EP0569815B1 - Auswertungssystem für ein Elektrofilter - Google Patents

Auswertungssystem für ein Elektrofilter Download PDF

Info

Publication number
EP0569815B1
EP0569815B1 EP19930107164 EP93107164A EP0569815B1 EP 0569815 B1 EP0569815 B1 EP 0569815B1 EP 19930107164 EP19930107164 EP 19930107164 EP 93107164 A EP93107164 A EP 93107164A EP 0569815 B1 EP0569815 B1 EP 0569815B1
Authority
EP
European Patent Office
Prior art keywords
lines
power supply
transformer
voltage
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19930107164
Other languages
English (en)
French (fr)
Other versions
EP0569815A1 (de
Inventor
Norbert Dipl.-Ing. Grass
Gerhard Dipl.-Ing. Dönig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0569815A1 publication Critical patent/EP0569815A1/de
Application granted granted Critical
Publication of EP0569815B1 publication Critical patent/EP0569815B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques
    • B03C3/68Control systems therefor

Definitions

  • the invention relates to an arrangement for data acquisition and transmission in an electrostatic filter which is supplied with electrical energy via a high-voltage transformer.
  • the plugs can consist, for example, of a Schuko plug for the energy supply and a Sub-D plug or a BNC plug for the data line.
  • a common connector is used, which can be plugged in only in one position, for example due to its symmetry properties.
  • the data lines and the power supply lines are designed to be non-interchangeable, the lines cannot be confused with one another even without a plug.
  • the data lines can be designed, for example, as a ribbon cable or as a coaxial cable, while a conventional copper cable is used for the energy supply.
  • optical fibers can also be used as data lines. It has turned out that, contrary to the expectations of experts, optical fibers can withstand the mechanical loads in rough industrial operation if they are coated accordingly. If the data lines are designed as optical fibers, there is galvanic decoupling and thus potential isolation between the control cabinet and the transformer cabinet. As a result, it cannot happen that the measured value detection device is destroyed by a potential jump, such as occurs, for example, in the event of a filter breakdown. This results in higher operational reliability.
  • the data lines and the power supply lines are preferably routed in a common cable.
  • the mechanical load on the optical fibers is significantly reduced. This ensures that the data lines are not interrupted abruptly.
  • Additional lines e.g. to monitor the transformer temperature.
  • the high-voltage transformer is arranged in the transformer cabinet 1.
  • the secondary winding 2 of the high-voltage transformer is shown in FIG.
  • the output voltage of the secondary winding 2 is applied to the electrostatic filter (not shown) via the rectifier unit 4.
  • An output of the rectifier unit 4 is connected to earth via the series resistor 3.
  • the other output of the rectifier unit 4 is also connected to earth via the shunts 5, 6.
  • the signals tapped via lines 7, 8 are proportional to the filter current and the filter voltage.
  • the lines 7, 8 are fed to the conversion device 9.
  • the conversion device 9 internally has a voltage-controlled oscillator (VCO) which converts the small analog signals fed into frequency signals. These frequency signals are then used to drive two light-emitting diodes (not shown). The light signals are fed into the optical fibers 10, which are guided in the cable 11 to the control cabinet 12.
  • VCO voltage-controlled oscillator
  • a computing unit 13 is arranged in the control cabinet 12.
  • the computing unit 13 has, inter alia, a demodulator 14, which receives the light signals of the lines 10 and converts them into digital signals.
  • the digital values for filter current and filter voltage thus available in the computer 13 can then be processed further in the computer 13, for example for controlling the power supply device of the electrostatic filter, which is also not shown.
  • the computer 13 controls, inter alia, a display 15, by means of which the filter current and the filter voltage are displayed.
  • a power supply device 16 is also arranged in the control cabinet 12 and serves to supply power to the conversion device 9.
  • the power supply device 16 supplies the mains voltage of 220 volts.
  • the power supply device 16 consists of two connection terminals.
  • the mains voltage is fed to the conversion device 9 via the lines 17, which are also guided in the cable 11.
  • the voltage is then transformed down to typically 15 volts and rectified.
  • the cable 11 is fastened in the cabinets 1, 12 by means of cable clips, not shown.
  • the individual lines run from there to the data connections 18 and the energy supply connections 19.
  • the data connections 18 and the energy supply connections 19 are designed in a manner known per se.
  • the data lines 10 and the energy supply lines 17 can be distinguished at a glance and are therefore practically unmistakable. Furthermore, even if the power supply lines 17 are incorrectly connected to the data connection ends or vice versa, no contact is made. The energy supply lines 17 can therefore only be coupled to the energy supply connections 19. Likewise, the data lines 10 can only be coupled to the data connection ends.
  • the cable 11 has further lines 20 in addition to the data lines 10 and the power supply lines 17. These lines 20 are used to transmit further information from the transformer cabinet 1 to the control cabinet 12, for example the information about the transformer temperature.
  • the further lines 20 and their connection in the cabinets 1 and 12 were not shown in FIG. 1 for the sake of clarity. Because of the sheath 21 of the common cable 11, the optical waveguides 10 in particular are essentially not exposed to any mechanical loads.
  • optical fibers are used for data transmission, the detected current or voltage signals must be modulated. This compulsion requirement has also prevented the use of optical fibers for signal transmission because of the costs involved.
  • the overall combination of converting device 9, optical waveguides 10 and converting device 14 used is less expensive than previously known solutions. There are no longer any need for converters from 10 volts to 20 mA. Furthermore, in contrast to the past, only the secondary values have to be recorded, no longer the primary and secondary values.
  • the detected values are converted into frequency signals.
  • the frequency with which the LEDs are modulated is always different from zero. If the signal received by the demodulator 14 is no longer modulated, but rather uniform, this information can be used to detect an optical fiber break or another malfunction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Description

  • Die Erfindung betrifft eine Anordnung zur Meßwerterfassung und Übertragung bei einem Elektrofilter, das über einen Hochspannungstransformator mit elektrischer Energie versorgt wird.
  • Die Aufgabe der vorliegenden Erfindung besteht darin, hochspannungsseitige Meßwerte sicher einer Meßwertverarbeitung zuzuführen.
    Diese Aufgabe wird durch folgende Merkmale gelöst:
    • a) eine Meßwerterfassungseinrichtung für hochspannungsseitige Spannung und Strom mit einer nachgeschalteten Umsetzeinrichtung ist zusammen mit dem Hochspannungstransformator in einem Transformatorschrank angeordnet,
    • b) von der Umsetzeinrichtung im Transformatorschrank zu einem gesonderten Steuerschrank verlaufen als Lichtwellenleiter ausgebildete Datenleitungen, über die die modulierten Meßwerte von Strom und Spannung zu einer Meßwertverarbeitungseinrichtung übertragen werden,
    • c) die Umsetzeinrichtung wird durch vom Steuerschrank zum Transformatorschrank verlaufende Energieversorgungsleitungen mit elektrischer Energie versorgt,
    • d) Lichtwellenleiter und Energieversorgungsleitungen sind in einem gemeinsamen Kabel geführt.
  • Wenn die Leitungen vorkonfektionierte Stecker aufweisen, ist es auf besonders einfache Weise unmöglich gemacht, Fehlverdrahtungen vorzunehmen. Die Stecker können z.B. aus einem Schukostecker für die Energieversorgung und aus einem Sub-D-Stecker oder einem BNC-Stecker für die Datenleitung bestehen. Es besteht prinzipell aber auch die Möglichkeit, daß ein gemeinsamer Stecker verwendet wird, der z.B. aufgrund seiner Symmetrieeigenschaften nur in einer Lage steckbar ist.
  • Wenn die Datenleitungen und die Energieversorgungsleitungen unvertauschbar ausgebildetet sind, können die Leitungen auch ohne Stecker nicht miteinander verwechselt werden. Die Datenleitungen können beispielsweise als Flachbandkabel oder als Koaxialkabel ausgebildet sein, während für die Energieversorgung ein konventionelles Kupferkabel verwendet wird.
  • Überraschenderweise sind auch Lichtwellenleiter als Datenleitungen verwendbar. Es hat sich nämlich herausgestellt, daß entgegen den Erwartungen der Fachwelt Lichtwellenleiter den mechanischen Belastungen im rauhen Industriebetrieb durchaus gewachsen sind, wenn sie entsprechend ummantelt sind. Wenn die Datenleitungen als Lichtwellenleiter ausgebildet sind, ist eine galvanische Entkopplung und damit eine Potentialtrennung zwischen Steuerschrank und Transformatorschrank gegeben. Dadurch kann es nicht geschehen, daß durch einen Potentialsprung, wie er beispielsweise bei einem Filterdurchschlag auftritt, die Meßwerterfassungseinrichtung zerstört wird. Es ergibt sich also eine höhere Betriebssicherheit.
  • Die Datenleitungen und die Energieversorgungsleitungen sind vorzugsweise in einem gemeinsamen Kabel geführt. Durch die Führung der Lichtwellenleiter in einem stabilen, gemeinsamen Kabel wird nämlich die mechanische Belastung der Lichtwellenleiter entscheidend reduziert. Es ist also gewährleistet, daß die Datenleitungen nicht abrupt unterbrochen werden.
  • In dem gemeinsamen Kabel können auch noch weitere Leitungen, z.B. zur Überwachung der Transformatortemperatur, verlaufen.
  • Weitere Vorteile und Einzelheiten ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels, anhand der Zeichnungen sowie den weiteren Ansprüchen. Dabei zeigen:
    • FIG 1 eine Prinzipdarstellung des Auswertungssystems und
    • FIG 2 einen Querschnitt durch das verwendete Kabel.
  • Gemäß FIG 1 ist im Transformatorschrank 1 der Hochspannungstransformator angeordnet. Vom Hochspannungstransformator ist der Übersichtlichkeit halber in FIG 1 nur die Sekundärwicklung 2 dargestellt. Die Ausgangsspannung der Sekundärwicklung 2 wird über die Gleichrichtereinheit 4 an das nicht dargestellte Elektrofilter angelegt. Ein Ausgang der Gleichrichtereinheit 4 ist über den Reihenwiderstand 3 mit Erde verbunden. Der andere Ausgang der Gleichrichtereinheit 4 ist über die Nebenwiderstände 5, 6 ebenfalls mit Erde verbunden. Die über die Leitungen 7, 8 abgegriffenen Signale sind proportional zum Filterstrom und zur Filterspannung.
  • Die Leitungen 7, 8 werden der Umsetzeinrichtung 9 zugeführt. Die Umsetzeinrichtung 9 weist intern einen spannungsgesteuerten Oszillator (VCO) auf, der die eingespeisten Analog-Kleinsignale in Frequenzsignale umsetzt. Mit diesen Frequenzsignalen werden dann zwei nicht dargestellte Leuchtdioden angesteuert. Die Leuchtsignale werden in die Lichtwellenleiter 10 eingespeist, die im Kabel 11 zum Steuerschrank 12 geführt werden.
  • Im Steuerschrank 12 ist eine Recheneinheit 13 angeordnet. Die Recheneinheit 13 weist u. a. einen Demodulator 14 auf, der die Lichtsignale der Leitungen 10 empfängt und in Digital-Signale umsetzt. Die so im Rechner 13 zur Verfügung stehenden Digitalwerte für Filterstrom und Filterspannung können dann im Rechner 13 weiterverarbeitet werden, z.B. zur Steuerung der ebenfalls nicht dargestellten Stromversorgungseinrichtung des Elektrofilters. Der Rechner 13 steuert u. a. eine Anzeige 15 an, mittels derer der Filterstrom und die Filterspannung angezeigt werden.
  • Im Steuerschrank 12 ist ferner eine Stromversorgungseinrichtung 16 angeordnet, die der Stromversorgung der Umsetzeinrichtung 9 dient. Die Stromversorgungseinrichtung 16 liefert die Netzspannung von 220 Volt. Im einfachsten Fall besteht die Stromversorgungseinrichtung 16 aus zwei Anschlußklemmen. Die Netzspannung wird über die Leitungen 17, die ebenfalls im Kabel 11 geführt sind, der Umsetzeinrichtung 9 zugeführt. In der Umsetzeinrichtung 9 wird die Spannung dann auf typisch 15 Volt heruntertransformiert und gleichgerichtet.
  • Das Kabel 11 ist in den Schränken 1, 12 mittels nicht dargestellter Kabelschellen befestigt. Von dort verlaufen die einzelnen Leitungen zu den Datenanschlüssen 18 und den Energieversorgungsanschlüssen 19. Die Datenanschlüsse 18 und die Energieversorgungsanschlüsse 19 sind dabei in an sich bekannter Weise ausgebildet.
  • Wegen der unterschiedlichen Art der Daten- bzw. Energieübertragung, nämlich im einen Fall Licht, im anderen Fall Strom, sind die Datenleitungen 10 und die Energieversorgungsleitungen 17 auf einen Blick unterscheidbar und daher praktisch unvertauschbar. Weiterhin wird selbst bei einem fehlerhaften Anschließen der Energieversorgungsleitungen 17 an die Datenanschlußenden bzw. umgekehrt kein Kontakt geschaffen. Die Energieversorgungsleitungen 17 können also nur an die Energieversorgungsanschlüsse 19 angekoppelt werden. Ebenso können die Datenleitungen 10 nur an die Datenanschlußenden angekoppelt werden.
  • Wenn z. B. an die Lichtwellenleiter 10 vorkonfektionierte Stecker angeschlossen sind, kann auch die Möglichkeit eines fehlerhaften Anschließens der Energieversorgungsleitungen 17 an die Datenanschlüsse 18 bzw. der Datenleitungen 10 an die Energieversorgungsanschlüsse 19 mit Sicherheit ausgeschlossen werden.
  • Gemäß FIG 2 weist das Kabel 11 außer den Datenleitungen 10 und den Energieversorgungsleitungen 17 noch weitere Leitungen 20 auf. Mittels dieser Leitungen 20 werden weitere Informationen vom Transformatorschrank 1 zum Steuerschrank 12 übertragen, beispielsweise die Information über die Transformatortemperatur. Die weiteren Leitungen 20 und ihr Anschluß in den Schränken 1 und 12 wurde der Übersichtlichkeit halber jedoch in FIG 1 nicht dargestellt. Aufgrund des Mantels 21 des gemeinsamen Kabels 11 sind insbesondere die Lichtwellenleiter 10 im wesentlichen keinen mechanischen Belastungen ausgesetzt.
  • Da, wie oben erwähnt, Lichtwellenleiter zur Datenübertragung verwendet werden, müssen die erfaßten Strom- bzw. Spannungssignale zwangsweise moduliert werden. Auch dieser Zwang zur Modulation hat wegen der damit verbundenen Kosten bisher von der Verwendung von Lichtwellenleitern zur Signalübertragung abgehalten. Überraschenderweise ist jedoch trotzdem die verwendete Gesamtkombination von Umsetzeinrichtung 9, Lichtwellenleitern 10 und Umsetzeinrichtung 14 kostengünstiger als bisher bekannte Lösungen. Es werden nämlich keine Umsetzer von 10 Volt auf 20 mA mehr benötigt. Weiterhin müssen im Gegensatz zu früher nur noch die sekundärseitigen Werte erfaßt werden, nicht mehr die primär- und die sekundärseitigen Werte.
  • Wie ebenfalls obenstehend erwähnt, werden die erfaßten Werte in Frequenzsignale umgesetzt. Die Frequenz, mit der die Leuchtdioden moduliert werden, ist stets von Null verschieden. Wenn das vom Demodulator 14 emfangene Signal also nicht mehr moduliert ist, sondern gleichförmig, kann diese Information zur Erkennung eines Lichtwellenleiterbruchs bzw. einer sonstigen Fehlfunktion verwendet werden.

Claims (3)

  1. Anordnung zur Meßwerterfassung und Übertragung bei einem Elektrofilter, das über einen Hochspannungstransformator (2) mit elektrischer Energie versorgt wird, mit folgenden Merkmalen:
    a) eine Meßwerterfassungseinrichtung (3, 5, 6) für hochspannungsseitige Spannung und Strom mit einer nachgeschalteten Umsetzeinrichtung (9) ist zusammen mit dem Hochspannungstransformator (2) in einem Transformatorschrank (1) angeordnet,
    b) von der Umsetzeinrichtung im Transformatorschrank (1) zu einem gesonderten Steuerschrank (12) verlaufen als Lichtwellenleiter ausgebildete Datenleitungen (10), über die die modulierten Meßwerte von Strom und Spannung zu einer Meßwertverarbeitungseinrichtung (13) übertragen werden,
    c) die Umsetzeinrichtung (9) wird durch vom Steuerschrank (12) zum Transformatorschrank (1) verlaufende Energieversorgungsleitungen (17) mit elektrischer Energie versorgt,
    d) Lichtwellenleiter (10) und Energieversorgungsleitungen (17) sind in einem gemeinsamen Kabel geführt.
  2. Anordnung nach Anspruch 1, bei der Datenleitungen (10) und Energieversorgungsleitungen (17) unvertauschbar ausgebildet sind.
  3. Anordnung nach Anspruch 1, bei der Datenleitungen (10) und Energieversorgungsleitungen mit vorkonfektionierten Steckern versehen sind.
EP19930107164 1992-05-14 1993-05-03 Auswertungssystem für ein Elektrofilter Expired - Lifetime EP0569815B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE9206555U 1992-05-14
DE9206555U DE9206555U1 (de) 1992-05-14 1992-05-14 Auswertungssystem für ein Elektrofilter

Publications (2)

Publication Number Publication Date
EP0569815A1 EP0569815A1 (de) 1993-11-18
EP0569815B1 true EP0569815B1 (de) 1997-08-20

Family

ID=6879515

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19930107164 Expired - Lifetime EP0569815B1 (de) 1992-05-14 1993-05-03 Auswertungssystem für ein Elektrofilter

Country Status (3)

Country Link
EP (1) EP0569815B1 (de)
DE (2) DE9206555U1 (de)
DK (1) DK0569815T3 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004036210B4 (de) * 2004-07-26 2006-08-31 Siemens Ag Steuereinrichtung sowie Steuerverfahren für Elektrofilter mit einer konfigurierbaren Anzahl paralleler und serieller Filterzonen

Also Published As

Publication number Publication date
EP0569815A1 (de) 1993-11-18
DE9206555U1 (de) 1992-07-02
DE59307144D1 (de) 1997-09-25
DK0569815T3 (da) 1998-04-06

Similar Documents

Publication Publication Date Title
DE69908664T2 (de) Detektor für hohe elektrische ströme
WO1996029608A1 (de) Aktives optisches strommess-system
DE1908153A1 (de) Faser-optisches Lichtleitersystem
EP2132870A2 (de) Motoranordnung
EP3872503B1 (de) Überwachungsvorrichtung und verfahren zur isolationsüberwachung eines ungeerdeten elektrischen systems mit geerdet betriebener flüssigkeitskühlung
DE212013000286U1 (de) Messsystem
DE102018101606A1 (de) Strommessmodul für Photovoltaik-Verbinderband
DE3224623C2 (de)
DE3213527A1 (de) Datenuebertragungssystem
WO1988007184A1 (en) Device employing a tensile force meter for measuring tensile force
DE8308842U1 (de) Meßsystemeinheit für einen Computertomographen
EP0569815B1 (de) Auswertungssystem für ein Elektrofilter
EP0909121B1 (de) Elektronisches Ein-/Ausgabemodul
DE69118483T2 (de) Magnetischer Durchflussmesser
DE19925349B4 (de) Steckdosenleiste
DE2125403A1 (de) Signalubertragungsleitung fur auto matische Meßuberwachungssysteme
EP0743528B1 (de) Vorrichtung zum Messen der Netzspannung für Schienenfahrzeuge
EP0035700A1 (de) Digitale elektrische Winkelmesseinrichtung
EP3380852B1 (de) Induktiver strommesswandler
DE19543363A1 (de) Meßwandleranordnung
DE19811366A1 (de) Stromsensor
DE102020121329B4 (de) Vorrichtung und Verfahren zur Temperaturüberwachung einer Leistungsübertragungsstrecke sowie Kraftfahrzeug mit einer derartigen Vorrichtung
DE202010016873U1 (de) Schaltungsanordnung für eine Fotovoltaikanlage sowie eine Anschlussvorrichtung und ein Kabel hierfür
WO2023046636A1 (de) Stromversorgungseinrichtung
DE4413690A1 (de) Regelbare Spannungsversorgung für einen Ozonisator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE DK FR GB IT NL SE

17P Request for examination filed

Effective date: 19931206

17Q First examination report despatched

Effective date: 19950404

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE DK FR GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19970820

REF Corresponds to:

Ref document number: 59307144

Country of ref document: DE

Date of ref document: 19970925

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971103

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090430

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090520

Year of fee payment: 17

BERE Be: lapsed

Owner name: *SIEMENS A.G.

Effective date: 20100531

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20101201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101201

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20120521

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20120507

Year of fee payment: 20

Ref country code: GB

Payment date: 20120510

Year of fee payment: 20

Ref country code: FR

Payment date: 20120604

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120720

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59307144

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20130502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130502

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130504