EP0567388B1 - Procédé pour la séparation d'un composé organique volatil d'un gaz - Google Patents
Procédé pour la séparation d'un composé organique volatil d'un gaz Download PDFInfo
- Publication number
- EP0567388B1 EP0567388B1 EP93401017A EP93401017A EP0567388B1 EP 0567388 B1 EP0567388 B1 EP 0567388B1 EP 93401017 A EP93401017 A EP 93401017A EP 93401017 A EP93401017 A EP 93401017A EP 0567388 B1 EP0567388 B1 EP 0567388B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- absorption
- column
- liquid
- gas
- absorption column
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012855 volatile organic compound Substances 0.000 title claims description 40
- 238000000034 method Methods 0.000 title claims description 22
- 238000010521 absorption reaction Methods 0.000 claims description 111
- 239000007788 liquid Substances 0.000 claims description 72
- 238000003795 desorption Methods 0.000 claims description 65
- 238000011084 recovery Methods 0.000 claims description 41
- 150000002894 organic compounds Chemical class 0.000 claims description 14
- 238000004064 recycling Methods 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 5
- 239000007789 gas Substances 0.000 description 54
- 229930195733 hydrocarbon Natural products 0.000 description 40
- 150000002430 hydrocarbons Chemical class 0.000 description 40
- 239000004215 Carbon black (E152) Substances 0.000 description 36
- 238000010586 diagram Methods 0.000 description 7
- 230000033228 biological regulation Effects 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 230000005587 bubbling Effects 0.000 description 3
- 239000003502 gasoline Substances 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000003546 flue gas Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical class O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- -1 fatty acid esters Chemical class 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 150000003021 phthalic acid derivatives Chemical class 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1418—Recovery of products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1406—Multiple stage absorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1412—Controlling the absorption process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1487—Removing organic compounds
Definitions
- the present invention relates to a technology by which a volatile organic compound can be recovered effectively from a mixed gas containing the organic compound in the state of gas to avoid the compound from being diffused in atmospheric air.
- Volatile hydrocarbons are diffused from storage tanks in atmospheric air when atmospheric temperature rises. Also, the volatile hydrocarbons are diffused in atmospheric air when they are flowed into storage tanks or when they are filled in tank lorries from storage tanks. Diffused hydrocarbons are said to form substances causing "photochemical smog". Accordingly, regulations have been carried out in Japan and other countries to control the concentration of the hydrocarbons in an exhaust or flue gas, and severer regulations have lately been issued in several countries, the United States being a leading country.
- a standard hydrocarbon concentration in the exhaust or flue gases at outlets is established under a prefectural regulation in Nagoya, Japan, which is the severest regulation in the past and by which the hydrocarbon concentration at the outlets is prescribed to be lower than 5% by volume (corresponding to about 80% by volume in terms of the recovery (as referred hereinafter) of hydrocarbon from a gas having a hydrocarbon concentration of 21% by volume at inlets).
- VOC volatile organic compound
- the hydrocarbon vapor In the adsorption method, however, there is a danger of firing since a large amount of the heat of adsorption will be generated.
- the hydrocarbon vapor In the low temperature processing method, the hydrocarbon vapor must be cooled down to a temperature lower than -35°C in order to increase the recovery percentage since the vapor has a very low liquefying temperature and thus this method is economically disadvantageous.
- Suitable liquids used for the absorption are ones which are insoluble in water, have a strong absorption power to hydrocarbon gas, and having such a low vapor pressure such that the liquids will not be lost when hydrocarbon is separated for recovery.
- the liquids comprise, as a major component, at least one compound selected from the group consisting of phthalic acid esters, silicic acid esters, phosphoric acid esters, fatty acid esters, alkylbenzene, alkylnaphthalene, and ⁇ -olefins .
- the liquids may additionally contain less than 75% by weight of a refined mineral oil having a viscosity of 5 to 20 cst at a temperature of 37.8°C, a boiling point of 250 to 450°C, and an average molecular weight of 200 to 350.
- the hydrocarbon concentration at the outlets can be controlled lower than 5% by volume by using a system composed of an absorption column, desorption column, recovery column, and vacuum pump.
- the absorption method has a defect that a severer standard regulated under, for example, the EPA in the United States can not be cleared.
- the volatile organic compound will remain in the desorption column in an amount corresponding to the compound's vapor pressure under a reduced pressure at the stage of regeneration of the absorption liquid in the desorption column, and the remaining compound will obstruct the increase of the recovery percentage of volatile organic compound in the absorption column.
- the object of the present invention is to provide a novel method for separating or recovering a volatile organic compound from a gas or vapor of gasoline, kerosene, benzene, or alcohol discharged from storage tanks, tank trucks, or tank lorries at a recovery of 90 to 96% by volume.
- gas as used hereinafter is intended to have the meaning of gas, vapor and mist.
- the present invention relates to processes for separating a volatile organic compound from a gas containing the organic compound according to claims 1-4.
- Fig. 1 is a graph showing the relationship between the pressure in a desorption column and a concentration of a volatile organic compound contained in a gas to be introduced into a first absorption column.
- Fig. 2 is a first flow diagram of a system for conducting the process according to the present invention.
- Fig. 3 is a second flow diagram of a system for conducting the process according to the present invention.
- Fig. 4 is a flow diagram of a modified system for conducting the process of the present invention.
- P is an operating pressure (mmHg) in a first and second desorption column
- f is a concentration (molar fraction) of a volatile organic compound in a gas to be introduced into the first absorption column at a lower part in the first absorption column.
- the equation A shows the relationship between the concentration of a volatile organic compound in the feed gas and an operating pressure at the first and second desorption column keeping out of explosion limit of the second desorption column outlet gas by regulating air injection rate to the second desorption column at a recovery of 95% by volume of a volatile organic compound.
- the equation A' shows the relationship between the concentration of a volatile organic compound in the feed gas and an operating pressure at the first and second desorption column keeping out of explosion limit of the second desorption column outlet gas by regulating air injection rate to the second desorption column at a recovery of 90% by volume of a volatile organic compound.
- the amount of entrainment of the liquid accompanied with the evaporation of hydrocarbon will increase with increase in the amount of volatile organic compound contained in the rich oil, and 35% by mole (10% by weight) is an upper limit of the amount of the volatile organic compound which is permitted to contain in the rich oil, derived empirically through actual operation and from the view point of safety. When the amount is more than 35% by mole, the entrainment will occur such an extent that operation is impossible.
- the concentration of the hydrocarbon in the rich oil will decrease with decrease in the concentration of the hydrocarbon in the gas to be fed to the first absorption column, since the amount of hydrocarbon accumulated in the liquid will decrease.
- the pressure in the first desorption column necessary to secure the amount in the liquid at lower than 35% by mole may become higher with decrease in the concentration of the hydrocarbon in the gas to be fed into the first absorption column.
- the second desorption column is operated at the same pressure as the first desorption column.
- the line C shows the relationship between operating pressure P necessary when the air is not bubbled and concentration f of a volatile organic compound in the gas to be fed into the first absorption column at a lower part in the first absorption column at a recovery of the volatile organic compound of 95% by volume.
- Fig. 2 is a first flow diagram of a system for conducting a first and third embodiments of the present invention.
- a gas containing the organic compound for example a hydrocarbon gas
- a liquid for first absorption introduced through a line 13 into the first absorption column at an upper part in the first absorption column to separate a major portion of the organic compound from the gas.
- the gas thus treated is introduced through a line 14 into a second absorption column at a lower part in the second absorption column 2.
- the liquid which absorbed the volatile organic compound in the first absorption column 1 is introduced through a line 12 into a first desorption column 3 at an upper part in the first desorption column 3.
- Operating conditions for the first desorption column are determined so that the conditions of the present invention are satisfied.
- the volatile organic compound is separated from the absorption liquid.
- Absorption liquid from which the volatile organic compound was separated is recycled through a line 13 back to the first absorption column 1 as the liquid for first absorption.
- the gas containing the organic compound separated in the second desorption column is fed through lines 17 and 19 to a column 5 for recovering the volatile organic compound.
- a liquid for recovering the volatile organic compound is supplied through a line 20 to an upper part in the recovery column 5.
- the volatile organic compound is recovered from a line 21, and a treated gas is recycled backed to the first absorption column 1.
- a liquid (second absorption liquid) which absorbed a remaining organic compound in the second absorption column is introduced through a line 15 into a second desorption column 4 at an upper part in the second desorption column.
- the second absorption liquid from which the volatile organic compound was separated is recycled through a line 16 back to the second absorption column 2.
- the gaseous organic compound separated in the second desorption column is fed through lines 17 and 19 to the column 5 for recovering the volatile organic compound.
- Fig. 3 is a second flow diagram of a system for conducting a second and fourth embodiments of the present invention.
- the diagram is the same as that of Fig. 2 except that an air introducing pipe 23 for air bubbling is connected to a lower part in the second desorption column 4.
- Fig. 4 is a flow diagram of a modified system of the process of the present invention in which a third desorption column 6 is provided below the second desorption column 4 shown in Fig. 3, and air bubbling is conducted in a third desorption column 6.
- the relationship between the pressure (regeneration pressure) in each of the desorption columns and the concentration of a so-called inert component other than the hydrocarbon is not affected even if a gas flow rate was varied.
- air introducing rate and total flow rate in a vacuum pump are varied in proportion to gas flow rate.
- Example 1 (Tables 4 to 5), air was bubbled in the second desorption column at a gas flow rate of 1000 Nm 3 /hr at the inlet in the first absorption column, and in Example 3 (Tables 8 to 9), air was not bubbled but the inlet gas flow rate was the same as in Example 1.
- the recovery of the hydrocarbon was aimed at 90% by volume in both Examples.
- Example 1 The pressure in the first and second desorption columns in Example 1 (Tables 4 to 5) was higher than that in Example 3 (Tables 8 to 9) since air was bubbled in Example 1.
- the necessary gas flow rate of vacuum pump was 98 m 3 /min at maximum in Example 1 (Tables 4 to 5) while the necessary gas flow rate was 110 m 3 /min in Example 3 (Tables 8 to 9) at maximum. This indicates that the necessary gas flow rate of a vacuum pump was higher by 12 m 3 /min in Example 3 wherein air was not bubbled.
- Example 2 (Tables 6 to 7), air was bubbled in the second desorption column at a gas flow rate of 1000 Nm 3 /hr at the inlet in the first absorption column, and in Example 4 (Tables 10 to 11), air was not bubbled but the inlet gas flow rate was the same as in Example 2.
- the recovery of the hydrocarbon was aimed at 95% by volume in both Examples.
- Example 2 The pressure in the first and second desorption columns in Example 2 (Tables 6 to 7) was higher than that in Example 4 (Tables 10 to 11) since air was bubbled in Example 2.
- the necessary gas flow rate of vacuum pump was 160 m 3 /min at maximum in Example 2 (Tables 6 to 7) while the necessary gas flow rate was 200 m 3 /min in Example 4 (Tables 10 to 11) at maximum. This indicates that the necessary gas flow rate of a vacuum pump was higher by 40 m 3 /min in Example 4 wherein air was not bubbled.
- Example 2 As in the cases in Examples 2 and 4, calculation was performed for the number of necessary vacuum pumps having a rated capacity of 50 m 3 /min (at a suction pressure of 25 mmHg) from the data shown in Tables 6 to 7 and 10 to 11 to obtain the results that 2.5 to 3.8 vacuum pumps are necessary to be used in Example 2 (Tables 6 to 7) while 3.1 to 7.1 vacuum pumps are necessary in Example 4 (Tables 10 to 11) as shown in detail in Table 2. Table 2 Number of necessary vacuum pumps (rated capacity 50 m 3 /min, gas recovery 95% by volume) Hydrocarbon concentration in feeding gas (%) 10.6 12.7 16.0 19.9 24.6 30 36.5 40.2 Example 4 Air was not bubbled. 7.1 5.8 5.1 4.5 4.4 3.6 3.3 3.1 Example 2 Air was bubbled. 3.8 3.5 3.4 3.3 2.8 2.7 2.5 2.5
- a rational or effective plant can be designed by obtaining best operating conditions for a minimum plant cost through a simulation at a required gas recovery to be aimed.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Gas Separation By Absorption (AREA)
- Treating Waste Gases (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Claims (4)
- Un procédé permettant de recueillir plus de 90 % en volume de composés organiques volatils à partir d un gaz les contenant et qui consiste àintroduire un liquide dabsorption dans une partie supérieure de la première colonne dabsorption pour que le liquide vienne en contact à contre-courant avec le gaz de telle sorte quil absorbe une fraction prépondérante des composés organiques présents dans le gaz,introduire le gaz qui sort de la première colonne dabsorption et qui contient les composés organiques restants dans une partie inférieure dune deuxième colonne dabsorption,introduire un autre liquide dabsorption dans une partie supérieure de la seconde colonne dabsorption de telle sorte que le liquide vienne en contact à contre-courant avec le gaz provenant de la première colonne dabsorption,envoyer le premier liquide dabsorption qui sort d'une partie inférieure de la première colonne dabsorption à une partie supérieure dune première colonne de désorption,recycler le liquide qui sort d'une partie inférieure de la première colonne de désorption à nouveau dans la première colonne dabsorption, en tant que liquide dabsorption,envoyer le liquide dabsorption qui sort de la partie inférieure de la deuxième colonne dabsorption à une partie supérieure dune deuxième colonne de désorption,recycler le liquide qui sort de la partie inférieure de la deuxième colonne de désorption à nouveau à la deuxième colonne dabsorption en tant que liquide dabsorption, etrecueillir les composés organiques volatils restants,caractérisé en ce qu'il consiste à maintenir les pressions de fonctionnement dans la première et la deuxième colonne de désorption au même niveau P (mm de Hg), et à régler la pression P (mm de Hg) et la concentration f (fraction molaire) des composés organiques volatils qui sont présents dans le gaz à charger dans la première colonne dabsorption, de sorte qu'à la fois les trois formules soient satisfaites:
- Un procédé permettant de recueillir plus de 90 % en volume de composés organiques volatils à partir dun gaz les contenant et qui consiste àintroduire un liquide dabsorption dans une partie supérieure de la première colonne dabsorption pour que le liquide vienne en contact à contrecourant avec le gaz de telle sorte quil absorbe une fraction prépondérante des composés organiques présents dans le gaz,introduire le gaz qui sort de la première colonne dabsorption et qui contient les composés organiques restants dans une partie inférieure dune deuxième colonne dabsorption,introduire un autre liquide dabsorption dans une partie supérieure de la seconde colonne dabsorption de telle sorte que le liquide vienne en contact à contre-courant avec le gaz provenant de la première colonne dabsorption,envoyer le premier liquide dabsorption qui sort d'une partie inférieure de la première colonne dabsorption à une partie supérieure dune première colonne de désorption,recycler le liquide qui sort d'une partie inférieure de la première colonne de désorption à nouveau dans la première colonne dabsorption, en tant que liquide dabsorption,envoyer le liquide dabsorption qui sort de la partie inférieure de la deuxième colonne dabsorption à une partie supérieure dune deuxième colonne de désorption,recycler le liquide qui sort de la partie inférieure de la deuxième colonne de désorption à nouveau à la deuxième colonne dabsorption en tant que liquide dabsorption, etrecueillir les composés organiques volatils restantscaractérisé en ce qu'il consiste à maintenir les pressions de fonctionnement de la première et de la deuxième colonne de désorption au même niveau P (mm de Hg), à introduire de lair à la partie inférieure de la deuxième colonne de désorption et à régler la pression P (mm de Hg) et la concentration f (fraction molaire) des composés organiques volatils qui sont présents dans le gaz à charger dans la première colonne dabsorption de sorte qu'à la fois les trois équations suivantes soient vérifiées:
- Un procédé permettant de recueillir plus de 95 % en volume de composés organiques volatils à partir dun gaz les contenant et qui consiste àintroduire un liquide dabsorption dans une partie supérieure de la première colonne dabsorption pour que le liquide vienne en contact à contrecourant avec le gaz de telle sorte quil absorbe une fraction prépondérante des composés organiques présents dans le gaz,introduire le gaz qui sort de la première colonne dabsorption et qui contient les composés organiques restants dans une partie inférieure dune deuxième colonne dabsorption,introduire un autre liquide dabsorption dans une partie supérieure de la seconde colonne dabsorption de telle sorte que le liquide vienne en contact à contre-courant avec le gaz provenant de la première colonne dabsorption,envoyer le premier liquide dabsorption qui sort d'une partie inférieure de la première colonne dabsorption à une partie supérieure dune première colonne de désorption,recycler le liquide qui sort d'une partie inférieure de la première colonne de désorption à nouveau dans la première colonne dabsorption, en tant que liquide dabsorption,envoyer le liquide dabsorption qui sort de la partie inférieure de la deuxième colonne dabsorption à une partie supérieure dune deuxième colonne de désorption,recycler le liquide qui sort de la partie inférieure de la deuxième colonne de désorption à nouveau à la deuxième colonne dabsorption en tant que liquide dabsorption, etrecueillir les composés organiques volatils restants,caractérisé en ce qu'il consiste à maintenir les pressions de fonctionnement, P (mm de Hg), dans la première et la deuxième colonne de désorption, au même niveau, et à régler la pression P et la fraction molaire, f, des composés organiques volatils présents dans le gaz à charger dans la première colonne dabsorption, de sorte que les deux équations suivantes soient vérifiées:
- Un procédé permettant de récupérer un volume supérieur à 95 % de composés organiques volatils à partir dun gaz les contenant et qui consiste àintroduire le liquide dabsorption par le haut de la première colonne d'absorption pour que le liquide vienne en contact à contre-courant avec le gaz de telle sorte à absorber une fraction importante des composés organiques présents dans le gaz,introduire le gaz sortant de la première colonne d'absorption, et qui contient encore des composés organiques, par l'extrémité inférieure dune deuxième colonne dabsorption,introduire un autre liquide dabsorption par le haut de la seconde colonne dabsorption de telle sorte que le liquide vienne en contact à contre-courant avec le gaz provenant de la première colonne d'absorption,introduire le premier liquide dabsorption qui sort par le bas de la première colonne dabsorption en haut dune première colonne de désorption,recycler le liquide qui sort par le bas de la première colonne de désorption en lintroduisant à nouveau dans la première colonne dabsorption, en tant que liquide dabsorption,introduire le deuxième liquide d'absorption, qui sort à l'extrémité inférieure de la deuxième colonne d'absorption, en haut d'une deuxième colonne de désorption,recycler le liquide qui sort par l'extrémité inférieure de la deuxième colonne de désorption en l'introduisant à nouveau dans la deuxième colonne d'adsorption en tant que liquide d'absorption, etrécupérer les composés organiques volatils restantscaractérisé en ce qu'il consiste à maintenir les pressions de fonctionnement, P (mm de Hg), de la première et de la deuxième colonne de désorption au même niveau, à introduire de lair par le bas de la deuxième colonne de désorption et à régler la pression P et la fraction molaire, f, des composés organiques volatils présents dans le gaz à charger dans la première colonne dabsorption de telle sorte que les trois équations suivantes soient vérifiées:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4128063A JPH05293332A (ja) | 1992-04-21 | 1992-04-21 | 揮発性有機化合物含有ガスの除去方法 |
JP128063/92 | 1992-04-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0567388A1 EP0567388A1 (fr) | 1993-10-27 |
EP0567388B1 true EP0567388B1 (fr) | 1996-09-18 |
Family
ID=14975556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93401017A Expired - Lifetime EP0567388B1 (fr) | 1992-04-21 | 1993-04-20 | Procédé pour la séparation d'un composé organique volatil d'un gaz |
Country Status (4)
Country | Link |
---|---|
US (1) | US5330563A (fr) |
EP (1) | EP0567388B1 (fr) |
JP (1) | JPH05293332A (fr) |
DE (1) | DE69304773T2 (fr) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4338003A1 (de) * | 1993-11-07 | 1995-05-11 | Dynamit Nobel Ag | Verfahren zur Abtrennung von organischen Komponenten aus Abluft |
GB9413714D0 (en) * | 1994-07-07 | 1994-08-24 | Turbotak Technologies Inc | Regenerative process for removal and recovery of volatile organic compounds (VOCs) from effluent gases |
US6726750B2 (en) | 2000-06-05 | 2004-04-27 | Ch2M Hill, Inc. | Apparatus and method for efficient recovery of volatile organic compounds |
US6352575B1 (en) * | 2000-06-05 | 2002-03-05 | Ch2M Hill, Inc. | Apparatus and method for centralized recovery of volatile organic compounds |
TW590789B (en) * | 2001-09-14 | 2004-06-11 | Ind Tech Res Inst | Method of treating an air stream containing VOCs |
US8398059B2 (en) | 2005-02-14 | 2013-03-19 | Neumann Systems Group, Inc. | Gas liquid contactor and method thereof |
US8113491B2 (en) * | 2005-02-14 | 2012-02-14 | Neumann Systems Group, Inc. | Gas-liquid contactor apparatus and nozzle plate |
US8864876B2 (en) * | 2005-02-14 | 2014-10-21 | Neumann Systems Group, Inc. | Indirect and direct method of sequestering contaminates |
US7866638B2 (en) * | 2005-02-14 | 2011-01-11 | Neumann Systems Group, Inc. | Gas liquid contactor and effluent cleaning system and method |
US7379487B2 (en) * | 2005-02-14 | 2008-05-27 | Neumann Information Systems, Inc. | Two phase reactor |
NZ592100A (en) * | 2008-09-26 | 2013-11-29 | Neumann Systems Group Inc | Gas liquid contactor and effluent cleaning system and method |
DE102014209924A1 (de) * | 2014-05-23 | 2015-11-26 | Matthias Enzenhofer | Vorrichtung und Verfahren zur Behandlung eines Gasstroms |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1768521A (en) * | 1925-07-09 | 1930-06-24 | B A S Company | Absorption of gasoline from natural gas |
US2335855A (en) * | 1939-10-26 | 1943-12-07 | United Gas Improvement Co | Recovery of valuable hydrocarbons |
US2428521A (en) * | 1945-12-17 | 1947-10-07 | Phillips Petroleum Co | Recovery of ethane and gasoline from natural gas |
US2685941A (en) * | 1951-01-31 | 1954-08-10 | Universal Oil Prod Co | Method for concentrating hydrogen |
DE1250809B (de) * | 1959-06-24 | 1967-09-28 | Phillips Petroleum Company, Bartlesville, OkIa. (V. St. A.) | Verfahren zur Gewinnung von Acetylen |
US3886759A (en) * | 1973-01-26 | 1975-06-03 | Gerald P Mcnamee | Method for recovery of hydrocarbon vapors |
US3907524A (en) * | 1973-12-13 | 1975-09-23 | Emission Abatement Inc | Vapor recovery method for controlling air pollution |
DE2451157C3 (de) * | 1974-10-28 | 1983-05-19 | Aluminium Norf Gmbh, 4040 Neuss | Verfahren zum Reinigen von beim Betriebe von Walzgerüsten in großen Mengen anfallender Abluft |
JPS5237585A (en) * | 1975-09-19 | 1977-03-23 | Showa Shell Sekiyu Kk | Method of purifying gas containing volatile organic compounds |
US4101297A (en) * | 1975-10-15 | 1978-07-18 | Mitsubishi Jukogyo Kabushiki Kaisha | Process for recovering a solvent vapor |
JPS5281070A (en) * | 1975-12-29 | 1977-07-07 | Showa Oil | Method of purifying gas containing volatile organic compoumds |
US4283259A (en) * | 1979-05-08 | 1981-08-11 | International Business Machines Corporation | Method for maskless chemical and electrochemical machining |
DE3047658C2 (de) * | 1980-12-18 | 1987-05-14 | Achenbach Buschhütten GmbH, 5910 Kreuztal | Verfahren zur Reinigung von lösungsmittelhaltiger Abluft und Vorrichtung zur Durchführung des Verfahrens |
EP0090606A3 (fr) * | 1982-03-29 | 1984-07-11 | Nordson Corporation | Procédé continu pour la récupération des solvants d'une installation de revêtement |
DE3503500A1 (de) * | 1985-02-02 | 1986-08-07 | Merck Patent Gmbh, 6100 Darmstadt | Verfahren zur abluftreinigung |
US4670028A (en) * | 1985-07-01 | 1987-06-02 | Mcgill Incorporated | Absorption-absorption-absorption vapor recovery process |
US5198000A (en) * | 1990-09-10 | 1993-03-30 | The University Of Connecticut | Method and apparatus for removing gas phase organic contaminants |
-
1992
- 1992-04-21 JP JP4128063A patent/JPH05293332A/ja active Pending
-
1993
- 1993-03-19 US US08/034,884 patent/US5330563A/en not_active Expired - Fee Related
- 1993-04-20 DE DE69304773T patent/DE69304773T2/de not_active Expired - Fee Related
- 1993-04-20 EP EP93401017A patent/EP0567388B1/fr not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US5330563A (en) | 1994-07-19 |
DE69304773D1 (de) | 1996-10-24 |
DE69304773T2 (de) | 1997-04-30 |
EP0567388A1 (fr) | 1993-10-27 |
JPH05293332A (ja) | 1993-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5345771A (en) | Process for recovering condensable compounds from inert gas-condensable compound vapor mixtures | |
EP0046472B1 (fr) | Procédé et dispositif pour la récupération des hydrocarbures de mélanges air-vapeur d'hydrocarbures | |
EP0567388B1 (fr) | Procédé pour la séparation d'un composé organique volatil d'un gaz | |
EP0022315A1 (fr) | Procédé et dispositif pour obtenir des hydrocarbures de mélanges air-vapeur d'hydrocarbures | |
US4343629A (en) | Process and apparatus for recovering hydrocarbons from air-hydrocarbon vapor mixtures | |
DE2760187C2 (fr) | ||
CN1031069C (zh) | 净化油的改进方法 | |
US4102983A (en) | Method of purifying a gas containing volatile organic materials | |
US5480475A (en) | Vapor recovery system | |
US4715868A (en) | Vapor recovery system | |
DE3313530A1 (de) | Verfahren zur abtrennung von aethanol aus einer athanolhaltigen loesung | |
CN109045739A (zh) | 一体式油气回收系统和回收工艺 | |
CN1806894A (zh) | 油气吸收回收的方法及装置 | |
CN101015760A (zh) | 利用吸收与吸附集成技术的油气回收方法及装置 | |
US5951741A (en) | Hydrocarbon vapor recovery processes and apparatus | |
CN201505500U (zh) | 利用吸收与吸附集成技术的油气回收装置 | |
CN111471479B (zh) | 一种油气回收的吸收油工艺 | |
US4475928A (en) | Method for the recovery of petrol (gasoline) from a mixture of petrol vapor and air, and a system for use in the method | |
DE69017426T2 (de) | Verfahren und Vorrichtung zur Wiedergewinnung von Kohlenwasserstoffen aus Luft-Kohlenwasserstoffdampfmischungen. | |
US4263019A (en) | Vapor recovery | |
DE3805157C1 (en) | Process for the recovery of light hydrocarbons | |
EP0364671B1 (fr) | Appareil et Procédé d'assèchement de liquides | |
CN111471478A (zh) | 降低吸附法油气回收工艺吸附床热点温度的方法 | |
CN202778197U (zh) | 油气回收处理系统 | |
CN102764561A (zh) | 油气回收处理系统及其回收处理工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19931124 |
|
17Q | First examination report despatched |
Effective date: 19950428 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
REF | Corresponds to: |
Ref document number: 69304773 Country of ref document: DE Date of ref document: 19961024 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19970619 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19970625 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19970630 Year of fee payment: 5 Ref country code: NL Payment date: 19970630 Year of fee payment: 5 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980420 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19980430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981101 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19980420 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19981101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990202 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050420 |