EP0548606A2 - Resistance with PTC-behaviour - Google Patents

Resistance with PTC-behaviour Download PDF

Info

Publication number
EP0548606A2
EP0548606A2 EP92120542A EP92120542A EP0548606A2 EP 0548606 A2 EP0548606 A2 EP 0548606A2 EP 92120542 A EP92120542 A EP 92120542A EP 92120542 A EP92120542 A EP 92120542A EP 0548606 A2 EP0548606 A2 EP 0548606A2
Authority
EP
European Patent Office
Prior art keywords
varistor
ptc
contact
resistor according
ptc material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92120542A
Other languages
German (de)
French (fr)
Other versions
EP0548606B1 (en
EP0548606A3 (en
Inventor
Felix Dr. Greuter
Claus Dr. Schüler
Ralf Dr. Strümpler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Asea Brown Boveri Ltd
ABB AB
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0548606A2 publication Critical patent/EP0548606A2/en
Publication of EP0548606A3 publication Critical patent/EP0548606A3/xx
Application granted granted Critical
Publication of EP0548606B1 publication Critical patent/EP0548606B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient

Definitions

  • the invention is based on an electrical resistance with a resistance body arranged between two contact connections, which contains a PTC behavior material that forms at least one electrically conductive path between the two contact connections below a material-specific temperature.
  • a resistor of the aforementioned type has long been state of the art and is described for example in DE 2 948 350 C2 or US 4 534 889 A.
  • a resistor contains a resistor body made of a ceramic or polymeric material which exhibits PTC behavior and conducts electrical current well below a material-specific limit temperature.
  • PTC material is, for example, a ceramic based on doped barium titanate or an electrically conductive polymer, such as a thermoplastic, semicrystalline polymer such as polyethylene, with, for example, carbon black as the conductive filler. If the limit temperature is exceeded, it increases the specific resistance of the resistance based on a PTC material jumps by many orders of magnitude.
  • PTC resistors can therefore be used as overload protection for circuits. Because of their limited conductivity, carbon-filled polymers, for example, have a specific resistance greater than 1 ⁇ cm, their practical application is generally limited to nominal currents up to approx. 8 A at 30 V and up to approx. 0.2 A at 250 V.
  • PTC resistors based on a polymer filled with borides, silicides or carbides with very high specific conductivity at room temperature, which should also be used as current-limiting elements in power circuits with currents of, for example, 50 to 100 A at 250 V.
  • resistors are not commercially available and can therefore not be implemented without considerable effort.
  • the thickness of the resistance material between the contact terminals determines the magnitude of the voltage held by the resistor in the high-resistance state.
  • large overvoltages are induced, particularly in circuits with high inductance. These can only be effectively dismantled if the PTC resistor is large. This inevitably leads either to a significant reduction in its current carrying capacity or to an unacceptably large component.
  • the PTC resistor becomes hotter at locally predefined locations, such as in the middle between the contact connections, than at other locations and therefore earlier at these locations switches to the high-resistance state than at the unheated locations.
  • the entire voltage applied to the PTC resistor then drops over a relatively small distance at the location of the highest resistance. The associated high electrical field strength can then lead to breakdowns and damage to the PTC resistor.
  • the invention as specified in claim 1, is based on the object of creating a resistor with PTC behavior which is simple and inexpensive and is nevertheless distinguished by high nominal current carrying capacity and high dielectric strength.
  • the resistor according to the invention consists of commercially available elements, such as at least one varistor based on ZnO, SrTiO3, SiC or BaTiO3, and at least one element made of PTC material, and is simply constructed. It can therefore not only be manufactured comparatively inexpensively, but can also be of small dimensions. This is due to the fact that the overvoltages induced by a switching-off process of the resistor according to the invention are derived from the varistor, and therefore the PTC element inducing the overvoltages only has to be designed for the breakdown voltage of the varistor.
  • the varistor In addition, locally occurring overvoltages are derived by the varistor. It is particularly advantageous here that due to the intimate contacting of the varistor and PTC material, the varistor over a small distance has lower breakdown voltage than over its entire length.
  • the relatively high thermal conductivity of the ceramic located in the varistor ensures a homogenization of the temperature distribution in the resistor according to the invention. This effectively counteracts the risk of local overheating and significantly increases the nominal current carrying capacity despite the small dimensions.
  • FIGS. 1 to 7 each show a top view of a section through one of seven preferred embodiments of the resistor according to the invention with PTC behavior.
  • the resistors shown in FIGS. 1 to 7 each contain a resistance body 3 arranged between two contact connections 1, 2.
  • the resistance body 3 is made up of two or more planar elements, preferably each designed as a plate.
  • One of these elements is a varistor 4, which is preferably made of a ceramic based on a metal oxide, such as ZnO, or a titanate, such as SrTiO3 or BaTiO3, or a carbide, such as SiC, is formed.
  • the varistor 4 is contacted with both connections 1, 2 and has a breakdown voltage which is above the nominal voltage of the electrical system in which the resistor is used.
  • the other 5 of the two elements consists of PTC material and can be formed from a thermoplastic or thermosetting polymer or else from a ceramic.
  • the PTC element 5 is also contacted with both connections 1, 2.
  • Varistor 4 and PTC element 5 have a common contact surface over their entire areal extension. Both elements are brought into intimate electrical contact with one another on this contact surface.
  • resistors are preferably produced as follows: First, approximately 0.5 to 2 mm thick plates are produced from a varistor ceramic using a process customary in varistor technology, such as by pressing or casting and subsequent sintering. With a shear mixer, epoxy resin and an electrically conductive filler, such as TiC, are used to produce PTC material based on a polymer. This is poured with a thickness of 0.5 to 4 mm onto a previously made plate-shaped varistor ceramic. If necessary, it is possible to cover the cast layer with a further varistor ceramic and to repeat the previously described process steps successively. This leads to a stack in which layers of varistor and PTC material are alternately arranged in succession in accordance with a multilayer arrangement. The epoxy resin is then cured at temperatures between 60 and 140 ° C to form the resistance body 3.
  • thermosetting PTC polymer a thermoplastic PTC polymer can also be used. This is first extruded into thin plates or foils which, after assembly with the plate-shaped varistor ceramic, are subsequently hot-pressed to form the resistance body 3.
  • the planar elements 4, 5 made of varistor and PTC ceramic can be connected to one another by gluing using an electrically anisotropically conductive elastomer.
  • this elastomer should have high adhesive strength.
  • this elastomer should only be electrically conductive in the direction of the normal to the flat elements.
  • Such an elastomer is known for example from J.Applied Physics 64 (1984) 6008.
  • the resistance bodies 3 can subsequently be cut up by cutting.
  • the resistance bodies produced in this way can have, for example, a length of 0.5 to 20 cm and end faces of, for example, 0.5 to 10 cm2.
  • the end faces of the resistance structure 3 having a sandwich structure are smoothed, for example by lapping and polishing, and can be connected to the contact connections 1, 2, for example, by soldering with a low-melting solder or by gluing with a conductive adhesive.
  • the resistor according to the invention normally conducts current during the operation of a system receiving it.
  • the current flows here in an electrically conductive path of the PTC element 5 running between the contact connections 1 and 2. If the PTC element 5 heats up to such an extent because of an overcurrent that the PTC element suddenly increases its resistance by many orders of magnitude the overcurrent is suddenly interrupted and an overvoltage is induced in the PTC element 5.
  • the varistor 4 is connected in its entire length parallel to the entire PTC element 5 and thus also to its current path carrying the overcurrent. As soon as the overvoltage exceeds the breakdown voltage of the varistor 4, the overcurrent is dissipated in parallel through the varistor 4, thus limiting the overvoltage.
  • the PTC element 5 therefore only has to be designed for the breakdown voltage of the varistor 4.
  • the varistor 4 which has a correspondingly reduced breakdown voltage over small distances.
  • the comparatively high thermal conductivity of the varistor ceramic also ensures that the temperature distribution in the PTC element 5 is homogenized, as a result of which local overheating is avoided in this element.
  • the high heat dissipation in the varistor helps to significantly increase the nominal current carrying capacity of the resistor according to the invention compared to a PTC resistor according to the prior art.
  • FIG. 3 shows a tube-shaped resistor cut along its tube axis according to the invention.
  • This resistor contains a varistor 4 and two PTC elements 5.
  • the varistor 4 and the PTC elements are each hollow cylinders and, together with ring-shaped contact connections, form a tubular resistor.
  • This resistance can advantageously be produced from a hollow cylindrical varistor ceramic, which is coated in a cylindrical casting mold on the inner and on the outer surface with a polymeric PTC casting compound, for example based on an epoxy resin.
  • a fully cylindrical varistor ceramic can also be used.
  • a resistor equipped with such a varistor is particularly easy to manufacture, whereas a resistor designed as a tube has particularly good heat dissipation by convection and particularly well with a liquid can be cooled. If a thermoplastic polymer is used as the PTC material instead of a thermoset polymer, the PTC material can be extruded directly onto the cylinder or the hollow cylinder.
  • the resistance body 3 each has the shape of a solid cylinder with varistors and PTC elements stacked one on top of the other.
  • the varistors are designed as circular disks 40 or as ring bodies 41 and the PTC elements in a congruent manner as ring bodies 50 or as circular disks 51.
  • contact disks 6 are additionally provided.
  • Each varistor in the form of a disk 40 or ring body 41 is in intimate electrical contact along its entire circumference with a PTC element 5 in the form of a ring body 50 or disk 51.
  • Each varistor and each PTC element 5 in contact with it is either connected to one of the two contact connections 1, 2 and a contact plate 6 or with two contact plates 6 contacted.
  • the varistors or the PTC elements are thus connected in series in each of the embodiments 4 to 6 between the contact connections 1, 2.
  • the resistors according to FIGS. 4 to 6 can be manufactured as follows:
  • the disks 40 and ring bodies 41 used as varistor 4 can be produced from powdered varistor material, such as from suitable metal oxides, by pressing and sintering.
  • the diameters of the disks can be, for example, between 0.5 and 5 cm and those of the ring bodies between 1 and 10 cm with a thickness of, for example, between 0.1 and 1 cm.
  • the varistors 4 designed as disks 40 are stacked one above the other with the contact disks 6 lying between them.
  • the contact disks 6 can be any in the edge area have shaped holes 7 and may even be designed as a grid.
  • the stack is placed in a mold.
  • the free space between the contact disks 6 is then poured out with polymeric PTC material to form the ring bodies 50 and the cast stack is cured.
  • the top and bottom of the stack are then contacted.
  • the metal contact disks 6 ensure a low contact resistance in a current path formed by the disks 40 or ring bodies 50 connected in series. Overvoltages that occur can be derived over the entire circular cross section of the disks 40.
  • the holes 7 filled with PTC material reduce the total resistance in the current path of the PTC elements designed as ring bodies 50. Local overvoltages in the event of overheating in the resistor are avoided particularly well in this embodiment, since the resistance is divided into sections by the contact disks 6, and since in each section a varistor designed as a disk 40 is parallel to a PTC element designed as an annular body 50 and thus parallel is connected to a section of the current path causing the local overvoltages.
  • the PTC ring bodies 50 can also be sintered from ceramic. There is then no need to punch the contact disks 6. In this case, the contact resistance can be kept low by pressing or soldering.
  • the varistors can be designed as ring bodies 41 and the PTC elements as circular disks 51.
  • the holes 7 it is advisable to provide the holes 7 in a central area of the contact disks 6.
  • the varistors 4 are built into the PTC element 5.
  • Such an embodiment of the resistor according to the invention can be achieved in that in addition to an electrically conductive component, such as e.g. C, TiB2, TiC, WSi2 or MoSi2, also in sufficient quantity, for example 5 to 30 percent by volume, varistor material is mixed in powder form.
  • the particle size and the breakdown voltage of the added varistor material marked by squares in FIG. 7 can be adjusted over a wide range and is matched to the particle size of the conductive filler of the PTC element 5 marked by circles in FIG.
  • the varistor material can e.g. by sintering a spray granulate, as occurs as a sub-step in varistor production.
  • the particle diameters are typically between 5 and a few hundred microns.
  • the breakdown voltage of a single varistor particle can be varied between 6 V and a few hundred volts.
  • the composite can be shaped to form the resistance body 3 by hot pressing or by casting with subsequent curing at elevated temperature. Subsequent application of the contact connections 1, 2 to the resistance body 3 finally leads to the resistance.
  • the conductive filler forms current paths through the resistance body during normal operation of the resistor and at the same time brings about the PTC effect.
  • the varistor material on the other hand, depending on the amount added, forms percolating paths locally or through the entire resistance body 3, which can dissipate overvoltage.
  • a composite structure can also be produced by mixing sintered or ground granulate particles of a PTC ceramic with ceramic varistor particles.
  • the mutual bonding and the electrical contacting can be ensured by a metallic solder.
  • the volume fraction of this solder must be below the percolation limit, since this is the only way to guarantee the PTC and varistor behavior of the resistor at the same time.

Abstract

The electrical resistor has a resistor body (3) which is arranged between two contact connections (1, 2). This resistor body contains an element (5) having a PTC behaviour which, below a material-specific temperature, forms an electrically conductive path running between the two contact connections (1, 2). …<??>The resistor is intended to be simple and cost-effective, but nevertheless to be distinguished by a high rated-current carrying capacity and to be protected against local and general overvoltages. …<??>This is achieved in that the resistor body (3) additionally contains a material having a varistor behaviour. The varistor material is connected in parallel with at least one subsection of the electrically conductive path, forming at least one varistor (disc 40), and is brought into internal electrical contact with the part of the PTC material forming the at least one subsection. The parallel connection of the element having the PTC behaviour and the varistor can be implemented both by a microscopic construction and by a macroscopic arrangement. …<IMAGE>…

Description

TECHNISCHES GEBIETTECHNICAL AREA

Bei der Erfindung wird ausgegangen von einem elektrischen Widerstand mit einem zwischen zwei Kontaktanschlüssen angeordneten Widerstandskörper, welcher ein PTC - Verhalten aufweisendes Material enthält, das unterhalb einer materialspezifischen Temperatur mindestens einen zwischen den beiden Kontaktanschlüssen verlaufenden elektrisch leitenden Pfad bildet.The invention is based on an electrical resistance with a resistance body arranged between two contact connections, which contains a PTC behavior material that forms at least one electrically conductive path between the two contact connections below a material-specific temperature.

STAND DER TECHNIKSTATE OF THE ART

Ein Widerstand der zuvor genannten Art ist schon seit langem Stand der Technik und ist beispielsweise in DE 2 948 350 C2 oder US 4 534 889 A beschrieben. Ein solcher Widerstand enthält einen Widerstandskörper aus einem keramischen oder polymeren Material, welches PTC - Verhalten aufweist und unterhalb einer materialspezifischen Grenztemperatur elektrischen Strom gut leitet. PTC - Material ist beispielsweise eine Keramik auf der Basis von dotiertem Bariumtitanat oder ein elektrisch leitfähiges Polymer, etwa ein thermoplastisches, semikristallines Polymer, wie Polyäthylen, mit beispielsweise Russ als leitfähigem Füllstoff. Beim Überschreiten der Grenztemperatur erhöht sich der spezifische Widerstand des Widerstandes auf der Basis eines PTC - Materials sprungartig um viele Grössenordnungen.A resistor of the aforementioned type has long been state of the art and is described for example in DE 2 948 350 C2 or US 4 534 889 A. Such a resistor contains a resistor body made of a ceramic or polymeric material which exhibits PTC behavior and conducts electrical current well below a material-specific limit temperature. PTC material is, for example, a ceramic based on doped barium titanate or an electrically conductive polymer, such as a thermoplastic, semicrystalline polymer such as polyethylene, with, for example, carbon black as the conductive filler. If the limit temperature is exceeded, it increases the specific resistance of the resistance based on a PTC material jumps by many orders of magnitude.

PTC - Widerstände können daher als Überlastschutz von Schaltkreisen eingesetzt werden. Wegen ihrer beschränkten Leitfähigkeit, kohlenstoffgefüllte Polymere weisen beispielsweise einen spezifischen Widerstand grösser 1 Ωcm auf, sind sie in ihrer praktischen Anwendung im allgemeinen auf Nennströme bis ca. 8 A bei 30 V und bis ca 0,2 A bei 250 V beschränkt.PTC resistors can therefore be used as overload protection for circuits. Because of their limited conductivity, carbon-filled polymers, for example, have a specific resistance greater than 1 Ωcm, their practical application is generally limited to nominal currents up to approx. 8 A at 30 V and up to approx. 0.2 A at 250 V.

In J. Mat. Sci. 26(1991) 145ff. sind PTC- Widerstände auf der Basis eines mit Boriden, Siliciden oder Carbiden gefüllten Polymers mit sehr hoher spezifischer Leitfähigkeit bei Raumtemperatur angegeben, welche als strombegrenzende Elemente auch in Leistungsschaltkreisen mit Strömen von beispielsweise 50 bis 100 A bei 250 V einsetzbar sein sollen. Derartige Widerstände sind jedoch kommerziell nicht verfügbar und können daher ohne beträchtlichen Aufwand nicht realisiert werden.In J. Mat. Sci. 26 (1991) 145ff. are PTC resistors based on a polymer filled with borides, silicides or carbides with very high specific conductivity at room temperature, which should also be used as current-limiting elements in power circuits with currents of, for example, 50 to 100 A at 250 V. However, such resistors are not commercially available and can therefore not be implemented without considerable effort.

Bei allen PTC - Widerständen bestimmt die Dicke des zwischen Kontaktanschlüssen befindlichen Widerstandsmaterials zusammen mit der Spannungsfestigkeit dieses Materials die Grösse der vom Widerstand im hochohmigen Zustand gehaltenen Spannung. Bei einem schnellen Übergang vom nieder- in den hochohmigen Zustand werden jedoch - insbesondere bei Stromkreisen mit hoher Induktivität - grosse Überspannungen induziert. Diese können nur dann wirksam abgebaut werden, wenn der PTC-Widerstand gross dimensioniert wird. Dies führt zwangsläufig entweder zu einer erheblichen Reduktion seiner Stromtragfähigkeit oder zu einem unanehmbar grossen Bauelement. Darüber hinaus kann es passieren, dass der PTC-Widerstand bei Überlast an lokal vorgegebenen Stellen, wie etwa in der Mitte zwischen den Kontaktanschlüssen, heisser wird als an anderen Orten und somit an diesen Stellen früher in den hochohmigen Zustand schaltet als an den nicht erhitzten Orten. Es fällt dann die gesamte am PTC - Widerstand anliegende Spannung über eine relativ kleine Distanz am Ort des höchsten Widerstandes ab. Die damit verbundene hohe elektrische Feldstärke kann dann zu Durchschlägen und zur Beschädigung des PTC - Widerstandes führen.For all PTC resistors, the thickness of the resistance material between the contact terminals, together with the dielectric strength of this material, determines the magnitude of the voltage held by the resistor in the high-resistance state. In the event of a rapid transition from the low to the high-resistance state, however, large overvoltages are induced, particularly in circuits with high inductance. These can only be effectively dismantled if the PTC resistor is large. This inevitably leads either to a significant reduction in its current carrying capacity or to an unacceptably large component. In addition, it can happen that the PTC resistor becomes hotter at locally predefined locations, such as in the middle between the contact connections, than at other locations and therefore earlier at these locations switches to the high-resistance state than at the unheated locations. The entire voltage applied to the PTC resistor then drops over a relatively small distance at the location of the highest resistance. The associated high electrical field strength can then lead to breakdowns and damage to the PTC resistor.

KURZE DARSTELLUNG DER ERFINDUNGSUMMARY OF THE INVENTION

Der Erfindung, wie sie in Patentanspruch 1 angegeben ist, liegt die Aufgabe zugrunde, einen Widerstand mit PTC - Verhalten zu schaffen, welcher einfach und kostengünstig ist und sich dennoch durch hohe Nennstromtragfähigkeit und hohe Spannungsfestigkeit auszeichnet.The invention, as specified in claim 1, is based on the object of creating a resistor with PTC behavior which is simple and inexpensive and is nevertheless distinguished by high nominal current carrying capacity and high dielectric strength.

Der erfindungsgemässe Widerstand besteht aus kommerziell erhältlichen Elementen, wie mindestens einem Varistor auf der Basis von ZnO, SrTiO₃ ,SiC oder BaTiO₃, und mindestens einem Element aus PTC - Material, und ist einfach aufgebaut. Er kann daher nicht nur vergleichsweise kostengünstig herstellt werden, sondern kann zugleich auch klein dimensioniert sein. Dies ist dadurch bedingt, dass die durch einen Abschaltvorgang des erfindungsgemässen Widerstandes induzierten Überspannungen vom Varistor abgeleitet werden, und daher das die Überspannungen induzierende PTC- Element nur auf die Durchbruchsspannung des Varistors ausgelegt sein muss.The resistor according to the invention consists of commercially available elements, such as at least one varistor based on ZnO, SrTiO₃, SiC or BaTiO₃, and at least one element made of PTC material, and is simply constructed. It can therefore not only be manufactured comparatively inexpensively, but can also be of small dimensions. This is due to the fact that the overvoltages induced by a switching-off process of the resistor according to the invention are derived from the varistor, and therefore the PTC element inducing the overvoltages only has to be designed for the breakdown voltage of the varistor.

Ausserdem werden auch lokal auftretende Überspannungen durch den Varistor abgeleitet. Hierbei ist es von besonderem Vorteil, dass aufgrund der innigen Kontaktierung von Varistor und PTC - Material der Varistor über kleine Distanzen eine niedrigere Durchbruchspannung besitzt als über seine gesamte Länge.In addition, locally occurring overvoltages are derived by the varistor. It is particularly advantageous here that due to the intimate contacting of the varistor and PTC material, the varistor over a small distance has lower breakdown voltage than over its entire length.

Zudem sorgt die relativ hohe Wärmeleitfähigkeit der im Varistor befindlichen Keramik für eine Homogenisierung der Temperaturverteilung im erfindungsgemässen Widerstand. Hierdurch wird der Gefahr einer lokalen Überhitzung wirksam entgegengetreten und die Nennstromtragfähigkeit trotz kleiner Dimensionierung ganz wesentlich erhöht.In addition, the relatively high thermal conductivity of the ceramic located in the varistor ensures a homogenization of the temperature distribution in the resistor according to the invention. This effectively counteracts the risk of local overheating and significantly increases the nominal current carrying capacity despite the small dimensions.

Bevorzugte Ausführungsbeispiele der Erfindung und die damit erzielbaren weiteren Vorteile werden nachfolgend anhand von Zeichnungen näher erläutert.Preferred exemplary embodiments of the invention and the further advantages which can be achieved thereby are explained in more detail below with reference to drawings.

KURZE BESCHREIBUNG DER ZEICHNUNGENBRIEF DESCRIPTION OF THE DRAWINGS

In den Zeichnungen sind Ausführungsbeispiele der Erfindung vereinfacht dargestellt, und zwar zeigen die Figuren 1 bis 7 jeweils eine Aufsicht auf einen Schnitt durch jeweils eine von sieben bevorzugten Ausführungsformen des erfindungsgemässen Widerstandes mit PTC - Verhalten.Exemplary embodiments of the invention are shown in simplified form in the drawings, specifically FIGS. 1 to 7 each show a top view of a section through one of seven preferred embodiments of the resistor according to the invention with PTC behavior.

WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS OF CARRYING OUT THE INVENTION

Die in den Figuren 1 bis 7 dargestellte Widerstände enthalten jeweils einen zwischen zwei Kontaktanschlüssen 1, 2 angeordneten Widerstandskörper 3. Bei den Ausführungsformen gemäss den Figuren 1 und 2 ist der Widerstandskörper 3 aus zwei oder mehreren flächenhaften und vorzugsweise jeweils als Platte ausgebideten Elementen aufgebaut. Eines dieser Elemente ist ein Varistor 4, welcher vorzugsweise aus einer Keramik auf der Basis eines Metalloxids, wie etwa ZnO, oder eines Titanates, wie etwa SrTiO₃ oder BaTiO₃, oder eines Carbides, wie etwa SiC, gebildet ist. Der Varistor 4 ist mit beiden Anschlüssen 1, 2 kontaktiert und weist eine Durchbruchspannung auf, die oberhalb der Nennspannung des elektrischen Systems liegt, in der der Widerstand eingesetzt wird. Das andere 5 der beiden Elemente besteht aus PTC - Material und kann von einem thermo- oder duroplastischen Polymer oder aber auch von einer Keramik gebildet sein. Entsprechend dem Varistor 4 ist auch das PTC - Element 5 mit beiden Anschlüssen 1, 2 kontaktiert. Varistor 4 und PTC - Element 5 weisen über ihre gesamte flächenhafte Ausdehnung eine gemeinsame Auflagefläche auf. An dieser Auflagefläche sind beide Elemente in innigen elektrischen Kontakt zueinander gebracht.The resistors shown in FIGS. 1 to 7 each contain a resistance body 3 arranged between two contact connections 1, 2. In the embodiments according to FIGS. 1 and 2, the resistance body 3 is made up of two or more planar elements, preferably each designed as a plate. One of these elements is a varistor 4, which is preferably made of a ceramic based on a metal oxide, such as ZnO, or a titanate, such as SrTiO₃ or BaTiO₃, or a carbide, such as SiC, is formed. The varistor 4 is contacted with both connections 1, 2 and has a breakdown voltage which is above the nominal voltage of the electrical system in which the resistor is used. The other 5 of the two elements consists of PTC material and can be formed from a thermoplastic or thermosetting polymer or else from a ceramic. Corresponding to the varistor 4, the PTC element 5 is also contacted with both connections 1, 2. Varistor 4 and PTC element 5 have a common contact surface over their entire areal extension. Both elements are brought into intimate electrical contact with one another on this contact surface.

Diese Widerstände werden bevorzugt wie folgt hergestellt: Zunächst werden nach einem in der Varistortechnik üblichen Verfahren, wie etwa durch Pressen oder Giessen und nachfolgendes Sintern, ca. 0,5 bis 2 mm dicke Platten aus einer Varistor - Keramik hergestellt. Mit einem Schermischer wird aus Epoxidharz und einem elektrisch leitfähigen Füllstoff, wie beispielsweise TiC, PTC - Material auf der Basis eines Polymers hergestellt. Dieses wird mit einer Dicke von 0,5 bis 4 mm auf eine zuvor hergestellte plattenförmige Varistor - Keramik gegossen. Gegebenenfalls ist es möglich, die aufgegossene Schicht mit einer weitere Varistor - Keramik abzudecken und die zuvor beschriebenen Verfahrensschritte sukzessive zu wiederholen. Dies führt zu einem Stapel, in dem entsprechend einer Multilayer - Anordnung wechselweise aufeinanderfolgend Schichten aus Varistor- und PTC - Material angeordnet sind. Das Epoxidharz wird sodann bei Temperaturen zwischen 60 und 140°C unter Bildung des Widerstandskörpers 3 ausgehärtet.These resistors are preferably produced as follows: First, approximately 0.5 to 2 mm thick plates are produced from a varistor ceramic using a process customary in varistor technology, such as by pressing or casting and subsequent sintering. With a shear mixer, epoxy resin and an electrically conductive filler, such as TiC, are used to produce PTC material based on a polymer. This is poured with a thickness of 0.5 to 4 mm onto a previously made plate-shaped varistor ceramic. If necessary, it is possible to cover the cast layer with a further varistor ceramic and to repeat the previously described process steps successively. This leads to a stack in which layers of varistor and PTC material are alternately arranged in succession in accordance with a multilayer arrangement. The epoxy resin is then cured at temperatures between 60 and 140 ° C to form the resistance body 3.

Anstelle eines duroplastischen PTC - Polymers kann auch ein thermoplastisches PTC - Polymer eingesetzt werden. Dieses wird zunächst zu dünnen Platten oder Folien extrudiert, welche nach Zusammenbau mit der plattenförmigen Varistor - Keramik anschliessend zum Widerstandskörper 3 heissverpresst werden.Instead of a thermosetting PTC polymer, a thermoplastic PTC polymer can also be used. This is first extruded into thin plates or foils which, after assembly with the plate-shaped varistor ceramic, are subsequently hot-pressed to form the resistance body 3.

Ist das eingesetzte PTC - Material eine Keramik, so können die flächenhaften Elemente 4, 5 aus Varistor- und PTC - Keramik durch Verkleben mittels eines elektrisch anisotrop leitenden Elastomers miteinander verbunden werden. Zwecks Bildung des innigen elektrischen Kontaktes zwischen den unterschiedlichen Keramiken sollte dieses Elastomer eine hohe Klebkraft aufweisen. Zudem sollte dieses Elastomer nur in Richtung der Normalen der flächenhaften Elemente elektrisch leitend sein. Ein derartiges Elastomer ist beispielsweise aus J.Applied Physics 64(1984) 6008 bekannt.If the PTC material used is a ceramic, the planar elements 4, 5 made of varistor and PTC ceramic can be connected to one another by gluing using an electrically anisotropically conductive elastomer. In order to form the intimate electrical contact between the different ceramics, this elastomer should have high adhesive strength. In addition, this elastomer should only be electrically conductive in the direction of the normal to the flat elements. Such an elastomer is known for example from J.Applied Physics 64 (1984) 6008.

Die Widerstandskörper 3 können nachfolgend durch Schneiden zerteilt werden. Die solchermassen hergestellten Widerstandskörper können beispielsweise eine Länge von 0,5 bis 20 cm und Stirnflächen von beispielsweise 0,5 bis 10 cm² aufweisen. Die Stirnflächen der Sandwich - Struktur aufweisenden Widerstandskörper 3 werden etwa durch Läppen und Polieren geglättet und können etwa durch Auflöten mit einem niedrigschmelzenden Lot oder durch Aufkleben mit einem leitfähigen Kleber mit den Kontaktanschlüssen 1, 2 verbunden werden.The resistance bodies 3 can subsequently be cut up by cutting. The resistance bodies produced in this way can have, for example, a length of 0.5 to 20 cm and end faces of, for example, 0.5 to 10 cm². The end faces of the resistance structure 3 having a sandwich structure are smoothed, for example by lapping and polishing, and can be connected to the contact connections 1, 2, for example, by soldering with a low-melting solder or by gluing with a conductive adhesive.

Der erfindungsgemässe Widerstand leitet während des Betriebs eines ihn aufnehmenden Systems normalerweise Strom. Der Strom fliesst hierbei in einem zwischen den Kontaktanschlüssen 1 und 2 verlaufenden elektrisch leitenden Pfad des PTC - Element 5. Erhitzt sich das PTC - Element 5 wegen eines Überstromes so stark, dass das PTC - Element sprungartig seinen Widerstand um viele Grössenordnungen erhöht, so wird der Überstrom schlagartig unterbrochen und wird hierbei im PTC - Element 5 eine Überspannung induziert. Der Varistor 4 ist in seiner gesamten Länge parallel zum gesamten PTC - Element 5 und damit auch zu dessen, den Überstrom führenden Strompfad geschaltet. Sobald die Überspannung die Durchbruchspannung des Varistor 4 übertrifft, wird der Überstrom parallel durch den Varistor 4 abgeleitet, und so die Überspannung begrenzt. Das PTC - Element 5 muss daher nur auf die Durchbruchsspannung des Varistors 4 ausgelegt sein. Lokal auftretende Überspannungen werden ebenfalls über den Varistor 4 abgeleitet, welcher auf kleine Distanzen eine entsprechend erniedrigte Durchbruchsspannung besitzt. Die vergleichsweise hohe Wärmeleitfähigkeit der Varistor- Keramik sorgt zugleich für eine Homogenisierung der Temperaturverteilung im PTC - Element 5, wodurch in diesem Element lokale Überhitzungen vermieden werden. Darüber hinaus trägt die hohe Wärmeabfuhr in den Varistor dazu bei, die Nennstromtragfähigkeit des Widerstandes nach der Erfindung gegenüber einem PTC - Widerstand nach dem Stand der Technik erheblich zu vergrössern.The resistor according to the invention normally conducts current during the operation of a system receiving it. The current flows here in an electrically conductive path of the PTC element 5 running between the contact connections 1 and 2. If the PTC element 5 heats up to such an extent because of an overcurrent that the PTC element suddenly increases its resistance by many orders of magnitude the overcurrent is suddenly interrupted and an overvoltage is induced in the PTC element 5. The varistor 4 is connected in its entire length parallel to the entire PTC element 5 and thus also to its current path carrying the overcurrent. As soon as the overvoltage exceeds the breakdown voltage of the varistor 4, the overcurrent is dissipated in parallel through the varistor 4, thus limiting the overvoltage. The PTC element 5 therefore only has to be designed for the breakdown voltage of the varistor 4. Locally occurring overvoltages are also derived via the varistor 4, which has a correspondingly reduced breakdown voltage over small distances. The comparatively high thermal conductivity of the varistor ceramic also ensures that the temperature distribution in the PTC element 5 is homogenized, as a result of which local overheating is avoided in this element. In addition, the high heat dissipation in the varistor helps to significantly increase the nominal current carrying capacity of the resistor according to the invention compared to a PTC resistor according to the prior art.

In Fig.3 ist ein rohrförmig gestalteter und längs seiner Rohrachse geschnittener Widerstand nach der Erfindung dargestellt. Dieser Widerstand enthält einen Varistor 4 und zwei PTC - Elemente 5. Der Varistor 4 und die PTC - Elemente sind jeweils Hohlzylinder und bilden zusammen mit ringförmigen Kontaktanschlüssen einen rohrförmigen Widerstand. Dieser Widerstand kann mit Vorteil aus einer hohlzylindrischen Varistorkeramik hergestellt werden, welche in einer zylindrischen Giessform auf der Innen- und auf der Mantelfläche mit einem polymeren PTC - Vergussmasse, etwa auf der Basis eines Epoxidharzes, überzogen wird. Anstelle einer hohlzylindrischen kann auch eine vollzylindrische Varistorkeramik eingesetzt werden. Ein mit einem solchen Varistor ausgestatteter Widerstand ist besonders einfach herzustellen, wohingegen ein als Rohr ausgebildeter Widerstand eine besonders gute Wärmeableitung durch Konvektion aufweist und besonders gut mit einer Flüssigkeit gekühlt werden kann. Wird anstelle eines duromeren Polymers ein thermoplastischen Polymer als PTC - Material verwendet, so kann das PTC - Material direkt auf den Zylinder oder den Hohlzylinder extrudiert werden.FIG. 3 shows a tube-shaped resistor cut along its tube axis according to the invention. This resistor contains a varistor 4 and two PTC elements 5. The varistor 4 and the PTC elements are each hollow cylinders and, together with ring-shaped contact connections, form a tubular resistor. This resistance can advantageously be produced from a hollow cylindrical varistor ceramic, which is coated in a cylindrical casting mold on the inner and on the outer surface with a polymeric PTC casting compound, for example based on an epoxy resin. Instead of a hollow cylindrical, a fully cylindrical varistor ceramic can also be used. A resistor equipped with such a varistor is particularly easy to manufacture, whereas a resistor designed as a tube has particularly good heat dissipation by convection and particularly well with a liquid can be cooled. If a thermoplastic polymer is used as the PTC material instead of a thermoset polymer, the PTC material can be extruded directly onto the cylinder or the hollow cylinder.

Bei den Ausführungsformen gemäss den Figuren 4 bis 6 weist der Widerstandskörper 3 jeweils die Gestalt eines Vollzylinders mit übereinandergestapelten Varistoren und PTC-Elementen auf. Die Varistoren sind als kreisförmige Scheiben 40 oder als Ringkörper 41 und die PTC - Elemente in kongruenter Weise als Ringkörper 50 oder als kreisförmige Scheiben 51 ausgebildet. Im Gegensatz zu den Ausführungsformen gemäss den Figuren 1 bis 3 sind zusätzlich Kontaktscheiben 6 vorgesehen. Jeder als Scheibe 40 oder Ringkörper 41 ausgebildete Varistor steht längs seines gesamten Umfanges in innigem elektrischem Kontakt mit einem als Ringkörper 50 oder Scheibe 51 ausgebildeten PTC - Element 5. Jeder Varistor und jedes mit ihm kontaktierte PTC - Element 5 ist entweder mit einem der beiden Kontaktanschlüsse 1, 2 und einer Kontaktscheibe 6 oder mit zwei Kontaktscheiben 6 kontaktiert. Die Varistoren bzw. die PTC - Elemente sind so bei jeder der Ausführungsformen 4 bis 6 zwischen den Kontaktanschlüssen 1, 2 in Serie geschaltet.In the embodiments according to FIGS. 4 to 6, the resistance body 3 each has the shape of a solid cylinder with varistors and PTC elements stacked one on top of the other. The varistors are designed as circular disks 40 or as ring bodies 41 and the PTC elements in a congruent manner as ring bodies 50 or as circular disks 51. In contrast to the embodiments according to FIGS. 1 to 3, contact disks 6 are additionally provided. Each varistor in the form of a disk 40 or ring body 41 is in intimate electrical contact along its entire circumference with a PTC element 5 in the form of a ring body 50 or disk 51. Each varistor and each PTC element 5 in contact with it is either connected to one of the two contact connections 1, 2 and a contact plate 6 or with two contact plates 6 contacted. The varistors or the PTC elements are thus connected in series in each of the embodiments 4 to 6 between the contact connections 1, 2.

Die Widerstände nach den Figuren 4 bis 6 können wie folgt hergestellt werden:
Aus pulverförmigem Varistormaterial, wie etwa aus geeigneten Metalloxiden, können durch Pressen und Sintern die als Varistor 4 verwendeten Scheiben 40 und Ringkörper 41 hergestellt werden. Die Durchmesser der Scheiben können beispielsweise zwischen 0,5 und 5 cm und diejenigen der Ringkörper zwischen 1 und 10 cm bei einer beispielsweise zwischen 0,1 und 1 cm betragenden Dicke liegen. Die als Scheiben 40 ausgebildeten Varistoren 4 werden mit den dazwischenliegenden Kontaktscheiben 6 übereinandergestapelt. Die Kontaktscheiben 6 können hierbei im Randbereich beliebig geformte Löcher 7 aufweisen und können gegebenenfalls sogar als Gitter ausgebildet sein. Der Stapel wird in eine Giessform eingebracht. Der noch freie Raum zwischen den Kontaktscheiben 6 wird sodann unter Bildung der Ringkörper 50 mit polymerem PTC - Material ausgegossen und der vergossene Stapel ausgehärtet. Ober- und Unterseite des Stapels werden anschliessend kontaktiert.
The resistors according to FIGS. 4 to 6 can be manufactured as follows:
The disks 40 and ring bodies 41 used as varistor 4 can be produced from powdered varistor material, such as from suitable metal oxides, by pressing and sintering. The diameters of the disks can be, for example, between 0.5 and 5 cm and those of the ring bodies between 1 and 10 cm with a thickness of, for example, between 0.1 and 1 cm. The varistors 4 designed as disks 40 are stacked one above the other with the contact disks 6 lying between them. The contact disks 6 can be any in the edge area have shaped holes 7 and may even be designed as a grid. The stack is placed in a mold. The free space between the contact disks 6 is then poured out with polymeric PTC material to form the ring bodies 50 and the cast stack is cured. The top and bottom of the stack are then contacted.

Bei einem derart hergestellten Widerstand gewährleisten die metallenen Kontaktscheiben 6 einen geringen Übergangswiderstand in einem durch die jeweils in Serie geschalteten Scheiben 40 bzw. Ringkörper 50 gebildeten Strompfad. Auftretende Überspannungen können über den gesamten kreisförmigen Querschnitt der Scheiben 40 abgeleitet werden. Durch die mit PTC - Material ausgefüllten Löcher 7 wird der Gesamtwiderstand im Strompfad der als Ringkörper 50 ausgebildeten PTC - Elemente herabgesetzt. Lokale Überspannungen bei Überhitzungen im Widerstand werden bei dieser Ausführungsform besonders gut vermieden, da der Widerstand durch die Kontaktscheiben 6 in Teilabschnitte unterteilt ist, und da in jedem Teilabschnitt ein als Scheibe 40 ausgebildeter Varistor parallel zu einem als Ringkörper 50 ausgebildeten PTC - Element und damit parallel zu einem Teilabschnitt des die lokalen Überspannungen hervorrufenden Strompfades geschaltet ist.In the case of a resistance produced in this way, the metal contact disks 6 ensure a low contact resistance in a current path formed by the disks 40 or ring bodies 50 connected in series. Overvoltages that occur can be derived over the entire circular cross section of the disks 40. The holes 7 filled with PTC material reduce the total resistance in the current path of the PTC elements designed as ring bodies 50. Local overvoltages in the event of overheating in the resistor are avoided particularly well in this embodiment, since the resistance is divided into sections by the contact disks 6, and since in each section a varistor designed as a disk 40 is parallel to a PTC element designed as an annular body 50 and thus parallel is connected to a section of the current path causing the local overvoltages.

Die PTC - Ringkörper 50 können auch aus Keramik gesintert sein. Ein Lochen der Kontaktscheiben 6 erübrigt sich dann. Der Kontaktwiderstand kann in diesem Fall durch Pressen oder Verlöten klein gehalten werden.The PTC ring bodies 50 can also be sintered from ceramic. There is then no need to punch the contact disks 6. In this case, the contact resistance can be kept low by pressing or soldering.

Wie aus der Ausführungsform gemäss Fig. 6 ersichtlich ist, können die Varistoren als Ringkörper 41 und die PTC - Elemente als kreisförmige Scheiben 51 ausgebildet sein. Um bei dieser Ausführungsform bei der Verwendung eines polymeren PTC - Materials einen geringen Gesamtwiderstand zu erreichen, empfiehlt es sich, die Löcher 7 in einem zentralen Bereich der Kontaktscheiben 6 vorzusehen.As can be seen from the embodiment according to FIG. 6, the varistors can be designed as ring bodies 41 and the PTC elements as circular disks 51. In order to achieve a low overall resistance when using a polymeric PTC material in this embodiment, it is advisable to provide the holes 7 in a central area of the contact disks 6.

Bei der Ausführungsform gemäss Fig. 7 sind die Varistoren 4 in das PTC - Element 5 eingebaut. Eine solche Ausführungsform des erfindungsgemässen Widerstandes lässt sich dadurch erreichen, dass in ein PTC - Polymer neben einer elektrisch leitfähigen Komponente, wie z.B. C, TiB₂, TiC, WSi₂ oder MoSi₂, auch in ausreichender Menge, beispielsweise 5 bis 30 Volumenprozent, Varistormaterial in Pulverform beigemischt wird. Die Partikelgrösse und die Durchbruchspannung des beigefügten in Fig.7 durch Quadrate markierten Varistormaterials kann über einen grossen Bereich eingestellt werden und ist auf die Partikelgrösse des in Fig. 7 durch Kreise markierten leitfähigen Füllstoffs des PTC - Elementes 5 abgestimmt. Das Varistormaterial kann z.B. durch Sintern eines Sprühgranulates, so wie es als Teilschritt in der Varistorfertigung auftritt, hergestellt werden. Die Partikeldurchmesser liegen typischerweise zwischen 5 und einigen hundert µm. Die Durchbruchspannung eines einzelnen Varistorpartikels kann dabei zwischen 6 V und einigen hundert Volt variiert werden. Die Formgebung des Komposits zum Widerstandskörper 3 kann durch Heisspressen oder durch Vergiessen mit anschliessendem Aushärten bei erhöhter Temperatur erfolgen. Nachfolgendes Aufbringen der Kontaktanschlüsse 1, 2 auf den Widerstandskörper 3 führt schliesslich zum Widerstand.In the embodiment according to FIG. 7, the varistors 4 are built into the PTC element 5. Such an embodiment of the resistor according to the invention can be achieved in that in addition to an electrically conductive component, such as e.g. C, TiB₂, TiC, WSi₂ or MoSi₂, also in sufficient quantity, for example 5 to 30 percent by volume, varistor material is mixed in powder form. The particle size and the breakdown voltage of the added varistor material marked by squares in FIG. 7 can be adjusted over a wide range and is matched to the particle size of the conductive filler of the PTC element 5 marked by circles in FIG. The varistor material can e.g. by sintering a spray granulate, as occurs as a sub-step in varistor production. The particle diameters are typically between 5 and a few hundred microns. The breakdown voltage of a single varistor particle can be varied between 6 V and a few hundred volts. The composite can be shaped to form the resistance body 3 by hot pressing or by casting with subsequent curing at elevated temperature. Subsequent application of the contact connections 1, 2 to the resistance body 3 finally leads to the resistance.

Der leitende Füllstoff bildet im Normalbetrieb des Widerstandes durch den Widerstandskörper hindurchgehende Strompfade aus und bewirkt zugleich den PTC - Effekt. Das Varistormaterial hingegen bildet je nach Zugabemenge lokal oder durch den ganzen Widerstandskörper 3 hindurch perkolierende Pfade aus, die Überspannung ableiten können.The conductive filler forms current paths through the resistance body during normal operation of the resistor and at the same time brings about the PTC effect. The varistor material, on the other hand, depending on the amount added, forms percolating paths locally or through the entire resistance body 3, which can dissipate overvoltage.

Eine Kompositstruktur kann auch hergestellt werden durch Mischen von gesinterten oder gemahlenen Granulatpartikeln einer PTC - Keramik mit keramischen Varistorpartikeln. Die gegenseitige Bindung und die elektrische Kontaktierung kann hierbei durch ein metallisches Lot sichergestellt werden. Der Volumenanteil dieses Lotes muss unterhalb der Perkolationsgrenze liegen, da nur so das PTC - und das Varistorverhalten des Widerstandes gleichzeitig gewährleistet sind.A composite structure can also be produced by mixing sintered or ground granulate particles of a PTC ceramic with ceramic varistor particles. The mutual bonding and the electrical contacting can be ensured by a metallic solder. The volume fraction of this solder must be below the percolation limit, since this is the only way to guarantee the PTC and varistor behavior of the resistor at the same time.

BEZUGSZEICHENLISTEREFERENCE SIGN LIST

1, 21, 2
KontaktanschlüsseContact connections
33rd
WiderstandskörperResistance body
44th
VaristorVaristor
55
PTC - ElementPTC element
66
KontaktscheibenContact washers
77
LöcherHoles
4040
Scheiben aus VaristormaterialVaristor material discs
4141
Ringkörper aus VaristormaterialRing body made of varistor material
5050
Ringkörper aus PCT - MaterialRing body made of PCT material
5151
Scheiben aus PTC - MaterialDiscs made of PTC material

Claims (13)

Elektrischer Widerstand mit einem zwischen zwei Kontaktanschlüssen (1, 2) angeordneten Widerstandskörper (3), welcher ein PTC - Verhalten aufweisendes Material enthält, das unterhalb einer materialspezifischen Temperatur mindestens einen zwischen den beiden Kontaktanschlüssen (1, 2) verlaufenden elektrisch leitenden Pfad bildet, dadurch gekennzeichnet, dass der Widerstandskörper (3) zusätzlich ein Varistorverhalten aufweisendes Material enthält, und dass das Varistormaterial unter Bildung mindestens eines Varistors (4) parallel zu mindestens einem Teilabschnitt des mindestens einen elektrisch leitenden Pfades geschaltet ist und mit dem den mindestens einen Teilabschnitt bildenden Teil des PTC - Materials in innigen elektrischen Kontakt gebracht ist.Electrical resistance with a resistance body (3) arranged between two contact connections (1, 2), which contains a material exhibiting PTC behavior, which forms at least one electrically conductive path between the two contact connections (1, 2) below a material-specific temperature characterized in that the resistance body (3) additionally contains a material exhibiting varistor behavior, and that the varistor material is connected in parallel with at least one partial section of the at least one electrically conductive path to form at least one varistor (4) and with the part of the at least one partial section PTC material is brought into intimate electrical contact. Widerstand nach Anspruch 1, dadurch gekennzeichnet, dass der mindestens eine Varistor (4) mit beiden Kontaktanschlüssen (1, 2) kontaktiert ist.Resistor according to claim 1, characterized in that the at least one varistor (4) is contacted with both contact connections (1, 2). Widerstand nach Anspruch 2, dadurch gekennzeichnet, dass der mindestens eine Varistor (4) sowie gegebenenfalls vorgesehene weitere Varistoren (4) jeweils eine flächenhafte Schicht aus Varistormaterial enthalten, dass das PTC - Material in Form einer oder mehrerer flächenhafter Schichten vorliegt, und dass wechselweise aufeinanderfolgend Schichten aus Varistor- und PTC-Material in Form eines Stapels angeordnet sind.Resistor according to Claim 2, characterized in that the at least one varistor (4) and any further varistors (4) which may be provided each contain a planar layer of varistor material, that the PTC material is in the form of one or more planar layers, and that alternately in succession Layers of varistor and PTC material are arranged in the form of a stack. Widerstand nach Anspruch 2, dadurch gekennzeichnet, dass der mindestens eine Varistor (4) sowie gegebenenfalls vorgesehene weitere Varistoren (4) und das PTC - Material jeweils als Hohl- oder als Vollzylinder ausgebildet sind, und dass wechselweise aufeinanderfolgend mindestens ein Varistor (4) und mindestens ein Element (5) aus PTC - Material unter Bildung eines Rohrs oder eines Vollzylinders angeordnet sind.Resistor according to Claim 2, characterized in that the at least one varistor (4) and any further varistors (4) provided and the PTC material are each designed as hollow or solid cylinders, and in that at least one varistor (4) and at least one element (5) made of PTC material is arranged to form a tube or a solid cylinder. Widerstand nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass das PTC - Material ein Polymer ist, welches unter Bildung des innigen elektrischen Kontaktes durch Aufgiessen auf einen benachbarten Varistor (4) und nachfolgendes Aushärten oder durch Auflegen als platten- oder folienartiges Element (5) auf einen benachbarten Varistor (4) und nachfolgendes Heissverpressen hergestellt ist.Resistor according to one of claims 3 or 4, characterized in that the PTC material is a polymer which, with the formation of the intimate electrical contact, by pouring onto an adjacent varistor (4) and subsequent curing or by placing it on as a plate-like or sheet-like element ( 5) on an adjacent varistor (4) and subsequent hot pressing. Widerstand nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass das PTC- Material eine Keramik ist, welche unter Bildung des innigen elektrischen Kontaktes mittels eines elektrisch anisotrop leitenden Materials, wie insbesondere eines Elastomers, auf einem benachbarten Varistor (4) befestigt ist.Resistor according to one of claims 3 or 4, characterized in that the PTC material is a ceramic which is attached to an adjacent varistor (4) to form the intimate electrical contact by means of an electrically anisotropically conductive material, such as in particular an elastomer. Widerstand nach Anspruch 1, dadurch gekennzeichnet, dass ein erster Varistor (4) mit einem ersten (1) der beiden Kontaktanschlüsse (1, 2) und einer Kontaktscheibe (6) und ein zweiter Varistor (4) entweder mit zwei Kontaktscheiben (6) oder einer Kontaktscheibe (6) und einem zweiten (2) der beiden Kontaktanschlüsse (1, 2) kontaktiert ist (Fig.4, 5, 6).Resistor according to claim 1, characterized in that a first varistor (4) with a first (1) of the two contact connections (1, 2) and a contact plate (6) and a second varistor (4) either with two contact plates (6) or a contact disk (6) and a second (2) of the two contact connections (1, 2) is contacted (Fig. 4, 5, 6). Widerstand nach Anspruch 7, dadurch gekennzeichnet, dass der erste und der zweite Varistor (4) jeweils als kreisförmige Scheibe (40) ausgebildet sind, und dass diese Scheiben (40) jeweils von einem aus PTC - Material gebildeten Ringkörper (50) umgeben sind (Fig.4, 5).Resistor according to claim 7, characterized in that the first and the second varistor (4) each as circular disc (40) are formed, and that these discs (40) are each surrounded by an annular body (50) formed from PTC material (FIGS. 4, 5). Widerstand nach Anspruch 7, dadurch gekennzeichnet, dass der erste und der zweite Varistor (4) jeweils als Ringkörper (41) ausgebildet sind, und dass diese Ringkörper (41) jeweils eine aus dem PTC- Material gebildete kreisförmige Scheibe (51) umgeben (Fig.6).Resistor according to claim 7, characterized in that the first and the second varistor (4) are each designed as an annular body (41), and that these annular bodies (41) each surround a circular disc (51) formed from the PTC material (Fig .6). Widerstand nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass die Kontaktscheiben (6) mit PTC-Material aufgefüllte Löcher (7) aufweisen, durch welche die aus dem PTC - Material bestehenden Scheiben (51) oder Ringkörper (50) miteinander verbunden sind (Fig.4).Resistor according to one of Claims 8 or 9, characterized in that the contact disks (6) have holes (7) filled with PTC material, through which the disks (51) or annular bodies (50) made of the PTC material are connected to one another (Fig.4). Widerstand nach Anspruch 10, dadurch gekennzeichnet, dass das PTC - Material ein duromeres oder thermoplastisches Polymer enthält, welches nach Erstellung eines die Kontaktscheiben (6) sowie den ersten und zweiten Varistor (4) enthaltenden Stapels unter Bildung der Ringkörper (50) oder der Scheiben (51) in den Stapel eingegossen oder heiss eingepresst ist.Resistor according to Claim 10, characterized in that the PTC material contains a thermoset or thermoplastic polymer which, after the creation of a stack containing the contact disks (6) and the first and second varistor (4), forming the ring bodies (50) or the disks (51) is poured into the stack or hot-pressed. Widerstand nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass die aus PTC - Material bestehenden Ringkörper (50) oder Scheiben (51) aus Keramik sind.Resistor according to one of claims 8 or 9, characterized in that the ring bodies (50) or disks (51) made of PTC material are made of ceramic. Widerstand nach Anspruch 1, dadurch gekennzeichnet, dass der mindestens eine Varistor (4) in Partikelform im Widerstandskörper (3) angeordnet ist und mit weiteren in Partikelform im Widerstandskörper (3) vorgesehenen Varistoren (4) nach Erreichen der von der Partikelgrösse und Materialbeschaffenheit abhängigen Durchbruchspannung lokal oder vollständig durch den Widerstandskörper (3) hindurch perkolierende Strompfade ausbildet (Fig.7).Resistor according to Claim 1, characterized in that the at least one varistor (4) is arranged in particle form in the resistance body (3) and with further varistors (4) provided in particle form in the resistance body (3) after reaching the breakdown voltage which is dependent on the particle size and material properties current paths percolating locally or completely through the resistance body (3) (FIG. 7).
EP92120542A 1991-12-21 1992-12-02 Resistance with PTC-behaviour Expired - Lifetime EP0548606B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4142523A DE4142523A1 (en) 1991-12-21 1991-12-21 RESISTANCE WITH PTC BEHAVIOR
DE4142523 1991-12-21

Publications (3)

Publication Number Publication Date
EP0548606A2 true EP0548606A2 (en) 1993-06-30
EP0548606A3 EP0548606A3 (en) 1994-04-06
EP0548606B1 EP0548606B1 (en) 1996-02-28

Family

ID=6447845

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92120542A Expired - Lifetime EP0548606B1 (en) 1991-12-21 1992-12-02 Resistance with PTC-behaviour

Country Status (4)

Country Link
US (1) US5313184A (en)
EP (1) EP0548606B1 (en)
JP (1) JP3342064B2 (en)
DE (2) DE4142523A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0640995A1 (en) * 1993-08-25 1995-03-01 Abb Research Ltd. Electrical resistor and application of this resistor in a current limiter
EP0642199A1 (en) * 1993-09-08 1995-03-08 ABB Management AG Protection circuit for a circuit with capacitors
EP0649150A1 (en) * 1993-10-15 1995-04-19 Abb Research Ltd. Composite material
DE19542162C2 (en) * 1995-11-11 2000-11-23 Abb Research Ltd Overcurrent limiter

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5521383A (en) * 1993-06-18 1996-05-28 Sharp Kabushiki Kaisha Corona discharge device
CA2220343A1 (en) * 1995-05-10 1996-11-14 Philip C. Shaw, Jr. Ptc circuit protection device and manufacturing process for same
US5663702A (en) * 1995-06-07 1997-09-02 Littelfuse, Inc. PTC electrical device having fuse link in series and metallized ceramic electrodes
US5614881A (en) * 1995-08-11 1997-03-25 General Electric Company Current limiting device
US5742223A (en) 1995-12-07 1998-04-21 Raychem Corporation Laminar non-linear device with magnetically aligned particles
DE19548741A1 (en) * 1995-12-23 1997-06-26 Abb Research Ltd Process for the production of a material for PTC resistors
DE19612841A1 (en) * 1996-03-30 1997-10-02 Abb Research Ltd Current limiting resistor with PTC behavior
US6023403A (en) * 1996-05-03 2000-02-08 Littlefuse, Inc. Surface mountable electrical device comprising a PTC and fusible element
DE19702094B4 (en) * 1997-01-22 2008-01-24 Abb Research Ltd. Power switching device
US5929744A (en) * 1997-02-18 1999-07-27 General Electric Company Current limiting device with at least one flexible electrode
US6535103B1 (en) 1997-03-04 2003-03-18 General Electric Company Current limiting arrangement and method
US5977861A (en) * 1997-03-05 1999-11-02 General Electric Company Current limiting device with grooved electrode structure
DE19727009B4 (en) * 1997-06-25 2009-02-12 Abb Research Ltd. Current limiting resistor with PTC behavior
US6191681B1 (en) 1997-07-21 2001-02-20 General Electric Company Current limiting device with electrically conductive composite and method of manufacturing the electrically conductive composite
US6373372B1 (en) 1997-11-24 2002-04-16 General Electric Company Current limiting device with conductive composite material and method of manufacturing the conductive composite material and the current limiting device
DE19800470A1 (en) * 1998-01-09 1999-07-15 Abb Research Ltd Resistor element for current limiting purposes especially during short-circuits
US6128168A (en) 1998-01-14 2000-10-03 General Electric Company Circuit breaker with improved arc interruption function
US6282072B1 (en) 1998-02-24 2001-08-28 Littelfuse, Inc. Electrical devices having a polymer PTC array
US6290879B1 (en) 1998-05-20 2001-09-18 General Electric Company Current limiting device and materials for a current limiting device
US6124780A (en) * 1998-05-20 2000-09-26 General Electric Company Current limiting device and materials for a current limiting device
DE19833609A1 (en) 1998-07-25 2000-01-27 Abb Research Ltd Electrical component with a constriction in a PTC polymer element
US6094128A (en) * 1998-08-11 2000-07-25 Maida Development Company Overload protected solid state varistors
US6133820A (en) * 1998-08-12 2000-10-17 General Electric Company Current limiting device having a web structure
US6582647B1 (en) 1998-10-01 2003-06-24 Littelfuse, Inc. Method for heat treating PTC devices
US6144540A (en) * 1999-03-09 2000-11-07 General Electric Company Current suppressing circuit breaker unit for inductive motor protection
US6157286A (en) * 1999-04-05 2000-12-05 General Electric Company High voltage current limiting device
US6519129B1 (en) 1999-11-02 2003-02-11 Cooper Industries, Inc. Surge arrester module with bonded component stack
US6323751B1 (en) 1999-11-19 2001-11-27 General Electric Company Current limiter device with an electrically conductive composite material and method of manufacturing
US6483685B1 (en) * 1999-12-23 2002-11-19 Mcgraw Edison Company Compliant joint between electrical components
US6628498B2 (en) 2000-08-28 2003-09-30 Steven J. Whitney Integrated electrostatic discharge and overcurrent device
US7180719B2 (en) * 2000-08-28 2007-02-20 Littelfuse, Inc. Integrated overvoltage and overcurrent device
DE10058908C1 (en) * 2000-11-21 2002-08-08 Siemens Ag Arrangement for reducing overvoltages with several varistors
US7015786B2 (en) * 2001-08-29 2006-03-21 Mcgraw-Edison Company Mechanical reinforcement to improve high current, short duration withstand of a monolithic disk or bonded disk stack
DE10306634A1 (en) * 2003-02-18 2004-08-26 Robert Bosch Gmbh Low-volt pencil-type glow plug for an internal combustion engine's combustion chamber has a heat conductor linked to a defined operating voltage and fitted with an electrical resistor
TWI254503B (en) * 2003-11-05 2006-05-01 Polytronics Technology Corp Over-current protection apparatus and manufacturing method thereof
US7436283B2 (en) * 2003-11-20 2008-10-14 Cooper Technologies Company Mechanical reinforcement structure for fuses
US8117739B2 (en) * 2004-01-23 2012-02-21 Cooper Technologies Company Manufacturing process for surge arrester module using pre-impregnated composite
US7075406B2 (en) * 2004-03-16 2006-07-11 Cooper Technologies Company Station class surge arrester
US7633737B2 (en) * 2004-04-29 2009-12-15 Cooper Technologies Company Liquid immersed surge arrester
US7999363B2 (en) * 2007-01-25 2011-08-16 Alpha & Omega Semiconductor, Ltd Structure and method for self protection of power device
US20090027821A1 (en) * 2007-07-26 2009-01-29 Littelfuse, Inc. Integrated thermistor and metallic element device and method
US20090108980A1 (en) * 2007-10-09 2009-04-30 Littelfuse, Inc. Fuse providing overcurrent and thermal protection
KR101222926B1 (en) * 2011-03-31 2013-02-05 주식회사 아모텍 Varistor module
CN103632784B (en) * 2013-11-23 2016-04-13 华中科技大学 Quick composite resistor of a kind of lamination sheet type hot pressing and preparation method thereof
JP6652003B2 (en) * 2016-07-04 2020-02-19 株式会社デンソー Semiconductor chip and semiconductor device
US11894166B2 (en) 2022-01-05 2024-02-06 Richards Mfg. Co., A New Jersey Limited Partnership Manufacturing process for surge arrestor module using compaction bladder system
CN117393253A (en) 2022-07-04 2024-01-12 国巨电子(中国)有限公司 Surge-resistant resistor and method for manufacturing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3707503A1 (en) * 1986-10-24 1988-04-28 Nippon Mektron Kk PTC COMPOSITION
JPH01152704A (en) * 1987-12-10 1989-06-15 Murata Mfg Co Ltd Composite electronic component
JPH01158702A (en) * 1987-12-15 1989-06-21 Murata Mfg Co Ltd Composite functional electronic component
US4910389A (en) * 1988-06-03 1990-03-20 Raychem Corporation Conductive polymer compositions
EP0363746A1 (en) * 1988-10-13 1990-04-18 Asea Brown Boveri Ab Overcurrent protection device for electrical networks and apparatuses
WO1991012643A1 (en) * 1990-02-08 1991-08-22 Asea Brown Boveri Ab Device for motor and short-circuit protection

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE851987C (en) * 1944-12-17 1952-10-09 Siemens Ag Process for the production of pumpless metal vapor discharge vessels with a metal vessel wall
DE851087C (en) * 1950-10-11 1952-10-02 Siemens Ag Process for the production of electrical control resistors with non-linear characteristics
DE1143259B (en) * 1953-08-13 1963-02-07 Siemens Ag Electrical semiconductor resistance independent of the outside temperature
BE668892A (en) * 1964-09-11
JPS549294B2 (en) * 1972-02-16 1979-04-23
US3805022A (en) * 1972-10-10 1974-04-16 Texas Instruments Inc Semiconducting threshold heaters
CH581377A5 (en) * 1975-02-11 1976-10-29 Bbc Brown Boveri & Cie
US4534889A (en) * 1976-10-15 1985-08-13 Raychem Corporation PTC Compositions and devices comprising them
US4271446A (en) * 1977-06-27 1981-06-02 Comstock Wilford K Transient voltage suppression system
US4152743A (en) * 1977-06-27 1979-05-01 Comstock Wilford K Transient voltage suppression system
JPS5480547A (en) * 1977-12-09 1979-06-27 Matsushita Electric Ind Co Ltd Ceramic varister
US4237441A (en) * 1978-12-01 1980-12-02 Raychem Corporation Low resistivity PTC compositions
US4347539A (en) * 1981-06-03 1982-08-31 Westinghouse Electric Corp. Electrical equipment protective apparatus with energy balancing among parallel varistors
DE3231066A1 (en) * 1982-08-20 1984-02-23 Siemens AG, 1000 Berlin und 8000 München COMPONENT COMBINATION FOR A CIRCUIT ARRANGEMENT FOR COMBINED PROTECTION OF A CONSUMER FROM OVERVOLTAGE AND OVERCURRENT
DE3231781A1 (en) * 1982-08-26 1984-03-01 Robert Bosch Gmbh, 7000 Stuttgart GLOW PLUG FOR INTERNAL COMBUSTION ENGINES
US5064997A (en) * 1984-07-10 1991-11-12 Raychem Corporation Composite circuit protection devices
US4780598A (en) * 1984-07-10 1988-10-25 Raychem Corporation Composite circuit protection devices
US4583146A (en) * 1984-10-29 1986-04-15 General Electric Company Fault current interrupter
US4656555A (en) * 1984-12-14 1987-04-07 Harvey Hubbell Incorporated Filament wrapped electrical assemblies and method of making same
DE3823698A1 (en) * 1988-07-13 1990-01-18 Philips Patentverwaltung NON-LINEAR VOLTAGE RESISTANCE

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3707503A1 (en) * 1986-10-24 1988-04-28 Nippon Mektron Kk PTC COMPOSITION
JPH01152704A (en) * 1987-12-10 1989-06-15 Murata Mfg Co Ltd Composite electronic component
JPH01158702A (en) * 1987-12-15 1989-06-21 Murata Mfg Co Ltd Composite functional electronic component
US4910389A (en) * 1988-06-03 1990-03-20 Raychem Corporation Conductive polymer compositions
EP0363746A1 (en) * 1988-10-13 1990-04-18 Asea Brown Boveri Ab Overcurrent protection device for electrical networks and apparatuses
WO1991012643A1 (en) * 1990-02-08 1991-08-22 Asea Brown Boveri Ab Device for motor and short-circuit protection

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF MATERIALS SCIENCE Bd. 26 , 1991 , LONDON GB Seiten 145 - 154 SHROUT ET AL. 'Composite PTCR thermistors utilizing conducting borides, silicides, and carbide powders.' *
PATENT ABSTRACTS OF JAPAN vol. 13, no. 413 (E-820)12. September 1989 & JP-A-01 152 704 (MURATA MFG) 15. Juni 1989 *
PATENT ABSTRACTS OF JAPAN vol. 13, no. 429 (E-823)25. September 1989 & JP-A-01 158 702 (MURATA MFG) 21. Juni 1989 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0640995A1 (en) * 1993-08-25 1995-03-01 Abb Research Ltd. Electrical resistor and application of this resistor in a current limiter
US5602520A (en) * 1993-08-25 1997-02-11 Abb Research Ltd. Electrical resistance element and use of this resistance element in a current limiter
EP0642199A1 (en) * 1993-09-08 1995-03-08 ABB Management AG Protection circuit for a circuit with capacitors
EP0649150A1 (en) * 1993-10-15 1995-04-19 Abb Research Ltd. Composite material
US5858533A (en) * 1993-10-15 1999-01-12 Abb Research Ltd. Composite material
DE19542162C2 (en) * 1995-11-11 2000-11-23 Abb Research Ltd Overcurrent limiter
US6166619A (en) * 1995-11-11 2000-12-26 Daimlerchrysler Ag Overcurrent limiter having inductive compensation

Also Published As

Publication number Publication date
EP0548606B1 (en) 1996-02-28
DE4142523A1 (en) 1993-06-24
EP0548606A3 (en) 1994-04-06
JPH05267006A (en) 1993-10-15
DE59205492D1 (en) 1996-04-04
JP3342064B2 (en) 2002-11-05
US5313184A (en) 1994-05-17

Similar Documents

Publication Publication Date Title
EP0548606B1 (en) Resistance with PTC-behaviour
EP0576836B1 (en) Current limiting element
EP0640995B1 (en) Electrical resistor and application of this resistor in a current limiter
EP0590347B1 (en) Resistance with PTC-behaviour
DE3231118C1 (en) Combined circuit arrangement with varistor and method for its production
DE2804617C2 (en)
DE2948281C2 (en) Electrical circuit and circuit protection device
EP0649150B1 (en) Composite material
DE19727009B4 (en) Current limiting resistor with PTC behavior
DE3000394C2 (en)
EP3577662B1 (en) Ptc heater with reduced switch-on current
DE1961314A1 (en) Protected semiconductor component and process for its manufacture
DE60028360T2 (en) PTK chip thermistor
CH663491A5 (en) Electronic circuit module
DE102016107931A1 (en) Electronic component for inrush current limiting and use of an electronic component
EP1355327B1 (en) Surge voltage arrester and method to produce such a surge voltage arrester
DE2853134C2 (en) Ceramic varistor
WO2013182276A1 (en) Contact element for a varistor
EP0696036A1 (en) Process for the preparation of a PTC resistance and resistance obtained therefrom
DE1287683B (en) Protection against overvoltages
DE10146947B4 (en) Electrical component
WO2018167133A1 (en) Varistor component having a higher surge current capacity
DE102016108604A1 (en) Multi-layer component and method for producing a multilayer component
WO2007099020A1 (en) Varistor with a fuse element
EP1466334B1 (en) Surge arrester

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19940905

17Q First examination report despatched

Effective date: 19950302

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 59205492

Country of ref document: DE

Date of ref document: 19960404

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960513

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ABB SCHWEIZ AG INTELLECTUAL PROPERTY (CH-LC/IP)

Ref country code: CH

Ref legal event code: PFA

Free format text: ASEA BROWN BOVERI AG TRANSFER- ABB SCHWEIZ HOLDING AG

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ABB SCHWEIZ AG

Free format text: ABB SCHWEIZ HOLDING AG#BROWN BOVERI STRASSE 6#5400 BADEN (CH) -TRANSFER TO- ABB SCHWEIZ AG#BROWN BOVERI STRASSE 6#5400 BADEN (CH)

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20081215

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20081223

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081212

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081216

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091222

Year of fee payment: 18

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091202

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091202

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59205492

Country of ref document: DE

Effective date: 20110701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110701