EP0559043A1 - Method for heat exchanger control - Google Patents

Method for heat exchanger control Download PDF

Info

Publication number
EP0559043A1
EP0559043A1 EP93102757A EP93102757A EP0559043A1 EP 0559043 A1 EP0559043 A1 EP 0559043A1 EP 93102757 A EP93102757 A EP 93102757A EP 93102757 A EP93102757 A EP 93102757A EP 0559043 A1 EP0559043 A1 EP 0559043A1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
enthalpy
flow
temperature
enthalpy flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93102757A
Other languages
German (de)
French (fr)
Other versions
EP0559043B1 (en
Inventor
Franz Ferdinand Dr. Rhiel
Heinrich Dipl.-Ing. Steude
Günther Dr. Weymans
Klaus Prof. Dr. Elgeti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6453415&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0559043(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0559043A1 publication Critical patent/EP0559043A1/en
Application granted granted Critical
Publication of EP0559043B1 publication Critical patent/EP0559043B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/42Regulation; Control
    • B01D3/4211Regulation; Control of columns
    • B01D3/4283Bottom stream
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7759Responsive to change in rate of fluid flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7761Electrically actuated valve

Definitions

  • the invention relates to methods for controlling heat exchangers for setting a controlled variable on the process side of the heat exchanger.
  • the invention is in the field of process engineering operations that require a regulated supply of energy. These energy consumers are mostly supplied centrally from a power plant on an industrial scale. The water vapor produced by the power plant is directed to the individual consumers via a so-called steam rail. In the rarest cases, the incoming steam is sent directly to the process by the consumer. An intermediate heat exchanger (heat exchanger) predominantly transfers only the heat contained in the water vapor to the process. The control of the amount of energy transferred forms the subject of the present invention.
  • the task was therefore to develop a regulation for better control of the amount of heat entered in a process.
  • the measurement of the variables pressure (p), temperature (T) and the determination of the mass flow ( ⁇ ) are carried out by known methods and devices. It should be noted, however, that the usual methods for determining the mass flow (throttle, inductive flow measurement) only determine a volume flow, which can only be converted into a mass flow after multiplication by the density ( ⁇ ) of the working medium. This conversion can lead to inaccuracies if it is not taken into account that ⁇ depends on T and p.
  • the enthalpy flow into the heat exchanger is obtained by multiplying the mass flow ( ⁇ ) by the specific enthalpy (h i ) of the working medium, which can be calculated in a known manner if the two state variables p and T are known.
  • the working medium is For example, water vapor, but exactly at a phase boundary, using one of the known thermodynamic relationships, the determination of one of the two variables, pressure or temperature, is sufficient to obtain the other state variables, including the spec. Enthalpy. This is the case, for example, if water vapor in the saturated state is used as the working medium.
  • enthalpy current ( ⁇ ) is known, this can be used as a manipulated variable.
  • the actual controlled variable for example the temperature in a process engineering process, can be changed by a certain amount if the enthalpy flow into the heat exchanger is increased or decreased by an amount corresponding to this change. In the simplest case, this is done by a supply control (FC), in which the mass flow into the heat exchanger is controlled with the aid of a valve.
  • FC supply control
  • the new method enables precise, direct control of the amount of energy fed into a process.
  • the new control procedure takes into account the interference to which the working medium in the feed line (steam rail) is subjected. This prevents these interferences from the actual process (distillation etc.). This has the advantage that this process can be controlled within narrow and more precisely definable tolerances. In addition, the amount of heat produced is used more economically.
  • the process can be used with advantage in technical distillation or rectification columns with diameters over 0.150 m, preferably over 0.5 m, in particular over 1.0 m. Due to their inertia, these technical columns require particularly precise control.
  • a preferred control variable on the process side is the temperature, since this is the most important process variable in the systems mentioned. However, other variables such as the sump level can also be controlled with the new process.
  • a preferred embodiment of the new method consists in taking into account the enthalpy flow leaving the heat exchanger again. This can be achieved by subtracting the specific enthalpy (h o ) from the specific enthalpy of the supplied working medium (h i ) and multiplying this difference by the mass flow ( ⁇ ). It is assumed that there are no mass losses in the heat exchanger. If condensate is present, it is sufficient to only measure the temperature of the condensate to determine h o .
  • the enthalpy transferred ie the amount of heat introduced into the process, can be used as a product k ⁇ A ⁇ ⁇ T being represented.
  • ⁇ T is the temperature difference between the temperature of the working medium and the temperature of the heat-fed process, for example the temperature in the bottom of a still.
  • A is a measure of the area through which the heat transfer takes place, and k is the heat transfer coefficient.
  • a deterioration also called fouling
  • By monitoring the heat transfer behavior e.g. a deterioration, also called fouling, can be controlled, for example, by switching to cleaned heat exchangers or switching off for cleaning.
  • the setting of a certain temperature requires regulation of the supply quantity FC by means of a valve 2 as a function of the measured mass flow through the steam line 1.
  • the mass flow is measured by measuring the pressure difference ⁇ p at the orifice 5, which sits in the steam line 1, made.
  • the amount of steam thus regulated enters the heat exchanger 3 and causes the desired temperature change in the process.
  • the new method instead of translating the temperature control variable into the supply quantity control variable, the translation into the enthalpy flow control variable EC (enthalpy control).
  • a deviation from the setpoint causes the enthalpy control EC to track the valve 2.
  • the EC obtains the required measured values by measuring the pressure P i and the temperature T i in the steam feed 1.
  • the specific enthalpy h i and the density ⁇ can be determined from these measured variables determined by known electronic components (multipliers, etc.) or programmable microprocessors.
  • the mass flow is determined in the known manner with the aid of an orifice 5.
  • the pressure drop ⁇ p is measured over the orifice.
  • the volume flow is first determined from this measured value on the basis of the known aperture equation.
  • the mass flow ⁇ is then determined using the state variable ⁇ , the density of the working medium, determined from the quantities P i and T i .
  • the enthalpy transferred in the heat exchanger 3 results from the formation of the product of the mass flow ⁇ and the difference between the specific enthalpies h i , h o .

Abstract

A description is given of a method for heat exchanger (3) control which is characterised in that the enthalpy flux in the heat exchanger (3) serves as the manipulated variable. The robust control, which can be used in a versatile fashion, is particularly suited for use in endothermic reactions and in distillation. <IMAGE>

Description

Die Erfindung betrifft Verfahren zur Steuerung von Wärmeübertragern zur Einstellung einer Regelgröße auf der Prozeßseite des Wärmeübertragers.The invention relates to methods for controlling heat exchangers for setting a controlled variable on the process side of the heat exchanger.

Die Erfindung liegt auf dem Gebiet verfahrenstechnischer Operationen, die einer geregelten Energiezufuhr bedürfen. Die Versorgung dieser Energieverbraucher erfolgt im großtechnischen Maßstab zumeist zentral von einem Kraftwerk aus. Der vom Kraftwerk produzierte Wasserdampf wird über eine sogenannte Dampfschiene zu den einzelnen Verbrauchern geleitet. Beim Verbraucher wird der ankommende Dampf in den seltensten Fällen direkt dem Prozeß zugeleitet. Überwiegend wird durch einen zwischengeschalteten Wärmeübertrager (Wärmetauscher) lediglich die im Wasserdampf enthaltene Wärme an den Prozeß übertragen. Die Steuerung der übertragenen Energiemenge bildet den Gegenstand der vorliegenden Erfindung.The invention is in the field of process engineering operations that require a regulated supply of energy. These energy consumers are mostly supplied centrally from a power plant on an industrial scale. The water vapor produced by the power plant is directed to the individual consumers via a so-called steam rail. In the rarest cases, the incoming steam is sent directly to the process by the consumer. An intermediate heat exchanger (heat exchanger) predominantly transfers only the heat contained in the water vapor to the process. The control of the amount of energy transferred forms the subject of the present invention.

Das im großtechnischen Maßstab gebräuchliche Verfahren läßt sich anhand von Figur 1 beschreiben. Um beispielsweise die Temperatur in einem Prozeß zu regeln (TC), wird die eigentliche Stellgröße, die übertragene Energie, in eine Ersatzstellgröße, nämlich die in den Wärmetauscher 3 geleitete Dampfmenge übersetzt. In der Zeichnung ist dies durch die Steuerungseinheit FC (feed control) dargestellt. Sie steuert das Ventil 2. Als Kontrollwert dient der Zufuhrkontrolle zumeist der Druckabfall des Dampfes über eine Meßblende 5 innerhalb der Zuleitung. Unter idealen Bedingungen, d.h. bei konstantem Druck und konstanter Temperatur, ist der Volumenstrom und damit auch der Massenstrom durch die Meßblende der Wurzel des Druckabfalles an der Meßblende proportional (Blendengleichung).The process used on an industrial scale can be described with reference to FIG. 1. For example, in order to regulate the temperature in a process (TC), the actual manipulated variable, the energy transferred, is translated into a substitute manipulated variable, namely the amount of steam conducted into the heat exchanger 3. This is shown in the drawing by the control unit FC (feed control). It controls the valve 2. As a control value, the supply control mostly serves the pressure drop of the steam via a measuring orifice 5 within the feed line. Under ideal conditions, i.e. at constant pressure and temperature, the volume flow and therefore also the mass flow through the orifice is proportional to the root of the pressure drop at the orifice (orifice equation).

Der Nachteil dieses bekannten Verfahrens besteht jedoch darin, daß sich die Bedingungen (Druck, Temperatur) innerhalb einer Dampfschiene, die vom Kraftwerk aus mehrere Verbraucher speist, durchaus ändern können. Beispielsweise werden bereits durch das Zu- und Abschalten von Verbrauchern entlang einer Dampfschiene Störungen erzeugt.The disadvantage of this known method, however, is that the conditions (pressure, temperature) within a steam rail, which feeds several consumers from the power plant, can change. For example, disturbances are already generated by switching consumers on and off along a steam rail.

Es bestand daher die Aufgabe, eine Regelung zur besseren Kontrolle der in einen Prozeß eingetragenen Wärmemenge zu entwickeln.The task was therefore to develop a regulation for better control of the amount of heat entered in a process.

Die Aufgabe wurde durch ein Verfahren unter Durchführung folgender Schritte gelöst;

  • a) Messung des Massenstromes (ṁ) und mindestens einer der Größen Druck (p) und Temperatur (T) des Betriebsmittels in der Zufuhrleitung (1) zum Wärmeübertrager (3);
  • b) Bestimmung des Enthalpiestromes in den Wärmeübertrager (3) unter Verwendung der in a) gemessenen Größen;
  • c) Verwendung des durch b) bestimmten Enthalpiestromes in den Wärmeübertrager (3) als Stellgröße für die Regelgröße auf der Prozeßseite, wobei der Wärmeübertrager (3) durch Veränderung des in ihn fließenden Enthalpiestromes nach Maßgabe der Regelgröße gesteuert wird.
The task was solved by a procedure by performing the following steps;
  • a) measurement of the mass flow (ṁ) and at least one of the variables pressure (p) and temperature (T) of the operating medium in the supply line (1) to the heat exchanger (3);
  • b) determination of the enthalpy flow into the heat exchanger (3) using the quantities measured in a);
  • c) Use of the enthalpy flow determined by b) in the heat exchanger (3) as a manipulated variable for the controlled variable on the process side, the heat exchanger (3) being controlled by changing the enthalpy flow flowing into it in accordance with the controlled variable.

Die Messung der Größen Druck (p), Temperatur (T) und die Bestimmung des Massenstromes (ṁ) werden durch bekannte Verfahren und Vorrichtungen durchgeführt. Dabei ist allerdings zu beachten, daß die üblichen Verfahren zur Bestimmung des Massenstromes (Drossel, induktive Durchflussmessung) lediglich einen Volumenstrom bestimmen, der sich erst nach Multiplikation mit der Dichte (δ) des Arbeitsmediums in einen Massenstrom umrechnen läßt. Bei dieser Umrechnung können Ungenauigkeiten auftreten, wenn nicht berücksichtigt wird, daß δ von T und p abhängt. Der Enthalpiestrom in den Wärmeübertrager ergibt sich durch Multiplikation des Massenstromes (ṁ) mit der spezifischen Enthalpie (hi) des Arbeitsmediums, die sich bei Kenntnis der beiden Zustandsgrößen p und T auf bekannte Weise errechnen läßt. Befindet sich das Arbeitsmedium, beispielsweise Wasserdampf, jedoch exakt an einer Phasengrenze, so reicht unter Ausnutzung der bekannten thermodynamischen Zusammenhänge die Bestimmung einer der beiden Größen, Druck oder Temperatur, zur Gewinnung der übrigen Zustandsgrößen, also auch der spez. Enthalpie. Dies ist beispielsweise der Fall, wenn als Arbeitsmedium Wasserdampf im gesättigten Zustand verwendet wird.The measurement of the variables pressure (p), temperature (T) and the determination of the mass flow (ṁ) are carried out by known methods and devices. It should be noted, however, that the usual methods for determining the mass flow (throttle, inductive flow measurement) only determine a volume flow, which can only be converted into a mass flow after multiplication by the density (δ) of the working medium. This conversion can lead to inaccuracies if it is not taken into account that δ depends on T and p. The enthalpy flow into the heat exchanger is obtained by multiplying the mass flow (ṁ) by the specific enthalpy (h i ) of the working medium, which can be calculated in a known manner if the two state variables p and T are known. If the working medium is For example, water vapor, but exactly at a phase boundary, using one of the known thermodynamic relationships, the determination of one of the two variables, pressure or temperature, is sufficient to obtain the other state variables, including the spec. Enthalpy. This is the case, for example, if water vapor in the saturated state is used as the working medium.

Bei Kenntnis des Enthalpiestromes (Ė) läßt sich dieser als Stellgröße verwenden. Die eigentliche Regelgröße beispielsweise die Temperatur in einem verfahrenstechnischen Prozeß, läßt sich um einen bestimmten Betrag ändern, wenn der Enthalpiestrom in den Wärmeübertrager um einen dieser Änderung entsprechenden Betrag vergrößert beziehungsweise verkleinert wird. Im einfachsten Fall geschieht dies durch eine Zufuhrkontrolle (FC), bei der mit Hilfe eines Ventils der Massenstrom in den Wärmeübertrager gesteuert wird.If the enthalpy current (Ė) is known, this can be used as a manipulated variable. The actual controlled variable, for example the temperature in a process engineering process, can be changed by a certain amount if the enthalpy flow into the heat exchanger is increased or decreased by an amount corresponding to this change. In the simplest case, this is done by a supply control (FC), in which the mass flow into the heat exchanger is controlled with the aid of a valve.

Durch das neue Verfahren wird eine genaue, direkte Regelung der in einen Prozeß eingespeisten Energiemenge ermöglicht. Das neue Regelungsverfahren berücksichtigt Störeinflüsse, denen das Arbeitsmedium in der Speiseleitung (Dampfschiene) unterworfen ist. Damit werden diese Störeinflüsse vom eigentlichen Prozeß (Destillation etc.) ferngehalten. Dadurch wird der Vorteil erzielt, daß sich dieser Prozeß innerhalb enger und genauer definierbaren Toleranzen steuern läßt. Zudem erfolgt eine wirtschaftlichere Ausnutzung produzierter Wärmemengen.The new method enables precise, direct control of the amount of energy fed into a process. The new control procedure takes into account the interference to which the working medium in the feed line (steam rail) is subjected. This prevents these interferences from the actual process (distillation etc.). This has the advantage that this process can be controlled within narrow and more precisely definable tolerances. In addition, the amount of heat produced is used more economically.

Das Verfahren ist mit Vorteil bei technischen Destillations- bzw. Rektifikationskolonnen mit Durchmessern über 0,150 m, bevorzugt über 0,5 m, insbesondere über 1,0 m, einzusetzen. Diese technischen Kolonnen fordern aufgrund ihrer Trägheit eine besonders genaue Steuerung.The process can be used with advantage in technical distillation or rectification columns with diameters over 0.150 m, preferably over 0.5 m, in particular over 1.0 m. Due to their inertia, these technical columns require particularly precise control.

Eine bevorzugte Regelgröße auf der Prozeßseite ist die Temperatur, da diese die wichtigste Prozeßgröße in den genannten Anlagen darstellt. Aber auch andere Größen wie beispielsweise der Sumpfstand, können mit dem neuen Verfahren geregelt werden.A preferred control variable on the process side is the temperature, since this is the most important process variable in the systems mentioned. However, other variables such as the sump level can also be controlled with the new process.

Eine bevorzugte Durchführungsform des neuen Verfahrens besteht in der Berücksichtigung des den Wärmeübertrager wieder verlassenden Enthalpiestromes. Dies ist zu erreichen, indem man die spezifische Enthalpie (ho) von der spezifischen Enthalpie des zugeleiteten Arbeitsmediums (hi) abzieht und diese Differenz mit dem Massenstrom (ṁ) multipliziert. Dabei wird vorausgesetzt, daß keine Massenverluste im Wärmeübertrager auftauchen. Bei Vorliegen von Kondensat ist es ausreichend, zur Bestimmung von ho, lediglich die Temperatur des Kondensats zu messen.A preferred embodiment of the new method consists in taking into account the enthalpy flow leaving the heat exchanger again. This can be achieved by subtracting the specific enthalpy (h o ) from the specific enthalpy of the supplied working medium (h i ) and multiplying this difference by the mass flow (ṁ). It is assumed that there are no mass losses in the heat exchanger. If condensate is present, it is sufficient to only measure the temperature of the condensate to determine h o .

Eine weitere bevorzugte Variante des Verfahrens berücksichtigt zudem das zeitliche oder dynamische Verhalten des Wärmeübertragungsprozesses. Das dynamische Verhalten wird durch Ermittlung der Übertragungsfunktion bestimmt. Dazu kann z.B. der Eingangstemperatur des Arbeitsmediums ein definierter zeitlicher Verlauf, etwa eine Sprungfunktion oder eine periodische Funktion oder eine Kombination von beiden, aufgeprägt werden und das Verhalten des Wärmetauschers durch die Messung des zeitlichen Verlaufes der Temperatur To des Arbeitsmediums am Ausgang des Wärmetauschers bestimmt werden. Dieses Verhalten hängt u.a. vom Durchsatz und der Verweilzeitcharakteristik des Massestromes im Wärmetauscher sowie der Wärmekapazität des Wärmetauschers ab. Im Gegensatz zum oben beschriebenen statischen Fall, wo der übertragene Enthalpiestrom E mit m ̇ ·(h i -h o )

Figure imgb0001
gleichgesetzt wurde, müssen im dynamischen Fall also Größen wie bevorzugterweise die Totzeit ⊖ und die Zeitkonstante τ des Wärmetauschers sowie das zeitliche Verhalten der Austrittstemperatur To berücksichtigt werden. Einen besonders bevorzugten Ansatz zur Bestimmung des übertragenen Enthalpiestromes liefert
Figure imgb0002

Dabei bedeutet

E :
Übertragene Enthalpie
t :
Zeit
⊖ :
Totzeit
τ :
Zeitkonstante
τb :
rechnerische Verweilzeit des Heizmittels im Wärmetauscher
K₁,K₂:
Apparate (Wärmetauscher)-Konstanten (rechnerisch oder experimentell bestimmbar)
V :
Flüssigkeitsvolumen des Wärmetauschers auf der Heizseite
k :
Volumenstrom des Kondensats
ṁ :
Massenstrom des Heizmittels (Dampf)
h :
spezifische Enthalpie des Dampfes/Kondensats
T :
Temperatur in °C (oder K)
c :
spezifische Wärme des Kondensats
Indizes:
i : Wärmetauscher Eingang
o : Wärmetauscher Ausgang (Kondensat)
Der Enthalpiestrom läßt sich also mittels geeignet gewählter elektronischer Bausteine wie Multiplizierern und Differenziergliedern aus meßbaren Größen bestimmen. Ebenso sind für diese Aufgabe programmierbare Mikroprozessoren anwendbar.Another preferred variant of the method also takes into account the temporal or dynamic behavior of the heat transfer process. The dynamic behavior is determined by determining the transfer function. For this purpose, for example, the input temperature of the working medium can have a defined course over time, such as a step function or a periodic function or a combination of both, are imprinted and the behavior of the heat exchanger is determined by measuring the time profile of the temperature T o of the working medium at the outlet of the heat exchanger. This behavior depends, among other things, on the throughput and the residence time characteristics of the mass flow in the heat exchanger and on the heat capacity of the heat exchanger. In contrast to the static case described above, where the enthalpy flow E transferred with m ̇ ·(H i -H O )
Figure imgb0001
equated, in the dynamic case, variables such as preferably the dead time ⊖ and the time constant τ of the heat exchanger and the time behavior of the outlet temperature T o must be taken into account. A particularly preferred approach for the determination of the enthalpy current transferred provides
Figure imgb0002

Here means
E:
Transmitted enthalpy
t:
time
⊖:
Dead time
τ:
Time constant
τ b :
calculated residence time of the heating medium in the heat exchanger
K₁, K₂:
Apparatus (heat exchanger) constants (can be determined by calculation or experiment)
V:
Liquid volume of the heat exchanger on the heating side
k :
Volume flow of the condensate
ṁ:
Mass flow of the heating medium (steam)
H :
specific enthalpy of the steam / condensate
T:
Temperature in ° C (or K)
c:
specific heat of the condensate
Indices:
i: Heat exchanger input
o: heat exchanger outlet (condensate)
The enthalpy current can therefore be determined from measurable quantities by means of suitably selected electronic components such as multipliers and differentiators. Programmable microprocessors can also be used for this task.

Trotz aufwendigerer Steuerungselektronik besitzt diese. Durchführungsform den Vorteil, präziser auf rasche Zuflußstörungen des Arbeitsmediums reagieren zu können.Despite more complex control electronics, it has. Implementation form the advantage of being able to react more precisely to rapid flow disturbances of the working medium.

Die genaue Kenntnis des übertragenen Enthalpiestromes im Wärmetauscher wird in einer bevorzugten Variante des Verfahrens ausgenutzt, um ein Kontrollsystem zur Überwachung des Wärmeübertragungsverhaltens der Anlage zu erhalten.The exact knowledge of the enthalpy flow transferred in the heat exchanger is used in a preferred variant of the method in order to obtain a control system for monitoring the heat transfer behavior of the system.

Die übertragene Enthalpie, d.h. die in den Prozeß eingebrachte Wärmemenge, kann als Produkt k · A · ΔT

Figure imgb0003
dargestellt werden. Dabei ist ΔT die Temperaturdifferenz zwischen der Temperatur des Arbeitsmediums und der Temperatur des wärmegespeisten Prozesses, also beispielsweise die Temperatur im Sumpf einer Destillieranlage. A ist ein Maß für die Fläche, durch die der Wärmetransport stattfindet, und k ist der Wärmedurchgangskoeffizient. Durch Vergleich der übertragenen Enthalpiemenge mit Änderung der Temperaturdifferenz ΔT läßt sich (A als konstant angenommen) eine Änderung, beispielsweise eine Verschlechterung des Koeffizienten k feststellen.The enthalpy transferred, ie the amount of heat introduced into the process, can be used as a product k · A · ΔT
Figure imgb0003
being represented. Here, ΔT is the temperature difference between the temperature of the working medium and the temperature of the heat-fed process, for example the temperature in the bottom of a still. A is a measure of the area through which the heat transfer takes place, and k is the heat transfer coefficient. By comparing the amount of enthalpy transferred with a change in the temperature difference ΔT, a change (A assumed to be constant) can be determined, for example a deterioration in the coefficient k.

Durch die Überwachung des Warmeübertragungsverhaltens, wie z.B. einer Verschlechterung, auch Fouling genannt, ist beispielsweise ein Umschalten auf gereinigte Wärmeübertrager beziehungsweise das Abschalten zur Reinigung steuerbar.By monitoring the heat transfer behavior, e.g. a deterioration, also called fouling, can be controlled, for example, by switching to cleaned heat exchangers or switching off for cleaning.

Die Erfindung wird im folgenden anhand der Zeichnung beispielhaft erläutert. Dabei zeigen

Figur 1 und Figur 2
das bekannte Schema zur Temperaturregelung eines Prozesses mittels eines dampfgespeisten Wärmeübertragers.
Figur 3
zeigt die Temperaturregelung des gleichen Prozesses nach dem neuen Verfahren.
The invention is explained below by way of example with reference to the drawing. Show
Figure 1 and Figure 2
the known scheme for temperature control of a process using a steam-fed heat exchanger.
Figure 3
shows the temperature control of the same process using the new method.

Wie bereits beschrieben, erfordert nach den bekannten Verfahren die Einstellung einer bestimmten Temperatur eine Regelung der Zufuhrmenge FC mittels eines Ventiles 2 in Abhängigkeit von dem gemessenen Massenstrom durch die Dampfleitung 1. Im beschriebenen Fall wird der Massenstrom durch Messung der Druckdifferenz Δp an der Blende 5, die in der Dampfleitung 1 sitzt, vorgenommen. Die somit geregelte Dampfmenge gelangt in den Wärmeübertrager 3 und verursacht im Prozeß die gewünschte Temperaturänderung.As already described, according to the known methods, the setting of a certain temperature requires regulation of the supply quantity FC by means of a valve 2 as a function of the measured mass flow through the steam line 1. In the case described, the mass flow is measured by measuring the pressure difference Δp at the orifice 5, which sits in the steam line 1, made. The amount of steam thus regulated enters the heat exchanger 3 and causes the desired temperature change in the process.

Nach dem neuen Verfahren (hier der Durchführungsform, ohne Berücksichtigung des dynamischen Verhaltens des Wärmeübertragers, aber mit Berücksichtigung des durch das Kondensat abgeführten Enthalpiestromes) tritt anstelle der Übersetzung der Regelgröße Temperatur in die Stellgröße Zufuhrmenge die Übersetzung in die Stellgröße Enthalpiestrom EC (enthalpy control). Eine Abweichung vom Sollwert veranlaßt die Enthalpiesteuerung EC zur Nachführung des Ventiles 2. Die EC erhält die erforderlichen Meßwerte durch Messung des Druckes Pi und der Temperatur Ti in der Dampfzuführung 1. Aus diesen Meßgrößen lassen sich die spezifische Enthalpie hi und die Dichte δ durch bekannte elektronische Bauteile (Multiplizierer etc.) oder programmierbare Mikroprozessoren bestimmen. Einen Weg dazu bieten dem Fachmann bekannte Berechnungsblätter (z.B. VDI-Wärmeatlas, 6. Auflage, 1991, DB 1 bis DB 15), wobei die tabellierten Werte als Stützstellen zur Interpolation dazwischen liegender Werte benutzt werden. Die Bestimmung des Massenstromes geschieht auf die bekannte Weise mit Hilfe einer Blende 5. Über der Blende wird der Druckabfall Δp gemessen. Aus diesem Meßwert bestimmt man unter Zugrundelegung der bekannten Blendengleichung zunächst den Volumenstrom. Unter Verwendung der aus den Größen Pi und Ti bestimmten Zustandsgröße δ, der Dichte des Arbeitsmediums, wird dann der Massenstrom ṁ bestimmt. Zur Bestimmung des den Wärmeübertrager 3 verlassenden Enthalpiestromes reicht die Messung der Temperatur To des Kondensats. Die im Wärmetauscher 3 übertragene Enthalpie ergibt sich durch Bildung des Produktes aus Massenstrom ṁ und der Differenz der spezifischen Enthalpien hi, ho.According to the new method (here the implementation, without taking into account the dynamic behavior of the heat exchanger, but taking into account the enthalpy flow discharged through the condensate), instead of translating the temperature control variable into the supply quantity control variable, the translation into the enthalpy flow control variable EC (enthalpy control). A deviation from the setpoint causes the enthalpy control EC to track the valve 2. The EC obtains the required measured values by measuring the pressure P i and the temperature T i in the steam feed 1. The specific enthalpy h i and the density δ can be determined from these measured variables determined by known electronic components (multipliers, etc.) or programmable microprocessors. One way of doing this is provided by calculation sheets known to the person skilled in the art (for example VDI Warmth Atlas, 6th edition, 1991, DB 1 to DB 15), the tabulated values can be used as support points for interpolation of intermediate values. The mass flow is determined in the known manner with the aid of an orifice 5. The pressure drop Δp is measured over the orifice. The volume flow is first determined from this measured value on the basis of the known aperture equation. The mass flow ṁ is then determined using the state variable δ, the density of the working medium, determined from the quantities P i and T i . To determine the enthalpy flow leaving the heat exchanger 3, it is sufficient to measure the temperature T o of the condensate. The enthalpy transferred in the heat exchanger 3 results from the formation of the product of the mass flow ṁ and the difference between the specific enthalpies h i , h o .

Claims (7)

Steuerungsverfahren für einen Wärmeübertrager (3), aufweisend eine Prozeßseite und eine Betriebsmittelseite sowie eine Zufuhrleitung (1) für das gasförmige Betriebsmittel, zur Einstellung einer Regelaröße auf der Prozeßseite, gekennzeichnet durch folgende Schritte: a) Messung des Massenstromes (ṁ) und mindestens einer der Größen Druck (p) und Temperatur (T) des Betriebsmittels in der Zufuhrleitung (1) zum Wärmeübertrager (3): b) Bestimmung des Enthalpiestromes in den Wärmeübertrager (3) unter Verwendung der in a) gemessenen Größen: c) Verwendung des durch b) bestimmten Enthalpiestromes in den Wärmeübertrager (3) als Stellgröße für die Regelgröße auf der Prozeßseite, wobei der Wärmeübertrager (3) durch Veränderung des in ihn fließenden Enthalpiestromes nach Maßgabe der Regelgröße gesteuert wird. Control method for a heat exchanger (3), comprising a process side and an operating medium side as well as a supply line (1) for the gaseous operating medium, for setting a control variable on the process side, characterized by the following steps: a) Measurement of the mass flow (ṁ) and at least one of the quantities pressure (p) and temperature (T) of the equipment in the supply line (1) to the heat exchanger (3): b) Determination of the enthalpy flow into the heat exchanger (3) using the variables measured in a): c) Use of the enthalpy flow determined by b) in the heat exchanger (3) as a manipulated variable for the controlled variable on the process side, the heat exchanger (3) being controlled by changing the enthalpy flow flowing into it in accordance with the controlled variable. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Stellgröße zur Regelung der Wärmeübertragung die Differenz zwischen dem Enthalpiestrom in den Wärmeübertrager (3) und des den Wärmeübertrager (3) verlassenden Enthalpiestroms verwendet wird.Method according to Claim 1, characterized in that the difference between the enthalpy flow into the heat exchanger (3) and the enthalpy flow leaving the heat exchanger (3) is used as the manipulated variable for regulating the heat transfer. Verfahren nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß das zeitliche Verhalten des Wärmeübertragers (3) bei der Bestimmung des Enthalpiestromes berücksichtigt wird.Method according to one of claims 1 to 2, characterized in that the temporal behavior of the heat exchanger (3) is taken into account when determining the enthalpy flow. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Enthalpiestrom durch Veränderung des Massestromes (ṁ) geändert wird.Method according to one of claims 1 to 3, characterized in that the enthalpy flow is changed by changing the mass flow (ṁ). Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß als Regelgröße auf der Prozeßseite die Temperatur verwendet wird.Method according to one of claims 1 to 4, characterized in that the temperature is used as the control variable on the process side. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der vom Wärmeübertrager (3) übertragene Enthalpiestrom mit der Temperaturdifferenz zwischen gasförmigem Medium und Prozeßseite verglichen wird und dieser Vergleich als Maß für die Veränderung der Wärmeübertragungseigenschaften des Wärmeübertragers (3) dient.Method according to one of claims 1 to 5, characterized in that the enthalpy flow transmitted by the heat exchanger (3) is compared with the temperature difference between the gaseous medium and the process side and this comparison serves as a measure of the change in the heat transfer properties of the heat exchanger (3). Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das gasförmige Medium Wasserdampf ist.Method according to one of claims 1 to 6, characterized in that the gaseous medium is water vapor.
EP93102757A 1992-03-06 1993-02-22 Method for heat exchanger control Revoked EP0559043B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4207144 1992-03-06
DE4207144A DE4207144A1 (en) 1992-03-06 1992-03-06 METHOD FOR REGULATING HEAT EXCHANGERS

Publications (2)

Publication Number Publication Date
EP0559043A1 true EP0559043A1 (en) 1993-09-08
EP0559043B1 EP0559043B1 (en) 1996-04-03

Family

ID=6453415

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93102757A Revoked EP0559043B1 (en) 1992-03-06 1993-02-22 Method for heat exchanger control

Country Status (5)

Country Link
US (1) US5363905A (en)
EP (1) EP0559043B1 (en)
JP (1) JPH0619560A (en)
DE (2) DE4207144A1 (en)
ES (1) ES2085662T3 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7650758B2 (en) 2002-04-22 2010-01-26 Danfoss A/S Method for evaluating a non-measured operating variable in a refrigeration plant
US7681407B2 (en) 2002-07-08 2010-03-23 Danfoss A/S Method and a device for detecting flash gas
US7685830B2 (en) 2002-04-22 2010-03-30 Danfoss A/S Method for detecting changes in a first media flow of a heat or cooling medium in a refrigeration system
US8100167B2 (en) 2002-10-15 2012-01-24 Danfoss A/S Method and a device for detecting an abnormality of a heat exchanger, and the use of such a device

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4344244C2 (en) * 1993-12-23 2003-03-06 Bsh Bosch Siemens Hausgeraete Electric instantaneous water heater
US6116259A (en) * 1996-08-05 2000-09-12 Texaco Inc. Method and apparatus for measuring and adjustably controlling vapor-liquid mixing ratio at pipe junctions
US5904292A (en) * 1996-12-04 1999-05-18 Mcintosh; Douglas S. Modulating fluid control device
US6178928B1 (en) 1998-06-17 2001-01-30 Siemens Canada Limited Internal combustion engine total cooling control system
DE10002254B4 (en) * 2000-01-20 2004-07-22 Helmut Bälz GmbH Heat transfer system with condensate degassing
EP1393004B1 (en) * 2001-05-03 2008-08-27 Matts Lindgren Method and arrangement for controlling the temperature of the outstream flow from a heat exchanger and measuring produced heat
GB0121375D0 (en) * 2001-09-04 2001-10-24 Ashe Morris Ltd Temperature control systems
DE102004021423A1 (en) * 2004-04-30 2005-12-01 Siemens Ag Method and device for determining the efficiency of a heat exchanger
DE102007062422A1 (en) * 2007-12-20 2009-06-25 Bayer Materialscience Ag Method and plant for controlling a continuous crystallization process
US8325049B2 (en) * 2009-07-06 2012-12-04 Thermo Diagnostics Company LLC Method and system for measuring temperature and pressure in different regions to determine steam quality
US8816865B1 (en) 2009-07-06 2014-08-26 Walter T. Deacon Method and system for measuring temperature and pressure in different regions to determine steam quality
FR2964096A1 (en) * 2010-08-27 2012-03-02 Solvay PROCESS FOR PURIFYING BRINE
JP5058324B2 (en) * 2010-10-14 2012-10-24 三菱電機株式会社 Refrigeration cycle equipment
DE102010049591A1 (en) * 2010-10-26 2012-04-26 Krones Aktiengesellschaft Method for determining cleaning need of heating device for manufacturing beer, involves measuring parameter that alters according to formation of deposits in heating surface, for determining cleaning need of heating surface
US20130240172A1 (en) * 2012-03-13 2013-09-19 Victaulic Company Hydronic System and Control Method
DE102012206466A1 (en) * 2012-04-19 2013-10-24 Siemens Aktiengesellschaft Method and device for operating a solar thermal power plant
US9864847B2 (en) * 2014-09-04 2018-01-09 Robert A. Bellantone Method for predicting the solubility of a molecule in a polymer at a given temperature
DE102018130067A1 (en) * 2018-11-28 2020-05-28 Volkswagen Aktiengesellschaft Process for measuring and regulating technical gas flows, device for measuring and regulating technical gas flows
CN114674585B (en) * 2022-03-23 2024-01-12 华电电力科学研究院有限公司 Heat supply capacity measuring method, device and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3676304A (en) * 1970-07-08 1972-07-11 Phillips Petroleum Co Control of fractionation column reboiler
DE2421003A1 (en) * 1974-04-30 1975-11-13 Siemens Ag Adjustment of steam-generating heat-exchanger - has actual enthalpy control and measures pressure at one line-point, temperature at all line-points
EP0155826A2 (en) * 1984-03-23 1985-09-25 International Control Automation Finance S.A. Heat exchanger performance monitors
US4836146A (en) * 1988-05-19 1989-06-06 Shell Oil Company Controlling rapping cycle

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB917714A (en) * 1960-10-12 1963-02-06 Exxon Research Engineering Co Continuous enthalpy meter
CH559941A5 (en) * 1972-12-20 1975-03-14 Sulzer Ag
DE2316349A1 (en) * 1973-04-02 1974-10-17 Kernforschung Gmbh Ges Fuer PROCEDURE FOR REGULATING THE HEAT TRANSFER IN HEAT EXCHANGERS AND FOR THE USE OF THE PROCEDURE IN THE PROVIDED HEAT EXCHANGERS
JPS5376295A (en) * 1976-12-17 1978-07-06 Toshiba Corp Temperature controlling device of liquid metal
GB2077434B (en) * 1980-05-30 1984-04-26 Millar John Ascertaining flow rate through valves or pumps
SU1043608A1 (en) * 1981-04-10 1983-09-23 Киевский институт автоматики им.ХХУ съезда КПСС System for automatic controlling of gas drying in low-temperature separation plant
US4488239A (en) * 1982-04-22 1984-12-11 The Babcock & Wilcox Company Temperature control system for olefin oxidation reactor
US4932788A (en) * 1986-03-12 1990-06-12 Yeh George C Monitoring of the quality of a flowing vapor
JPS6371625A (en) * 1986-09-16 1988-04-01 Mitsubishi Heavy Ind Ltd Measuring device for heat absortion quantity of heat conduction pipe
SU1569596A1 (en) * 1987-05-27 1990-06-07 Азербайджанское Научно-Производственное Объединение "Промприбор" Apparatus for measuring amount of thermal energy carried by water flow
US5146941A (en) * 1991-09-12 1992-09-15 Unitech Development Corp. High turndown mass flow control system for regulating gas flow to a variable pressure system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3676304A (en) * 1970-07-08 1972-07-11 Phillips Petroleum Co Control of fractionation column reboiler
DE2421003A1 (en) * 1974-04-30 1975-11-13 Siemens Ag Adjustment of steam-generating heat-exchanger - has actual enthalpy control and measures pressure at one line-point, temperature at all line-points
EP0155826A2 (en) * 1984-03-23 1985-09-25 International Control Automation Finance S.A. Heat exchanger performance monitors
US4836146A (en) * 1988-05-19 1989-06-06 Shell Oil Company Controlling rapping cycle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 12, no. 298 (P-744)15. August 1988 & JP-A-63 071 625 ( MITSUBISHI HEAVY IND LTD ) 1. April 1988 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7650758B2 (en) 2002-04-22 2010-01-26 Danfoss A/S Method for evaluating a non-measured operating variable in a refrigeration plant
US7685830B2 (en) 2002-04-22 2010-03-30 Danfoss A/S Method for detecting changes in a first media flow of a heat or cooling medium in a refrigeration system
US7681407B2 (en) 2002-07-08 2010-03-23 Danfoss A/S Method and a device for detecting flash gas
US8100167B2 (en) 2002-10-15 2012-01-24 Danfoss A/S Method and a device for detecting an abnormality of a heat exchanger, and the use of such a device

Also Published As

Publication number Publication date
DE59302081D1 (en) 1996-05-09
ES2085662T3 (en) 1996-06-01
JPH0619560A (en) 1994-01-28
EP0559043B1 (en) 1996-04-03
DE4207144A1 (en) 1993-09-09
US5363905A (en) 1994-11-15

Similar Documents

Publication Publication Date Title
EP0559043B1 (en) Method for heat exchanger control
DE3126331C2 (en)
EP2510198B1 (en) Method and device for regulating the production of steam in a steam plant
EP2133676B1 (en) Calorimetric method
DE3317941C2 (en) Temperature control device
EP0780147B1 (en) Method for controlling a partitioned distillation column
EP0639253B1 (en) Forced-flow steam generator
EP2477734A1 (en) Two-degree-of-freedom control having an explicit switching for controlling chemical engineering processes
DE4416317B4 (en) Method and control device for controlling a material processing process
DE102004021423A1 (en) Method and device for determining the efficiency of a heat exchanger
DE3142992C3 (en) Method and device for heat control of a continuous furnace
DE3020648A1 (en) METHOD AND DEVICE FOR CONTROLLING OR CONTROL OF TECHNICAL PROCESSES
DE3636119C2 (en)
EP0164382B1 (en) Resorption thermal conversion plant
EP1462901B1 (en) Method for the control or regulation of a thermal load variation process in a fluid conveying non-deformable and/or thick wall component of a thermal system.
DE2103858A1 (en) Control device for a fractional distillation column
DE3529257A1 (en) Method and arrangement for determining the heat output of heating surfaces of a heating system
EP0070471B1 (en) Method to determine the set point of the flow or return temperature for a flow or return temperature control system of a central heating unit, and electronic circuit arrangement for carrying out the method
EP0643271B1 (en) Process for controlling the temperature and the humidity of the air in rooms with an air conditioning installation
DE1907551B2 (en) Method for regulating a multi-zone furnace for heating rolling stock
DE3215293A1 (en) Air conditioning system for motor vehicles
EP4088077B1 (en) Method and device for determining fouling in a heat exchanger
DE2521008C3 (en)
EP0709757A1 (en) Method and apparatus for operating a heat exchanger
DE3246273C2 (en) Control device for inductive heating of large workpieces

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL

17P Request for examination filed

Effective date: 19930923

17Q First examination report despatched

Effective date: 19940418

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT NL

REF Corresponds to:

Ref document number: 59302081

Country of ref document: DE

Date of ref document: 19960509

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2085662

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960503

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970115

Year of fee payment: 5

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: LINDE AKTIENGESELLSCHAFT

Effective date: 19961216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19970212

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970213

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970219

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970221

Year of fee payment: 5

26 Opposition filed

Opponent name: HELMUT BAELZ GMBH

Effective date: 19970103

Opponent name: LINDE AKTIENGESELLSCHAFT

Effective date: 19961216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970228

Year of fee payment: 5

NLR1 Nl: opposition has been filed with the epo

Opponent name: LINDE AKTIENGESELLSCHAFT

NLR1 Nl: opposition has been filed with the epo

Opponent name: HELMUT BAELZ GMBH

Opponent name: LINDE AKTIENGESELLSCHAFT

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19970804

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 970804

NLR2 Nl: decision of opposition