EP0570743B1 - Fibre optique dopée avec ions de terre rare - Google Patents

Fibre optique dopée avec ions de terre rare Download PDF

Info

Publication number
EP0570743B1
EP0570743B1 EP93107078A EP93107078A EP0570743B1 EP 0570743 B1 EP0570743 B1 EP 0570743B1 EP 93107078 A EP93107078 A EP 93107078A EP 93107078 A EP93107078 A EP 93107078A EP 0570743 B1 EP0570743 B1 EP 0570743B1
Authority
EP
European Patent Office
Prior art keywords
optical
refractive
doped
optical fiber
index area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93107078A
Other languages
German (de)
English (en)
Other versions
EP0570743A1 (fr
Inventor
Genji Tohmon
Hisanao Sato
Jun Ohya
Toshihiro Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of EP0570743A1 publication Critical patent/EP0570743A1/fr
Application granted granted Critical
Publication of EP0570743B1 publication Critical patent/EP0570743B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2302/00Amplification / lasing wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06791Fibre ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094065Single-mode pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1606Solid materials characterised by an active (lasing) ion rare earth dysprosium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass
    • H01S3/173Solid materials amorphous, e.g. glass fluoride glass, e.g. fluorozirconate or ZBLAN [ ZrF4-BaF2-LaF3-AlF3-NaF]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass
    • H01S3/176Solid materials amorphous, e.g. glass silica or silicate glass

Definitions

  • optical amplifiers which make use of rare-earth-ion-doped fibers, are are known in the art.
  • Er-ion-doped optical amplifiers for signal light at a band of 1.5 ⁇ m and Pr-ion-doped optical amplifiers and Nd-ion-doped optical amplifiers for signal light at a band of 1.3 ⁇ m are especially important.
  • the Nd-ion-doped optical amplifier is not able to efficiently make use of a conventional 1.31 ⁇ m signal light source, since the center of its gain range is positioned at 1.34 ⁇ m.
  • This optical amplifier uses an excitation light source corresponding to the absorption wavelength range created by the inherent energy level in Pr ions, whereby light excitation by means of the excitation light source creates the 3 H 4 - 1 G 4 transition and the action of amplification occurs due to population inversion between the 1 G 4 level and the 3 H 5 level.
  • Pr-ion-doped optical amplifier is detailed by Yasutake Ohishi et al. in "Pr 3+ -doped fluoride fiber amplifier operating at 1.31 ⁇ m" in Optics Letters, Vol. 16, No. 22, pages 1747-1749.
  • An excitation light source for the Pr-ion-doped optical amplifier may be either a Ti:Al203 laser, pumped by an Ar ion laser that oscillates at a wavelength of 1.017 ⁇ m, or a semiconductor laser with a wavelength of 1.017 ⁇ m.
  • the Ti:Al203 laser as an excitation light source used for the Pr-ion-doped optical amplifier, is large in size, which inhibits practical use.
  • the semiconductor laser at 1.017 ⁇ m has a quantum well structure and its output is around 50 mW. Further, this semiconductor laser is not suitable for mass production so that it has not been commercialized yet.
  • the 3 H 5 level (i.e., a lower level of population inversion) is lowered down to the ground state level by the nonradiative transition (phonon emission).
  • the rare earth ion when doped in a fluoride-based optical fiber, has a lesser probability of phonon emission as compared to when doped in a silica-based optical fiber. Accordingly, the increase in excitation light intensity makes the ion population at the 3 H 4 level (i.e., a lower level of population inversion) greater than that at the ground state level. Therefore, absorption transition to the 1 G 4 level (i.e., the upper level of the emission transition), lessens, resulting in the saturation of gain.
  • An optical amplifier by a Pr-ion-doped optical fiber has the above-described problems.
  • the rare-earth-ion-doped solid-state laser is described by M. C. Brierlery and C. A. Millar in Amplification and Lasing at 1350 nm in a neodymium doped fluorozirconate fibre" in Electronics Letters, Vol. 24, No. 7, pages 438-439, and by Y. Durteste el al. in "Amplification and Lasing at 1.3 ⁇ m in Praseodymium-doped Fluorozirconate Fibres", in Electronics Letters, Vol. 27, No. 8, pages 626-628.
  • the former article describes a fluorozirconate optical fiber doped with Nd ions, while on the other hand the latter one describes another doped with Pr ions.
  • Both, described in these articles, have a four-level transition structure in which excitation light is first absorbed, a transition to an upper level of population inversion by phonon emission occurs, another transition, during which light at a band of 1.3 ⁇ m is radiated, occurs, and a further transition from a lower level of population inversion to the ground state level by phonon emission occurs.
  • the probability of phonon emission is low if there is the energy difference greater than 1000 cm -1 , between energy levels of a fluorozirconate optical fiber. This leads to a longer lifetime at the lower level of population inversion, so that absorption action, with respect to the output of an excitation light source, becomes saturated as the excitation light source increases its output. As a result, the output of the solid-state laser becomes saturated.
  • the intensity of light at 1.3 ⁇ m is 4.5 mW when the output of the excitation light source is 260 mW.
  • the light intensity is 4.5 mW when the output of the excitation light source is 250 mW. Both solid-state lasers suffer from a low lasing efficiency.
  • a solid-state laser with a Nd-ion-doped optical fiber an Ar laser with an oscillation wavelength of 514 nm is used as an excitation light source, whereas a solid-state laser with a Pr-ion-doped optical fiber uses a Nd:YAG laser with an oscillation wavelength of 1.064 ⁇ m. These large-sized lasers, however, are impractical.
  • the above-described rare-earth-ion-doped solid-state lasers present problems that their excitation light source is impractical, the laser output at a band of 1.3 ⁇ m is low, and the laser output is saturated as excitation light intensity increases.
  • optical fibers made by doping an optical material with rare-earth-ions and optical amplifiers, optical transmission systems, and solid-state lasers using such optical fibers.
  • the present invention was made to provide a compact practical efficient optical fiber, optical amplifier, optical transmission system, and solid-state laser as defined by the features of claims 1,2,4,5, respectively, by allowing rare-earth-ions doped into an optical material to be pumped by a high-output semiconductor laser and by preventing such rare-earth-ions from being saturated at a lower level of population inversion.
  • This invention is made according to the knowledge that a Dy ion having an electrovalence of three can be excited to the absorption excitation level by a high-output 800 nm semiconductor laser and is not subject to saturation at a lower level of population inversion.
  • an optical material constituting a higher-refractive-index area in an optical fluorozirconate fiber is doped with Dy ions having an electrovalence of three.
  • An optical fluorozirconate fiber is disclosed in the invention and defined in Claim 1.
  • This optical fiber comprises a higher-refractive-index area and a lower-refractive-index area.
  • the difference in refractive index between the higher-refractive-index area and the lower-refractive-index area is 0.01-1 % with respect to the refractive index of the lower-refractive-index area.
  • An optical signal with a wavelength range of 800-1400 nm is propagated in a single transverse mode.
  • the higher-refractive-index area is formed of an optical material which is doped with 100-10000 ppm of Dy ions having an electrovalence of three.
  • optical signals can be transmitted in a single transverse mode.
  • an optical material is doped with above 100 ppm of Dy ions, excitation light can effectively absorbed, and because an optical material is doped with below 10000 ppm of Dy ions, the process of doping can easily be done.
  • the Dy ion having an electrovalence of three when doped into, for example, a fluorozirconate optical material, has an absorption excitation level between 7000 to 1300 cm -1 . Further, the Dy ion having an electrovalence of three is pumped with a high-output semiconductor laser with a light wavelength of 800 nm resulting in making a transition to the absorption excitation level.
  • the Dy ion does not return to its ground state level from a lower level of population inversion by a non-radiative transition (i.e., phonon emission). For this reason, the electron population at the lower level of population inversion will not increase so that no saturation occurs at the lower level of population inversion.
  • the invention therefore provides an improved optical fiber with a high-efficiency light-transmission performance.
  • An optical amplifier is disclosed in the invention and defined in Claim 2.
  • This optical amplifier comprises an excitation light source which radiates excitation light formed of semiconductor laser beams and includes a semiconductor laser module which is so modularized that the excitation light can be taken out of an output optical fiber; a coupler which includes an optical fiber coupler or an optical waveguide coupler to combine the excitation light radiated from the excitation light source with 1.3 ⁇ m-band signal light; and an optical fluorozirconate fiber comprising a higher-refractive-index area formed of an optical material doped with Dy ions having an electrovalence of three and a lower-refractive-index area wherein output light radiated from the coupler is incident upon an incident portion of the optical fiber, is amplified, and is emitted out from an emitting portion of the optical fiber.
  • the Dy ion is pumped with an 800 nm semiconductor laser and makes an energy level transition to the absorption excitation level. Further, the Dy ion suffers no saturation at a lower level of population inversion. This allows the optical amplifier to make use of high-output, compact, less power consumption semiconductor lasers (AlGaAs/GaAs lasers, for example) as an excitation light source. Since no saturation occurs at a lower level of population inversion, this allows an 800 nm semiconductor laser to obtain the same gain that a large-sized Ti:Al203 laser does.
  • An optical transmission system is disclosed in the invention and defined in Claim 4.
  • This optical transmission system comprises an excitation light source which radiates excitation light formed of semiconductor laser beams and includes a semiconductor laser module which is so modularized that the excitation light can be taken out of an output optical fiber; a signal light source which radiates signal light formed of 1.3 ⁇ m-band semiconductor laser beams with an oscillation wavelength range of 1.3-1.35 ⁇ m and includes a semiconductor laser module which is so modularized that the signal light can be taken out of an output optical fiber; an electric signal source for feeding the signal light source with electric signals; a first coupler including an optical fiber coupler or an optical waveguide coupler to combine the excitation light radiated from the excitation light source with the signal light radiated from the signal light source; an optical fluorozirconate fiber comprising a higher-refractive-index area formed of an optical material doped with Dy ions having an electrovalence of three and a lower-refractive-index area wherein output light radiated from the first couple
  • the present invention provides an optical transmission system which is compact, practical and efficient. Further, the present invention can provide an optical transmission system of 1.3 ⁇ m-band multiple-distribution type.
  • a solid-state laser is disclosed in the present invention and defined in Claim 5.
  • This solid-state laser comprises an excitation light source which radiates excitation light formed of 800 nm-band semiconductor laser beams with an oscillation wavelength range of 800-860nm; an optical fluorozirconate fiber comprising a higher-refractive-index area formed of an optical material doped with Dy ions having an electrovalence of three and a lower-refractive-index area wherein the excitation light from the excitation light source is incident upon the optical fiber; an incident portion reflector which is provided at an incident portion of the optical fiber and has a high reflection index for light with a wavelength range of 800-1000 nm as well as for light with a wavelength range of 1200-1400 nm; and an emitting portion reflector that is provided at an emitting portion of the optical fiber and has a high reflection index for light with a wavelength range of 800-1000 nm while having an 80-99.5% reflection index for light with a wavelength range of 1200-1400 nm, wherein
  • the present invention provides a compact solid-state laser with a higher lasing efficiency.
  • FIG. 1 An optical fiber of the first embodiment is explained by reference to Figure 1 that shows the energy level transition of a Dy ion doped into this optical fiber.
  • the energy level of a Dy ion doped into a fluorozirconate optical fiber is represented by reference numeral 101.
  • the absorption transition, nonradiative transition, and radiative transition in the case of an 830 nm excitation light are represented by reference numerals 111, 121, and 112, respectively.
  • reference numerals 102, 103, 104A, 104B, 104C, and 105 represent respective inherent energy levels in the Dy ion.
  • 102 donates the ground state level (i.e., the 6 H 15/2 level); 103 the metastable excitation levels (the 6 H 9/2 and 6 F 11/2 levels); 104A the 6 F 9/2 and 6 H 7/2 levels, 104B the 6 H 5/2 level; 104C the 6 F 7/2 level; and 105 the absorption excitation level (the 6 F 5/2 level).
  • the ordinate indicates the energy in cm -1 (kayser).
  • a fluorozirconate optical material constituting a core of a higher-refractive-index area in an optical fiber, or ZBLAN (ZrF 4 -BaF 2 -LaF 3 -AlF 3 -NaF) is doped with 100-10000 ppm of Dy ions (i.e., 100/1000000-10000/1000000 by weight). If excitation light with a wavelength of 830 nm, which is in the energy absorption range of the core of the optical fiber, is incident upon the core, the energy level of the Dy ion doped into the core makes a transition to the absorption excitation level 105 by the absorption transition 111 then to the metastable excitation level 103 by the nonradiative transition 121 (phonon emission). Then the energy level of the Dy ion makes a transition to the ground state level 102 via the radiative transition 112 during which light with a wavelength of 1.25-1.35 ⁇ m is radiated.
  • ZBLAN ZrF 4 -BaF
  • An optical amplifier of the second embodiment which uses an optical fiber of the first embodiment.
  • FIG. 2 shows a configuration of this optical amplifier.
  • a semiconductor laser module 201 which is so modularized that output light can be taken out of an output fiber 202, radiates an 800 nm-band semiconductor laser beam with an oscillation wavelength range of 800-850 nm for excitation.
  • An optical fiber coupler 203 is used to combine excitation light radiated from the semiconductor laser module 201 with signal light at a band of 1.3 ⁇ m.
  • An optical fiber 205 has a core doped with Dy ions, upon which output light from the optical fiber coupler 203 is incident.
  • the output fiber 202 of the semiconductor laser module 201 is connected to one of input terminals of the optical fiber coupler 203, and the excitation light from the semiconductor laser module 201 is shone upon the optical fiber 205.
  • this amplified output light is radiated from the optical fiber 205, passes through an isolator 210, and enters an optical fiber coupler 206.
  • signal light is radiated from the terminal of a signal light emission fiber 207 while at the same time 830 nm excitation light is radiated from an excitation light emission fiber 208.
  • the second embodiment uses an excitation method called the forward excitation in which excitation light enters the same incident terminal that signal light is incident upon.
  • excitation method called the forward excitation in which excitation light enters the same incident terminal that signal light is incident upon.
  • excitation method known as the backward excitation in which excitation light is shone upon an emitting terminal for signal light.
  • the output terminal of the semiconductor laser module 201 is connected to the emitting terminal of the excitation light emission fiber 208.
  • two excitation light semiconductor modules may be connected to both signal light incident and emitting terminals.
  • excitation light radiated from the semiconductor laser module 201 is 1 W, such excitation light is well absorbed into the optical fiber 205 hence the Dy ion doped makes an energy level transition to the absorption excitation level 105. Thereafter the Dy ion makes another transition to the metastable excitation level 103 by the nonradiative transition 121 (phonon emission).
  • the radiative transition 112 amplifies signal light at a band of 1.03 ⁇ m. It is proved, by the comparison of the input signal light intensity to the post-amplification output signal light intensity, that the obtained gain is 30-40 dB.
  • This optical transmission system uses the optical amplifier 200 of the second embodiment.
  • Figure 3 illustrates a layout of an optical transmission system of this embodiment.
  • corresponding structural elements to the structural elements 201, 202, 203, 204, 205, 206, 207, and 208 of the second embodiment are employed.
  • a semiconductor laser module 301 which is so modularized that output can be taken out of an output fiber 304, radiates a 1.35 ⁇ m-band semiconductor laser beam with an oscillation wavelength range of 1.3-1.35 ⁇ m for signal light.
  • An electric signal source 303 feeds the semiconductor laser module 301 with electric signals.
  • the output fiber 304 sends out the signal light from the semiconductor laser module 301.
  • An optical fiber 305 is used to transmit the signal light that is radiated from the terminal of the signal light emission fiber 207 after being amplified by the optical amplifier 200.
  • a distributor 306 distributes the signal light radiated from the optical fiber 305.
  • a transmission fiber 307 transmits the signal light distributed by the distributor 306.
  • a photodetector 308 receives the signal light from the transmission fiber 307.
  • the signal light, radiated from the semiconductor laser module 301, is modulated by an electric signal send out from the electric signal source 303, advances through the output fiber 304, and enters the optical amplifier 200 via the isolator 209 then via the input fiber 204.
  • the optical amplifier 200 performs the same function as described in the second embodiment.
  • the signal light, emitted from the signal light emission fiber 207 after being amplified, enters the optical fiber 305.
  • the signal light, radiated from the optical fiber 305 enters the distributor 306 that breaks up the signal light into eight, one of which is propagated through the transmission fiber 307 and is detected by the photodetector 308.
  • the gain of the optical amplifier 200 is high, which allows the distributor 306 to achieve multiple-distribution of the signal light.
  • a rare-earth-ion-doped solid-state laser of the fourth embodiment is described.
  • This rare-earth-ion-doped solid-state laser employs an optical fiber in accordance with the first embodiment.
  • Figure 4 shows a layout of the rare-earth-ion-doped solid-state laser of this embodiment.
  • a semiconductor laser module 201 which is so modularized that output can be taken out of an optical fiber, radiates an 800 nm-band semiconductor laser beam with an oscillation wavelength range of 800-850 nm for excitation.
  • An optical fiber coupler 402 guides excitation light, radiated from the semiconductor laser module 201, to an optical fiber 205.
  • a core of the optical fiber 205, which excitation light from the optical fiber coupler 402 is incident upon, is doped with Dy ions, as in the first embodiment.
  • an isolator for a wavelength of 1.3 ⁇ m, an optical fiber coupler that sends out 1.3 ⁇ m-band light, and an output fiber are represented by reference numerals 403, 401, and 404, respectively.
  • Excitation light with a wavelength of 830 nm, radiated from the semiconductor laser module 201, is introduced by way of the optical fiber coupler 402 into the optical fiber 205.
  • Light with a wavelength of 1.3 ⁇ m, radiated due to the radiative transition, is propagated through the optical fiber 205.
  • the isolator 403 is provided so that the light with a wavelength of 1.3 ⁇ m advances in one direction only.
  • the optical fiber coupler 401 is provided in the optical fiber 205 which has a branching ratio of 0.1-30% to 99.9-100% for light with a wavelength of 1.3 ⁇ m and a branching ratio of 0.1% to not less than 99.9% for light with a wavelength 830 nm. With such an arrangement, beams of 1.03 ⁇ m-band laser emerge at the output terminal of the optical fiber coupler 401.
  • the structure of this optical resonator is called the ring-type optical resonator which is characterized by its very thin wavelength linewidth.
  • the characteristic of the rare-earth-ion-doped solid-state laser of this embodiment is described below. If light radiated from the semiconductor laser module 201 is 1 W, an output of 60 mW is achieved for 1.3 ⁇ m laser beams. This means that the lasing efficiency is 6 %. On the other hand, for the case of a conventional Pr-ion-doped laser, if the output of an excitation light source is 2.5 W, an output of 4.5 mW is obtained, resulting in the lasing efficiency of 0.13 %. The lasing efficiency is improved 50 times in accordance with this embodiment.
  • the fourth embodiment employs a ring optical cavity resonator, which, however, may use a Fabry-Perot optical resonator to obtain more output, although the line width becomes wider.
  • the fluorozirconate material is used for an optical fiber, however, any crystal for laser, for example, SiO 2 may be used.
  • the optical amplifier of the second embodiment is described focusing on light amplification at a band of 1.3 ⁇ m for use in optical communication, however, it is understood that this optical amplifier may be used for light amplification at a different band.
  • a lower level of population inversion is given as the ground state level, however, a level higher than the ground state level may serve as a lower level of population inversion.
  • one level lower than the other pumped by excitation light is given as an upper level of population inversion.
  • a level higher than an excited level that is, the level by an upconversion process
  • 800 nm-band excitation light within the infrared region of the spectrum is made, by an upconversion process, available for the radiation or amplification of light within the visible region or the ultraviolet region. This results in a high-efficiency wavelength conversion.
  • the higher-refractive-index area of the optical fiber is doped with Dy ions
  • a crystal, glass, and semiconductor may be used as an optical material being doped with Dy ions.
  • other forms other than optical fibers may be used. This is because that the absorption and radiation of excitation light is carried out by dopant, not by a host material.
  • an 830 nm excitation light source is used to optically pump the 6 F 5/2 level of the Dy ion.
  • the reason for this is just that an 830 nm semiconductor laser module has now the industrial use.
  • any excitation process at other wavelengths may be used as long as there is an absorption level for a Dy ion.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Compositions (AREA)

Claims (5)

  1. Fibre optique en fluorozirconate, comprenant :
    une zone d'indice de réfraction plus élevé formée d'un matériau optique, qui est dopé avec des ions Dy, ayant une valence électronique de trois ; et
    une zone d'indice de réfraction plus faible ;
    la différence d'indice de réfraction entre la zone d'indice de réfraction plus élevé et la zone d'indice de réfraction plus faible est de 0,01 à 1 % par rapport à l'indice de réfraction de la zone d'indice de réfraction plus faible, de sorte qu'un signal optique dans une gamme de longueurs d'onde de 800 à 1400 nm est propagé en un mode transverse unique ; et
    la zone d'indice de réfraction plus élevé est formée d'un matériau optique qui est dopé avec 100 à 10000 ppm d'ions Dy ayant une valence électronique de trois.
  2. Amplificateur optique comprenant :
    une fibre optique en fluorozirconate ayant une zone d'indice de réfraction plus élevé, formée d'un matériau optique dopé avec des ions Dy ayant une valence électronique de trois, et une zone d'indice de réfraction plus faible;
    une source de lumière d'excitation destinée à exciter lesdits ions Dy qui émet une lumière d'excitation formée d'un faisceau laser à semi-conducteur et comprend un module de laser à semi-conducteur (201) modulé de manière à ce que la lumière d'excitation puisse être prélevée d'une fibre optique de sortie (202) ;
    un coupleur qui comprend un coupleur de fibre optique (203) ou un coupleur de guide d'ondes optique destiné à combiner la lumière d'excitation émise par la source de lumière d'excitation à une lumière de signal de bande 1,3 µm ; et
    la fibre optique en fluorozirconate dopée au Dy, dans lequel la lumière de sortie émise par le coupleur est incidente sur une partie incidente de la fibre optique dopée au Dy, est amplifiée et est émise par une partie d'émission de la fibre optique dopée au Dy,
    de sorte que la différence d'indice de réfraction entre la zone d'indice de réfraction plus élevé est de 0,01 à 1 % par rapport à l'indice de réfraction de la zone d'indice de réfraction plus faible et la zone d'indice de réfraction plus élevé est formée d'un matériau optique qui est dopé avec 100 à 10000 ppm d'ions Dy ayant une valence électronique de trois.
  3. Amplificateur optique selon la revendication 3, comprenant en outre un coupleur de fibre optique (203) ou un coupleur de guide d'ondes optique qui est connecté à la partie émettrice de la fibre optique dopée au Dy et qui divise la lumière émise par la partie émettrice en une lumière d'excitation et une lumière de signal.
  4. Système de transmission optique comprenant :
    une fibre optique en fluorozirconate ayant une zone d'indice de réfraction plus élevé, formée en matériau optique dopé avec des ions Dy ayant une valence électronique de trois, et une zone d'indice de réfraction plus faible ;
    une source de lumière d'excitation destinée à exciter lesdits ions Dy qui émet une lumière d'excitation formée d'un faisceau laser à semi-conducteur et comprend un module de laser à semi-conducteur (201) modulé de manière à ce que la lumière d'excitation puisse être prélevée d'une fibre optique de sortie (202) ;
    une source de lumière de signal qui émet une lumière de signal formée d'un faisceau laser à semi-conducteur de bande 1,3 µm avec une gamme de longueurs d'onde d'oscillation de 1,3 à 1,35 µm et qui comprend un module laser à semi-conducteur (301) modulé de manière à ce que la lumière de signal puisse être prélevée d'une fibre optique de sortie (304) ;
    une source de signal électrique (303) destinée à délivrer des signaux électriques à la source de lumière de signal ;
    un premier coupleur comprenant un coupleur de fibre optique (203) ou un coupleur de guide d'ondes optique destiné à combiner la lumière d'excitation émise par la source de lumière de signal ;
    la fibre optique en fluorozirconate, dans laquelle la lumière de sortie émise par le premier coupleur (203) est amplifiée et est transmise ;
    un deuxième coupleur comprenant un coupleur de fibre optique (206) ou un coupleur de guide d'ondes optique destiné à diviser la lumière de sortie émise par la fibre optique dopée au Dy en lumière d'excitation et lumière de signal ;
    un distributeur (306) destiné à distribuer la lumière de signal émise par le deuxième coupleur (206) ; et
    un photodétecteur (308) destiné à recevoir la lumière de signal distribuée au moyen du distributeur (306) ;
    de sorte que la différence d'indice de réfraction entre la zone d'indice de réfraction plus faible est de 0,01 à 1 % par rapport à l'indice de réfraction de la zone d'indice de réfraction plus faible et la zone d'indice de réfraction plus élevé est formée d'un matériau optique qui est dopé avec 100 à 10000 ppm d'ions Dy ayant une valence électronique de trois.
  5. Laser à l'état solide comprenant :
    une fibre optique en fluorozirconate ayant une zone d'indice de réfraction plus élevé, formée en matériau optique dopé avec des ions Dy ayant une valence électronique de trois, et une zone d'indice de réfraction plus faible ;
    une source de lumière d'excitation destinée à exciter lesdits ions Dy qui émet une lumière d'excitation formée d'un faisceau laser à semi-conducteur ;
    la fibre optique en fluorozirconate, dans lequel la lumière d'excitation provenant de la source de lumière d'excitation est incidente sur la fibre optique, et
    dans lequel la fibre optique a une différence d'indice de réfraction entre la zone d'indice de réfraction plus élevé de 0,01 à 1 % par rapport à l'indice de réfraction de la zone d'indice de réfraction plus faible, et la zone d'indice de réfraction plus élevé est formée d'un matériau optique qui est dopé avec 100 à 10000 ppm d'ions Dy ayant une valence électronique de trois,
    un réflecteur de partie incidente qui est disposé au niveau d'une partie incidente de la fibre optique et a un indice de réfraction élevé pour la lumière dans une gamme de longueurs d'onde de 800 à 1000 nm ainsi que pour la lumière dans une gamme de longueurs d'onde de 1200 à 1400 nm ; et
    un réflecteur de partie émettrice qui est disposé au niveau d'une partie émettrice de la fibre optique et a un indice de réfraction élevé pour la lumière dans une gamme de longueurs d'onde de 800 à 1000 nm tout en ayant un indice de réfraction de 80 à 99,5 % pour la lumière dans une gamme de longueurs d'onde de 1200 à 1400 nm ;
    dans lequel le réflecteur de partie émettrice et le réflecteur de partie incidente forment ensemble un résonateur optique.
EP93107078A 1992-05-08 1993-04-30 Fibre optique dopée avec ions de terre rare Expired - Lifetime EP0570743B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4116259A JPH05310440A (ja) 1992-05-08 1992-05-08 光ファイバ、光増幅器、光伝送システム及び固体レーザ
JP116259/92 1992-05-08

Publications (2)

Publication Number Publication Date
EP0570743A1 EP0570743A1 (fr) 1993-11-24
EP0570743B1 true EP0570743B1 (fr) 1997-07-16

Family

ID=14682679

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93107078A Expired - Lifetime EP0570743B1 (fr) 1992-05-08 1993-04-30 Fibre optique dopée avec ions de terre rare

Country Status (3)

Country Link
US (1) US5321708A (fr)
EP (1) EP0570743B1 (fr)
JP (1) JPH05310440A (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9025207D0 (en) * 1990-11-20 1991-01-02 British Telecomm An optical network
US5426656A (en) * 1993-01-25 1995-06-20 Matsushita Electric Industrial Co., Ltd. Laser element doped with rare earth ions, optical amplifier element doped with rare earth ions and rare-earth-ion-doped short-wavelength laser light source apparatus
GB2290150B (en) * 1994-04-22 1998-08-26 Univ Southampton Doped optical waveguide amplifier
US5541766A (en) * 1994-11-30 1996-07-30 At&T Corp. Gain control for optically amplified systems
US5629953A (en) * 1995-05-05 1997-05-13 The Board Of Trustees Of The University Of Illinois Chalcogenide optical pumping system driven by broad absorption band
US5568497A (en) * 1995-06-07 1996-10-22 The Board Of Trustees Of The University Of Illinois Chalcogenide optical pumping system having broad emission band
US5694500A (en) * 1995-10-23 1997-12-02 The Regents Of The University Of California Optical amplifier operating at 1.3 microns useful for telecommunications and based on dysprosium-doped metal chloride host materials
US5768012A (en) * 1997-03-07 1998-06-16 Sdl, Inc. Apparatus and method for the high-power pumping of fiber optic amplifiers
KR100322129B1 (ko) 1999-01-20 2002-02-04 윤종용 광증폭기용 광섬유
FR2811148B1 (fr) * 2000-06-30 2006-07-21 Thomson Csf Laser pompe et milieu laser optimise
US20030202770A1 (en) * 2002-01-03 2003-10-30 Garito Anthony F. Optical waveguide amplifiers
US6995899B2 (en) * 2002-06-27 2006-02-07 Baker Hughes Incorporated Fiber optic amplifier for oilfield applications
US20070258717A1 (en) * 2006-05-01 2007-11-08 Masaaki Hirano Optical device and wavelength conversion method and optical fiber suitable for them

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4701928A (en) * 1985-10-02 1987-10-20 Board Of Trustees, Leland J. Stanford University Diode laser pumped co-doped laser
JPH0822765B2 (ja) * 1986-07-03 1996-03-06 住友電気工業株式会社 フアラデ−効果の大きなフツ化物smフアイバ
JP2546711B2 (ja) * 1988-12-22 1996-10-23 国際電信電話株式会社 Erドープ光ファイバレーザ素子
JP3001675B2 (ja) * 1991-07-02 2000-01-24 住友電気工業株式会社 ファイバ増幅器及び導波路素子増幅器
JPH0529699A (ja) * 1991-07-24 1993-02-05 Sumitomo Electric Ind Ltd 光機能性ガラス
US5131069A (en) * 1991-08-12 1992-07-14 Corning Incorporated Fiber amplifier having modified gain spectrum

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FIBER OPTICS HANDBOOK, Hewlett Packard GmbH, Boeblingen Instruments, January 1988, Germany, pp. 80 - 83 and 181 - 182 *
pages 287 - 293 B. JAMES AINSLIE ET AL. 'The absorption and fluorescence spectra of rare earth ions in silica-based monomode fiber' *

Also Published As

Publication number Publication date
JPH05310440A (ja) 1993-11-22
US5321708A (en) 1994-06-14
EP0570743A1 (fr) 1993-11-24

Similar Documents

Publication Publication Date Title
US6370180B2 (en) Semiconductor-solid state laser optical waveguide pump
Minelly et al. Diode-array pumping of Er/sup 3+//Yb/sup 3+/Co-doped fiber lasers and amplifiers
Reekie et al. Diode-laser-pumped operation of an Er 3+-doped single-mode fibre laser
EP0570743B1 (fr) Fibre optique dopée avec ions de terre rare
Piehler et al. Laser-diode-pumped red and green upconversion fibre lasers
US20050100073A1 (en) Cladding-pumped quasi 3-level fiber laser/amplifier
US6411432B1 (en) Laser oscillator and laser amplifier
EP1483811B1 (fr) Procedes et arrengements relatifs a un amplificateur a fibre pompe
US5406410A (en) Optical fibre amplifier and laser
EP0439867B1 (fr) Amplificateur optique de puissance à fibre active dopée
US6940877B2 (en) High-power narrow-linewidth single-frequency laser
Roy et al. Noise and gain band management of thulium-doped fiber amplifier with dual-wavelength pumping schemes
US5157683A (en) Laser systems
US5638204A (en) Optical power amplifier with Al2 O3 and erbium doped active fiber
Roy et al. Optimal pumping schemes for gain-band management of thulium-doped fiber amplifiers
EP0470612B1 (fr) Fibre optique, guide d'ondes lumineuses et dispositif d'activité optique
Minelly et al. High power diode pumped single-transverse-mode Yb fiber laser operating at 978 nm
JPH05275792A (ja) ファイバレーザおよびファイバ増幅器
JPH0521875A (ja) 光増幅装置
US5539758A (en) Upconversion pumped thulium fiber amplifier and laser operating at 790 to 830 nm
JPH0521874A (ja) 光能動装置
US6650400B2 (en) Optical fibre amplifiers
JP2888623B2 (ja) 光増幅装置及び光発振装置
JPH11317560A (ja) 光増幅器およびレーザ発振器
JP2842674B2 (ja) 光増幅装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR GB

17P Request for examination filed

Effective date: 19940204

17Q First examination report despatched

Effective date: 19941221

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030408

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030430

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST