EP0562662B1 - Wechselstrom/Gleichstom-Wandler - Google Patents

Wechselstrom/Gleichstom-Wandler Download PDF

Info

Publication number
EP0562662B1
EP0562662B1 EP93200722A EP93200722A EP0562662B1 EP 0562662 B1 EP0562662 B1 EP 0562662B1 EP 93200722 A EP93200722 A EP 93200722A EP 93200722 A EP93200722 A EP 93200722A EP 0562662 B1 EP0562662 B1 EP 0562662B1
Authority
EP
European Patent Office
Prior art keywords
switches
converter
rectifier
power supply
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93200722A
Other languages
English (en)
French (fr)
Other versions
EP0562662A1 (de
Inventor
Ray Dr. Ridley
Siegfried Dipl.-Ing. Kern
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technologiepark Teningen GmbH
Original Assignee
Ascom Frako GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ascom Frako GmbH filed Critical Ascom Frako GmbH
Publication of EP0562662A1 publication Critical patent/EP0562662A1/de
Application granted granted Critical
Publication of EP0562662B1 publication Critical patent/EP0562662B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/285Single converters with a plurality of output stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/08Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the invention relates to an AC / DC converter for connection to the lines of a multi-phase AC generator according to the preamble of claim 1. It also relates to a method for its operation.
  • AC / DC converters for connection to a multi-phase AC network are known.
  • US 5,045,991 shows a converter which rectifies a 3-phase alternating current with the aid of a 6-pulse, controlled bridge rectifier.
  • the document DE 37 38 181 A1 shows, similarly to the first-mentioned document, a line-guided converter whose output direct current is controlled by constant, in-phase switching of six bridge rectifier elements.
  • the differences between the facilities of the two fonts lie in the control logic, with the arrangement of the first-mentioned font in particular varying load always imposing a sinusoidal load on the AC network.
  • a redundant AC / DC converter is known from US Pat. No. 4,680,689. This converter has three bridge rectifiers that are connected to the different phases of a three-phase network. A pulse width modulated direct current / direct current converter with galvanic isolation is connected downstream of these rectifiers. These DC / DC converters work in parallel and feed together a consumer of variable power. If one of the network phases or one of the DC / DC converters fails, the remaining units take over the supply without interruption.
  • the document US 5,003,453 shows a further AC / DC converter with balanced load on the three phases of a three-phase network.
  • This converter feeds three parallel power factor correction circuits in one version with all three phases and in another version with one of the three phases of the network. These deliver direct current at their outputs, which is further converted for the various consumers in a computer system by downstream direct current / direct current converters.
  • the AC / DC converter is designed with multiple redundancies and is able to supply the power required by the computer even if one of the power phases, one of the power factor correction circuits or a DC / DC converter fails.
  • This AC / DC converter is quite complex and specially designed to feed the various consumers in a large computer, the computer not being interrupted even during maintenance work on the converter.
  • FIG. 1 shows a block diagram of an alternating current / direct current converter 10.
  • This converter 10 is connected to the three lines 12, 13, 14 of a three-phase network, which is represented by a generator or transmitter 15.
  • Each of the three lines 12, 13, 14 carries a phase R, S, T of a three-phase or three-phase current.
  • a neutral or ground conductor is not necessary and is therefore not provided.
  • Three rectifier circuits 20, 30, 40 are connected to the lines 12, 13, 14 primarily and in parallel to one another.
  • the AC / DC converter 10 further comprises monitoring and switching logic 50 which is connected to the rectifier circuits 20, 30, 40 and the power factor correction units 21, 31, 41.
  • the three rectifier circuits 20, 30, 40 are constructed identically and each comprise six rectifiers, represented as six diodes 24-29, 34-39 and 44-49, each of which has a switch 124-129, 134-139 and 144-149 is assigned serially.
  • the diodes and switches of each rectifier circuit 20, 30, 40 are in the manner of a 6-pulse, controlled bridge rectifier in pairs on the lines 12, 13 and 14 and in three each on the connections 122, 123; 132, 133; 142, 143 connected to the power factor correction units 21, 31, 41.
  • the switches of two pairs of switches 124-129, 134-139, 144-149 in each rectifier circuit 20, 30, 40 are closed, ie switched to current transmission, and the remaining two switches open, ie for the continuity blocked.
  • the open and closed switches are selected so that in each rectifier circuit 20, 30, 40 a different one of the lines 12, 13, 14 is assigned to the open switches. 1, for example, the switch pair 128, 129 of the rectifier circuit 20 are open and assigned to the line 14, the switch pair 136, 137 of the rectifier circuit 30 are open and are assigned to the line 13, and the switch pair 144, 145 of the rectifier circuit 40 are open and the line 12 assigned. All other switches are closed.
  • each rectifier circuit forms 20, 30, 40 a single-phase bridge rectifier, which is assigned to one of the phases R, S, T of the three-phase alternating current.
  • connections 122, 123; 132, 133; 142, 143 to the power factor correction circuits 21, 31, 41 are therefore single-phase, rectified voltages derived from a quasi sine wave.
  • the three single-phase power factor correction units 21, 31, 41 are the same and work independently of one another. Each of these units 21, 31, 41 delivers at their outputs 22, 23; 32, 33; 42, 43 a regulated direct current with an arbitrarily adjustable output voltage.
  • the units are designed in such a way that they are connected to their inputs 122, 123; 132, 133; 142, 143 applied, described single-phase pulsating rectifier voltage largely without nonlinear distortion.
  • the load on the encoder 15 or the AC network is similar to that of an ohmic load, so that there are essentially no harmonics on the lines 12, 13, 14 which could interfere with other devices.
  • Such a power factor correction unit is described, for example, in European Patent 0 218 267.
  • the electrical isolation allows the described interconnection of the outputs 22, 23; 32, 33; 42, 43 at any potential.
  • the dimensioning can be such that two of the total of three units 21, 31, 41 are able to deliver the required maximum power together. As a result, if one of the units 21, 31, 41 fails, there is no delivery deficit for the consumer or the load 60.
  • the monitoring and switching logic 50 controls via assigned control lines 224, 226, 228, 234, 236, 238, 244, 246, 248 the switches 124-129, 134-139, 144-149 of the rectifier circuits 20, 30, 40 together and in pairs in the blocking or open state.
  • the control information comes via assigned signal lines 222, 232, 242, for example from connections 122, 123; 132, 133; 142, 143 and via lines 221, 231, 241 from the power factor correction units 21, 31, 41.
  • each rectifier circuit 20, 30, 40 rectifies an AC current as a four-pole bridge rectifier, which is sinusoidal and by chaining the phases R, S, T of the three-phase AC current accordingly Delta or delta connection arises. There is no need to switch switches 124-129, 134-139, 144-149. Rather, they remain in the normal switching position described.
  • the downstream power factor correction units 21, 31, 41 generate a regulated direct current of high quality from the respectively arising, single-phase pulsating rectifier current, whereby they supply the required consumer power essentially in equal parts.
  • the logic 50 then switches on the previously open switches of all three rectifier circuits 20, 30, 40 and thereby enables emergency operation.
  • the voltages remaining between the lines 12, 13, 14 continue to be essentially sinusoidal, so that all rectifier circuits 20, 30, 40 and the downstream power factor correction units 21, 31, 41 continue to operate essentially unchanged.
  • the rectifier diodes ensure the necessary decoupling. To improve the decouplings, however, it can also be provided that the logic 50 opens those switches which are assigned to the failed phase R, S, T.
  • the AC / DC converter 10 Due to the structure described, the AC / DC converter 10 has redundancy in various respects, which in the event of a malfunction is simple and usable in such a way that a largely reliable power supply to the consumer 60 can be guaranteed.
  • FIG. 2 shows a first variant circuit 201 which can be exchanged for the rectifier circuits 20, 30, 40.
  • this circuit 201 has six diodes 24-29, but only two switches 128, 129 which are assigned to the diode pair 28, 29. These switches, assigned to line 14 in the example, are open in trouble-free normal operation and are switched on if one of the phases R, S, T fails.
  • FIG. 3 shows a further variant circuit 202 for the rectifier circuits, which has only a single switch 128a.
  • This switch 128a is assigned to the diodes 28, 29 and inserted into the line 14. In terms of function, it replaces the two switches 128, 129 of the variant corresponding to FIG. 2.
  • electromechanical switches can serve as switches 124-129, 134-139, 144-149, 128a, e.g. the contacts of relays or contactors, since the switches are switched very rarely and there are no special requirements for the actual switching processes, e.g. the requirement that switching may only take place when the power is off.
  • controlled semiconductor switches are to be provided, for example thyristors or triacs, in particular the rectifier function of the diodes and the switching function of the switches can be combined in a single element.
  • the switches according to FIGS. 1 and 2 can be unipolar.
  • Switch 128a of FIG. 3, on the other hand, must be a bipolar switch.
  • FIG. 4 shows as a block diagram a simple monitoring of the phases R, S, T of a three-phase alternating current transmitter 15 and the associated switching logic 50.
  • a logic AND with negated output 51 serves as logic 50.
  • Thyristors which embody switches 24-29 can be directly controlled at this output via amplifiers 54, 59.
  • any converters can be used as power factor correction units 21, 31, 41 which generate a direct current from a rectified sinusoidal alternating current, no nonlinear distortions being allowed to react on the encoder 15 and preferably a potential separation.
  • a known converter has been mentioned (EP 0 218 267), in which the potential separation can be carried out by a controlled bridge switch with a subsequent transformer and rectifier.
  • the power factor correction units 21, 31, 41 are designed as combined up / down controls (boost / buck), since this gives flexibility with regard to the ratio of the input voltages, ie the voltages between the conductors 12, 13, 14, and the output voltage, ie the voltage at the outputs 22, 23; 32, 33; 42, 43 can be made very large.
  • the outputs of the power factor correction units 21, 31, 41 can act together on a single load 60 in the event of potential isolation. However, it is also possible to connect a separate load to each of these units 21, 31, 41, which need not necessarily be the same.
  • the AC / DC converter 10 is relatively simple and robust in construction. Neither a neutral nor a ground line is required to connect it to the encoder 15 or to an AC network.
  • the converter is flexible and adaptable to many special cases. It has very good redundancy properties and therefore meets high requirements for reliability.
  • the switches described are not subject to continuous use, since they are only operated in the event of a fault, i.e. very rarely.
  • the converter 10 thus forms a comparatively very usable device for universal use.

Description

  • Die Erfindung betrifft einen Wechselstrom/Gleichstrom-Wandler zum Anschluss an die Leitungen eines Mehrphasen-Wechselstrom-Gebers entsprechend dem Oberbegriff von Anspruch 1. Er betrifft weiter ein Verfahren zu dessen Betrieb.
  • Wechselstrom/Gleichstrom-Wandler zum Anschluss an ein Mehrphasen-Wechselstrom-Netz sind bekannt. So zeigt beispielsweise die Schrift US 5,045,991 einen Wandler, der mit Hilfe eines 6-pulsigen, gesteuerten Brückengleichrichters einen 3-phasigen Wechselstrom gleichrichtet.
  • Die Schrift DE 37 38 181 A1 zeigt ähnlich der erstgenannten Schrift einen netzgeführten Stromrichter, dessen Ausgangsgleichstrom durch ständiges, phasenrichtiges Schalten von sechs Brückengleichrichter-Elementen gesteuert wird. Die Unterschiede der Einrichtungen der beiden Schriften liegen in den Steuerlogiken, wobei insbesondere die Anordnung der erstgenannten Schrift bei variierender Belastung das Wechselstromnetz in gewisser Annäherung stets sinusförmig belastet.
  • Aus der Schrift US 4,680,689 ist ein redundant aufgebauter Wechselstrom/Gleichstrom-Wandler bekannt. Dieser Wandler weist drei Brückengleichrichter auf, die an die verschiedenen Phasen eines Drehstromnetzes angeschlossen sind. Diesen Gleichrichtern sind jeweils ein pulsweitenmodulierter Gleichstrom/Gleichstrom-Wandler mit galvanischer Trennung nachgeschaltet. Diese DC/DC-Wandler arbeiten parallel und speisen gemeinsam einen Verbraucher variabler Leistung. Bei Ausfall einer Netzphase oder eines der DC/DC-Wandler übernehmen die verbleibenden Einheiten die Speisung unterbruchfrei.
  • Die Schrift US 5,003,453 zeigt einen weiteren Wechselstrom/Gleichstrom-Wandler mit ausgeglichener Belastung der drei Phasen eines Drehstromnetzes. Dieser Wandler speist in einer Version mit allen drei Phasen und in einer anderen Version mit jeweils einer einzigen der drei Phasen des Netzes drei parallele Leistungsfaktorkorrektur-Schaltungen. Diese liefern an ihren Ausgängen Gleichstrom, der durch nachgeschaltete Gleichstrom/Gleichstrom-Wandler für die verschiedenen Verbraucher in einer Computer-Anlage weitergewandelt wird. Der Wechselstrom/Gleichstrom-Wandler ist mehrfach redundant ausgelegt und in der Lage, auch bei Ausfall einer Netzphase, einer der Leistungsfaktorkorrektur-Schaltungen oder eines Gleichstrom/Gleichstrom-Wandlers den vom Computer benötigten Strom zu liefern. Dieser Wechselstrom/Gleichstrom-Wandler ist recht aufwendig und speziell ausgebildet zum Speisen der diversen Verbraucher in einem Grosscomputer, wobei der Computer auch bei Wartungsarbeiten am Wandler nicht unterbrochen wird.
  • Ausgehend von diesem Stand der Technik ist es die Aufgabe der Erfindung, einen verbesserten, redundanten Wechselstrom/Gleichstrom-Wandler anzugeben, der im Aufbau einfach ist, der das speisende Netz stets im wesentlichen ohne nichtlineare Verzerrungen belastet, und der auch bei erheblichen Störungen die gewünschte Stromversorgung sicherstellt. Weiter soll er bezüglich seiner Ausgangswerte flexibel sein.
  • Die Lösung dieser Aufgabe ist durch den kennzeichnenden Teil der unabhängigen Ansprüche gegeben. Die abhängigen Ansprüche zeigen Weiterbildungen der Erfindung.
  • Im folgenden wird die Erfindung beispielsweise anhand von vier Figuren näher beschrieben. Es zeigen:
    • Fig. 1 - Blockschaltbild eines Wechselstrom/Gleichstrom-Wandlers zum Anschluss an ein Dreiphasen-Netz.
    • Fig. 2 - erste Variante einer Gleichrichterschaltung
    • Fig. 3 - zweite Variante einer Gleichrichterschaltung
    • Fig. 4 - Blockschaltbild einer Überwachungsanordnung
  • Fig. 1 zeigt ein Blockschaltbild eines Wechselstrom/Gleichstrom-Wandlers 10. Dieser Wandler 10 ist an die drei Leitungen 12, 13, 14 eines Dreiphasen-Netzes angeschlossen, das durch einen Generator bzw. Geber 15 dargestellt ist. Jede der drei Leitungen 12, 13, 14 führt eine Phase R, S, T eines Dreiphasen- bzw. Drehstromes. Ein Null- oder Masse-Leiter ist nicht notwendig und daher nicht vorgesehen.
  • An die Leitungen 12, 13, 14 sind primär und parallel zueinander drei Gleichrichtgerschaltungen 20, 30, 40 angeschlossen. Jeder Gleichrichterschaltung ist eine zugeordnete Einphasen-Leistungsfaktorkorrektur-Einheit 21, 31 bzw. 41 nachgeschaltet, deren Ausgänge 22, 23; 32, 33; 42, 43 gemeinsam mit einer variablen Last 60, als ohmscher Widerstand dargestellt, verbunden sind. Der Wechselstrom/Gleichstrom-Wandler 10 umfasst weiter eine Überwachungs- und Schalt-Logik 50, die mit den Gleichrichterschaltungen 20, 30, 40 und den Leistungsfaktorkorrektur-Einheiten 21, 31, 41 verbunden ist.
  • Die drei Gleichrichterschaltungen 20, 30, 40 sind gleich aufgebaut und umfassen jeweils sechs Gleichrichter, dargestellt als sechs Dioden 24-29, 34-39 bzw. 44-49, denen jeweils ein Schalter 124-129, 134-139 bzw. 144-149 seriell zugeordnet ist. Die Dioden und Schalter jeder Gleichrichterschaltung 20, 30, 40 sind in Art eines 6-pulsigen, gesteuerten Brückengleichrichters paarweise an die Leitungen 12, 13 bzw. 14 und zu dritt jeweils an die Verbindungen 122, 123; 132, 133; 142, 143 zu den Leistungsfaktorkorrektur-Einheiten 21, 31, 41 angeschlossen.
  • Im Normalfall, d.h. im defektfreien Betrieb, sind in jeder Gleichrichterschaltung 20, 30, 40 die Schalter zweier Paare der Schalter 124-129, 134-139, 144-149 geschlossen, d.h. auf Stromdurchlass geschaltet, und die restlichen zwei Schalter offen, d.h. für den Stromdurchlass gesperrt. Hierbei ist die Auswahl der geöffneten und der geschlossenen Schalter so getroffen, dass in jeder Gleichrichterschaltung 20, 30, 40 eine andere der Leitungen 12, 13, 14 den offenen Schaltern zugeordnet ist. In Fig. 1 sind beispielsweise das Schalterpaar 128, 129 der Gleichrichterschaltung 20 offen und der Leitung 14 zugeordnet, das Schalterpaaar 136, 137 der Gleichrichterschaltung 30 offen und der Leitung 13 zugeordnet, und das Schalterpaar 144, 145 der Gleichrichterschaltung 40 offen und der Leitung 12 zugeordnet. Alle anderen Schalter sind geschlossen. Hierdurch bildet jede Gleichrichterschaltung 20, 30, 40 einen Einphasen-Brückengleichrichter, der einer der Phasen R, S, T des Dreiphasen-Wechselstromes zugeordnet ist. An den Verbindungen 122, 123; 132, 133; 142, 143 zu den Leistungssfaktorkorrektur-Schaltungen 21, 31, 41 stehen damit einphasige, gleichgerichtete, von einer quasi Sinuswelle abgeleitete Spannungen an.
  • Die drei Einphasen-Leistungsfaktorkorrektur-Einheiten 21, 31, 41 sind gleich und arbeiten unabhängig voneinander. Jede dieser Einheiten 21, 31, 41 liefert an ihren Ausgängen 22, 23; 32, 33; 42, 43 einen geregelten Gleichstrom bei einer beliebig einstellbaren Ausgangsspannung. Die Einheiten sind so ausgebildet, dass sie die an ihren Eingängen 122, 123; 132, 133; 142, 143 anliegende, beschriebene einphasig pulsierende Gleichrichter-Spannung weitgehend ohne nichtlineare Verzerrungen nutzt. Hierdurch erfolgt die Belastung des Gebers 15 bzw. des Wechselstromnetzes ähnlich wie durch eine ohmsche Last, so dass auf den Leitungen 12, 13, 14 im wesentlichen keine Oberwellen entstehen, die andere Geräte stören könnten. Eine solche Leistungsfaktorkorrektur-Einheit ist beispielsweise in der Europäischen Patentschrift 0 218 267 beschrieben.
  • Als weitere Eigenschaften der Einphasen-Leistungsfaktorkorrektur-Schaltungen 21, 31, 41 sind die galvanische Trennung zwischen ihren Ein- und Ausgängen und ihre Dimensionierung zu nennen. Die galvanische Trennung erlaubt das beschriebene Zusammenschalten der Ausgänge 22, 23; 32, 33; 42, 43 auf einem beliebigen Potential. Die Dimensionierung kann so vorgenommen sein, dass jeweils zwei der insgesamt drei Einheiten 21, 31, 41 die geforderte Maximalleistung gemeinsam zu liefern in der Lage sind. Hierdurch ergibt sich beim Ausfall einer der Einheiten 21, 31, 41 kein Lieferdefizit beim Verbraucher bzw. der Last 60.
  • Die Überwachungs- und Schalt-Logik 50 steuert über zugeordnete Steuerleitungen 224, 226, 228, 234, 236, 238, 244, 246, 248 die Schalter 124-129, 134-139, 144-149 der Gleichrichterschaltungen 20, 30, 40 gemeinsam und paarweise in den Sperr- oder Offenzustand. Die Steuerinformation kommt über zugeordnete Signalleitungen 222, 232, 242 beispielsweise von den Verbindungen 122, 123; 132, 133; 142, 143 und über die Leitungen 221, 231, 241 von den Leistungsfaktorkorrektur-Einheiten 21, 31, 41.
  • Der Wechselstrom/Gleichstrom-Wandler 10 arbeitet wie folgt: Im defektfreien, normalen Zustand richtet jede Gleichrichterschaltung 20, 30, 40 als vierpoliger Brückengleichrichter einen Wechselstrom gleich, der sinusförmig ist und durch Verkettung der Phasen R, S, T des Dreiphasen-Wechselstromes entsprechend einer Dreieck- oder Deltaschaltung entsteht. Hierbei ist keinerlei Schalten der Schalter 124-129, 134-139, 144-149 notwendig. Diese verharren vielmehr in ihrer beschriebenen Normal-Schaltstellung. Die nachgeschalteten Leistungsfaktorkorrektur-Einheiten 21, 31, 41 erzeugen aus dem jeweils entstehenden, einphasig pulsierenden Gleichrichterstrom einen geregelten Gleichstrom hoher Güte, wobei sie die jeweils erforderliche Verbraucher-Leistung im wesentlichen zu gleichen Teilen liefern.
  • Fällt eine der Leistungsfaktorkorrektur-Einheiten 21, 31, 41 aus irgendeinem Grund aus, dann wird dies über die jeweils zugeordnete Signalleitung 221, 231, 241 der Überwachungs- und Schaltlogik 50 gemeldet. Diese sperrt hierauf sämtliche Schalter der zugeordneten Gleichrichterschaltung 20, 30, 40 und trennt hierdurch den betroffenen Zweig des Wandlers 10 vom Geber 15 bzw. dem Netz. Die verbleibenden zwei Leistungsfaktorkorrektur-Einheiten 21, 31, 41 erhöhen nun automatisch ihre Leistungsabgabe, wodurch die Last 60 unverändert mit Strom versorgt wird.
  • Fällt eine der Phasen R, S, T des Gebers 15 aus, dann wird dies der Überwachungs- und Schalt-Logik 50 über wenigstens eine der Signalleitungen 222, 232, 242 gemeldet. Die Logik 50 schaltet hierauf die bisher offenen Schalter aller drei Gleichrichterschaltungen 20, 30, 40 ein und ermöglicht hierdurch einen Notbetrieb. Die zwischen den Leitungen 12, 13, 14 verbleibenden Spannungen sind hierbei weiterhin im wesentlichen sinusförmig, so dass alle Gleichrichterschaltungen 20, 30, 40 und die nachgeschalteten Leistungsfaktorkorrektur-Einheiten 21, 31, 41 im wesentlichen unverändert weiterarbeiten. Die Gleichrichterdioden sorgen dabei für die notwendigen Entkopplungen. Zur Verbesserung der Entkopplungen kann jedoch auch vorgesehen sein, dass die Logik 50 diejenigen Schalter öffnet, die der ausgefallenen Phase R, S, T zugeordnet sind.
  • Der Wechselstrom/Gleichstrom-Wandler 10 besitzt durch den beschriebenen Aufbau in verschiedener Hinsicht Redundanz, die in Störungsfällen einfach und so nutzbar ist, dass eine weitgehend sichere Stromversorgung des Verbrauchers 60 gewährleistet werden kann.
  • Im weiteren werden Varianten des erfindungsgemässen Wechselstrom/Gleichstrom-Wandlers 10 beschrieben. Fig. 2 zeigt hierzu eine gegen die Gleichrichterschaltungen 20, 30, 40 austauschbare erste Variantenschaltung 201. Diese Schaltung 201 weist wie beschrieben sechs Dioden 24-29 auf, jedoch nur zwei Schalter 128, 129 die dem Diodenpaar 28, 29 zugeordnet sind. Diese Schalter, im Beispiel zugeordnet der Leitung 14, sind im störungsfreien Normalbetrieb offen und werden beim Ausfall einer der Phasen R, S, T eingeschaltet.
  • Fig. 3 zeigt eine weitere Variantenschaltung 202 für die Gleichrichterschaltungen, die nur einen einzigen Schalter 128a aufweist. Dieser Schalter 128a ist den Dioden 28, 29 zugeordnet und in die Leitung 14 eingefügt. Er ersetzt funktionsmässig die beiden Schalter 128, 129 der Variante entsprechend Fig. 2.
  • Als Schalter 124-129, 134-139, 144-149, 128a können grundsätzlich elektromechanische Schalter dienen, z.B. die Kontakte von Relais oder Schützen, da die Schalter sehr selten geschaltet werden und keine speziellen Anforderungen an die eigentlichen Schaltvorgänge bestehen, z.B. die Forderung, dass nur im spannungsfreien Zustand geschaltet werden darf. In bevorzugter Ausbildung sind jedoch gesteuerte Halbleiterschalter vorzusehen, beispielsweise Thyristoren oder Triacs, wobei insbesondere die Gleichrichterfunktion der Dioden und die Schaltfunktion der Schalter in jeweils einem einzigen Element kombinierbar sind. Hierbei ist zu beachten, dass die Schalter entsprechend Fig. 1 und 2 unipolar ausgebildet sein können. Der Schalter 128a von Fig. 3 muss dagegen ein Bipolar-Schalter sein.
  • Fig. 4 zeigt als Blockschaltbild eine einfache Überwachung der Phasen R, S, T eines Dreiphasen-Wechselstrom-Gebers 15 sowie der zugeordneten Schaltlogik 50. Als Sensoren dienen drei Spannungssüberwachungen 70, 71, 72, die dreieckförmig an die Leitungen 12, 13, 14 angeschlossen sind. Als Logik 50 dient ein logisches UND mit negiertem Ausgang 51. An diesen Ausgang lassen sich über Verstärker 54, 59 direkt Thyristoren ansteuern, die die Schalter 24-29 verkörpern.
  • Als Leistungsfaktorkorrektur-Einheiten 21, 31, 41 lassen sich grundsätzlich beliebige Wandler einsetzen, die aus einem gleichgerichteten Sinus-Wechselstrom einen Gleichstrom erzeugen, wobei auf den Geber 15 keine nichtlinearen Verzerrungen rückwirken dürfen und bevorzugt eine Potentialtrennung erfolgt. Ein solcher bekannter Wandler wurde genannt (EP 0 218 267), wobei die Potentialtrennung durch einen gesteuerten Brückenschalter mit nachfolgendem Transformator und Gleichrichter erfolgen kann. Von Vorteil ist es, wenn die Leistungsfaktorkorrektur-Einheiten 21, 31, 41 als kombinierte Hochsteller/Abwärtssteller (boost/buck) ausgebildet sind, da hierdurch die Flexibilität bezüglich des Verhältnisses der Eingangsspannungen, d.h. den Spannungen zwischen den Leitern 12, 13, 14, und der Ausgangsspannung, d.h. der Spannung an den Ausgängen 22, 23; 32, 33; 42, 43 sehr gross gemacht werden kann.
  • Die Ausgänge der Leistungsfaktorkorrektur-Einheiten 21, 31, 41 können bei einer Potentialtrennung gemeinsam auf eine einzige Last 60 wirken. Es ist jedoch auch möglich, jeder dieser Einheiten 21, 31, 41 eine separate Last nachzuschalten, die nicht notwendig gleich sein müssen.
  • Der Wechselstrom/Gleichstrom-Wandler 10 ist im Aufbau relativ einfach und robust. Zu seinem Anschluss an den Geber 15 bzw. an ein Wechselstromnetz sind weder eine Null- noch eine Masseleitung erforderlich. Der Wandler ist flexibel und an vielerlei Spezialfälle anpassbar. Er weist sehr gute Redundanz-Eigenschaften auf und genügt dadurch hohen Anforderungen an die Ausfallsicherheit. Seine beschriebenen Schalter unterliegen keiner Dauerbeanspruchung, da sie nur im Störungsfall, also sehr selten, betätigt werden. Der Wandler 10 bildet damit eine vergleichsweise sehr gebrauchstüchtige Einrichtung für den universellen Einsatz.

Claims (15)

  1. Wechselstrom/Gleichstrom-Wandler (10) zum Anschluss an die Leitungen (12, 13, 14) eines Dreiphasen-Wechselstrom-Gebers (bzw. Netzes) (15), der den Wechselstrom-Geber (15) im wesentlichen ohne nichtlineare Verzerrungen belastet, und der drei von einander unabhängige, gleiche Brückengleichrichterschaltungen (20, 30, 40) umfasst, die an den Wechselstrom-Geber (15) angeschlossen sind und denen jeweils ein Gleichstrom/Gleichstrom-Wandler (21, 31, 41) nachgeschaltet ist,
    dadurch gekennzeichnet
    - dass jede der Gleichrichterschaltungen (20, 30, 40) sechs Gleichrichter-Elemente (24-29; 34-39; 44-49) umfasst, die jeweils paarweise mit den drei Leitungen (12, 13, 14) des Gebers (15) und die unter Bildung von Brücken gemeinsam mit den jeweils zugeordneten Verbindungen (122, 123; 132, 133; 142, 143) zu den Wandlern (21, 22, 23) verbunden sind,
    - dass pro Gleichrichterschaltung (20, 30, 40) wenigstens ein Schalter (124-129; 134-139; 144-149) vorgesehen ist, welcher Schalter oder welche Schalter wenigstens einem Paar der Gleichrichter-Elemente (24-29; 34-39; 44-49) zugeordnet und ausgebildet ist bzw. sind zum Trennen des jeweils zugeordneten Paares von der diesem Paar zugeordneten Leitung (12, 13, 14) des Gebers (15),
    - dass die Gleichstrom/Gleichstrom-Wandler (21, 31, 41) als Einphasen-Leistungsfaktorkorrektur-Schaltung ausgebildet sind,
    - dass Sensoren für die Funktionsüberwachung der Phasen (R, S, T) des Gebers (15) und der Einphasen-Leistungsfaktorkorrektur-Schaltungen (21, 31, 41) vorgesehen sind, und
    - dass eine Überwachungs- und Schaltlogik (50) vorgesehen ist, die mit den genannten Sensoren über Leitungen (221, 222, 231, 232, 241, 242) verbunden ist, und die aufgrund der Signale der Sensoren die Schalter der Gleichrichterschaltungen (20, 30, 40) ein- oder ausschaltet.
  2. Wechselstrom/Gleichstrom-Wandler (10) nach Anspruch 1,
    dadurch gekennzeichnet,
    dass der Dreiphasen-Wechselstrom-Geber bzw. das Netz (15) ausschliesslich drei Phasenleitungen (12, 13, 14) und keinen Null- und keinen Masse-Leiter aufweist.
  3. Wechselstrom/Gleichstrom-Wandler (10) nach Anspruch 1,
    dadurch gekennzeichnet,
    dass pro Gleichrichterschaltung (20, 30, 40) ein einziger Schalter (128a) vorgesehen ist, der in eine jeweilige Verbindung zwischen einem der Paare von Gleichrichter-Elementen (24-29; 34-39; 44-49) und der zugeordneten Leitung (12, 13, 14) des Mehrphasen-Wechselstrom-Gebers (15) eingefügt ist,
    wobei in jeder Gleichrichterschaltung (20, 30, 40) der jeweilige Schalter in die Verbindung zu einer anderen der Leitungen (12, 13, 14) eingefügt ist.
  4. Wechselstrom/Gleichstrom-Wandler (10) nach Anspruch 1,
    dadurch gekennzeichnet,
    das pro Gleichrichterschaltung (20, 30, 40) zwei Schalter (128, 129) vorgesehen sind, die in Reihe mit den beiden Gleichrichter-Elementen (28, 29) eines jeweiligen Paares geschaltet sind, wobei in jeder Gleichrichterschaltung (20, 30, 40) die jeweiligen Schalter und Gleichrichter-Elemente einer anderen der Leitungen (12, 13, 14) des Mehrphasen-Wechselstrom-Gebers (15) zugeordnet sind.
  5. Wechselstrom/Gleichstrom-Wandler (10) nach Anspruch 1,
    dadurch gekennzeichnet,
    dass pro Gleichrichterschaltung (20, 30, 40) sechs Schalter (124-129; 134-139; 144-149) vorgesehen sind, die einzeln und in Reihe mit den sechs Gleichrichter-Elementen (24-29; 34-39; 44-49) der jeweiligen Gleichrichterschaltung (20, 30, 40) geschaltet sind.
  6. Wechselstrom/Gleichstrom-Wandler (10) nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Schalter (124-129; 134-139; 144-149) als elektrisch steuerbare Halbleiterschalter ausgebildet sind.
  7. Wechselstrom/Gleichstrom-Wandler (10) nach Anspruch 1,
    dadurch gekennzeichnet,
    dass jeder Schalter (124-129; 134-139; 144-149) zusammen mit dem zugeordneten Gleichrichter-Element (24-29; 34-39; 44-49) eine gemeinsame, elektrisch steuerbare Einheit bildet.
  8. Wechselstrom/Gleichstrom-Wandler (10) nach Anspruch 1,
    dadurch gekennzeichnet,
    dass jeder Einphasen-Leistungskorrektur-Schaltung (21, 31, 41) eine separate Last nachgeschaltet ist.
  9. Wechselstrom/Gleichstrom-Wandler (10) nach Anspruch 1,
    dadurch gekennzeichnet,
    das jede Einphasen-Leistungskorrektur-Schaltung (21, 31, 41) als Konverter mit galvanischer Trennung ausgebildet ist, und dass diesen Konvertern eine gemeinsame Last (60) nachgeschaltet ist.
  10. Wechselstrom/Gleichstrom-Wandler (10) nach Anspruch 9,
    dadurch gekennzeichnet,
    dass die Konverter so ausgebildet sind, dass zwei ausreichen zum Speisen der gemeinsamen Last (60).
  11. Verfahren zum Betrieb eines Wechselstrom/Gleichstrom-Wandlers (10) entsprechend Anspruch 3,
    dadurch gekennzeichnet,
    dass bei störungsfreiem Betrieb in jeder Gleichrichterschaltung (20, 30, 40) der jeweilige Schalter (128a) offen ist und
    dass bei Ausfall einer der Phasen (R, S, T) des Mehrphasen-Wechselstrom-Gebers (15) alle Schalter (128a) für die Dauer des Ausfalls geschlossen werden.
  12. Verfahren zum Betrieb eines Wechselstrom/Gleichstrom-Wandlers (19) entsprechend Anspruch 4,
    dadurch gekennzeichnet,
    dass bei störungsfreiem Betrieb in jeder Gleichrichterschaltung (20, 30, 40) die jeweiligen Schalter (128, 129) offen sind, und
    dass bei Ausfall einer der Phasen (R, S, T) des Mehrphasen-Wechselstrom-Gebers (15) alle Schalter (128, 129) für die Dauer des Ausfalls geschlossen werden.
  13. Verfahren zum Betrieb eines Wechselstrom/Gleichstrom-Wandlers (19) entsprechend Anspruch 5,
    dadurch gekennzeichnet,
    - dass bei störungsfreiem Betrieb des Wandlers (10) in jeder Gleichrichterschaltung (20, 30, 40) vier der Schalter (124-127; 134, 135, 138, 139; 146-149), die zwei Paaren der Gleichrichter-Elemente (24-27; 34, 35, 38, 39; 46-49) zugeordnet sind, geschlossen sind, und zwei der Schalter (128, 129; 136, 137; 144, 145), die dem dritten Paar der Gleichrichter-Elemente (28, 29; 36, 37; 44, 45) zugeordnet sind, geöffnet sind, wobei in jeder Gleichrichterschaltung (20, 30, 40) die jeweiligen geöffneten Schalter (128, 129; 136, 137; 144, 145) und die zugeordneten Gleichrichter-Elemente (28, 29; 36, 37; 44, 45) einer anderen der Leitungen (12, 13, 14) des Mehrphasen-Wechselstrom-Gebers (15) zugeordnet sind, und
    dass bei Ausfall einer der Phasen (R, S, T) des Mehrphasen-Wechselstrom-Gebers (15) alle im störungsfreien Betrieb offenen Schalter (128, 129; 136, 137; 144, 145) für die Dauer des Ausfalls geschlossen werden.
  14. Verfahren nach Anspruch 13,
    dadurch gekennzeichnet,
    dass bei Ausfall einer der Phasen (R, S, T) zusätzlich alle diejenigen Schalter geöffnet werden, die derjenigen Leitung (12, 13, 14) zugeordnet sind, die der ausgefallenen Phase (R, S, T) entspricht.
  15. Verfahren nach Anspruch 13,
    dadurch gekennzeichnet,
    dass bei Ausfall einer der Einphasen-Leistungsfaktorkorrektur-Einheiten (21, 31, 41) für die Dauer des Ausfalls alle Schalter (124-129; 134-139; 144-149) derjenigen Gleichrichterschaltung (20, 30, 40) geöffnet werden, die der ausgefallenen Leistungsfaktorkorrektur-Einheit (21, 31, 41) vorgeschaltet ist.
EP93200722A 1992-03-27 1993-03-12 Wechselstrom/Gleichstom-Wandler Expired - Lifetime EP0562662B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH991/92 1992-03-27
CH99192 1992-03-27

Publications (2)

Publication Number Publication Date
EP0562662A1 EP0562662A1 (de) 1993-09-29
EP0562662B1 true EP0562662B1 (de) 1997-05-21

Family

ID=4199920

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93200722A Expired - Lifetime EP0562662B1 (de) 1992-03-27 1993-03-12 Wechselstrom/Gleichstom-Wandler

Country Status (5)

Country Link
US (1) US5406470A (de)
EP (1) EP0562662B1 (de)
JP (1) JPH06311751A (de)
CA (1) CA2092442C (de)
DE (1) DE59306487D1 (de)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731510Y2 (ja) * 1990-05-16 1995-07-19 矢崎総業株式会社 雌端子金具
SE503374C2 (sv) * 1994-11-15 1996-06-03 Asea Brown Boveri Förfarande och anordning för styrning av en i en anläggning för överföring av högspänd likström ingående seriekompenserad strömriktarstation
US5523938A (en) * 1995-06-07 1996-06-04 Sundstrand Corporation Differential current fault protection for an AC/DC hybrid system and method therefor
US5894414A (en) * 1997-03-03 1999-04-13 Lucent Technologies Inc. Three phase rectifier using three single phase converters and a single DC/DC converter
FR2772526B1 (fr) * 1997-12-17 2000-02-11 Schneider Electric Sa Convertisseur alternatif-continu triphase
US5956244A (en) * 1998-03-05 1999-09-21 Allen-Bradley Company Llc Controlling currents in parallel AC/DC converters
WO2001045230A1 (en) * 1999-12-16 2001-06-21 Mcandrews Enterprises Inc. Spare bus power plant
WO2002065611A1 (fr) * 2001-02-16 2002-08-22 Yanmar Co., Ltd. Système de production d'énergie à générateur entraîné par moteur
AU2002339815A1 (en) * 2001-05-21 2002-12-03 Marconi Intellectual Property (Ringfence) Inc. Power systems power circuits and components for power systems
US6501192B1 (en) * 2001-11-16 2002-12-31 Eni Technology, Inc. Three phase rectifier circuit with virtual neutral
US20040061380A1 (en) * 2002-09-26 2004-04-01 Hann Raymond E. Power management system for variable load applications
US6801027B2 (en) * 2002-09-26 2004-10-05 Itt Manufacturing Enterprises, Inc. Power conversion in variable load applications
US6936997B2 (en) 2003-08-11 2005-08-30 Semiconductor Components Industries, Llc Method of forming a high efficiency power controller
DE102004003657B4 (de) * 2004-01-24 2012-08-23 Semikron Elektronik Gmbh & Co. Kg Stromrichterschaltungsanordnung und zugehöriges Ansteuerverfahren für Generatoren mit dynamisch veränderlicher Leistungsabgabe
JP4341836B2 (ja) * 2004-05-27 2009-10-14 本田技研工業株式会社 可搬型発電機
US7456524B2 (en) * 2006-03-31 2008-11-25 American Power Conversion Corporation Apparatus for and methods of polyphase power conversion
US8300438B1 (en) * 2008-11-16 2012-10-30 Edward Herbert Power factor corrected 3-phase Ac-dc power converter using natural modulation
US8879286B2 (en) 2010-07-29 2014-11-04 Sts, Inc. Facility power supply with power-factor correction
RU2515474C2 (ru) * 2011-05-17 2014-05-10 Хонда Мотор Ко., Лтд. Инверторный генератор
CN102931829B (zh) * 2012-11-09 2015-11-25 华为技术有限公司 功率因数校正电路以及电源电路
US9502962B2 (en) 2012-11-09 2016-11-22 Huawei Technologies Co., Ltd. Power factor correction circuit and power supply circuit
US9479077B1 (en) 2013-02-04 2016-10-25 Google Inc. Three-phase power supply system
NZ700418A (en) * 2014-09-25 2016-08-26 Enatel Ltd Improvements in and relating to load balancing
RU2633966C1 (ru) * 2016-11-30 2017-10-20 Юрий Борисович Соколов Источник питания от многофазной сети переменного тока с коррекцией гармонических колебаний
DE102017106924A1 (de) * 2017-03-30 2018-10-04 Airbus Defence and Space GmbH Elektrisches Versorgungssystem für ein Flugzeug mit einem gewöhnlichen Wechselspannungsnetzwerk und einem bipolaren Gleichspannungsnetzwerk
US10957445B2 (en) 2017-10-05 2021-03-23 Hill-Rom Services, Inc. Caregiver and staff information system
JP7121971B2 (ja) * 2018-03-21 2022-08-19 国立大学法人神戸大学 三相ac-dcコンバータ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3047848A (en) * 1957-03-25 1962-07-31 Smith Corp A O Safety circuit for rectifier power sources
US4285023A (en) * 1980-03-11 1981-08-18 Lorain Products Corporation Rectifier system with failure alarm circuitry
US4680689A (en) * 1984-01-23 1987-07-14 Donald W. Payne Three-phase ac to dc power converter with power factor correction
DE3840304A1 (de) * 1988-11-30 1990-05-31 Philips Patentverwaltung Schaltungsanordnung zum speisen einer last
US5003453A (en) * 1989-11-22 1991-03-26 Tandem Computers Incorporated Apparatus for a balanced three phase AC power supply in a computer having variable DC loads
US5045991A (en) * 1989-12-28 1991-09-03 Sundstrand Corporation Unity power factor AC/DC converter

Also Published As

Publication number Publication date
EP0562662A1 (de) 1993-09-29
CA2092442A1 (en) 1993-09-28
JPH06311751A (ja) 1994-11-04
CA2092442C (en) 2002-06-11
DE59306487D1 (de) 1997-06-26
US5406470A (en) 1995-04-11

Similar Documents

Publication Publication Date Title
EP0562662B1 (de) Wechselstrom/Gleichstom-Wandler
EP1927175B1 (de) Vorrichtung zur redundanten energieversorgung wenigstens einer last
EP3391519B1 (de) Wechselrichter und verfahren zum betreiben eines wechselrichters
EP0903843B1 (de) Wechselrichter
EP3565074B1 (de) Ankopplungsschaltung mit schaltender funktion zur ankopplung eines isolationsüberwachungsgerätes an ein ungeerdetes stromversorgungssystem
DE3840806C2 (de)
DE102011018229B4 (de) Schaltungsanordnung und Verfahren zur Potentialtrennung eines elektrischen Geräts vom Netz
EP2070172A1 (de) Redundantes schutzsystem und verfahren zum redundanten überwachen von schutzobjekten in einem elektrischen energieversorgungsnetz
EP2347491B1 (de) Vorrichtung zur speisung eines abnehmernetzes mit der elektrischen leistung eines versorgungsnetzes
WO2011033027A2 (de) Schaltungsanordnung mit einem umrichterteil umfassend eine zentrale steuereinheit
DE2326724C2 (de) Trennfehler-Schutzschaltungsanordnung
DE19736903A1 (de) Umrichter mit Gleichspannungszwischenkreis sowie Verfahren zum Betrieb eines solchen Umrichters
EP1351267B1 (de) Verfahren fur ein netzsynchrones Schalten von Leistungsschaltern und Vorrichtung zur Durchfuhrung dieses Verfahrens
DE4422991C1 (de) Schaltungsanordnung zum Bereitstellen eines ausfallsicheren Versorgungsnetzes für elektrische Geräte
EP3308440B1 (de) Blindleistungseinspeisung in ein wechselspannungsnetz
EP2608343B1 (de) Stromversorgung
DE102020119104B3 (de) Gleichrichteranordnung
DE19844185A1 (de) Busleitungssystem
DE19646626A1 (de) Anordnung zur Stromversorgung einer Last sowie Verwendung
AT505471A1 (de) Selbständige synchronisation parallel geschalteter pulswechselrichter bei bahnfahrzeugen
DE102020119105A1 (de) Gleichrichteranordnung
DE269797C (de)
WO2023036529A1 (de) Verfahren zum betrieb eines bordnetzes
DE1613888C (de) Umformerwerk für Gleichstromübertragung
DE2245090B2 (de) Anordnung zur zu- und abschaltung einer wechselstromquelle an einen verbraucher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19940210

17Q First examination report despatched

Effective date: 19950912

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASCOM FRAKO GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: 0508;01MIFBARZANO' E ZANARDO MILANO S.P.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: AMMANN PATENTANWAELTE AG BERN

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59306487

Country of ref document: DE

Date of ref document: 19970626

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970619

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ASCOM ENERGY SYSTEMS AG

Free format text: ASCOM FRAKO GMBH#TSCHEULINSTRASSE 21#79331 TENINGEN (DE) -TRANSFER TO- ASCOM ENERGY SYSTEMS AG#BELPSTRASSE 37#3000 BERN 14 (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: DELTA ENERGY SYSTEMS (SWITZERLAND) AG

Free format text: ASCOM ENERGY SYSTEMS AG#BELPSTRASSE 37#3000 BERN 14 (CH) -TRANSFER TO- DELTA ENERGY SYSTEMS (SWITZERLAND) AG#WERK BODENWEID FREIBURGSTRASSE 251#3018 BERN-BUEMPLIZ (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER & PARTNER PATENTANWAELTE AG

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080218

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080216

Year of fee payment: 16

Ref country code: GB

Payment date: 20080228

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080211

Year of fee payment: 16

Ref country code: DE

Payment date: 20080227

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090312

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091001

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090312

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090312