the bituminous binder globules having an average size substantially greater than that of an aqueous emulsion obtained under analogous conditions with an emulsion forming enclosure of the cone / cone or disc / disc type.
  • Another advantage of the use of the particular emulsion-forming enclosure according to the invention is that it leads to the production of aqueous emulsions of bituminous binder having a much more frank rupture without trapping water in it. inside the bituminous binder.
  • bituminous binder behaves exactly as an emulsion with 70% by weight of binder would behave.
  • bituminous which during its rupture would have already lost 10 water points due to the evaporation of the latter during the spreading of the emulsion.
  • an emulsion formation enclosure of the dynamic mixer type for the production of an aqueous emulsion of a bituminous binder having a controlled viscosity and breaking qualities, which enclosure has, in a manner known per se, an inlet and an outlet separated by a plurality of shear zones of the rotor / stator type arranged in series and each consisting of at least one circular groove formed in one face of a fixed, integral element of the wall of the enclosure and playing the role of stator, and into which penetrate a plurality of lugs each having, in section by a plane containing the axis of the groove, a shape complementary to that of the corresponding section of said groove, so as to define between each lug and the groove a space forming an air gap, said lugs being integral with one of the faces of a support disc playing the role of rotor centered on the xe of the groove and movable in rotation around said axis, which disc is crossed by orifices
  • bituminous binder and the aqueous phase are premixed before passing into the first shear zone of the emulsion formation enclosure.
  • the respective amounts of bituminous binder and of aqueous phase used to form the emulsion are advantageously such that the ratio of the mass flow rate of the bituminous binder to the mass flow rate of the aqueous phase, which are brought to the premixture or injected simultaneously and separately into the enclosure emulsion formation, is from 50:50 to 90:10 and preferably from 55:45 to 85:15.
  • the channels connecting the respective bottoms of the consecutive grooves, which are formed in the opposite faces of the same stator element have a section having a surface greater than that of the orifices passing through the pin-bearing disc associated with each groove.
  • the use of the emulsion-forming enclosure according to the invention makes it possible to adjust the viscosity of an emulsion at a given concentration of bituminous binder produced by said enclosure, by simple adjustment of the value, chosen in the intervals defined above. , the temperature of the bituminous binder and of the aqueous phase, or of their premix, at the entrance to this enclosure, the viscosity of the emulsion being all the higher, all the other conditions being equal, as said inlet temperature is lower.
  • the bituminous binder which is put into an aqueous emulsion by the process according to the invention has a kinematic viscosity at 100 ° C. advantageously between 0.5 ⁇ 10 ⁇ 4 m2 / s and 3 ⁇ 10 ⁇ 2 m2 / s and preferably between 1 ⁇ 10 ⁇ 4 m2 / s and 2x10 ⁇ 2 m2 / s.
  • Said bituminous binder may consist of a bitumen or of a mixture of bitumens having a kinematic viscosity included in the abovementioned intervals, which bitumen or mixture of bitumens may be chosen from bitumens for direct distillation or distillation under reduced pressure or even from bitumens blown or semi-blown, or even among certain petroleum fractions or mixtures of bitumens and distillates under vacuum.
  • the bituminous binder usable according to the invention can also consist of a composition of the bitumen / polymer type, which composition can be any one of the products obtained from bitumens added with one or more polymers, and optionally modified by reaction with this.
  • the amount of polymer generally represents 0.5% to 15% and preferably 0.7% to 10% of the weight of bitumen.
  • the polymers which may be present in the bitumen / polymer composition can be chosen from the various polymers which are combined with bitumens in the bitumen / polymer compositions.
  • Said polymers can be, for example, elastomers such as polyisoprene, butyl rubber, polybutene, polyisobutene, polyacrylates, polymethacrylates, polynorbornene, ethylene / propylene copolymers, ethylene / propylene / diene terpolymers (EPDM terpolymers), or also fluorinated polymers such as polytetrafluoroethylene, silicone polymers such as polysiloxanes, copolymers of olefins and monomers vinyl such as ethylene / vinyl acetate copolymers, ethylene / acrylic ester copolymers, ethylene / vinyl chloride copolymers, polymers of the polyvinyl alcohol, polyamide, polyester or even polyurethane type.
  • elastomers such as polyisoprene, butyl rubber, polybutene, polyisobutene, polyacrylates, polymethacrylates, polynorbornene,
  • the polymer present in the bitumen / polymer composition is chosen from random or block copolymers of styrene and of a conjugated diene because these copolymers dissolve very easily in bitumens and give them excellent mechanical and dynamic properties. and in particular very good viscoelastic properties.
  • the copolymer of styrene and of a conjugated diene is chosen from block copolymers of styrene and of butadiene, of styrene and of isoprene, of styrene and of chloroprene, of styrene and of carboxylated butadiene or of styrene and of carboxylated isoprene.
  • the copolymer of styrene and of conjugated diene and in particular each of the abovementioned block copolymers advantageously has a weight content of styrene ranging from 5% to 50% by weight.
  • the average viscosimetric molecular mass of the copolymer of styrene and of conjugated diene and in particular that of the copolymers mentioned above can be, for example, between 10,000 and 600,000 and is preferably between 30,000 and 400,000.
  • the styrene copolymer and of conjugated diene is chosen from di- or triblock copolymers of styrene and butadiene, styrene and isoprene, styrene and carboxylated butadiene or alternatively styrene and carboxylated isoprene, which have styrene and molecular weights located in the ranges defined above.
  • the bitumen / polymer composition may also contain 1 to 40% and more particularly 2 to 20%, by weight of the bitumen, of a fluxing agent, which may consist, in particular, of a hydrocarbon oil having a distillation range at atmospheric pressure, determined according to standard ASTM D 86-67, between 100 ° C and 450 ° C and more specifically located between 150 ° C and 380 ° C.
  • a hydrocarbon oil can be, for example, a petroleum cut. of aromatic character, an oil cut of naphtheno-aromatic character, an oil cut of naphtheno-paraffinic character, an oil cut of paraffinic character, a coal oil or an oil of vegetable origin.
  • bitumen / polymer composition having the required viscosity can be obtained by simple mixing of the appropriate quantity of elastomeric polymer included in the range defined above, with the bitumen chosen, for its part, to have a viscosity compatible with the viscosity of the composition. bitumen / polymer to be produced.
  • the bitumen / polymer composition can also be produced by first mixing the polymer with the bitumen as indicated above, then by incorporating into said mixture a sulfur-donating coupling agent in a quantity suitable for providing a quantity of elemental or radical sulfur. representing 0.5% to 10% and more particularly 1% to 8% of the weight of the polymer used to produce the bitumen / polymer composition and maintaining the whole with stirring at a temperature between 100 ° C and 230 ° C, for example corresponding to the temperature of bringing the polymer into contact with the bitumen, for a sufficient time to form a bitumen / polymer composition having the desired viscosity and for which the polymer is attached to the bitumen.
  • the sulfur donor coupling agent can be chosen, in particular, from elementary sulfur, hydrocarbyl polysulfides as described in the citation FR-A-2528439 and the vulcanization systems containing vulcanization accelerators as described in the citation EP-A-0360656.
  • bitumen / polymer composition containing a fluxing agent When a bitumen / polymer composition containing a fluxing agent is used, the latter can be added to the medium which, as indicated above, is formed from bitumen, polymer and optionally the coupling agent, to a any time when said medium is formed, the quantity of fluxing agent being chosen to be compatible with the desired end use on the site.
  • the polymer and said coupling agent are incorporated into the bitumen in the form of a mother solution of these products in the fluxing agent and in particular in the oil hydrocarbon defined above as capable of constituting the fluxing agent.
  • the mother solution can be prepared by bringing the component ingredients, namely fluxing agent, polymer and coupling agent, into contact at temperatures between 10 ° C. and 140 ° C. and for a time sufficient to obtain complete dissolution of the polymer and of the coupling agent in the fluxing agent.
  • the respective concentrations of the polymer and of the coupling agent in the mother solution can vary quite widely depending in particular on the nature of the fluxing agent used to dissolve the polymer and the coupling agent.
  • the mother solution of the polymer and of the coupling agent in the fluxing agent is mixed with the bitumen in the molten state, with stirring, then the resulting mixture is maintained. , in the molten state and with stirring, for a sufficient time to obtain a fluid product of continuous appearance and viscosity compatible with the final use on the site.
  • the bitumen / polymer composition may also contain various additives and in particular nitrogen compounds of the amine or amide type as promoters for adhesion of the final bitumen / polymer binder to mineral surfaces, said nitrogen compounds preferably being grafted onto the bitumen / polymer component and in particular on the polymer chains of said composition.
  • the bituminous binder of the bitumen / polymer composition type can also be added with a sulfur-donor vulcanization system, or the case if necessary, components of such a system forming said system in situ, in a concentration suitable for supplying an amount of sulfur representing 0.5 to 20% and preferably 1 to 15% of the weight of the polymer present in the bitumen / polymer composition.
  • the sulfur donor vulcanization system can be chosen, among others, from the products indicated above as capable of constituting the coupling agent used to produce certain bitumen / polymer compositions.
  • the aqueous phase which is used in the implementation of the method according to the invention, consists of water containing an emulsifying system in an effective amount, that is to say in an amount suitable for dispersing the globules of the binder bituminous in said aqueous phase and to prevent the re-agglomeration of said dispersed globules.
  • the amount of emulsifying system is generally chosen to represent 0.05% to 5% and preferably 0.1% to 2% of the total weight of the emulsion.
  • the emulsifying system present in the aqueous phase of the emulsion can be cationic, anionic, nonionic or even amphoteric in nature.
  • An emulsifying system of a cationic nature which gives rise to a cationic emulsion, comprises one or more cationic emulsifying agents which can advantageously be chosen from nitrogenous cationic emulsifying agents such as fatty monoamines, polyamines, amidoamines, amidopolyamines, salts or oxides of said emulsions. amines and amidoamines, reaction products of the above-mentioned compounds with ethylene oxide and / or propylene oxide, imidazolines and quaternary ammonium salts.
  • the emulsifying system of a cationic nature can be formed by the association of one or more cationic emulsifying agents A chosen from cationic nitrogenous emulsifying agents of the types of monoamines, diamines, amidoamines, oxides of such amines or amidoamines, reaction products of such compounds with ethylene oxide and / or propylene oxide and quaternary ammonium salts, with one or more agents emulsifiers B chosen from cationic nitrogen emulsifiers having in their molecule at least three functional groups chosen from amine and amide groups such that at least one of said functional groups is an amine group, the ratio of the weight amount of the or of compounds A to the total weight amount of compounds A and B ranging in particular from 5% to 95%.
  • A chosen from cationic nitrogenous emulsifying agents of the types of monoamines, diamines, amidoamines, oxides of such amines or amidoamines, reaction products of such compounds with ethylene oxide and / or
  • An emulsifying system of an anionic nature which gives rise to an anionic emulsion, comprises one or more anionic emulsifying agents which can be chosen in particular from the alkali metal or ammonium salts of fatty acids, the alkali metal polyalkoxycarboxylates, alkali metal N-acylsarcosinates, alkali metal hydrocarbylsulfonates and in particular sodium alkylsulfonates, sodium arylsulfonates and sodium alkylarylsulfonates, sodium alkyllarenesulfonates, sodium lignosulfonates, sodium dialcoylsulfosuccinates.
  • anionic emulsifying agents which can be chosen in particular from the alkali metal or ammonium salts of fatty acids, the alkali metal polyalkoxycarboxylates, alkali metal N-acylsarcosinates, alkali metal hydrocarbylsulfonates and in particular sodium alkyls
  • an emulsifying system of a nonionic nature formed from one or more nonionic emulsifying agents which can in particular be chosen from ethoxylated fatty alcohols, ethoxylated fatty acids, sorbitan esters, ethoxylated sorbitan esters, ethoxylated alkylphenols, ethoxylated fatty amides and fatty acid esters of glycerin.
  • an emulsifying system of amphoteric nature formed by one or more amphoteric emulsifying agents which can be chosen, for example, from betaines and amphoteric imidazolinium derivatives.
  • an emulsifying system consisting of a mixture of emulsifying agents of different natures, for example a mixture of one or more anionic or cationic emulsifying agents with one or more nonionic or / and amphoteric emulsifying agents.
  • KIRK-OTHMER entitled ENCYCLOPEDIA OF CHEMICAL TECHNOLOGY, Third Edition, Volume 22, pages 347 to 360 (anionic emulsifiers), pages 360 to 377 (nonionic emulsifiers), pages 377 to 384 (cationic emulsifiers) and pages 384 to 387 (amphoteric emulsifiers).
  • an agent intended to adjust the pH of the emulsion to the desired value can be an acid, for example a mineral acid such as HCl, HNO3, H3PO4 or a saturated or unsaturated mono or polycarboxylic acid such as acetic acid, formic acid, oxalic acid or citric acid , when the pH value of the emulsion must be lowered, or a base or a basic salt, in particular a mineral base consisting of an alkali metal hydroxide such as sodium hydroxide or an alkaline earth oxide or hydroxide, when the value the pH of the emulsion should be increased.
  • a mineral acid such as HCl, HNO3, H3PO4 or a saturated or unsaturated mono or polycarboxylic acid such as acetic acid, formic acid, oxalic acid or citric acid
  • a base or a basic salt in particular a mineral base consisting of an alkali metal hydroxide such as sodium hydroxide or an alkaline earth oxide or hydrox
  • the aqueous phase may also contain various additives such as, for example, metal ion complexing agents as described in the citations FR-A-2577545 and FR- A-2577546.
  • the emulsifying system and the other optional ingredients are incorporated.
  • the amount of water necessary for the production of the desired emulsion which amount of water is brought beforehand to a temperature between 10 ° C and 90 ° C and preferably between 20 ° C and 80 ° C.
  • the amount of emulsifier system added to the water is chosen so that the concentration of said emulsifier system in the final emulsion is within the range defined above.
  • other ingredients in particular a pH adjusting agent, a metal ion complexing agent or the like, must be incorporated into the aqueous phase, the respective amounts of said ingredients are those commonly used for this purpose.
  • the aqueous phase for producing an anionic emulsion can be prepared as follows. In water, maintained at a temperature between 10 ° C and 90 ° C and more particularly between 20 ° C and 80 ° C, dissolving or dispersing, while operating with stirring, the appropriate quantity of an emulsifier precursor of the anionic type consisting of an acid or polyacid with a saturated aliphatic chain or partially unsaturated or also artificially cyclic. A concentrated solution of NaOH or KOH is then added to the solution or suspension obtained until neutralization of the acid and formation of the corresponding salt which constitutes the anionic emulsifying agent.
  • the pH of the emulsion can range between 7 and 13 and more especially between 9 and 11.
  • the concentration of acid precursor of the aqueous phase is chosen to represent between 0.02% and 2% of the weight of the final emulsion depending on the use of the emulsion on the road.
  • the aqueous phase can, for example, be prepared as follows. In water, maintained at a temperature between 10 ° C and 90 ° C and more particularly between 20 ° C and 80 ° C, dispersing an appropriate amount of one or more cationic emulsifiers, for example of the type fatty amines or polyethylene polyamines with a fatty chain, then a sufficient amount of a mineral acid or an organic monocarboxylic or polycarboxylic acid is added to the dispersion thus obtained to obtain a final pH of between 1 and 7 and preferably between 2 and 5.
  • the concentration of cationic emulsifying agent (s) in the aqueous phase is chosen to represent 0.2 to 2% of the weight of the final cationic emulsion.
  • additives such as metal ion complexing agents, tackifiers or the like are used, these additives are added to the aqueous phase to a any time in the preparation of the latter and in any order.
  • the circuit When the bituminous binder is at a temperature, which leads, after contact with the aqueous phase, to a temperature higher than the boiling temperature of water, the circuit must be maintained under pressure sufficient to prevent boiling of water.
  • the emulsion discharged from the emulsion forming chamber must be cooled, for example in an air or water heat exchanger, to a temperature below 100 ° C. before being brought back to atmospheric pressure. to be sent to final storage or to be loaded directly into a spreading truck.
  • bituminous binder emulsion obtained according to the invention can be used for the production of coatings and in particular for road coatings of the surface coating type, for the production of hot or cold mixes, or also for the production of coatings sealing.
  • an emulsifier is chosen as the emulsifier for the aqueous phase, allowing rapid breaking of the emulsion, which results in the restitution of a bituminous binder adhering to both the pavement and the aggregates.
  • the final goal of using the emulsion is the installation of a mix
  • it can be operated either cold by spreading using a finisher of the aggregate / emulsion mixture prepared in the coating plant, followed by compaction of said mixture by smooth rollers or / and by pneumatic compactors, either hot by kneading the emulsion with hot aggregates until complete evaporation of the water, followed by spreading using a asphalt paver prepared in a asphalt mixing plant, then compaction of said asphalt by smooth rollers and / or pneumatic compactors.
  • the emulsion obtained according to the invention can also be introduced hot into a coating plant where the previously heated and dried aggregates are kneaded with said emulsion, which causes the water present in the emulsion to evaporate under l effect of heat.
  • the emulsion prepared according to the invention can also be used in the technique of cold-cast mixes.
  • the composition of the phase aqueous is suitable, as is known in the art, to allow the grout to rupture after it has been kneaded and spread on the floor.
  • the emulsion forming enclosure with integrated premixer which is shown diagrammatically in FIGS. 1, 1a and 1b, is formed by a chamber 1 delimited by a cylindrical side wall 2 having a front end closed by a wall 3 and a rear end closed by a wall 4.
  • the wall 3 is provided with a duct 5 forming an inlet duct, which opens in the chamber 1 by one of its ends 6 and is divided at its other end 7 into two conduits, namely a conduit 8 for supplying a bituminous binder in the molten state and a conduit 9 for supplying an aqueous phase.
  • the chamber 1 is provided with a conduit 10 forming an outlet conduit and arranged to open out radially or tangentially into said chamber.
  • Chamber 1 is divided into compartments, here four in number 11 to 14, by partitions, here in number three numbered 15 to 17, said partitions, of identical structures, being integral with the side wall 2 of chamber 1 and being each delimited by two parallel flat faces which are perpendicular to the longitudinal axis 18 of the cylindrical chamber 1, namely faces 19 and 20 for the partition 15, faces 21 and 22 for the partition 16 and faces 23 and 24 for the partition 17 , said partitions 15 to 17 playing the role of stator elements.
  • the partitions 15 to 17 are arranged so in the chamber 1 that the extreme compartments 11 and 14 have a sufficient width to respectively constitute a compartment 11 of premix for the precursors of the emulsion which are the bituminous binder and the aqueous phase and a compartment 14 for collecting the emulsion and that the intermediate compartments 12 and 13 have a very small width.
  • the inlet conduit 5 opens into the premix compartment 11, while the outlet conduit 10 opens into the compartment 14 for collecting the emulsion.
  • each stator element On each of the faces of each stator element is formed a circular groove with an axis coinciding with the longitudinal axis 18 of the chamber 1, namely grooves 28 and 29 respectively for the faces 19 and 20 of the stator element 15, grooves 30 and 31 for the faces 21 and 22 of the stator element 16 and grooves 32 and 33 for the faces 23 and 24 of the stator element 17, said grooves having the same mean diameter, width and depth.
  • the grooves belonging to the same stator element are connected, bottom to bottom, by channels formed in said stator element, namely channels 34 for the stator element 15, channels 35 for the stator element 16 and channels 36 for the element stator 17.
  • a series of lug-shaped lugs penetrate into each of the grooves, namely series 37 to 42 corresponding respectively to grooves 28 to 33.
  • each groove for example fins of the series 37 associated with the groove 28 as indicated in FIG. 1a, each have in this example, in section by a plane perpendicular to the axis of the groove, a trapezoid shape with curvilinear parallel sides 43 and 44 concentric with the side walls 45 and 46 of the associated groove and, in section through a median plane containing the axis of the groove, a shape complementary to the section of said groove by this plane so as to define between each fin and the groove an air gap space having a thickness located in the intervals defined above.
  • the fins of the same series of fins are integral with one of the parallel faces of a support disc playing the role of rotor element.
  • the different series of fins 37 to 42 are carried, in the diagram shown, by four discs 47 to 50, namely disc 47 located in the compartment 11 and carrying on one side the series of fins 37 penetrating into the groove 28 formed in the face 19 of the stator element 15, disc 48 located in the intermediate compartment 12 and carrying, on one of its faces, the series of fins 38 penetrating into the groove 29 formed in the face 20 of the element stator 15 and, on the other face, the series of fins 39 penetrating into the groove 30 formed in the face 21 of the stator element 16, disc 49 located in the intermediate compartment 13 and bearing, on one of its faces, the series of fins 40 penetrating into the groove 31 formed in the face 22 of the stator element 16 and, on the other face, the series of fins 41 penetrating into the groove 32 formed in the face 23 of the stator element 17 and finally disc 50 located in the compartment 14 for collecting the emulsion and carrying on a single face the series of fins 42 penetrating into the groove 33 formed in the face 24
  • Each disc which has an axis coinciding with the axis 18 of chamber 1 so that its parallel faces are parallel to the faces of the associated stator element, is mounted, for example by a keying system not shown, on the shaft 25 so as to be integral with the latter and this made to be driven in rotation by said shaft when the latter is rotated by the motor 26.
  • Each disc is traversed by orifices made in the disc between the shaft 25 and the series or fins of fins carried by the disc, namely orifices 51 for the disc 47, orifices 52 for the disc 48, orifices 53 for the disc 49 and orifices 54 for the disc 50, said orifices advantageously having a section whose surface is less than the section of the channels formed in the stator elements for connecting , bottom to bottom, the two grooves that each stator element comprises.
  • the discs 47 to 50 have a slightly smaller diameter, for example 0.2mm to 1mm less, than the inside diameter of the cylindrical chamber 1.
  • each grooved face of any one of the stator elements 15 to 17 is separated from the opposite face of the associated disc provided with fins penetrating into the groove, through a space having a small thickness, for example a thickness ranging from 0.1mm to 5mm and preferably from 0.2mm to 2mm.
  • the thickness of each of the compartments 12 and 13 is therefore slightly greater, for example greater by 0.2mm to 10mm and preferably by 0.4mm to 4mm, than the thickness of the disc present in the compartment concerned.
  • the space between the grooved face of any one of the stator elements 15 to 17 and the opposite face of the associated disc provided with fins penetrating into the groove thus defines a shear zone.
  • the grooves of two consecutive shear zones are either formed in the opposite faces of the same stator element and connected by channels connecting their respective bottoms, or formed in the opposite faces of two consecutive stator elements and then separated by a perforated disc through which they communicate.
  • each of the faces of any one of the stator elements 15 to 17 is provided with two concentric grooves, so that each groove has on one of the faces of any stator element corresponds an identical groove on the other face of this element, these corresponding grooves being connected, bottom to bottom, by channels made in said stator element and, on the other hand, each face of any disc 47 to 50, which is opposite a doubly grooved face of a stator element 15 to 17, carries two concentric series of lugs, for example cylindrical, so that the lugs of a series penetrate into one of the grooves of the doubly grooved face so as to define with this groove a space playing the role of air gap as indicated in the case of the fins of the system of FIG.
  • each of the faces 21 and 22 of the stator element 16 are provided with two concentric grooves 55 and 56 on the face 21 and two corresponding concentric grooves 57 and 58 on the face 22, the grooves 55 and 57 being connected ected, bottom to bottom, by channels 59 and the grooves 56 and 58 being connected, bottom to bottom, by channels 60, which channels 59 and 60 are formed in said stator element 16, while, for example, as shown schematically on FIGS.
  • one of the faces of the disc 48 forming a rotor element and traversed by the orifices 52, is provided with two concentric series of cylindrical lugs 61 and 62, the first penetrating into the groove 55 of the element stator 16 and the latter in the groove 56 of said element, and the other face of the disc 48 is also provided with two concentric series 63 and 64 of cylindrical lugs arranged to correspond to two grooves formed in the face 20 of the stator element 15.
  • the emulsion formation chamber with integrated premixer described above operates as follows.
  • the precursors of the aqueous emulsion namely bituminous binder in the molten state and aqueous phase, brought respectively by the conduits 8 and 9 then by the conduit 5, penetrate into the compartment 11 in which the said precursors are subjected to the action of the agitator element driven in rotation by the shaft 25 mu by the motor 26 and are thus premixed.
  • the premix thus produced then passes through the successive shear zones, which are each formed by the space between the grooved face of a stator element and the face provided with facing lugs belonging to the associated rotor element and which are connected in series either through the orifices passing through a rotor element, or through the channels connecting, by their respective bottoms, the opposite grooves of the same stator element.
  • the medium formed by the bituminous binder in the molten state and the aqueous phase is subjected to the action of shear forces created by the rotation of the rotor element driven by the shaft 25 mu by the motor 26 and by the displacement resulting from the lugs integral with the rotor element in the associated groove of the stator element, which contributes to dividing the bituminous binder into globules and to dispersing these globules in the aqueous phase to produce the emulsion .
  • the emulsion produced leaves the last shear zone through the orifices 54 of the last rotor element 48 and ends up in the collection compartment 14, from which it is continuously discharged through the outlet conduit 10 to be directed towards a zone storage or to a point of use.
  • Two cationic emulsions were prepared, namely a control emulsion A and an emulsion B according to the invention, at 80% by weight of a bituminous binder of the bitumen / polymer type consisting of the reaction product at high temperature of a road bitumen of 80/100 penetration with a stock solution consisting of a solution of sulfur and a block copolymer of styrene and butadiene containing, by weight 25% of styrene and 75% of butadiene in an oil cut obtained in a refinery and called "Light Cycle Oil", said cut having a distillation interval of the order of 180 ° C to 360 ° C.
  • a conventional colloid mill consisting of a concentric frustoconical stator and rotor having a large diameter equal to 50mm and an air gap (space between the lateral surfaces facing the rotor and the stator) having a thickness of 0.3mm
  • 800 parts of the bituminous bitumen / polymer binder were introduced continuously at 160 ° C. and 200 parts of aqueous phase at 60 ° C, with an overall flow of 150kg / hour.
  • the emulsification mill was kept under pressure to prevent boiling of the water from the medium subjected to the emulsification, the temperature of which was about 125 ° C. and the speed of rotation of the rotor was fixed at 6000 rpm. , which corresponds to a peripheral speed of the rotor of around 15m / s.
  • the aqueous emulsion from the colloid mill was subjected to a first cooling by passage through a tubular exchanger, then to decompression at atmospheric pressure, after which the decompressed emulsion was cooled to room temperature over a period of about six hours to avoid thermal shock.
  • the space forming the gap between the lugs and the walls of the groove, defined as indicated previously in the description, and the space between the face carrying the lugs of the rotor element and the face opposite the associated stator element had a thickness equal to 0.4 mm.
  • the colloid mill Into the colloid mill, 80 parts of the bituminous binder, prepared as indicated above and having a temperature of 160 ° C., were continuously introduced, via line 8, and simultaneously, via line 9, 20 parts of the aqueous phase obtained. as described above and having a temperature of 60 ° C., with an overall flow rate of 300 kg / hour. The colloid mill was kept under pressure to avoid boiling of the water in the medium subjected emulsification, the temperature of which was approximately 125 ° C.
  • the aqueous emulsion from the colloid mill was subjected to a first cooling by passage through a tubular exchanger, then to decompression at atmospheric pressure, after which the decompressed emulsion was cooled to room temperature over a period of about six hours to avoid thermal shock.
  • Example 1 In a colloid mill having the same characteristics as that used in Example 1 for the preparation of emulsion B according to the invention, 69 parts of the bituminous binder prepared as indicated in example 1 and simultaneously, via line 9, 31 parts of the phase aqueous obtained as described in said example 1, said binder and said aqueous phase having an overall flow rate of 300 kg / hour and being at temperatures leading to the obtaining of a temperature of 113 ° C. in the premix zone 11 and in the shear zones of the emulsification enclosure (colloid mill).
  • the aqueous emulsion from the colloid mill was treated as described in Example 1 to cool it to room temperature.
  • Emulsion E Binder content (% by weight) 69 pH 4.7 Breaking index at 20 ° C (g / 100g) 32 Breaking index at 5 ° C (g / 100g) 37 STV pseudo-viscosity at 25 ° C (s) 123 Average diameter of the globules ( ⁇ m) 4.1
  • the method according to the invention makes it possible to produce an emulsion with a low content of bitumen / polymer binder (approximately 69% by weight of binder) whose viscosity is comparable to that of a high content emulsion ( about 80% by weight) with the same binder, by adjusting the temperature in the emulsification enclosure.
  • Two cationic emulsions were prepared, namely a control F emulsion and a G emulsion according to the invention, at 80% by weight of a bituminous binder consisting of a bitumen having a penetration of 180/220.
  • a conventional colloid mill consisting of a concentric stator and a truncated conical rotor having a large diameter equal to 50mm and an air gap having a thickness of 0.3mm
  • 800 parts of bitumen of penetration equal to 180 were continuously introduced / 220 brought to a temperature of 169 ° C and 200 parts of the aqueous phase at 60 ° C prepared as indicated above, with an overall flow rate of 150 kg / hour.
  • the colloid mill was kept under pressure to prevent boiling of the water from the medium subjected to the emulsification, the temperature of which was approximately 136 ° C.
  • the rotational speed of the rotor was fixed at 6000 revolutions / minute, which corresponds to a peripheral speed of the rotor of approximately 15.7 m / s.
  • Example 2 The emulsion from the colloid mill was then treated as described in Example 1 to cool it to room temperature
  • Example 2 The emulsion from the colloid mill was treated as indicated in Example 1 to cool it to room temperature.
  • Emulsion F G Binder content (% by weight) 80 80 pH 3 3.2 Breaking index at 20 ° C (g / 100g) *) 32 STV pseudo-viscosity at 50 ° C (s) > 1000 **) 300 Average diameter of the globules ( ⁇ m) 4 22 *) impossible measurement due to the too high viscosity of the emulsion which does not allow the determination of the breaking point and solidification of the granular mixture (sand + binder) **) even after 30 minutes, no flow occurs; the product seems to behave like a liquid at the threshold of flow.
  • emulsions with variable contents were prepared in a bituminous binder consisting of a bitumen having a penetration of 180/220, namely emulsions controls H and L and emulsions according to the invention I, J, K and M.
  • the aqueous phase used to produce these emulsions was obtained as described in Example 4.
  • control emulsion H was formed at atmospheric pressure by introducing into the colloid mill 600 parts of the bitumen brought to 156 ° C and 400 parts of the aqueous phase, with an overall flow rate of 150 kg / hour. The emulsion from the colloid mill was then cooled to room temperature over a period of about six hours to avoid any thermal shock.
  • the control L emulsion was produced by introducing 700 parts of the bitumen brought to 160 ° C. and 300 parts of the aqueous phase into the colloid mill, with an overall flow rate of 150 kg / hour.
  • the emulsification mill was kept under pressure to avoid boiling of the water from the medium subjected to the emulsification, said medium being at a temperature of 127 ° C.
  • the emulsion from the colloid mill was treated as indicated in Example 1 to cool it to room temperature.
  • the emulsion I was formed at atmospheric pressure by introducing into the colloid mill 600 parts of the bitumen brought to 105 ° C., via line 8, and 400 parts of the aqueous phase, through line 9, with an overall flow rate of 300 kg. /hour. The emulsion from the colloid mill was then cooled to room temperature over a period of about six hours to avoid any thermal shock.
  • the emulsions J and K were produced by introducing into the colloid mill, through line 8, 650 parts of the bitumen and, through line 9, 350 parts of the aqueous phase, with an overall flow rate of 300 kg / hour and temperatures such that the medium subjected to the emulsification had a temperature of 130 ° C for emulsion J and 105 ° C for emulsion K.
  • the colloid mill was kept under pressure to avoid boiling of the water in the medium subject to emulsification.
  • the emulsions from the colloid mill were treated as indicated in Example 1 to cool them to room temperature.
  • the emulsion M was produced by introducing into the colloid mill, via line 8, 700 parts of the bitumen brought to 130 ° C. and, through line 9, 300 parts of the aqueous phase, with an overall flow rate of 300 kg / hour. and a temperature of the aqueous phase such that the medium subjected to the emulsification was at a temperature of 110 ° C.
  • the colloid mill was kept under pressure to avoid boiling of the water from the medium subjected to emulsification.
  • the emulsion from the colloid mill was treated as indicated in Example 1 to cool it to room temperature.
  • the emulsions I and M according to the invention have higher viscosities respectively than control H and L emulsions with comparable bitumen contents.
  • a cationic emulsion P was prepared at 70% by weight of a bituminous binder of the polymer bitumen type consisting of the reaction product of a bitumen with a penetration equal to 67 with a sequenced copolymer of styrene and butadiene, containing 25% by weight of styrene and having a viscosimetric average molecular weight equal to approximately 75,000, in the presence of a coupling agent consisting of elemental sulfur.
  • bituminous bitumen / polymer binder 964 parts of the bitumen were mixed with 35 parts of the block copolymer. After 3 hours of mixing with stirring, a homogeneous mass was obtained. To this mass maintained at 170 ° C., 1 part of crystallized sulfur was then added, then the whole was further stirred for 60 minutes to form a bituminous bitumen / polymer binder.
  • the colloid mill 700 parts of the bituminous binder prepared as indicated above and brought to 156 ° C. were introduced continuously via line 8, and 300 parts of the aqueous phase defined above, simultaneously through line 9, with an overall flow rate of 300 kg / hour, the medium subjected to the emulsification being at a temperature of 122 ° C.
  • the colloid mill was kept under pressure to avoid boiling of the water from the medium subjected to emulsification.
  • the emulsion from the colloid mill was treated as indicated in Example 1 to cool it to room temperature.
  • Emulsion P Binder content (% by weight) 70 pH 3 Breaking index at 20 ° C (g / 100g) 100 Viscosity STV at 25 ° C (s) 115 Average diameter of the globules ( ⁇ m) 3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Road Paving Structures (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Sealing Material Composition (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Colloid Chemistry (AREA)

Description

  • L'invention concerne l'utilisation d'une enceinte de formation d'émulsion du type mélangeur dynamique pour la production d'une émulsion aqueuse d'un liant bitumineux ayant une viscosité et des qualités de rupture contrôlées.
  • L'utilisation d'émulsions aqueuses de liants bitumineux dans la construction et la réparation des routes, pour le revêtement de chaussées, la stabilisation du sol, la réalisation d'étanchéités en génie civil ou en bâtiments ou pour des applications analogues est bien connue. Les émulsions aqueuses convenant pour ces applications sont des émulsions du type "huile dans l'eau", qui consistent en une dispersion d'une phase organique formée de fins globules du liant bitumineux dans une phase aqueuse continue, ladite phase aqueuse renfermant un système émulsifiant, qui favorise la dispersion des globules du liant bitumineux dans la phase aqueuse et consiste en un ou plusieurs agents émulsifiants, et éventuellement un agent régulateur du pH, qui peut être, selon le cas, un acide, un sel hydrosoluble ou une base. De telles émulsions, dont la teneur en phase organique est habituellement comprise entre 60 et 75% en poids, sont habituellement classées selon la nature du système émulsifiant utilisé pour assurer la dispersion du liant bitumineux dans la phase aqueuse et selon que ledit système émulsifiant est constitué d'un ou plusieurs agents émulsifiants anioniques, cationiques, non ioniques ou amphotères, les émulsions correspondantes seront dites respectivement anioniques, cationiques, non ioniques ou amphotères.
  • L'émulsion aqueuse du liant bitumineux est considérée comme un moyen commode permettant de réduire la viscosité apparente dudit liant lors des opérations de mise en oeuvre de ce liant bitumineux. Après rupture, l'émulsion restitue le liant bitumineux additionné d'une partie du système émulsifiant et des autres additifs présents dans la phase aqueuse.
  • Les émulsions aqueuses de liants bitumineux utilisées pour la réalisation de couches d'imprégnation, de couches d'accrochage ou bien encore d'enduits superficiels nécessitent des niveaux de viscosité totalement différents selon l'usage concerné. Pour les couches d'imprégnation, l'émulsion doit avoir une viscosité suffisamment faible pour pouvoir pénétrer le plus profondément possible dans la structure à stabiliser avant que n'intervienne la rupture de l'émulsion entraînant la libération du liant. Dans le cas d'une couche d'accrochage ou d'un enduit superficiel, l'émulsion doit au contraire avoir une viscosité suffisamment élevée pour que la pente du terrain, sur lequel est répandue cette émulsion, n'entraîne pas la formation de coulures, lesquelles ont le double désavantage d'entraîner simultanément des sous-dosages locaux en liant bitumineux et un surdosage ou des salissures à d'autres endroits.
  • L'augmentation de la viscosité des émulsions est la solution généralement adaptée pour minimiser les problèmes de coulures. Ladite augmentation de viscosité peut être réalisée soit par addition de produits épaississants dans la phase aqueuse, soit par ajustement des paramètres de fabrication de l'émulsion pour contrôler la taille moyenne et la répartition granulométrique des globules de liant bitumineux qu'elle renferme ou bien encore par le biais d'une augmentation de la teneur en liant de l'émulsion. En particulier, l'émulsion aqueuse à 80% en poids ou plus de liant bitumineux doit permettre de résoudre les problèmes de coulures aux dosages classiques et pour les usages nécessitant un dosage supérieur en émulsion comme c'est le cas, par exemple, pour les enduits monocouches. Parallèlement à cet aspect technique, l'émulsion aqueuse a 80% en poids ou plus de liant bitumineux présente également un avantage au plan économique, car elle permet de transporter plus de matière active (liant bitumineux) pour une même quantité d'émulsion, cet aspect jouant favorablement pour réduire les coûts de transport jusqu'au chantier.
  • La mise en émulsion des liants hydrocarbonés est généralement effectuée en amenant à une enceinte de formation d'émulsion du type moulin à colloïdes ou turbines, d'une part, un liant bitumineux sous la forme d'une masse fondue ayant une température comprise entre 80°C et 180°C et de préférence entre 110°C et 160°C et, d'autre part, une phase aqueuse renfermant un système émulsifiant ou au moins l'une des ses composantes, le complément étant présent dans le liant bitumineux, et éventuellement un agent régulateur du pH de l'émulsion et possédant une température comprise entre 10°C et 90°C et de préférence entre 20°C et 80°C et l'on maintient l'ensemble dans ladite enceinte pendant un temps suffisant pour former l'émulsion.
  • Les enceintes de formation d'émulsions du type moulins colloïdaux ou turbines servant à la mise en émulsion des liants bitumineux sont pour la plupart des dispositifs rotor/stator du type cône/cône ou disques/disques avec des surfaces lisses ou rainurées. Le rotor (partie mobile du dispositif) et le stator (partie fixe du dispositif) sont séparés par un entrefer très étroit, à savoir entre quelques dixièmes de millimètres et quelques millimètres, qui assure le cisaillement et entraîne la dispersion du liant bitumineux sous la forme de globules séparés dans le milieu continu constitué de la phase aqueuse.
  • Dans le cas de la mise en émulsion aqueuse de liants bitumineux consistant en bitumes modifiés par des polymères et notamment en bitumes modifiés par réticulation in-situ de copolymères blocs styrène/butadiène/styrène, l'utilisation de dispositifs de mise en émulsion du type précité conduit à l'obtention d'émulsions présentant des viscosités trop faibles et il est nécessaire de procéder à certains ajustements dans l'architecture interne desdits dispositifs pour remédier à cet inconvénient. Ainsi, le rotor et le stator, généralement recouverts de cannelures ou complètement dépourvus d'aspérités à leur surface, desdits dispositifs ont été remplacés par des rotors et des stators possédant ces deux caractéristiques, une telle architecture étant dite à cannelures non-débouchantes.
  • D'autre part, la fabrication d'émulsions aqueuses à 80% en poids ou plus de liant bitumineux en faisant appel à de tels dispositifs de mise en émulsion conduit à une répartition granulométrique très fine des globules de liant bitumineux dispersés dans la phase aqueuse continue, ce qui se traduit par une viscosité très élevée de l'émulsion produite. Cette augmentation de viscosité entraîne le bouchage progressif des échangeurs tubulaires lors de la fabrication de telles émulsions. En effet, les émulsions à 80% en poids ou plus de liant bitumineux doivent être fabriquées à une température supérieure à 100°C. Cela suppose de maintenir l'enceinte de formation d'émulsion sous pression afin d'empêcher l'ébullition de l'eau de la phase aqueuse de l'émulsion. Avant sa sortie à pression atmosphérique, l'émulsion produite doit être refroidie en utilisant un échangeur thermique en général tubulaire. Le phénomène d'échange thermique entre émulsion et parois de l'échangeur tubulaire est fortement limité par la viscosité apparente élevée de l'émulsion avec comme conséquence le risque d'une rupture de l'émulsion dans l'échangeur et le dépôt de liant bitumineux sur les parois dudit échangeur avec comme résultat le bouchage de ce dernier. De plus, l'application d'une telle émulsion se traduit par un peignage très important et des inégalités de dosage transversal dus à la trop forte viscosité de l'émulsion qui entraîne un écartement trop faible des jets de répandage. En outre, par suite des inversions de phase qui s'opèrent prioritairement à la rupture normale de l'émulsion après son répandage, de l'eau reste emprisonnée dans le film de liant bitumineux résiduel. Cette eau entraîne une réduction importante de la cohésion du liant bitumineux immédiatement après le répandage et peut conduire à des décrochements par suite de la dilatation de l'eau sous l'action du gel.
  • La citation DE-A-1103301 décrit une enceinte de dispersion du type mélangeur dynamique possédant une entrée et une sortie séparées par une pluralité de zones de cisaillement du type rotor/stator agencées en série et constituées chacune d'au moins une rainure circulaire ménagée dans une face d'un élément fixe, solidaire de la paroi de l'enceinte et jouant le rôle de stator, et dans laquelle pénètrent une pluralité d'ergots présentant chacun, en section par un plan contenant l'axe de la rainure, une forme complémentaire de celle de la section correspondante de ladite rainure, de manière à définir entre chaque ergot et la rainure un espace formant entrefer, lesdits ergots étant solidaires de l'une des faces d'un disque support jouant le rôle de rotor centré sur l'axe de la rainure et mobile en rotation autour dudit axe, lequel disque est traversé par des orifices disposés entre l'axe de la rainure et lesdits ergots, les rainures de deux zones de cisaillement consécutives étant disposées de manière à être soit ménagées dans les faces opposées d'un même élément stator et connectées par des canaux reliant leurs fonds respectifs, soit ménagées dans les faces en regard de deux éléments stators consécutifs et séparées alors par un disque support portant des ergots sur ses deux faces.
  • On a maintenant trouvé qu'en utilisant une enceinte de formation d'émulsion du type décrit dans la citation DE-A-1103301, on pouvait produire des émulsions aqueuses visqueuses à faible teneur en liant bitumineux ou encore diminuer la viscosité des émulsions aqueuses à haute teneur (80% en poids ou plus) en liant bitumineux par simple ajustement des paramètres de viscosité des fluides dans ladite enceinte, ce qui permet d'assurer la fiabilisation de la production sur chantier. Cet ajustement peut se faire, entre autres, par le contrôle de la température de ces fluides à l'entrée de l'enceinte.
  • Plus précisément, en faisant appel à ladite enceinte particulière de formation d'émulsion, on peut produire une émulsion aqueuse à haute teneur en liant bitumineux (notamment 80% et plus) de viscosité beaucoup plus faible que l'émulsion obtenue dans les mêmes conditions avec une enceinte conventionnelle de formation d'émulsion du type cône/cône ou disques/disques. De plus, l'utilisation d'un liant bitumineux à température plus faible permet d'augmenter substantiellement la viscosité d'une émulsion aqueuse qui serait trop fluide dans les conditions habituelles de production, comme c'est le cas notamment pour les émulsions aqueuses dont la teneur en liant bitumineux est comprise entre 60% et 75% en poids.
  • De plus, en utilisant l'enceinte de formation d'émulsion selon l'invention, une émulsion aqueuse obtenue à partir d'un bitume ou d'un bitume modifié par réticulation in situ d'un copolymère bloc styrène/butadiène/styrène présente une répartition granulométrique des globules de liant bitumineux ayant une taille moyenne sensiblement supérieure à celle d'une émulsion aqueuse obtenue dans des conditions analogues avec une enceinte de formation d'émulsion du type cône/cône ou disque/disque.
  • Un autre avantage de l'utilisation de l'enceinte particulière de formation d'émulsion selon l'invention est qu'elle conduit à la production d'émulsions aqueuses de liant bitumineux ayant une rupture beaucoup plus franche sans emprisonnement d'eau à l'intérieur du liant bitumineux. Par ce biais, par exemple, une émulsion à 80% en poids de liant bitumineux se comporte exactement comme se comporterait une émulsion à 70% en poids de liant bitumineux, qui au cours de sa rupture aurait déjà perdu 10 points d'eau par suite de l'évaporation de cette dernière au cours du répandage de l'émulsion. Il n'y a donc pas de discontinuité entre émulsion faiblement concentrée, par exemple de l'ordre de 60%, en liant bitumineux en cours d'évaporation sur la chaussée et émulsion fortement concentrée, par exemple 80% en poids et plus, en liant bitumineux, grâce à l'utilisation de l'enceinte de formation d'émulsion selon l'invention.
  • Selon l'invention, on propose donc l'utilisation d'une enceinte de formation d'émulsion du type mélangeur dynamique, pour la production d'une émulsion aqueuse d'un liant bitumineux ayant une viscosité et des qualités de rupture contrôlées, laquelle enceinte possède, de manière connue en soi, une entrée et une sortie séparées par une pluralité de zones de cisaillement du type rotor/stator agencées en série et constituées chacune d'au moins une rainure circulaire ménagée dans une face d'un élément fixe, solidaire de la paroi de l'enceinte et jouant le rôle de stator, et dans laquelle pénètrent une pluralité d'ergots présentant chacun, en section par un plan contenant l'axe de la rainure, une forme complémentaire de celle de la section correspondante de ladite rainure, de manière à définir entre chaque ergot et la rainure un espace formant entrefer, lesdits ergots étant solidaires de l'une des faces d'un disque support jouant le rôle de rotor centré sur l'axe de la rainure et mobile en rotation autour dudit axe, lequel disque est traversé par des orifices disposés entre l'axe de la rainure et lesdits ergots, les rainures de deux zones de cisaillement consécutives étant disposées de manière à être soit ménagées dans les faces opposées d'un même élément stator et connectées par des canaux reliant leurs fonds respectifs, soit ménagées dans les faces en regard de deux éléments stators consécutifs et séparées alors par un disque support portant des ergots sur ses deux faces, ladite utilisation se caractérisant en ce que l'on injecte dans l'enceinte de formation d'émulsion, par son entrée, un liant bitumineux sous la forme d'une masse fondue ayant une température comprise entre 80°C et 180°C et de préférence entre 110°C et 160°C et une phase aqueuse, qui renferme un système émulsifiant ou au moins l'une de ses composantes, le complément du système émulsifiant étant alors présent dans le liant bitumineux, et éventuellement un agent régulateur du pH de l'émulsion et qui possède une température comprise entre 10°C et 90°C et de préférence entre 20°C et 80°C, on fait passer l'ensemble liant bitumineux et phase aqueuse dans les zones de cisaillement successives dont les entrefers ont une épaisseur allant de 0,1 mm à 5 mm et plus particulièrement de 0,2 mm à 2 mm en imposant aux disques rotors portant les ergots une vitesse de rotation telle que leur vitesse périphérique soit comprise entre 4 et 18 m/s et de préférence entre 10 et 15 m/s.
  • De préférence, ledit liant bitumineux et la phase aqueuse sont prémélangés avant de passer dans la première zone de cisaillement de l'enceinte de formation d'émulsion.
  • Les quantités respectives de liant bitumineux et de phase aqueuse utilisées pour former l'émulsion sont avantageusement telles que le rapport du débit massique du liant bitumineux au débit massique de la phase aqueuse, qui sont amenés au prémélange ou injectés simultanément et séparément dans l'enceinte de formation d'émulsion, se situe de 50:50 à 90:10 et de préférence de 55:45 à 85:15.
  • Avantageusement, les canaux reliant les fonds respectifs des rainures consécutives, qui sont ménagées dans les faces opposées d'un même élément stator, ont une section ayant une surface supérieure à celle des orifices traversant le disque porteur d'ergots associé à chaque rainure.
  • L'utilisation de l'enceinte de formation d'émulsion selon l'invention permet de régler la viscosité d'une émulsion à concentration donnée en liant bitumineux produite par ladite enceinte, par simple ajustement de la valeur, choisie dans les intervalles définis plus haut, de la température du liant bitumineux et de la phase aqueuse, ou de leur prémélange, à l'entrée de cette enceinte, la viscosité de l'émulsion étant d'autant plus élevée, toutes les autres conditions étant égales par ailleurs, que ladite température d'entrée est plus basse.
  • Le liant bitumineux que l'on met en émulsion aqueuse par le procédé selon l'invention possède une viscosité cinématique à 100°C avantageusement comprise entre 0,5x10⁻⁴ m²/s et 3x10⁻² m²/s et de préférence entre 1x10⁻⁴ m²/s et 2x10⁻² m²/s.
  • Ledit liant bitumineux peut consister en un bitume ou en un mélange de bitumes ayant une viscosité cinématique comprise dans les intervalles précités, lequel bitume ou mélange de bitumes peut être choisi parmi les bitumes de distillation directe ou de distillation sous pression réduite ou encore parmi les bitumes soufflés ou semi-soufflés, voire même parmi certaines coupes pétrolières ou mélanges de bitumes et de distillats sous vide. Le liant bitumineux utilisable selon l'invention peut encore consister en une composition du type bitume/polymère, laquelle composition peut être l'un quelconque des produits obtenus à partir de bitumes additionnés d'un ou plusieurs polymères, et éventuellement modifiés par réaction avec ce ou ces polymères, si besoin est en présence d'un agent de couplage choisi, par exemple, parmi le soufre élémentaire, les polysulfures d'hydrocarbyle, les accélérateurs de vulcanisation donneurs de soufre, les mélanges de tels produits entre eux ou/et avec des accélérateurs de vulcanisation non donneurs de soufre. Dans la composition du type bitume/polymère, obtenue en présence ou non d'un agent de couplage, la quantité de polymère représente généralement 0,5% à 15% et de préférence 0,7% à 10% du poids de bitume. Les polymères susceptibles d'être présents dans la composition bitume/polymère peuvent être choisis parmi les divers polymères que l'on associe aux bitumes dans les compositions bitume/polymère. Lesdits polymères peuvent être, par exemple, des élastomères tels que polyisoprène, caoutchouc butyle, polybutène, polyisobutène, polyacrylates, polyméthacrylates, polynorbornène, copolymères éthylène/propylène, terpolymères éthylène/propylène/diène (terpolymères EPDM), ou encore des polymères fluorés tels que polytétrafluoroéthylène, des polymères siliconés tels que polysiloxanes, des copolymères d'oléfines et de monomères vinyliques tels que copolymères éthylène/acétate de vinyle, copolymères éthylène/ester acrylique, copolymères éthylène/chlorure de vinyle, des polymères du type alcool polyvinylique, polyamide, polyester ou encore polyuréthanne. Avantageusement, le polymère présent dans la composition bitume/polymère est choisi parmi les copolymères statistiques ou séquencés de styrène et d'un diène conjugué car ces copolymères se dissolvent très facilement dans les bitumes et confèrent à ces derniers d'excellentes' propriétés mécaniques et dynamiques et notamment de très bonnes propriétés de viscoélasticité. En particulier, le copolymère de styrène et d'un diène conjugué est choisi parmi les copolymères séquencés de styrène et de butadiène, de styrène et d'isoprène, de styrène et de chloroprène, de styrène et de butadiène carboxylé ou de styrène et d'isoprène carboxylé. Le copolymère de styrène et de diène conjugué et en particulier chacun des copolymères séquencés précités possède avantageusement une teneur pondérale en styrène allant de 5% à 50% en poids. La masse moléculaire viscosimétrique moyenne du copolymère de styrène et de diène conjugué et notamment celle des copolymères mentionnés ci-dessus peut être comprise, par exemple, entre 10000 et 600000 et se situe de préférence entre 30000 et 400000. De préférence, le copolymère de styrène et de diène conjugué est choisi parmi les copolymères di-ou triséquencés de styrène et de butadiène, de styrène et d'isoprène, de styrène et de butadiène carboxylé ou encore de styrène et d'isoprène carboxylé, qui ont des teneurs en styrène et des masses moléculaires situées dans les intervalles définis précédemment.
  • La composition bitume/polymère peut encore renfermer 1 à 40% et plus particulièrement 2 à 20%, en poids du bitume, d'un agent fluxant, qui peut consister, notamment, en une huile hydrocarbonée présentant un intervalle de distillation à pression atmosphérique, déterminé selon la norme ASTM D 86-67, compris entre 100°C et 450°C et situé plus spécialement entre 150°C et 380°C. Une telle huile hydrocarbonée peut être, par exemple, une coupe pétrolière de caractère aromatique, une coupe pétrolière de caractère naphténo-aromatique, une coupe pétrolière de caractère naphténo-paraffinique, une coupe pétrolière de caractère paraffinique, une huile de houille ou encore une huile d'origine végétale.
  • La composition bitume/polymère ayant la viscosité requise peut être obtenue par simple mélange de la quantité appropriée de polymère élastomérique comprise dans l'intervalle défini précédemment, avec le bitume choisi, quant à lui, pour avoir une viscosité compatible avec la viscosité de la composition bitume/polymère à produire.
  • On peut encore produire la composition bitume/polymère en mélangeant tout d'abord le polymère avec le bitume comme indiqué ci-dessus, puis en incorporant audit mélange un agent de couplage donneur de soufre en quantité propre à fournir une quantité de soufre élémentaire ou radicalaire représentant 0,5% à 10% et plus particulièrement 1% à 8% du poids du polymère utilisé pour produire la composition bitume/polymère et en maintenant le tout sous agitation à une température comprise entre 100°C et 230°C, par exemple correspondant à la température de mise en contact du polymère avec le bitume, pendant une durée suffisante pour former une composition bitume/polymère ayant la viscosité désirée et pour laquelle le polymère est fixé au bitume. L'agent de couplage donneur de soufre peut être choisi, notamment, parmi le soufre élémentaire, les polysulfures d'hydrocarbyle tels que décrits dans la citation FR-A-2528439 et les systèmes de vulcanisation renfermant des accélérateurs de vulcanisation tels que décrits dans la citation EP-A-0360656.
  • Lorsque l'on utilise une composition bitume/polymère renfermant un agent de fluxage, ce dernier peut être ajouté au milieu que l'on constitue comme indiqué plus haut à partir du bitume, du polymère et éventuellement de l'agent de couplage, à un moment quelconque de la constitution dudit milieu, la quantité d'agent de fluxage étant choisie pour être compatible avec l'usage final désiré sur le chantier. Dans une telle forme de réalisation de la composition bitume/polymère utilisant un agent fluxant et un agent de couplage donneur de soufre, le polymère et ledit agent de couplage sont incorporés au bitume sous la forme d'une solution mère de ces produits dans l'agent fluxant et en particulier dans l'huile hydrocarbonée définie précédemment comme susceptible de constituer l'agent fluxant. La solution mère peut être préparée par mise en contact des ingrédients la composant, à savoir agent fluxant, polymère et agent de couplage à des températures comprises entre 10°C et 140°C et pendant un temps suffisant pour obtenir une dissolution complète du polymère et de l'agent de couplage dans l'agent fluxant. Les concentrations respectives du polymère et de l'agent de couplage dans la solution mère peuvent varier assez largement en fonction notamment de la nature de l'agent fluxant utilisé pour dissoudre le polymère et l'agent de couplage.
  • Pour préparer la composition bitume/polymère en utilisant la solution mère, on mélange la solution mère du polymère et de l'agent de couplage dans l'agent fluxant avec le bitume à l'état fondu, sous agitation, puis on maintient le mélange résultant, à l'état fondu et sous agitation, pendant une durée suffisante pour obtenir un produit fluide d'aspect continu et de viscosité compatible avec l'usage final sur le chantier.
  • La composition bitume/polymère peut encore renfermer des additifs divers et notamment des composés azotés du type des amines ou amides à titre de promoteurs d'adhésion du liant bitume/polymère final aux surfaces minérales, lesdits composés azotés étant, de préférence, greffés sur la composante bitume/polymère et en particulier sur les chaînes polymériques de ladite composition.
  • Immédiatement avant sa mise en contact avec la phase aqueuse, le liant bitumineux du type composition bitume/polymère, obtenu ou non en présence de l'agent de couplage, peut être également additionné d'un système de vulcanisation donneur de soufre, ou le cas échéant des composantes d'un tel système formant ledit système in situ, en concentration propre à fournir une quantité de soufre représentant 0,5 à 20% et de préférence 1 à 15% du poids du polymère présent dans la composition bitume/polymère. Le système de vulcanisation donneur de soufre peut être choisi, entre autres, parmi les produits indiqués précédemment comme susceptibles de constituer l'agent de couplage utilisé pour produire certaines compositions bitume/polymère. En opérant ainsi, on obtient une émulsion aqueuse de liant bitume/polymère dans laquelle le polymère dudit liant est au moins partiellement réticulé en une structure tridimensionnelle.
  • La phase aqueuse, qui est employée dans la mise en oeuvre du procédé selon l'invention, est constituée d'eau renfermant un système émulsifiant en quantité efficace, c'est-à-dire en quantité propre a permettre la dispersion des globules du liant bitumineux dans ladite phase aqueuse et a empêcher la réagglomération desdits globules dispersés. La quantité de système émulsifiant est généralement choisie pour représenter 0,05% à 5% et de préférence 0,1% à 2% du poids total de l'émulsion.
  • Le système émulsifiant présent dans la phase aqueuse de l'émulsion peut être de nature cationique, anionique, non ionique ou même amphotère. Un système émulsifiant de nature cationique, qui donne naissance à une émulsion cationique, comporte un ou plusieurs agents émulsifiants cationiques que l'on peut choisir avantageusement parmi les agents émulsifiants cationiques azotés tels que monoamines grasses, polyamines, amidoamines, amidopolyamines, sels ou oxydes desdites amines et amidoamines, produits de réaction des composés précités avec l'oxyde d'éthylène et/ou l'oxyde de propylène, imidazolines et sels d'ammonium quaternaires. En particulier le système émulsifiant de nature cationique peut être formé par l'association d'un ou plusieurs agents émulsifiants cationiques A choisis parmi les agents émulsifiants azotés cationiques du types des monoamines, des diamines, des amidoamines, des oxydes de telles amines ou amidoamines, des produits de réaction de tels composés avec l'oxyde d'éthylène et/ou l'oxyde de propylène et des sels d'ammonium quaternaires, avec un ou plusieurs agents émulsifiants B choisis parmi les agents émulsifiants azotés cationiques possédant dans leur molécule au moins trois groupements fonctionnels choisis parmi les groupements amines et amides de telle sorte que l'un au moins desdits groupements fonctionnels soit un groupement amine, le rapport de la quantité pondérale du ou des composés A à la quantité pondérale totale des composés A et B allant en particulier de 5% à 95%. Un système émulsifiant de nature anionique, qui donne naissance à une émulsion anionique, comporte un ou plusieurs agents émulsifiants anioniques que l'on peut choisir notamment parmi les sels de métal alcalin ou d'ammonium d'acides gras, les polyalcoxycarboxylates de métal alcalin, les N-acylsarcosinates de métal alcalin, les hydrocarbylsulfonates de métal alcalin et notamment les alcoylsufonates de sodium, les arylsulfonates de sodium et les alcoylarylsulfonates de sodium, les alcoylarènesulfonates de sodium, les lignosulfonates de sodium, les dialcoylsulfosuccinates de sodium et les alcoylsulfates de sodium. On peut également utiliser un système émulsifiant de nature non ionique formé d'un ou plusieurs agents émulsifiants non ioniques que l'on peut notamment choisir parmi les alcools gras éthoxylés, les acides gras éthoxylés, les esters de sorbitan, les esters de sorbitan éthoxylés, les alcoylphénols éthoxylés, les amides gras éthoxylés et les esters d'acides gras de la glycérine. On peut encore utiliser un système émulsifiant de nature amphotère formé d'un ou plusieurs agents émulsifiants amphotères que l'on peut choisir, par exemple, parmi les bétaines et les dérivés imidazolinium amphotères. Il est également possible d'utiliser un système émulsifiant consistant en un mélange d'agents émulsifiants de natures différentes, par exemple un mélange d'un ou plusieurs agents émulsifiants anioniques ou cationiques avec un ou plusieurs agents émulsifiants non ioniques ou/et amphotères. Pour plus de détails sur les agents émulsifiants susceptibles de constituer des systèmes émulsifiants utilisables selon l'invention, on peut se référer au manuel de KIRK-OTHMER intitulé ENCYCLOPEDIA OF CHEMICAL TECHNOLOGY, Third Edition, Volume 22, pages 347 à 360 (émulsifiants anioniques), pages 360 à 377 (émulsifiants non ioniques), pages 377 à 384 (émulsifiants cationiques) et pages 384 à 387 (émulsifiants amphotères).
  • Si besoin est, on peut encore incorporer à la phase aqueuse un agent destiné à ajuster le pH de l'émulsion à la valeur désirée. Ledit agent peut être un acide, par exemple un acide minéral tel que HCl, HNO₃, H₃PO₄ ou un acide mono-ou polycarboxylique saturé ou insaturé tel que l'acide acétique, l'acide formique, l'acide oxalique ou l'acide citrique, lorsque la valeur du pH de l'émulsion doit être abaissée, ou bien une base ou un sel basique, notamment une base minérale consistant en un hydroxyde de métal alcalin comme la soude ou en un oxyde ou hydroxyde alcalino-terreux, lorsque la valeur du pH de l'émulsion doit être augmentée.
  • Outre le système émulsifiant et l'éventuel agent d'ajustement du pH, la phase aqueuse peut encore renfermer des additifs divers tels que, par exemple, des agents complexants d'ions métalliques comme décrits dans les citations FR-A-2577545 et FR-A-2577546.
  • Pour préparer la phase aqueuse, que l'on met en contact avec le liant bitumineux dans l'enceinte de formation d'émulsion, on incorpore le système émulsifiant et les autres ingrédients éventuels, notamment agent d'ajustement du pH et agent complexant, à la quantité d'eau nécessaire à la production de l'émulsion désirée, laquelle quantité d'eau est portée préalablement à une température comprise entre 10°C et 90°C et de préférence entre 20°C et 80°C. La quantité de système émulsifiant ajoutée à l'eau est choisie pour que la concentration dudit système émulsifiant dans l'émulsion finale soit située dans l'intervalle défini précédemment. Lorsque d'autres ingrédients, notamment agent d'ajustement du pH, agent complexant d'ions métalliques ou autres, doivent être incorporés à la phase aqueuse, les quantités respectives desdits ingrédients sont celles utilisées couramment à cet effet.
  • Par exemple, la phase aqueuse pour réaliser une émulsion anionique peut être préparée comme suit. Dans de l'eau, maintenue à une température comprise entre 10°C et 90°C et plus particulièrement entre 20°C et 80°C, on dissout ou disperse, en opérant sous agitation, la quantité appropriée d'un précurseur d'agent émulsifiant du type anionique consistant en un acide ou polyacide à chaîne aliphatique saturée ou partiellement insaturée ou également artiellement cyclique. Une solution concentrée de NaOH ou KOH est ensuite ajoutée à la solution ou suspension obtenue jusqu'à neutralisation de l'acide et formation du sel correspondant qui constitue l'agent émulsifiant anionique. Le pH de l'émulsion peut s'échelonner entre 7 et 13 et plus spécialement entre 9 et 11. La concentration en précurseur acide de la phase aqueuse est choisie pour représenter entre 0,02% et 2% du poids de l'émulsion finale selon l'utilisation de l'émulsion sur la chaussée.
  • Lorsque l'on désire former une émulsion cationique, la phase aqueuse peut, par exemple, être préparée comme suit. Dans de l'eau, maintenue à une température comprise entre 10°C et 90°C et plus particulièrement entre 20°C et 80°C, on disperse une quantité appropriée d'un ou plusieurs agents émulsifiants cationiques, par exemple du type des amines grasses ou des polyéthylènepolyamines à chaîne grasse, puis on ajoute à la dispersion ainsi obtenue une quantité suffisante d'un acide minéral ou d'un acide organique monocarboxylique ou polycarboxylique pour obtenir un pH final compris entre 1 et 7 et de préférence entre 2 et 5. La concentration en agent(s) émulsifiant(s) cationique(s) de la phase aqueuse est choisie pour représenter 0,2 à 2% du poids de l'émulsion cationique finale.
  • Lorsque dans l'un ou l'autre des exemples de préparation donnés ci-dessus, on utilise des additifs tels que des agents complexant d'ions métalliques, des agents d'adhésivité ou autres, ces additifs sont ajoutés à la phase aqueuse à un moment quelconque de la préparation de cette dernière et dans un ordre quelconque.
  • Lorsque le liant bitumineux est à une température, qui conduit, après contact avec la phase aqueuse, à une température supérieure à la température d'ébullition de l'eau, le circuit doit être maintenu sous une pression suffisante pour empêcher l'ébullition de l'eau. Dans ce cas, l'émulsion évacuée de l'enceinte de formation d'émulsion doit être refroidie, par exemple dans un échangeur thermique à air ou à eau, à une température inférieure à 100°C avant d'être ramenée à la pression atmosphérique pour être dirigée vers le stockage final ou encore pour être chargée directement dans un camion de répandage.
  • L'émulsion de liant bitumineux obtenue selon l'invention est utilisable pour la réalisation de revêtements et notamment de revêtements routiers du type enduit superficiel, pour la production d'enrobés mis en place à chaud ou à froid, ou encore pour la réalisation de revêtements d'étanchéité.
  • En vue d'un emploi en enduit superficiel, on choisit comme émulsifiant de la phase aqueuse, un émulsifiant permettant une rupture rapide de l'émulsion, ce qui entraîne la restitution d'un liant bitumineux adhérant à la fois à la chaussée et aux granulats.
  • Si le but final de l'utilisation de l'émulsion est la mise en place d'un enrobé, on peut opérer soit à froid par répandage à l'aide d'un finisseur du mélange granulat/émulsion préparé en centrale d'enrobage, suivi d'un compactage dudit mélange par des rouleaux lisses ou/et par des compacteurs à pneumatiques, soit à chaud par malaxage de l'émulsion avec les granulats chauds jusqu'à évaporation complète de l'eau, suivi du répandage à l'aide d'un finisseur de l'enrobé préparé en centrale d'enrobage, puis du compactage dudit enrobé par des rouleaux lisses ou/et des compacteurs pneumatiques.
  • L'émulsion obtenue selon l'invention peut également être introduite à chaud dans une centrale d'enrobage où les granulats préalablement chauffés et séchés sont malaxés avec ladite émulsion, ce qui entraîne l'évaporation de l'eau présente dans l'émulsion sous l'effet de la chaleur.
  • L'émulsion préparée selon l'invention peut être encore utilisée dans la technique des enrobés coulés à froid. Dans ce cas la composition de la phase aqueuse est adaptée, comme il est connu dans l'art, pour permettre une rupture du coulis après son malaxage et son répandage sur la chaussée.
  • D'autres caractéristiques et avantages de l'invention apparaîtront encore à la lecture de la description suivante d'un mode de réalisation de ladite invention donné en référence au dessin annexé, sur lequel
    • la figure 1 représente une coupe schématique longitudinale d'une enceinte de formation d'émulsion à prémélangeur intégré utilisée selon l'invention, tandis que les figures 1a et 1b montrent les faces en regard d'un disque rotor muni d'ergots et de l'élément stator rainuré qui forment une zone de cisaillement de ladite enceinte ; et
    • les figures 2a et 2b montrent schématiquement une variante des faces en regard d'un disque rotor muni d'ergots (figure 2a) et de l'élément stator rainuré associé (figure 2b), qui forment une zone de cisaillement de l'enceinte de formation d'émulsion, tandis que les figures 2c et 2d sont des sections par un plan radial respectivement dudit rotor et dudit élément stator.
  • L' enceinte de formation d' émulsion à prémélangeur intégré, qui est représentée schématiquement sur les figures 1, 1a et 1b, est formée d'une chambre 1 délimitée par une paroi latérale cylindrique 2 présentant une extrémité avant fermée par une paroi 3 et une extrémité arrière fermée par une paroi 4. La paroi 3 est pourvue d'un conduit 5 formant conduit d'entrée, qui s'ouvre dans la chambre 1 par l'une de ses extrémités 6 et se divise à son autre extrémité 7 en deux conduits, à savoir un conduit 8 d'amenée d'un liant bitumineux à l'état fondu et un conduit 9 d'amenée d'une phase aqueuse. Au voisinage de sa paroi arrière 4, la chambre 1 est pourvue d'un conduit 10 formant conduit de sortie et agencé pour déboucher radialement ou tangentiellement dans ladite chambre. La chambre 1 est divisée en compartiments, ici au nombre de quatre numérotés 11 à 14, par des cloisons, ici au nombre de trois numérotées 15 à 17, lesdites cloisons, de structures identiques, étant solidaires de la paroi latérale 2 de la chambre 1 et étant délimitées chacune par deux faces planes parallèles qui sont perpendiculaires à l'axe longitudinal 18 de la chambre cylindrique 1, à savoir faces 19 et 20 pour la cloison 15, faces 21 et 22 pour la cloison 16 et faces 23 et 24 pour la cloison 17, lesdites cloisons 15 à 17 jouant le rôle d'éléments stators. Les cloisons 15 à 17 sont agencées de telle sorte dans la chambre 1 que les compartiments extrêmes 11 et 14 aient une largeur suffisante pour constituer respectivement un compartiment 11 de prémélange pour les précurseurs de l'émulsion que sont le liant bitumineux et la phase aqueuse et un compartiment 14 de recueil de l'émulsion et que les compartiments intermédiaires 12 et 13 aient une très faible largeur. Le conduit d'entrée 5 débouche dans le compartiment 11 de prémélange, tandis que le conduit de sortie 10 s'ouvre dans le compartiment 14 de recueil de l'émulsion. Un arbre 25, dont l'axe coïncide avec l'axe 18 de la chambre 1, traverse, de manière étanche, la paroi arrière 4 de la chambre 1 ainsi que chacun des éléments stators 15 à 17 et présente une extrémité située hors de la chambre 1 du côté de la paroi 4, ladite extrémité étant connectée à un moteur 26 susceptible d'entraîner l'arbre 25 en rotation, et une extrémité se terminant par un élément 27 agencé pour jouer le rôle d'agitateur et situé dans le compartiment 11 de prémélange. Sur chacune des faces de chaque élément stator est pratiquée une rainure circulaire d'axe coïncidant avec l'axe longitudinal 18 de la chambre 1, à savoir rainures 28 et 29 respectivement pour les faces 19 et 20 de l'élément stator 15, rainures 30 et 31 pour les faces 21 et 22 de l'élément stator 16 et rainures 32 et 33 pour les faces 23 et 24 de l'élément stator 17, lesdites rainures ayant mêmes diamètre moyen, largeur et profondeur. Les rainures appartenant à un même élément stator sont connectées, fond à fond, par des canaux pratiqués dans ledit élément stator, à savoir canaux 34 pour l'élément stator 15, canaux 35 pour l'élément stator 16 et canaux 36 pour l'élément stator 17. Une série d'ergots en forme d'ailettes pénètrent dans chacune des rainures, à savoir séries 37 à 42 correspondant respectivement aux rainures 28 à 33. Les ailettes associées à chaque rainure, par exemple ailettes de la série 37 associées à la rainure 28 comme indiqué sur la figure 1a, ont chacune dans cet exemple, en section par un plan perpendiculaire à l'axe de la rainure, une forme de trapèze à côtés parallèles curvilignes 43 et 44 concentriques aux parois latérales 45 et 46 de la rainure associée et, en section par un plan médian contenant l'axe de la rainure, une forme complémentaire de la section de ladite rainure par ce plan de manière à définir entre chaque ailette et la rainure un espace formant entrefer ayant une épaisseur située dans les intervalles définis précédemment. Les ailettes d'une même série d'ailettes sont solidaires de l'une des faces parallèles d'un disque support jouant le rôle d'élément rotor. Les différentes séries d'ailettes 37 à 42 sont portées, dans le schéma représenté, par quatre disques 47 à 50, à savoir disque 47 situé dans le compartiment 11 et portant sur une face la série d'ailettes 37 pénétrant dans la rainure 28 ménagée dans la face 19 de l'élément stator 15, disque 48 situé dans le compartiment intermédiaire 12 et portant, sur l'une de ses faces, la série d'ailettes 38 pénétrant dans la rainure 29 ménagée dans la face 20 de l'élément stator 15 et, sur l'autre face, la série d'ailettes 39 pénétrant dans la rainure 30 ménagée dans la face 21 de l'élément stator 16, disque 49 situé dans le compartiment intermédiaire 13 et portant, sur l'une de ses faces, la série d'ailettes 40 pénétrant dans la rainure 31 ménagée dans la face 22 de l'élément stator 16 et, sur l'autre face, la série d'ailettes 41 pénétrant dans la rainure 32 ménagée dans la face 23 de l'élément stator 17 et enfin disque 50 situé dans le compartiment 14 de recueil de l'émulsion et portant sur une seule face la série d'ailettes 42 pénétrant dans la rainure 33 ménagée dans la face 24 de l'élément stator 17. Chaque disque, qui possède un axe coïncidant avec l'axe 18 de la chambre 1 de manière à ce que ses faces parallèles soient parallèles aux faces de l'élément stator associé, est monté, par exemple par un système de clavetage non représenté, sur l'arbre 25 de manière à être solidaire de ce dernier et de ce fait à être entraîné en rotation par ledit arbre lorsque ce dernier est mis en rotation par le moteur 26. Chaque disque est traversé par des orifices pratiqués dans le disque entre l'arbre 25 et la ou les séries d'ailettes portées par le disque, a savoir orifices 51 pour le disque 47, orifices 52 pour le disque 48, orifices 53 pour le disque 49 et orifices 54 pour le disque 50, lesdits orifices ayant avantageusement une section dont la surface est inférieure à la section des canaux pratiqués dans les éléments stators pour connecter, fond à fond, les deux rainures que comporte chaque élément stator. Les disques 47 à 50 ont un diamètre légèrement inférieur, par exemple inférieur de 0,2mm à 1mm, au diamètre intérieur de la chambre cylindrique 1. En outre, chaque face rainurée de l'un quelconque des éléments stators 15 à 17 est séparée de la face en regard du disque associé pourvue d'ailettes pénétrant dans la rainure, par un espace ayant une faible épaisseur, par exemple une épaisseur allant de 0,1mm à 5mm et de préférence de 0,2mm à 2mm. L'épaisseur de chacun des compartiments 12 et 13 est donc légèrement supérieure, par exemple supérieure de 0,2mm à 10mm et de préférence de 0,4mm à 4mm, à l'épaisseur du disque présent dans le compartiment concerné. L'espace entre la face rainurée de l'un quelconque des éléments stators 15 à 17 et la face en regard du disque associé munie d'ailettes pénétrant dans la rainure défini ainsi une zone de cisaillement. L'enceinte de formation d'émulsion représentée schématiquement sur la figure 1 comporte six zones de cisaillement montées en série. Les rainures de deux zones de cisaillement consécutives sont soit ménagées dans les faces opposées d'un même élément stator et connectées par des canaux reliant leurs fonds respectifs, soit ménagées dans les faces en regard de deux éléments stators consécutifs et séparées alors par un disque perforé à travers lequel elles communiquent.
  • Dans la variante, comme schématisé sur les figures 2a à 2d, d'une part, chacune des faces de l'un quelconque des éléments stators 15 à 17 est pourvue de deux rainures concentriques, de manière à ce qu'à chaque rainure présente sur l'une des faces dudit élément stator quelconque corresponde une rainure identique sur l'autre face de cet élément, ces rainures correspondantes étant connectées, fond à fond, par des canaux pratiqués dans ledit élément stator et, d'autre part, chaque face d'un disque quelconque 47 à 50, qui est en regard d'une face doublement rainurée d'un élément stator 15 à 17, porte deux séries concentriques d'ergots, par exemple cylindriques, de telle sorte que les ergots d'une série pénètrent dans l'une des rainures de la face doublement rainurée de manière à définir avec cette rainure un espace jouant le rôle d'entrefer comme indiqué dans le cas des ailettes du système de la figure 1. Par exemple, comme schématisé sur les figures 2b et 2d, chacune des faces 21 et 22 de l'élément stator 16 sont pourvues de deux rainures concentriques 55 et 56 sur la face 21 et de deux rainures concentriques correspondantes 57 et 58 sur la face 22, les rainures 55 et 57 étant connectées, fond à fond, par des canaux 59 et les rainures 56 et 58 étant reliées, fond à fond, par des canaux 60, lesquels canaux 59 et 60 sont pratiqués dans ledit élément stator 16, tandis que, par exemple, comme schématisé sur les figures 2a et 2c, l'une des faces du disque 48, formant élément rotor et traversé par les orifices 52, est pourvue de deux séries concentriques d'ergots cylindriques 61 et 62, les premiers pénétrant dans la rainure 55 de l'élément stator 16 et les seconds dans la rainure 56 dudit élément, et l'autre face du disque 48 est pourvue également de deux séries concentriques 63 et 64 d'ergots cylindriques agencés pour correspondre à deux rainures ménagées dans la face 20 de l'élément stator 15.
  • L'enceinte de formation d'émulsion à prémélangeur intégré décrite ci-dessus, fonctionne comme suit.
  • Les précurseurs de l'émulsion aqueuse, à savoir liant bitumineux à l'état fondu et phase aqueuse, amenés respectivement par les conduits 8 et 9 puis par le conduit 5, pénètrent dans le compartiment 11 dans lequel lesdits précurseurs sont soumis à l'action de l'élément agitateur entraîné en rotation par l'arbre 25 mu par le moteur 26 et sont ainsi prémélangés. Le prémélange ainsi réalisé passe ensuite dans les zones de cisaillement successives, qui sont formées chacune par l'espace compris entre la face rainurée d'un élément stator et la face pourvue d'ergots en regard appartenant à l'élément rotor associé et qui sont connectées en série soit à travers les orifices traversant un élément rotor, soit à travers les canaux reliant, par leurs fonds respectifs, les rainures opposées d'un même élément stator. Dans chacune desdites zones de cisaillement, le milieu formé du liant bitumineux à l'état fondu et de la phase aqueuse est soumis à l'action de forces de cisaillement créées par la rotation de l'élément rotor entraîné par l'arbre 25 mu par le moteur 26 et par le déplacement résultant des ergots solidaires de l'élément rotor dans la rainure associée de l'élément stator, ce qui contribue à diviser le liant bitumineux en globules et à disperser ces globules dans la phase aqueuse pour produire l'émulsion. L'émulsion produite sort de la dernière zone de cisaillement par les orifices 54 du dernier élément rotor 48 et se retrouve dans le compartiment 14 de recueil, d'où elle est évacuée en continu par le conduit de sortie 10 pour être dirigée vers une zone de stockage ou vers un point d'utilisation.
  • Pour compléter la description qui vient d'être donnée de l'invention, on présente ci-après, à titre non limitatif, des exemples concrets de mise en oeuvre de ladite invention. Dans ces exemples les quantités sont données en poids sauf indication contraire.
  • EXEMPLE 1 : Préparation d'émulsions aqueuses de liant bitumineux bitume/polymère
  • On préparait deux émulsions cationiques, à savoir une émulsion A témoin et une émulsion B selon l'invention, à 80% en poids d'un liant bitumineux du type bitume/polymère constitué du produit de réaction à température élevée d'un bitume routier de pénétration 80/100 avec une solution mère consistant en une solution de soufre et d'un copolymère séquencé de styrène et de butadiène renfermant, en poids 25% de styrène et 75% de butadiène dans une coupe pétrolière obtenue en raffinerie et dénommée "Light Cycle Oil", ladite coupe ayant un intervalle de distillation de l'ordre de 180°C à 360°C.
  • Préparation du liant bitumineux
  • On dissolvait 247 parties en poids du copolymère séquencé dans 745 parties de la coupe pétrolière en opérant à une température comprise entre 80°C et 100°C. Après complète dissolution du polymère, on ajoutait 8 parties de soufre à la solution. Onze parties de la solution ainsi préparée étaient mélangées à 89 parties du bitume routier et le mélange était porté à une température comprise entre 170°C et 180°C pendant 1,5 heure environ. On obtenait ainsi un liant bitumineux bitume/polymère dont les principales caractéristiques sont indiquées ci-après :
    • . Viscosité à 160°C : 110 mPa.s
    • . Pseudo-viscosité à 50°C avec un orifice de 10mm (NF T 66005) : 415 secondes
    • . Essai de traction à 0°C avec une vitesse de 500mm/minute
      • Contrainte au seuil (σs) : 7,7x10⁵ Pa
      • Contrainte à la rupture (σr) 1x10⁵ Pa
      • Allongement à la rupture (εr): > 900%
    Préparation de la phase aqueuse :
  • Dans 1000 parties d'eau portée à 60°C, on dispersait 9 parties d'un mélange d'émulsifiants cationiques constitué, en poids, de 10% de propylène-1,3 diamine de suif (agent émulsifiant de type A) et de 90% d'une polypropylène diamine de suif (agent émulsifiant de type B), puis à la dispersion obtenue on ajoutait 5,75 parties d'HCl à 20°Bé et agitait le tout jusqu'à l'obtention d'un liquide limpide.
  • Préparation de l'émulsion A témoin :
  • Dans un moulin colloïdal conventionnel constitué d'un stator et d'un rotor concentriques de forme tronconique présentant un grand diamètre égal à 50mm et un entrefer (espace entre les surfaces latérales en regard du rotor et du stator) ayant une épaisseur de 0,3mm, on introduisait conjointement en continu 800 parties du liant bitumineux bitume/polymère à 160°C et 200 parties de phase aqueuse à 60°C, avec un débit global de 150kg/heure. Le moulin d'émulsification était maintenu sous pression pour éviter l'ébullition de l'eau du milieu soumis à l'émulsification, dont la température était d'environ 125°C et la vitesse de rotation du rotor était fixée à 6000 tours/minute, ce qui correspond à une vitesse périphérique du rotor d'environ 15m/s.
  • L'émulsion aqueuse issue du moulin colloïdal était soumise à un premier refroidissement par passage dans un échangeur tubulaire, puis à une décompression à la pression atmosphérique, après quoi l'émulsion décomprimée était refroidie à température ambiante sur une durée d'environ six heures pour éviter tout choc thermique.
  • Préparation de l'émulsion B selon l'invention:
  • On opérait dans un moulin colloïdal analogue à celui schématisé sur la figure 1 et pour lequel, en fonctionnement, l'arbre 25 était entraîné par le moteur 26 avec une vitesse de rotation de 3600 tours/minute, ce qui communiquait à chacun des éléments rotors 47 à 50, dont le diamètre était égal à 7,2 cm, une vitesse périphérique d'environ 13,6m/s. La vitesse périphérique de l'élément rotor, exprimée en m/s, est égale à πDN, D représentant le diamètre de l'élément rotor en m et N la vitesse de rotation de l'arbre 26 portant le rotor, exprimée en tour/seconde. Pour chaque zone de cisaillement, l'espace formant entrefer entre les ergots et les parois de la rainure, défini comme indiqué précédemment dans la description, et l'espace entre la face portant les ergots de l'élément rotor et la face en regard de l'élément stator associé avaient une épaisseur égale à 0,4 mm.
  • Dans le moulin colloïdal on introduisait en continu, par le conduit 8, 80 parties du liant bitumineux, préparé comme indiqué ci-dessus et présentant une température de 160°C, et simultanément, par le conduit 9, 20 parties de la phase aqueuse obtenue comme décrit plus haut et possédant une température de 60°C, avec un débit global de 300kg/heure. Le moulin colloïdal était maintenu sous pression pour éviter l'ébullition de l'eau du milieu soumis à l'émulsification, dont la température était égale à environ 125°C.
  • L'émulsion aqueuse issue du moulin colloïdal était soumise à un premier refroidissement par passage dans un échangeur tubulaire, puis à une décompression à la pression atmosphérique, après quoi l'émulsion décomprimée était refroidie à température ambiante sur une durée d'environ six heures pour éviter tout choc thermique.
  • Pour apprécier les qualités de l'émulsion A témoin et de l'émulsion B selon l'invention, on déterminait leurs caractéristiques suivantes :
    • . teneur en liant déterminée selon la norme NF T 66 017 et exprimée en pourcentage pondéral ;
    • . pH
    • . indice de rupture au sable déterminé selon la norme NF T 66 017 à 20°C et 5°C et exprimé en g de sable pour 100g d'émulsion ;
    • . pseudo-viscosité STV à 25°C déterminée selon la norme NF T 66 020 et exprimée en s ; et
    • . diamètre moyen des globules de liant bitumineux déterminé à partir d'une répartition granulométrique obtenue par diffusion de lumière laser en utilisant un appareil commercialisé sous la dénomination CILAS 715.
  • Les diverses caractéristiques mesurées sont rassemblées dans le tableau I ci-après. TABLEAU I
    Emulsion A (Témoin) B (Invention)
    Teneur en liant (% en poids) 80 80
    pH 4,37 4,3
    Indice de rupture à 20°C (g/100g) 42*) 32
    Indice de rupture à 5°C (g/100g) 53*) 30
    Pseudo-viscosité STV à 25°C (s) 400**) 170
    Diamètre moyen des globules (µm) 7,2 30
    *) mesure sujette à caution par suite de la trop forte viscosité de l'émulsion qui rend difficile la détermination du point de rupture et de prise en masse du mélange granulaire (sable + liant).
    **) du fait de la très forte viscosité de l'émulsion, l'écoulement n'est pas régulier et se fait par paquets discontinus.
  • La comparaison des résultats figurant au tableau I fait apparaître que la viscosité d'une émulsion aqueuse à 80% en poids de liant bitumeux obtenue en utilisant un moulin colloïdal conventionnel (émulsion A), est très supérieure à celle de l'émulsion aqueuse comparable obtenue en faisant appel au procédé selon l'invention. Du fait de sa très forte viscosité, il est quasiment impossible de mettre en oeuvre l'émulsion A à 80% de liant bitumineux.
    Par contre, l'émulsion selon l'invention à teneur comparable en liant bitumineux (émulsion B) possède une viscosité qui permet encore la mise en oeuvre de l'émulsion.
  • EXEMPLE 2: Préparation d'émulsions aqueuses de liant bitumineux bitume/polymère de même teneur en liant et de viscosité différente par ajustement de la température
  • On préparait deux émulsions aqueuses C et D selon l'invention à 80% en poids du liant bitume/polymère de l'exemple 1, en opérant comme décrit dans la préparation de l'émulsion B dudit exemple avec toutefois les modifications suivantes :
    • . dans la préparation de l'émulsion C, la phase aqueuse était amenée, par le conduit 9, avec une température de 80°C et le liant bitumineux était amené, par le conduit 8, avec une température de 110°C, ce qui conduisait à une température de 100°C environ pour le milieu soumis à l'émulsification dans l'enceinte d'émulsification et à l'obtention d'une émulsion de haute viscosité ;
    • . dans la préparation de l'émulsion D, la phase aqueuse était amenée, par le conduit 9, avec une température de 80°C et le liant bitumineux était amené, par le conduit 8, avec une température de 160°C, ce qui conduisait à une température de 140°C environ pour le milieu soumis à l'émulsification dans l'enceinte d'émulsification et à l'obtention d'une émulsion de basse viscosité.
  • Les caractéristiques des émulsions obtenues sont présentées dans le tableau II ci-après. TABLEAU II
    Emulsion selon l'invention C D
    Température d'émulsification 100°C 140°C
    pH 4,3 4,3
    Indice de rupture à 20°C (g/100g) 38*) 32
    Indice de rupture à 5°C (g/100g) 45*) 30
    Pseudo-viscosité STV à 25°C (s) 330**) 170
    Diamètre moyen des globules (µm) 5,6 30
    Teneur en liant (% poids) 80 80
    *) mesure sujette à caution par suite de la trop forte viscosité de l'émulsion qui rend difficile la détermination du point de rupture et de prise en masse du mélange granulaire (sable + liant).
    **) du fait de la forte viscosité de l'émulsion, l'écoulement n'est pas régulier et se fait par paquets discontinus.
  • La comparaison des résultats figurant au tableau II fait ressortir que pour une même teneur en liant bitumineux, l'ajustement de la température à l'entrée de l'enceinte d'émulsification selon l'invention permet de contrôler la viscosité finale de l'émulsion produite, cette viscosité étant d'autant plus basse que ladite température est élevée.
  • EXEMPLE 3 : Préparation d'une émulsion aqueuse de liant bitumineux bitume/polymère à basse teneur en liant et à viscosité élevée
  • Dans un moulin colloïdal ayant les mêmes caractéristiques que celui utilisé dans l'exemple 1 pour la préparation de l'émulsion B selon l'invention, on introduisait en continu, par le conduit 8, 69 parties du liant bitumineux préparé comme indiqué dans l'exemple 1 et simultanément, par le conduit 9, 31 parties de la phase aqueuse obtenue comme décrit dans ledit exemple 1, ledit liant et ladite phase aqueuse ayant un débit global de 300 kg/heure et étant à des températures conduisant à l'obtention d'une température de 113°C dans la zone de prémélange 11 et dans les zones de cisaillement de l'enceinte d'émulsification (moulin colloïdal). L'émulsion aqueuse issue du moulin colloïdal était traitée comme décrit dans l'exemple 1 pour la refroidir à la température ambiante.
  • Les caractéristiques de l'émulsion E obtenue sont présentées dans le tableau III ci-après. TABLEAU III
    Emulsion E
    Teneur en liant (% poids) 69
    pH 4,7
    Indice de rupture à 20°C (g/100g) 32
    Indice de rupture à 5°C (g/100g) 37
    Pseudo-viscosité STV à 25°C (s) 123
    Diamètre moyen des globules (µm) 4,1
  • Comme il ressort de cet exemple, le procédé selon l'invention permet de produire une émulsion à basse teneur en liant bitume/polymère (environ 69% en poids de liant) dont la viscosité est comparable à celle d'une émulsion à forte teneur (environ 80% en poids) en le même liant, par ajustement de la température dans l'enceinte d'émulsification.
  • EXEMPLE 4 : Préparation d'émulsions aqueuses d'un liant bitumineux consistant en un bitume
  • On préparait deux émulsions cationiques, à savoir une émulsion F témoin et une émulsion G selon l'invention, à 80% en poids d'un liant bitumineux consistant en un bitume présentant une pénétration de 180/220.
  • Préparation de la phase aqueuse :
  • Dans 1000 parties d'eau portée à 60°C, on dispersait 10 parties d'un émulsifiant cationique commercialisé sous le nom de DINORAM S et constitué essentiellement de diamines grasses, puis à la dispersion obtenue on ajoutait 6,5 parties d'HCl à 20°Bé et agitait le tout jusqu'à l'obtention d'un liquide limpide.
  • Préparation de l'émulsion F témoin :
  • Dans un moulin colloïdal conventionnel constitué d'un stator et d'un rotor concentriques de forme troncônique présentant un grand diamètre égal à 50mm et un entrefer ayant une épaisseur de 0,3mm, on introduisait en continu 800 parties de bitume de pénétration égale à 180/220 porté à une température de 169°C et 200 parties de la phase aqueuse à 60°C préparée comme indiqué ci-dessus, avec un débit global de 150 kg/heure. Le moulin colloïdal était maintenu sous pression pour éviter l'ébullition de l'eau du milieu soumis à l'émulsification, dont la température était d'environ 136°C. La vitesse de rotation du rotor était fixée à 6000 tours/minute, ce qui correspond à une vitesse périphérique du rotor d'environ 15,7 m/s.
  • L'émulsion issue du moulin colloïdal était traitée ensuite comme décrit dans l'exemple 1 pour la refroidir à la température ambiante
  • Préparation de l'émulsion G selon l'invention :
  • On opérait dans un moulin colloïdal ayant les caractéristiques du moulin colloïdal utilisé pour préparer l'émulsion B de l'exemple 1.
  • Dans le moulin colloïdal on introduisait en continu, par le conduit 8, 80 parties du bitume de pénétration 180/220 ayant une température de 173°C et simultanément, par le conduit 9, 20 parties de la phase aqueuse obtenue comme décrit ci-dessus, avec un débit global de 300 kg/heure. Le moulin colloïdal (enceinte d'émulsification) était maintenu sous pression pour éviter l'ébullition de l'eau du milieu soumis à l'émulsification, dont la température était égale à 141°C environ.
  • L'émulsion issue du moulin colloïdal était traitée comme indiqué dans l'exemple 1 pour la refroidir à température ambiante.
  • Les caractéristiques des émulsions F et G obtenues sont données dans le tableau IV. TABLEAU IV
    Emulsion F G
    Teneur en liant (% en poids) 80 80
    pH 3 3,2
    Indice de rupture à 20°C (g/100g) *) 32
    Pseudo-viscosité STV à 50°C (s) >1000**) 300
    Diamètre moyen des globules (µm) 4 22
    *) mesure impossible en raison de la trop forte viscosité de l'émulsion qui ne permet pas la détermination du point de rupture et de prise en masse du mélange granulaire (sable + liant)
    **) même après 30 minutes, aucun écoulement ne se produit; le produit semble se comporter comme un liquide à seuil d'écoulement.
  • Comme il ressort des résultats du tableau IV, une émulsion à 80% en poids d'un bitume conventionnel préparée par une technique usuelle présente une viscosité rédhibitoire pour les utilisations habituelles, alors qu'en faisant appel au procédé selon l'invention on peut obtenir une émulsion à même teneur en bitume dont la viscosité se situe dans la zone acceptable pour les utilisations habituelles.
  • EXEMPLE 5 : Préparation d'émulsions aqueuses à teneurs variables en un liant bitumineux consistant en un bitume.
  • On préparait six émulsions cationiques à teneurs variables en un liant bitumineux consistant en un bitume présentant une pénétration de 180/220, à savoir émulsions témoins H et L et émulsions selon l'invention I, J, K et M. La phase aqueuse utilisée pour produire ces émulsions était obtenue comme décrit dans l'exemple 4.
  • Préparation des émulsions H et L témoins :
  • On opérait dans un moulin colloïdal conventionnel ayant les caractéristiques du moulin colloïdal utilisé pour produire l'émulsion F témoin de l'exemple 4.
  • L'émulsion H témoin était formée à pression atmosphérique en introduisant dans le moulin colloïdal 600 parties du bitume porté à 156°C et 400 parties de la phase aqueuse, avec un débit global de 150 kg/heure. L'émulsion issue du moulin colloïdal était ensuite refroidie à température ambiante sur une durée d'environ six heures pour éviter tout choc thermique.
  • L'émulsion L témoin était produite en introduisant dans le moulin colloïdal 700 parties du bitume porté à 160°C et 300 parties de la phase aqueuse, avec un débit global de 150 kg/heure. Le moulin d'émulsification était maintenu sous pression pour éviter l'ébullition de l'eau du milieu soumis à l'émulsification, ledit milieu étant à une température de 127°C. L'émulsion issue du moulin colloïdal était traitée comme indiqué dans l'exemple 1 pour la refroidir à température ambiante.
  • Préparation des émulsions I, J, K et M selon l'invention :
  • On opérait dans un moulin colloïdal ayant les caractéristiques du moulin colloïdal utilisé pour préparer l'émulsion B de l'exemple 1.
  • L'émulsion I était formée à pression atmosphérique en introduisant dans le moulin colloïdal 600 parties du bitume porté à 105°C, par le conduit 8, et 400 parties de la phase aqueuse, par le conduit 9, avec un débit global de 300 kg/heure. L'émulsion issue du moulin colloïdal était ensuite refroidie à température ambiante sur une durée d'environ six heures pour éviter tout choc thermique.
  • Les émulsions J et K étaient produites en introduisant dans le moulin colloïdal, par le conduit 8, 650 parties du bitume et, par le conduit 9, 350 parties de la phase aqueuse, avec un débit global de 300 kg/heure et des températures telles que le milieu soumis à l'émulsification avait une température de 130°C pour l'émulsion J et 105°C pour l'émulsion K. Le moulin colloïdal était maintenu sous pression pour éviter l'ébullition de l'eau du milieu soumis à l'émulsification. Les émulsions issues du moulin colloïdal étaient traitées comme indiqué dans l'exemple 1 pour les refroidir à température ambiante.
  • L'émulsion M était produite en introduisant dans le moulin colloïdal, par le conduit 8, 700 parties du bitume porté à 130°C et, par le conduit 9, 300 parties de la phase aqueuse, avec un débit global de 300 kg/heure et une température de la phase aqueuse telle que le milieu soumis à l'émulsification était à une température de 110°C. Le moulin colloïdal était maintenu sous pression pour éviter l'ébullition de l'eau du milieu soumis à l'émulsification. L'émulsion issue du moulin colloïdal était traitée comme indiqué dans l'exemple 1 pour la refroidir à température ambiante.
  • Les caractéristiques des émulsions obtenues sont rassemblées dans le tableau V ci-après TABLEAU V
    Emulsion H I J K L M
    Teneur en liant (% en poids) 60 61 65 65 70 71,5
    pH 3 3 3 3 3 3
    Indice de rupture à 25°C (g/100g) 75 75 75 75 75 75
    Pseudo-viscosité STV à 50°C (s) 16 120 15 35
    Viscosité Engler (°E) 4 12
  • Comme il ressort des résultats du tableau V, aux basses teneurs en bitume, les émulsions I et M selon l'invention ont des viscosités supérieures respectivement aux émulsions H et L témoins à teneurs comparables en bitume.
  • Les résultats du tableau V font également apparaître que deux émulsions J et K selon l'invention à même basse teneur en bitume ont des viscosités respectives qui dépendent de la température de production desdites émulsions.
  • EXEMPLE 6 : Préparation d'une émulsion aqueuse à partir d'un liant bitumineux bitume/polymère ayant une forte viscosité
  • On préparait une émulsion cationique P à 70% en poids d'un liant bitumineux du type bitume polymère constitué du produit de réaction d'un bitume de pénétration égale à 67 avec un copolymère diséquencé de styrène et de butadiène, renfermant 25% en poids de styrène et présentant une masse moléculaire moyenne viscosimétrique égale à 75000 environ, en présence d'un agent de couplage consistant en soufre élémentaire.
  • Préparation du liant bitumineux :
  • En opérant à 170°C et sous agitation, on mélangeait 964 parties du bitume avec 35 parties du copolymère diséquencé. Après 3 heures de mélange sous agitation on obtenait une masse homogène. A cette masse maintenue à 170°C, on ajoutait alors 1 partie de soufre cristallisé, puis on agitait encore l'ensemble pendant 60 minutes pour former un liant bitumineux bitume/polymère.
  • Le liant bitumineux ainsi produit avait les caractéristiques suivantes :
    • . Viscosité (Pa.s) : 8,5
    • . Température Bille & Anneau (°C) : 60
    • . Pénétration (1/10mm) : 52
    • . Point de Fraass (°C) -18
    • . Essai de traction à 5°C avec une vitesse de 500mm/minute
      • Contrainte au seuil (σs) (Pa) : 20x10⁵Pa
      • Contrainte à la rupture (σr) (Pa): 5,6x10⁵Pa
      • Allongement à la rupture (εr) (%): > 900
    Préparation de la phase aqueuse :
  • Dans 1000 parties d'eau portée à 60°C, on dispersait 20 parties d'un émulsifiant cationique commercialisé sous le nom de DINORAM S et constitué essentiellement de diamines grasses, puis à la dispersion obtenue on ajoutait 13 parties d'HCl concentré à 20°Bé et agitait le tout jusqu'à l'obtention d'un liquide limpide.
  • Préparation de l'émulsion P selon l'invention :
  • On opérait dans un moulin colloïdal ayant les caractéristiques du moulin colloïdal utilisé pour préparer l'émulsion B de l'exemple 1.
  • Dans le moulin colloïdal on introduisait en continu, par le conduit 8, 700 parties du liant bitumineux préparé comme indiqué ci-dessus et amené à 156°C et simultanément, par le conduit 9, 300 parties de la phase aqueuse définie ci-dessus, avec un débit global de 300 kg/heure, le milieu soumis à l'émulsification étant à une température de 122°C. Le moulin colloïdal était maintenu sous pression pour éviter l'ébullition de l'eau du milieu soumis à l'émulsification. L'émulsion issue du moulin colloïdal était traitée comme indiqué dans l'exemple 1 pour la refroidir à température ambiante.
  • Les caractéristiques de l'émulsion P obtenue sont présentées dans le tableau VI. TABLEAU VI
    Emulsion P
    Teneur en liant (% en poids) 70
    pH 3
    Indice de rupture à 20°C (g/100g) 100
    Viscosité STV à 25°C (s) 115
    Diamètre moyen des globules (µm) 3
  • L'examen des valeurs figurant au tableau VI fait apparaître qu'avec un liant de très forte viscosité, le procédé selon l'invention permet de produire une émulsion aqueuse dont les propriétés, notamment viscosité, sont compatibles avec un usage routier.
  • Une émulsion à même teneur en liant préparée, en faisant appel à un moulin colloïdal conventionnel, à partir du liant bitume/polymère et de la phase aqueuse précités aurait été inutilisable pour un usage routier car présentant une très forte instabilité.

Claims (21)

  1. Utilisation d'une enceinte de formation d'émulsion du type mélangeur dynamique pour la production d'une émulsion aqueuse d'un liant bitumineux ayant une viscosité et des qualités de rupture contrôlées, laquelle enceinte (1) possède, de manière connue en soi, une entrée (6) et une sortie (10) séparées par une pluralité (28 à 33) de zones de cisaillement du type rotor/stator agencées en série, et constituées chacune d'au moins une rainure circulaire (respectivement 28 à 33) ménagée dans une face (respectivement 19 à 24) d'un élément fixe (respectivement 15 à 17), solidaire de la paroi (2) de l'enceinte (1) et jouant le rôle de stator, et dans laquelle pénètrent une pluralité d'ergots (respectivement 37 à 42) présentant chacun, en section par un plan contenant l'axe (18) de la rainure, une forme complémentaire de celle de la section correspondante de ladite rainure, de manière à définir entre chaque ergot et la rainure un espace formant entrefer, lesdits ergots étant solidaires de l'une des faces d'un disque support (respectivement 47 à 50) jouant le rôle de rotor centré sur l'axe (18) de la rainure et mobile en rotation autour dudit axe, lequel disque est traversé par des orifices (respectivement 51 à 54) disposés entre l'axe de la rainure et lesdits ergots, les rainures de deux zones de cisaillement consécutives étant disposées de manière à être soit ménagées dans les faces opposées (21,22) d'un même élément stator (16) et connectées par des canaux (35) reliant leurs fonds respectifs, soit ménagées dans les faces en regard (22,23) de deux éléments stators consécutifs (16,17) et séparées alors par un disque support (49) portant des ergots (40,41) sur ses deux faces, ladite utilisation se caractérisant en ce que l'on injecte dans l'enceinte de formation d'émulsion, par son entrée, un liant bitumineux (8) sous la forme d'une masse fondue ayant une température comprise entre 80°C et 180°C et une phase aqueuse (9), qui renferme un système émulsifiant ou au moins l'une de ses composantes, le complément du système émulsifiant étant alors présent dans le liant bitumineux, et éventuellement un agent régulateur du pH de l'émulsion et qui possède une température comprise entre 10°C et 90°C, on fait passer l'ensemble liant bitumineux et phase aqueuse dans les zones de cisaillement successives dont les entrefers ont une épaisseur allant de 0,1 mm à 5 mm en imposant aux disques rotors portant les ergots une vitesse de rotation telle que leur vitesse périphérique soit comprise entre 4 et 18 m/s.
  2. Utilisation selon la revendication 1, caractérisée en ce que la température de la masse fondue de liant bitumineux injectée dans l'enceinte (1) de formation d'émulsion est comprise entre 110°C et 160°C.
  3. Utilisation selon la revendication 1 ou 2, caractérisée en ce que la température de la phase aqueuse injectée dans l'enceinte (1) de formation d'émulsion est comprise entre 20°C et 80°C.
  4. Utilisation selon l'une des revendications 1 à 3, cractérisée en ce que l'épaisseur des entrefers des zones de cisaillement successives va de 0,2 mm à 2 mmm.
  5. Utilisation selon l'une des revendications 1 à 4, caractérisée en ce que la vitesse périphérique des disques rotors portant les ergots est comprise entre 10 et 15 m/s.
  6. Utilisation selon l'une des revendications 1 à 5, caractérisée en ce que le liant bitumineux et la phase aqueuse sont prémélangés (11) avant de passer dans la première zone de cisaillement (28) de l'enceinte (1) de formation d'émulsion.
  7. Utilisation selon l'une des revendications 1 à 6, caractérisée en ce que les quantités de liant bitumineux et de phase aqueuse utilisées pour former l'émulsion sont telles que le rapport du débit massique du liant bitumineux au débit massique de la phase aqueuse, qui sont amenés au prémélange ou injectés séparément dans l'enceinte de formation d'émulsion, se situe de 50:50 à 90:10.
  8. Utilisation selon la revendication 7, caractérisée en ce que ledit rapport du débit massique du liant bitumineux au débit massique de la phase aqueuse va de 55:45 à 85:15.
  9. Utilisation selon l'une des revendications 1 à 8, caractérisée en ce que les canaux (35) reliant les fonds respectifs des rainures (30,31) consécutives, qui sont ménagées dans les faces opposées (21,22) d'un même élément stator (16), ont une section ayant une surface supérieure à celles des orifices (respectivement 52,53) traversant le disque porteur d'ergots (respectivement 48,49) associé à chaque rainure (respectivement 30,31).
  10. Utilisation selon l'une des revendications 1 à 9, caractérisée en ce que l'on règle la viscosité d'une émulsion à concentration donnée en liant bitumineux produite dans l'enceinte (1) par ajustement de la valeur de la température du liant bitumineux et de la phase aqueuse, ou de leur prémélange, à l'entrée de ladite enceinte, la viscosité de l'émulsion étant d'autant plus élevée, toutes autres conditions égales par ailleurs, que ladite température d'entrée est plus basse.
  11. Utilisation selon l'une des revendications 1 à 10, caractérisée en ce que le liant bitumineux amené à l'enceinte de formation d'émulsion possède une viscosité cinématique à 100°C, qui est comprise entre 0,5x10⁻⁴m²/s et 3x10⁻²m²/s
  12. Utilisation selon la revendication 11, caractérisée en ce que ladite viscosité cinématique à 100°C est comprise entre 1x10⁻⁴m²/s et 2x10⁻²m²/s.
  13. Utilisation selon l'une des revendications 1 à 12, caractérisée en ce que le liant bitumineux est un bitume ou mélange de bitumes ou bien une composition du type bitume/polymère choisie parmi les produits obtenus à partir de bitumes additionnés d'un ou plusieurs polymères et éventuellement modifiés par réaction avec ce ou ces polymères, si besoin est en présence d'un agent de couplage, lequel est, par exemple, choisi parmi le soufre élémentaire, les polysulfures d'hydrocarbyle, les accélérateurs de vulcanisation donneurs de soufre, les mélanges de tels produits entre eux ou/et avec des accélérateurs de vulcanisation non donneurs de soufre.
  14. Utilisation selon la revendication 13, caractérisée en ce que le liant bitumineux est une composition du type bitume polymère, obtenue ou non en présence d'un agent de couplage, dont la concentration en polymère représente 0,5% à 15% et de préférence 0,7% à 10% en poids du bitume associé au polymère.
  15. Utilisation selon la revendication 13, caractérisée en ce que le liant bitumineux est une composition du type bitume/polymère, obtenue ou non en présence d'un agent de couplage, pour laquelle le polymère est un copolymère statistique ou séquencé de styrène et d'un diène conjugué, ledit diène conjugué étant en particulier choisi parmi butadiène, isoprène, chloroprène, butadiène carboxylé et isoprène carboxylé.
  16. Utilisation selon la revendication 15, caractérisée en ce que le copolymère renferme 5% à 50% en poids de styrène.
  17. Utilisation selon l'une des revendications 13 à 16, caractérisée en ce qu'immédiatement avant sa mise en contact avec la phase aqueuse, le liant bitumineux du type composition bitume/polymère est additionné d'un système de vulcanisation donneur de soufre, ou le cas échéant des composantes d'un tel système formant ledit système in situ, en concentration propre à fournir une quantité de soufre représentant 0,5 à 20% et de préférence 1 à 15% du poids du polymère présent dans la composition bitume/polymère.
  18. Utilisation selon l'une des revendications 1 à 17, caractérisée en ce que la phase aqueuse renferme une quantité de système émulsifiant propre à fournir 0,05% à 5% et de préférence 0,1 à 2% de système émulsifiant par rapport au poids total de l'émulsion.
  19. Utilisation selon l'une des revendications 1 à 18, caractérisée en ce que le liant bitumineux est amené à une température qui conduit, après contact avec la phase aqueuse, à une température supérieure à la température d'ébullition de l'eau et en ce que l'enceinte de formation d'émulsion opère sous une pression suffisante pour empêcher l'ébullition de l'eau.
  20. Utilisation selon l'une des revendications 1 à 19, caractérisé en ce que chacune des faces (21,22) de l'un quelconque (16) des éléments stators (15 à 17) est pourvue de deux rainures concentriques (55,56 et 57,58 respectivement), de manière à ce qu'à chaque rainure (55 ou 56) présente sur l'une (21) des faces (21,22) dudit élément stator quelconque (16) corresponde une rainure identique (57 ou 58) sur l'autre face (22) de cet élément (16), ces rainures correspondantes étant connectées, fond à fond, par des canaux (59 ou 60) pratiqués dans ledit élément stator et en ce que chaque face d'un disque quelconque (48), qui est en regard d'une face (21) doublement rainurée d'un élément stator (16), porte deux séries (62,61) concentriques d'ergots, par exemple cylindriques, de telle sorte que les ergots d'une série (61 ou 62) pénètrent dans l'une (55 ou 56) des rainures de la face (21) doublement rainurée de manière à définir avec cette rainure un espace qui joue le rôle d'entrefer.
  21. Application de l'émulsion aqueuse résultant de l'utilisation selon l'une des revendications 1 à 20 à la réalisation de revêtements et notamment de revêtements routiers du type enduit superficiel, à la production d'enrobés mis en place à chaud ou à froid, ou encore à la réalisation de revêtements d'étanchéité.
EP93902354A 1991-12-23 1992-12-21 Procede de production d'une emulsion d'un liant bitumineux permettant le controle de la viscosite et des qualites de rupture de l'emulsion Expired - Lifetime EP0572648B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9115956A FR2685219B1 (fr) 1991-12-23 1991-12-23 Procede de production d'une emulsion d'un liant bitumineux permettant le controle de la viscosite et des qualites de rupture de l'emulsion.
FR9115956 1991-12-23
PCT/FR1992/001211 WO1993012873A1 (fr) 1991-12-23 1992-12-21 Procede de production d'une emulsion d'un liant bitumineux permettant le controle de la viscosite et des qualites de rupture de l'emulsion

Publications (2)

Publication Number Publication Date
EP0572648A1 EP0572648A1 (fr) 1993-12-08
EP0572648B1 true EP0572648B1 (fr) 1996-03-20

Family

ID=9420346

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93902354A Expired - Lifetime EP0572648B1 (fr) 1991-12-23 1992-12-21 Procede de production d'une emulsion d'un liant bitumineux permettant le controle de la viscosite et des qualites de rupture de l'emulsion

Country Status (10)

Country Link
US (1) US5374672A (fr)
EP (1) EP0572648B1 (fr)
AT (1) ATE135608T1 (fr)
CA (1) CA2104453A1 (fr)
DE (1) DE69209280D1 (fr)
ES (1) ES2056026B1 (fr)
FR (1) FR2685219B1 (fr)
IT (1) IT1256215B (fr)
PT (1) PT101155A (fr)
WO (1) WO1993012873A1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001162A (en) * 1997-07-17 1999-12-14 Marathon Ashland Petroleum Llc Sulfur-treated asphalt compositions and their preparation
US6127461A (en) 1998-04-21 2000-10-03 Basf Corporation Co-Agglomeration of random vinyl substituted aromatic/conjugated diolefin polymer with sulfur to improve homogeneity of polymer/asphalt admixtures
US6133351A (en) * 1999-06-03 2000-10-17 Marathon Ashland Petroleum Llc Sulfur-in-oil in asphalt and polymer composition and process
US7341661B2 (en) * 2000-11-16 2008-03-11 Unit Process Technologies, L.L.C. Clarification and sorptive-filtration system for the capture of constituents and particulate matter in liquids and gases
US6468942B1 (en) * 2000-11-16 2002-10-22 John J. Sansalone Absorptive-filtration media for the capture of waterborne or airborne constituents
US7449131B2 (en) * 2004-10-06 2008-11-11 Terry Industries, Inc. Techniques and compositions for shielding radioactive energy
US20100222468A1 (en) * 2009-02-27 2010-09-02 Semmaterials, L.P. Crack resistant layer with good beam fatigue properties and method of selecting same
US20100222469A1 (en) * 2009-02-27 2010-09-02 Semmaterials, L.P. A crack resistant layer with good binder fracture energy properties and method of selecting same
US20100222465A1 (en) * 2009-02-27 2010-09-02 Semmaterials, L.P. Crack resistant layer with good mixture fracture energy and method of selecting same
US20100222464A1 (en) * 2009-02-27 2010-09-02 Semmaterials, L.P. Emulsion of a polymer modified asphalt
US20100222467A1 (en) * 2009-02-27 2010-09-02 Semmaterials, L.P. crack resistent layer with good mixture fracture energy made from an emulsion of a polymer modified bituminous binder and method of selecting same
US20100222466A1 (en) * 2009-02-27 2010-09-02 Semmaterials, L.P. Crack resistant layer with good beam fatigue properties made from an emulsion of a polymer modified bituminous binder and method of selecting same
GB201515000D0 (en) * 2015-08-24 2015-10-07 Univ Nottingham Trent Reactor
CN106273023A (zh) * 2016-10-17 2017-01-04 郑州峰泰纳米材料有限公司 一种动态混合器
CN106493894A (zh) * 2016-10-17 2017-03-15 郑州峰泰纳米材料有限公司 一种在线动态混合器
US11732108B1 (en) 2019-07-03 2023-08-22 Associated Asphalt Partners, Llc Modified asphalt compositions containing dialkyl polysulfides
CN113416426B (zh) * 2021-07-01 2022-09-23 海南恒建沥青路面有限公司 一种sbs复合改性沥青的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3127367A (en) * 1964-03-31 Method and apparatus for adding latex to hot bitumen
DE1103301B (de) * 1959-08-10 1961-03-30 Ernst A Reiffen Dipl Ing Kontinuierlich arbeitendes Dispergiergeraet
SE362382B (fr) * 1972-03-28 1973-12-10 K G Ohlson
US4314921A (en) * 1980-01-14 1982-02-09 Novophalt Sa Method and apparatus for preparing a bituminous binder
US4722953A (en) * 1983-12-16 1988-02-02 Davlin Paint Company Method of producing bituminous/polymer emulsion and product
JP2925599B2 (ja) * 1989-11-02 1999-07-28 住友重機械工業株式会社 高粘度液処理装置

Also Published As

Publication number Publication date
FR2685219B1 (fr) 1994-04-15
EP0572648A1 (fr) 1993-12-08
US5374672A (en) 1994-12-20
FR2685219A1 (fr) 1993-06-25
CA2104453A1 (fr) 1993-06-24
ITMI922925A0 (it) 1992-12-22
ES2056026B1 (es) 1995-05-01
IT1256215B (it) 1995-11-29
DE69209280D1 (de) 1996-04-25
PT101155A (pt) 1994-07-29
WO1993012873A1 (fr) 1993-07-08
ATE135608T1 (de) 1996-04-15
ITMI922925A1 (it) 1994-06-22
ES2056026A1 (es) 1994-09-16

Similar Documents

Publication Publication Date Title
EP0572648B1 (fr) Procede de production d'une emulsion d'un liant bitumineux permettant le controle de la viscosite et des qualites de rupture de l'emulsion
EP3559136B1 (fr) Composition d'asphalte coulé pour la réalisation de revêtements
EP2035504A2 (fr) Produits bitumineux et emulsions aqueuses a base de produits bitumineux et leurs utilisations
EP1765914A1 (fr) Procede de preparation d"un melange bitume-polymere
EP1990368A1 (fr) Matériaux routiers bitumineux, notamment enrobés à froid et graves-émulsions, et tapis routiers formes à partir de ces matériaux
WO1992001752A1 (fr) Procede pour preparer en emulsion aqueuse un liant bitume/polymere a structure polymerique tridimensionnelle continue et application de ce liant a la realisation de revetements ou d'enrobes
EP3510105B1 (fr) Composition bitumineuse pour enrobes a module eleve
EP1649925A1 (fr) Emulsions bitumineuses, leur procédé de préparation et leur utilisation pour la réalisation de matériaux et de tapis routiers
EP3509735A1 (fr) Procede de fabrication de materiau sous forme de granules utilisable comme liant routier ou liant d'etancheite et dispositif pour sa fabrication
WO2018193211A1 (fr) Bitume solide a temperature ambiante
FR2629079A1 (fr) Procede de production d'un propergol en bloc et produit obtenu
WO1998054263A1 (fr) Procede de fabrication en continu de bitumes modifies
EP3898805B1 (fr) Enrobé avec coke de pétrole
EP0418158A1 (fr) ProcédÀ© et installation de fabrication de liants modifies à usage routier
EP3612598B1 (fr) Procede de preparation de bitume solide a temperature ambiante en lit d'air fluidise
FR2810663A1 (fr) Procede de preparation d'enrobes a froid et de tapis routiers a partir d'emulsions bitumineuses, emulsions bitumineuses, enrobes a froid et tapis routiers
EP3491069B1 (fr) Agents fluxants pour liants hydrocarbones
BE1002939A3 (fr) Procede ameliore de preparation de compositions de bitume modifie, et nouvelles compositions de bitume-polymere utilisees dans ce procede.
WO2020039138A1 (fr) Composition bitumineuse thermoreversible
FR2759705A1 (fr) Emulsion aqueuse d'un produit bitumineux
EP3464473B1 (fr) Bitume solide a temperature ambiante
EP2989162A1 (fr) Composition de pre-melange pour bitumes
WO2023135400A1 (fr) Composition de liant clair et ses applications pour les revetements routiers et d'amenagement
FR3085169A1 (fr) Composition bitumineuse thermoreversible
OA19430A (fr) Bitume solide à température ambiante.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930819

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE DK GB GR IE LU NL PT SE

17Q First examination report despatched

Effective date: 19950124

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE DK GB GR IE LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960320

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960320

Ref country code: GB

Effective date: 19960320

Ref country code: DK

Effective date: 19960320

Ref country code: AT

Effective date: 19960320

REF Corresponds to:

Ref document number: 135608

Country of ref document: AT

Date of ref document: 19960415

Kind code of ref document: T

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: 67684

REF Corresponds to:

Ref document number: 69209280

Country of ref document: DE

Date of ref document: 19960425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960620

Ref country code: PT

Effective date: 19960620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960621

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19960320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19961107

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 67684

Country of ref document: IE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19961231

Ref country code: BE

Effective date: 19961231

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: FINA RESEARCH S.A.

Effective date: 19961220

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

BERE Be: lapsed

Owner name: ELF ANTAR FRANCE

Effective date: 19961231

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19980807