EP0572293B1 - Vorrichtung zur Impulskompression, insbesondere in Hochfrequenzsendung - Google Patents

Vorrichtung zur Impulskompression, insbesondere in Hochfrequenzsendung Download PDF

Info

Publication number
EP0572293B1
EP0572293B1 EP93401179A EP93401179A EP0572293B1 EP 0572293 B1 EP0572293 B1 EP 0572293B1 EP 93401179 A EP93401179 A EP 93401179A EP 93401179 A EP93401179 A EP 93401179A EP 0572293 B1 EP0572293 B1 EP 0572293B1
Authority
EP
European Patent Office
Prior art keywords
frequency
line
cut
pulses
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93401179A
Other languages
English (en)
French (fr)
Other versions
EP0572293A1 (de
Inventor
Gérard Kantorowicz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0572293A1 publication Critical patent/EP0572293A1/de
Application granted granted Critical
Publication of EP0572293B1 publication Critical patent/EP0572293B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P9/00Delay lines of the waveguide type
    • H01P9/003Delay equalizers

Definitions

  • the present invention relates to a pulse compression device, in particular for microwave transmission.
  • Analog compression of frequency modulated pulses is a well known technique in reception. Compression at transmission and at high power level has already been achieved.
  • One embodiment is described in particular in the article "SLED: A METHOD OF DOUBLING SLAC'S ENERGY" by Z.D. Farkas, H.A. Hogg, G.A. Loew and P.B. Wilson, Stanford Linear Accelerator Center, Stanford University, 1974.
  • the device described uses the filling time of a resonant cavity as a delay at the front edge of the pulse relative to the back edge. This method is limited by overvoltages due to resonance, by losses in the cavity and by strong electric fields proportional to the overvoltage in the cavity.
  • the invention aims to overcome the aforementioned drawbacks, in particular by making it possible to compress pulses significantly with high possible peak powers.
  • the subject of the invention is a pulse compression device, as described by claim 1.
  • the main advantages of the invention are that it is compact, that it is simple to implement and that it allows significant compression rates.
  • FIG. 1b An exemplary embodiment of this type of line with periodic structure called a folded guide line is illustrated in FIG. 1b.
  • a microwave waveguide for example, of rectangular section, are arranged metal plates 4 parallel to the section of the line, that is to say perpendicular to its axis of propagation.
  • These metal plates 4 are fixed alternately on one side 311 and on the other opposite side 312 of the line 3, leaving a space between their end and the side of the line to which they are not fixed. Similarly, these metal plates 4 are fixed to one and the other sides 314, 315 adjacent to the two preceding sides 311, 312.
  • the period p of the structure of the line 3 is for example defined by the distance between two successive metal plates 4 fixed in the same way on line 3.
  • the device according to the invention uses the property of reflection of the waves which a periodic structure has, for certain frequencies, of the type for example of that of FIG. 1b.
  • This reflection defined in particular by the laws of Bragg or Brillouin, occurs when the reflection, on each cell, the metal plates 4 for example, of the structure, becomes cumulative in a certain frequency band.
  • FIG. 1c illustrates by a diagram the relation between the frequency transmitted f through such a line with periodic structure and the wave number ⁇ , equal to 2 ⁇ / ⁇ , of propagation in the structure, ⁇ being the guided wavelength in the structure.
  • the diagram in Figure 1c defines the bandwidth of the line.
  • this passband is bounded to the low frequencies by a frequency fc constituting a line cutoff frequency, when ⁇ is a multiple of 2 ⁇ / L where L is equal to the aforementioned period p.
  • the frequency of the signal 1 is lower than the frequency fc at the input of the device of FIG. 1a, the pulse is reflected at the input 5 of the line 3 with periodic structure.
  • the frequency of the signal f is greater than the cutoff frequency fc, and less than the maximum cutoff frequency in the case of a diagram of the type of FIG. 1c for example
  • the line with periodic structure 3 propagates the signal 1 as this is represented by dotted lines 7 in FIG. 1a.
  • the line with periodic structure 3 being for example open at the end opposite to that connected to the first line 2, the signal 1 is reflected at this end.
  • FIG. 1a The basic diagram of a device according to the invention presented in FIG. 1a in fact corresponds to a single transmission line whose cutoff frequency varies in the direction of its axis of propagation.
  • this cut-off frequency takes only two values, it is for example very low over the length l 1 , so as to allow all the signals involved to pass, and it takes the value fc at the level from the entry of the periodic structure.
  • the line has at its output means, not shown, for separating an incident wave and a reflected wave, a microwave circulator for example, it is possible to recover at the output of this line a pulse whose width T 2 is reduced relative to the length T 1 of the incoming pulse.
  • FIG. 3a represents the block diagram of a possible embodiment of a device according to the invention.
  • the pulse to be compressed arrives via a line 31 at the input 32 of means 33 for separating an incident wave and a reflected wave, a microwave circulator for example.
  • the separation means 33 are loaded by a transmission line 34 of structure similar to the line with periodic structure 3 of FIG. 1a.
  • the separation means 33 can be loaded by line 34 via a transmission line 35 or have an opening directly closed by line 34.
  • the pulses to be compressed can for example have a radar recurrence frequency between a few kilohertz and a few hundred kilohertz. These pulses are modulated, for example, by a microwave signal.
  • the structure of the line 34 and the modulation of the pulses are for example adapted to compress the latter.
  • Line 34 connected to the separation means 33 has a structure similar to line 3 in Figure la but without this structure being necessarily periodic.
  • the line 34 has a structure such that its cut-off frequency, low for example, varies along its axis of propagation. In this sense, it is analogous to the global line of FIG. 1 consisting of two lines 2, 3 where the variation in cutoff frequency is made at the transition of the two lines. In the case of the device of FIG. 3a, this variation is adapted to the modulation of the pulses to be compressed. In particular, if this modulation is linear, the variation in the cutoff frequency along the axis of propagation of line 34 is also linear.
  • FIG. 3b illustrates a pulse of duration T1 whose modulation is linear.
  • the frequency of the signal contained in the pulse is equal to a value f 1 , the frequency of the following signals varying linearly up to the frequency of the end of pulse signal having a value f 2 , f 2 being less than f 1 .
  • the low cut-off frequency along line 34 can therefore vary for example linearly from the value f 2 at its input end to the value f 1 at its other end.
  • the length of line 34 is for example calculated so that all successive signals constituting the pulse to be compressed are superimposed on the last signal of frequency f 2 at the output of line 34.
  • FIG. 3c illustrates a pulse compressed of duration T 2 obtained for example by the compression of the pulse of duration T 1 of FIG. 3b.
  • This compressed pulse consists of the mixture of signals of different frequencies delayed with respect to each other.
  • the cut-off frequencies used are low cut-off frequencies of the passband evolving along the axis of propagation of the line 34. It is possible to use the high cut-off frequencies of this bandwidth, in this case, the signal to be compressed is modulated in such a way that the frequency of the signals it contains increases from the start of the pulse instead of decreasing as in the exemplary embodiment described.
  • the frequency modulation of the pulse to be compressed need not be linear. However, such modulation facilitates the production of a device according to the invention.
  • the variation of the cutoff frequency along the axis of line 34 can be obtained in several ways.
  • a line with periodic structure such as that of FIG. 1b
  • the cutoff frequency depending on the period or the pitch p between two groups of consecutive and identical metal plates one solution to vary this cutoff frequency consists in varying this not p.
  • the line then no longer has a properly periodic structure but nevertheless retains its reflection properties, the bandwidth evolving with the step p.
  • Another solution consists, for example, in varying the height or the width of the transmission line 34. Still in the case of a line of the type of FIG. 1b, it is possible to vary the geometry of the metal plates 4 while retaining their periodic arrangement. It is also possible to vary both this arrangement and the geometry of the metal plates 4.
  • FIG. 4 shows the embodiment of the transmission line 34 with variable cut-off frequency known from the prior art.
  • Metal plates or valves 41 are arranged along line 34, a guide of rectangular section for example, perpendicular to its axis of propagation.
  • the valves 41 are all fixed on the same side 341 of the line and centered for example on the middle of this side.
  • the variation of the cutoff frequency along this line can be achieved by varying the pitch between the valves 41 or by varying their height.
  • this line 34 can in particular be made of dielectric material whose geometry varies as a function of the axis of propagation of the line.
  • FIG. 5 shows another possible embodiment of a device according to the invention.
  • This consists of a 3dB coupler 51 having an input 52 through which the pulses to be compressed enter, an output 53 delivering the compressed pulses and two branches 54, 55 through which the signals entering via input 52 pass, the signals passing through each of the branches having the same amplitude, equal to 1 / 2 times half that of the input signals, hence the name of 3dB coupler, and being in quadrature.
  • the branches 54, 55 of the coupler 51 are each loaded by a line 56, 57 whose cutoff frequency varies along the axis of propagation. These lines 56, 57 are for example analogous to that of FIG.
  • the branches 54, 55 of the coupler 51 have terminations 59, 60 which make it possible to adapt them to the input of lines 56, 57, because the input section of the latter is reduced by the presence of the metal plates 58.
  • the operation of the device in FIG. 5 uses the properties of the coupler 51 and of the lines 56, 57 which are associated with it, the coupler playing in particular the role of the means for separating a incident wave and a reflected wave.
  • One pulse to be compressed enters via input 52 of coupler 51 and then divides into two quadrature pulses of equal amplitude, equal to 1 / 2 half the amplitude of the incoming pulse, one of the pulses thus created is propagating in one branch 54 and the other impulse in the other branch 55. Then they enter the lines 56, 57 via the terminations 59, 60. These impulses propagate and are reflected inside the lines 56 , 57 as described above in line 34 of the device in FIG. 3a.
  • the pulse to be compressed is linearly frequency modulated, the cut-off frequency varies linearly along the lines 56, 57 according to methods previously described.
  • the structures of the lines 56, 57 are preferably identical.
  • the two pulses being beforehand of equal amplitude and in quadrature, the pulses propagating towards the input 52 are found in phase opposition and of the same amplitude therefore cancel out while the pulses propagating towards the output 53 of the coupler, in phase, recombine to form the initial compressed pulse.
  • the device of FIG. 5 makes it possible, in particular thanks to the coupler, to compress high power pulses and can therefore be advantageously used for the compression of pulses in microwave transmission, for radar applications for example.

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Claims (8)

  1. Vorrichtung zur Komprimierung von frequenzmodulierten Impulsen, mit mindestens einer Übertragungsleitung (34, 56, 57), die mindestens eine Grenzfrequenz (fc) besitzt, wobei ein nicht übertragenes Signal reflektiert wird, und mit Trennmitteln (33, 51) zwischen einer ankommenden und einer reflektierten Welle, die durch die Übertragungsleitung (34, 56, 57) belastet werden und die zu komprimierenden Impulse zur Übertragungsleitung lenken sowie die von der Leitung reflektierten Impulse empfangen, wobei die Übertragungsleitung (34) aus einem Hohlleiter mit Rechteckquerschnitt besteht, in dem Metallplatten (4, 41, 58) parallel zum Querschnitt des Hohlleiters angeordnet sind, dadurch gekennzeichnet, daß die Veränderung der Grenzfrequenz (fc) und die Frequenzmodulation der zu komprimierenden Impulse aufeinander abgestimmt sind, daß die Metallplatten (4, 58) abwechselnd auf einer Seite (311) und auf der gegenüberliegenden Seite (312) des Hohlleiters und abwechselnd an einer oder der anderen der beiden den erstgenannten Seiten (311, 312) benachbarten Seiten (314, 315) befestigt sind, während ein Freiraum zwischen dem nicht befestigten Ende einer Platte (4, 58) und einer Seite verbleibt.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Frequenzmodulation linear ist.
  3. Vorrichtung nach einem beliebigen der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine Veränderung der Grenzfrequenz (fc) entlang der Ausbreitungsachse der Leitung (34, 56, 57) durch Veränderung des Abstands zwischen den Metallplatten (4, 41, 58) erhalten wird.
  4. Vorrichtung nach einem beliebigen der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine Veränderung der Grenzfrequenz (fc) entlang der Ausbreitungsachse der Leitung durch Veränderung der Geometrie der Metallplatten (4, 41, 58) erhalten wird.
  5. Vorrichtung nach einem beliebigen der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine Veränderung der Grenzfrequenz (fc) entlang der Ausbreitungsachse der Leitung durch eine Veränderung des Querschnitts des Hohlleiters erzielt wird.
  6. Vorrichtung nach einem beliebigen der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Trennmittel (33) von einem Mikrowellenzirkulator gebildet werden.
  7. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Trennmittel von einem Koppler (51) gebildet werden, der zwei Zweige (54, 55) besitzt, welche je durch eine Übertragungsleitung (56, 57) belastet sind, deren Grenzfrequenz (fc) entlang der Ausbreitungsachse variiert.
  8. Vorrichtung nach einem beliebigen der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Veränderung der Grenzfrequenz (fc) der Übertragungsleitung eine lineare Veränderung ist.
EP93401179A 1992-05-26 1993-05-07 Vorrichtung zur Impulskompression, insbesondere in Hochfrequenzsendung Expired - Lifetime EP0572293B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9206431A FR2691840B1 (fr) 1992-05-26 1992-05-26 Dispositif de compression d'impulsions, notamment en émission hyperfréquence.
FR9206431 1992-05-26

Publications (2)

Publication Number Publication Date
EP0572293A1 EP0572293A1 (de) 1993-12-01
EP0572293B1 true EP0572293B1 (de) 1997-08-27

Family

ID=9430195

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93401179A Expired - Lifetime EP0572293B1 (de) 1992-05-26 1993-05-07 Vorrichtung zur Impulskompression, insbesondere in Hochfrequenzsendung

Country Status (6)

Country Link
US (1) US5376903A (de)
EP (1) EP0572293B1 (de)
JP (1) JPH0774504A (de)
CA (1) CA2096915A1 (de)
DE (1) DE69313353T2 (de)
FR (1) FR2691840B1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6181221B1 (en) * 1998-10-06 2001-01-30 Hughes Electronics Corporation Reflective waveguide variable power divider/combiner
JP3652531B2 (ja) * 1998-11-26 2005-05-25 日立電線株式会社 スロットアンテナ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE504193A (de) * 1950-06-23
BE534394A (de) * 1953-12-31
NL261165A (de) * 1960-04-01
US3277403A (en) * 1964-01-16 1966-10-04 Emerson Electric Co Microwave dual mode resonator apparatus for equalizing and compensating for non-linear phase angle or time delay characteristics of other components
US3982215A (en) * 1973-03-08 1976-09-21 Rca Corporation Metal plated body composed of graphite fibre epoxy composite
US4864258A (en) * 1988-05-02 1989-09-05 The United States Of America As Represented By The Secretary Of The Army RF envelope generator

Also Published As

Publication number Publication date
FR2691840A1 (fr) 1993-12-03
JPH0774504A (ja) 1995-03-17
DE69313353T2 (de) 1998-01-02
FR2691840B1 (fr) 1994-08-26
CA2096915A1 (fr) 1993-11-27
EP0572293A1 (de) 1993-12-01
DE69313353D1 (de) 1997-10-02
US5376903A (en) 1994-12-27

Similar Documents

Publication Publication Date Title
EP0014115B1 (de) Abstimmbarer mit magnetostatischen Wellen arbeitender Hochfrequenzoszillator
EP0872954B1 (de) Akustische Oberflächenwellenanordnung mit Nahfeldkopplung und differentiellen Ein- und Ausgängen
EP0309350B1 (de) Messanordnung für Interdmodulationsprodukte eines Empfangssystem
CH623182A5 (de)
EP0626740A1 (de) Optische Dispersionsverzögerungsleitung und ihre Verwendung zum Verkürzen/Dehnen von Laserimpulsen
EP1815492A2 (de) Mikrowellengenerator mit oszillierender virtueller kathode
EP0511914B1 (de) Echoabstandmesssystem mit Eichungsvorrichtung
FR2601824A1 (fr) Filtre d'onde elastique de surface
EP1216493B1 (de) Leistungsverteiler in einer plasmavorrichtung
EP0185585B1 (de) Niederfrequenzstörungsunterdrückungsschaltung für ein Übertragungssystem, insbesondere zur l/f-Geräuschunterdrückung in einem Radar-Homodyn-Empfänger
EP0572293B1 (de) Vorrichtung zur Impulskompression, insbesondere in Hochfrequenzsendung
EP0002642A1 (de) Antennesystem hohen Trennvermögens
EP0493255B1 (de) Schutzsystem für eine elektronische Einrichtung
FR2889358A1 (fr) Filtre a elimination de bande a micro-ondes pour multiplexeur de sortie
EP0078188B1 (de) Breitband-Hochfrequenzanordnung zur Erzeugung von harmonischer gerader Ordnung eines Eingangssignals und deren Verwendung in einem H.F.-System
EP0005403A1 (de) In Einzelmode arbeitender, durch Änderung eines magnetischen Feldes abstimmbarer Hyperfrequenz-Oszillator
FR2522225A1 (fr) Dispositif de telecommunication a fibre optique unimodale
EP2260540A1 (de) Optische vorrichtung zur anwendung einer echtzeitverzögerung auf ein elektrisches funksignal und ihre verwendung bei der formung von sende- und empfangsstrahlen mit einer aktivantenne
EP0322062A1 (de) Radar mit Impulskompression und Anwendung in der Kartographie oder in der Meteorologie
FR2902932A1 (fr) Ensemble a ligne de transmission a dispersion non lineaire
EP0475802A1 (de) Klystron mit breitem Augenblicksband
FR2694447A1 (fr) Canon à électrons pour fournir des électrons groupés en impulsions courtes.
EP0016674B1 (de) Frequenzdiskriminator und damit stabilisierter Oszillator
FR2599854A1 (fr) Procede de mesure de la distance ambigue et radar doppler a impulsions mettant en oeuvre un tel procede
FR2653632A1 (fr) Transducteur d'ondes de surface unidirectionnel.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

17P Request for examination filed

Effective date: 19940117

17Q First examination report despatched

Effective date: 19951205

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REF Corresponds to:

Ref document number: 69313353

Country of ref document: DE

Date of ref document: 19971002

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970919

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050504

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20050506

Year of fee payment: 13

Ref country code: DE

Payment date: 20050506

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050511

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

Ref country code: FR

Ref legal event code: AU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060508

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060531

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061201

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060507

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070507