EP0590347B1 - Resistance with PTC-behaviour - Google Patents

Resistance with PTC-behaviour Download PDF

Info

Publication number
EP0590347B1
EP0590347B1 EP93114118A EP93114118A EP0590347B1 EP 0590347 B1 EP0590347 B1 EP 0590347B1 EP 93114118 A EP93114118 A EP 93114118A EP 93114118 A EP93114118 A EP 93114118A EP 0590347 B1 EP0590347 B1 EP 0590347B1
Authority
EP
European Patent Office
Prior art keywords
resistance element
element according
resistance
particles
supporting body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93114118A
Other languages
German (de)
French (fr)
Other versions
EP0590347A1 (en
Inventor
Anton Dr. Demarmels
Felix Dr. Greuter
Ralf Dr. Strümpler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Publication of EP0590347A1 publication Critical patent/EP0590347A1/en
Application granted granted Critical
Publication of EP0590347B1 publication Critical patent/EP0590347B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/027Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient consisting of conducting or semi-conducting material dispersed in a non-conductive organic material

Definitions

  • the invention is based on an electrical resistance element with a resistance body made of at least one polymer matrix and having at least one filler component made of electrically conductive particles embedded in the polymer matrix and arranged between two contact connections and having PTC behavior.
  • Resistors with PTC behavior have long been state of the art and are described for example in DE 2 948 350 C2 or US 4 534 889 A. From document US-A-4 910 389 resistance elements according to the preamble of claim 1 are known.
  • such resistors preferably contain resistance bodies made of a semicrystalline polymer filled with carbon black, which exhibits PTC behavior. This polymer is in a low-resistance state below a material-specific transition temperature. Above the transition temperature, the polymer changes into a high-resistance state. When the transition temperature is exceeded, the specific resistance of the PTC resistor suddenly increases by many orders of magnitude, and an undesired short-circuit current becomes effective limited.
  • PTC resistors can therefore be used as overload protection for circuits.
  • considerable energy can be converted in the PTC resistor during the transition from the low to the high-resistance state, which leads to the destruction of the PTC resistor.
  • EP 0 287 485 A1 describes composite materials with PTC behavior. These materials contain a plastic that is curable at elevated temperatures, for example based on an epoxy or polyester, and a fibrous filler of conductive material embedded in the plastic, such as in particular metal fibers or optionally carbon, graphite or ceramic fibers coated with a metal.
  • the filler content is typically 1 to 2 percent by volume.
  • This material has a specific resistance of several ⁇ ⁇ cm at room temperature and, depending on the composition of the plastic, increases its specific resistance by several orders of magnitude when heated to temperatures between 100 and 400 ° C.
  • the invention has for its object to provide an electrical resistance element with PTC behavior, which despite simple and inexpensive construction by high electrical conductivity in the low-resistance state and by a low response time for the PTC transition from low to high impedance.
  • the electrical resistance element according to the invention can be produced in a simple and inexpensive manner from commercially available components, such as a polymer matrix and a suitable filler. In the low-resistance state, it has a specific electrical resistance of less than 30 m ⁇ ⁇ cm and can therefore be easily used as a current-limiting element in electrical circuits which are designed for large operating currents and large operating voltages.
  • a low specific heat and / or a low specific heat capacity are achieved in that the electrically conductive particles of the Polymer matrix embedded filler are each spherical, fibrous or plate-shaped, and are preferably each in the form of a composite body.
  • Such a composite body predominantly has in each case a support body which is surface-coated with a layer of conductive material, preferably hollow or porous, but possibly also solid, and is made of a material with a lower specific density and / or lower specific heat capacity than the conductive material.
  • a further significant reduction in the response time can be achieved if at least part of the polymer matrix is formed by polymer foam.
  • the resistance element shown in FIG. 1 contains a resistance body 3 with PTC behavior arranged between two contact connections 1, 2. Below a transition temperature T c , this resistance element has a low specific cold resistance and, after installation in an electrical network to be protected by current limitation, forms at least one path which runs between the two contact connections 1, 2 and preferably carries a nominal current. Above the transition temperature T c , the resistance element has a high specific resistance compared to its specific cold resistance.
  • the resistance body 3 is formed from a polymer matrix 4 which preferably contains a thermoset or thermoplastic or an elastomer. Fillers formed by electrically conductive particles 5 are embedded in this matrix 4.
  • the particles 5 are at least partially each formed as a composite body with an electrically conductive surface and / or as a hollow or porous body made of electrically conductive material. Compared to solid particles of conductive material, the particles 5 each have a lower specific density and / or a lower specific heat capacity.
  • FIGS. 2 and 3 The structure and structure of particularly preferred particles 5 can be seen from FIGS. 2 and 3. As can be seen, these particles are designed as composite bodies and each have a support body 7 coated with a layer 6 of conductive material made of a material with a lower specific density and / or lower specific heat capacity than the conductive material.
  • a resistance element which contains particles 5 formed in this way, has practically the same electrical conductivity in the low-resistance state as a similarly dimensioned resistance element, which in contrast contains solid particles. However, since it has a lower specific density and / or a lower specific heat capacity than a resistance element filled with solidly formed particles of conductive material, the response time for such a resistance element is significantly reduced in the transition from the low to the high-resistance state.
  • the support bodies 7 of the particles 5 are formed as solid balls or, as can be seen from FIG. 3, as hollow balls, as can be seen from FIG. 2.
  • a resistance element containing solid balls has a somewhat higher heat conduction and thus also a somewhat larger nominal current carrying capacity than a resistance element containing hollow balls.
  • a resistance element containing hollow spheres is distinguished by a smaller mass, a lower specific density, a lower specific heat capacity and thus by a shorter response time. In the case of pulse times that are shorter than the time for the heat to spread through the particles, the somewhat lower heat conduction in a resistance element containing hollow spheres also has no effect.
  • the conductive material forming the layers 6 can predominantly carbon and / or a metal, such as Ag, Au, Ni, Pd and / or Pt, and / or at least one boride, silicide, oxide and / or carbide, such as SiC, TiC, TiB 2 , MoSi 2 , WSi 2 , RuO 2 or V 2 O 3 , each in undoped or doped form.
  • a metal such as Ag, Au, Ni, Pd and / or Pt
  • boride, silicide, oxide and / or carbide such as SiC, TiC, TiB 2 , MoSi 2 , WSi 2 , RuO 2 or V 2 O 3 , each in undoped or doped form.
  • the support body is formed from a polymer, from glass or from a ceramic.
  • a polymer can be used here Thermoset - for example based on epoxy or phenol -, a thermoplastic or an elastomer can be used.
  • Suitable glass-containing or ceramic carriers are commercially available spheres based on amorphous quartz or another glass as well as Al 2 O 3 , ZnO, mica, mullite or porcelain.
  • Support bodies made of ZnO are produced in the manufacture of varistors by spray drying powder suspensions and subsequent sintering.
  • the supporting bodies can also have a fiber or plate shape. They can not only be solid or hollow, but can also have a porous, sponge-like structure.
  • a ceramic or glass-like foam, for example based on TiC or TiB 2 whose surface has been impregnated with a metallic material is preferred.
  • Sponge-like bodies can be formed from metal, which are to be used as conductive particles 5 without coating.
  • the coating of the support body 7 can be achieved by known methods, such as chemical vapor deposition, sol-gel technology, precipitation and / or electrolytic coating.
  • the thicknesses of the layers 6 of the particles 5 produced thereby are preferably between 0.05 and 5 ⁇ m, whereas the diameters of the particles 5 are typically between 1 and 200 ⁇ m.
  • a filler component containing the particles 5 is mixed with a shear mixer or with an extruder into a polymer containing, for example, an epoxy or a thermoplastic.
  • a polymer containing, for example, an epoxy or a thermoplastic Typically, the proportion of filler in the composite formed is approximately 40 percent by volume.
  • This composite is used for thermoplastics by hot pressing and Epoxides formed by casting and then curing at elevated temperature to the resistance body 3.
  • the contact connections 1, 2 are attached by pressing or casting in during the shaping or by means of a low-melting solder after the shaping.
  • the dimensions of the resistance element produced in this way depend on the respective application and can be, for example, plate-tube or rod-shaped with typical diameters in the millimeter to centimeter range.
  • the support bodies 7 can each be designed as hollow spheres made of conductive material and the polymer matrix 4 embedding the particles 5 can be at least partially formed by polymer foam.
  • the fillers provided in the resistance body 3 of the resistance element form low-resistance current paths through the resistance body 3. Due to an overcurrent, the resistance element heats up considerably and, above the transition temperature T c, changes into a high-resistance state in which the overcurrent is limited.
  • the response times of resistance elements according to the invention are in some cases considerably shortened in the case of large overload currents compared to the response times of resistance elements of the same size, according to the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermistors And Varistors (AREA)

Description

TECHNISCHES GEBIETTECHNICAL AREA

Bei der Erfindung wird ausgegangen von einem elektrischen Widerstandselement mit einem zwischen zwei Kontaktanschlüssen angeordneten und PTC-Verhalten aufweisenden Widerstandskörper aus mindestens einer Polymermatrix und mindestens einer in die Polymermatrix eingebetteten Füllstoffkomponente aus elektrisch leitenden Teilchen.The invention is based on an electrical resistance element with a resistance body made of at least one polymer matrix and having at least one filler component made of electrically conductive particles embedded in the polymer matrix and arranged between two contact connections and having PTC behavior.

STAND DER TECHNIKSTATE OF THE ART

Widerstände mit PTC-Verhalten sind schon seit langem Stand der Technik und sind beispielsweise in DE 2 948 350 C2 oder US 4 534 889 A beschrieben. Aus Dokument US-A-4 910 389 sind Widerstandelemente gemäß dem Oberbegriff des Anspruchs 1 bekannt. In kommerziell erhältlichen Ausführungen enthalten solche Widerstände vorzugsweise Widerstandskörper aus einem mit Russ gefüllten semikristallinen Polymer, welches PTC-Verhalten aufweist. Unterhalb einer materialspezifischen Übergangstemperatur befindet sich dieses Polymer in einem niederohmigen Zustand. Oberhalb der Übergangstemperatur geht das Polymer in einen hochohmigen Zustand über. Beim Überschreiten der Übergangstemperatur erhöht sich der spezifische Widerstand des PTC-Widerstandes sprungartig um viele Grössenordnungen und wird so ein unerwünschter Kurzschlussstrom wirkungsvoll begrenzt. PTC-Widerstände können daher als Überlastschutz von Schaltkreisen eingesetzt werden. In einem für grosse Betriebsströme und grosse Betriebsspannungen ausgelegten elektrischen Schaltkreis kann während des Übergangs vom nieder- in den hochohmigen Zustand im PTC-Widerstand beträchtliche Energie umgesetzt werden, welche zu einer Zerstörung des PTC-Widerstandes führt. Um die umgesetzte Energie möglichst gering zu halten, ist es für die Verwendung eines PTC-Widerstandes als strombegrenzendes Element in einem für grosse Betriebsströme und grosse Betriebsspannungen ausgelegten elektrischen Schaltkreis daher von entscheidender Bedeutung, dass der PTC-Widerstand bei Überlast in kürzester Zeit seinen hochohmigen Zustand erreicht.Resistors with PTC behavior have long been state of the art and are described for example in DE 2 948 350 C2 or US 4 534 889 A. From document US-A-4 910 389 resistance elements according to the preamble of claim 1 are known. In commercially available designs, such resistors preferably contain resistance bodies made of a semicrystalline polymer filled with carbon black, which exhibits PTC behavior. This polymer is in a low-resistance state below a material-specific transition temperature. Above the transition temperature, the polymer changes into a high-resistance state. When the transition temperature is exceeded, the specific resistance of the PTC resistor suddenly increases by many orders of magnitude, and an undesired short-circuit current becomes effective limited. PTC resistors can therefore be used as overload protection for circuits. In an electrical circuit designed for large operating currents and large operating voltages, considerable energy can be converted in the PTC resistor during the transition from the low to the high-resistance state, which leads to the destruction of the PTC resistor. In order to keep the converted energy as low as possible, it is of crucial importance for the use of a PTC resistor as a current-limiting element in an electrical circuit designed for large operating currents and large operating voltages that the PTC resistor has its high-resistance state in the shortest possible time in the event of an overload reached.

In EP 0 287 485 A1 sind Verbundwerkstoffe mit PTC-Verhalten beschrieben. Diese Werkstoffe enthalten einen bei erhöhten Temperaturen härtbaren Kunststoff, etwa auf der Basis eines Epoxids oder Polyesters, und einen in den Kunststoff eingebetteten, faserförmigen Füllstoff aus leitfähigem Material, wie insbesondere Metallfasern oder gegebenenfalls mit einem Metall beschichtete Kohlenstoff-, Graphit- oder Keramikfasern. Der Füllstoffanteil beträgt typischerweise 1 bis 2 Volumenprozent. Dieser Werkstoff weist bei Raumtemperatur einen spezifischen Widerstand von mehreren Ω·cm auf und erhöht je nach Zusammensetzung des Kunststoffs beim Erwärmen auf Temperaturen zwischen 100 und 400°C seinen spezifischen Widerstand um mehrere Grössenordnungen.EP 0 287 485 A1 describes composite materials with PTC behavior. These materials contain a plastic that is curable at elevated temperatures, for example based on an epoxy or polyester, and a fibrous filler of conductive material embedded in the plastic, such as in particular metal fibers or optionally carbon, graphite or ceramic fibers coated with a metal. The filler content is typically 1 to 2 percent by volume. This material has a specific resistance of several Ω · cm at room temperature and, depending on the composition of the plastic, increases its specific resistance by several orders of magnitude when heated to temperatures between 100 and 400 ° C.

KURZE DARSTELLUNG DER ERFINDUNGSUMMARY OF THE INVENTION

Der Erfindung, wie sie in Patentanspruch 1 angegeben ist, liegt die Aufgabe zugrunde, ein elektrisches Widerstandselement mit PTC-Verhalten zu schaffen, welches sich trotz einfachen und kostengünstigen Aufbaus durch hohe elektrische Leitfähigkeit im niederohmigen Zustand und durch eine geringe Ansprechzeit für den PTC-Übergang vom nieder- in den hochohmigen Zustand auszeichnet.The invention, as specified in claim 1, has for its object to provide an electrical resistance element with PTC behavior, which despite simple and inexpensive construction by high electrical conductivity in the low-resistance state and by a low response time for the PTC transition from low to high impedance.

Das elektrische Widerstandselement nach der Erfindung kann aus kommerziell erhältlichen Komponenten, wie einer Polymermatrix und einem geeigneten Füllstoff in einfacher und kostengünstiger Weise hergestellt werden. Es weist im niederohmigen Zustand einen spezifischen elektrischen Widerstand kleiner 30 mΩ·cm auf und kann daher ohne weiteres als strombegrenzendes Element in elektrischen Schaltkreisen eingesetzt werden, die für grosse Betriebsströme und grosse Betriebsspannungen ausgelegt sind.The electrical resistance element according to the invention can be produced in a simple and inexpensive manner from commercially available components, such as a polymer matrix and a suitable filler. In the low-resistance state, it has a specific electrical resistance of less than 30 mΩ · cm and can therefore be easily used as a current-limiting element in electrical circuits which are designed for large operating currents and large operating voltages.

Von besonderem Vorteil ist es hierbei, dass die zum Übergang vom nieder- in den hochohmigen Zustand benötigte Ansprechzeit sehr gering ist. Dies ist vor allem eine Folge der geeigneten Auswahl der zur Herstellung des erfindungsgemässen Widerstandelementes benötigten Materialien. Ausgehend von der Forderung, dass die Joulesche Wärme, die im PTC-Widerstandselement innerhalb einer Zeit δt, die zum Übergang vom nieder- in den hochohmigen Zustand benötigt wird, freigesetzt wird, mindestens so gross sein muss wie die Energie, die nötig ist, um das Material des Widerstandskörpers von einer Nominaltemperatur T auf die Temperatur Tc aufzuheizen, in der der Übergang stattfindet, ergibt sich folgende Relation für das Verhalten des Widerstandselementes: r·(l/A)·I 2 (t)·δt ≥ A·l·c p ·d·(T c -T),

Figure imgb0001
wobei

  • r den spezifischen elektrischen Widerstand,
  • A die Querschnittsfläche,
  • l die Länge,
  • d die spezifische Dichte und
  • cp die spezifische Wärmekapazität
des Widerstandskörpers des von einem zeitvariablen Strom I(t) durchflossenen Widerstandelementes bedeuten. Hieraus ist zu ersehen, dass bei Randbedingungen, die durch den spezifischen Widerstand und die geometrischen Abmessungen des Widerstandskörpers festgelegt sind, die Ansprechzeit dann klein ist, wenn entsprechend dem erfindungsgemässen Widerstandselement die spezifische Wärme und/oder die spezifische Wärmekapazität seines Widerstandskörpers möglichst gering gehalten werden.It is particularly advantageous here that the response time required for the transition from the low to the high-resistance state is very short. This is primarily a result of the suitable selection of the materials required for producing the resistance element according to the invention. Based on the requirement that the Joule heat that is released in the PTC resistance element within a time δt that is required for the transition from the low to the high-resistance state, must be at least as large as the energy that is required to heating the material of the resistance body from a nominal temperature T to the temperature T c at which the transition takes place, the following relation results for the behavior of the resistance element: r · (l / A) · I 2nd (t) · δt ≥ A · l · c p · D · (T c -T),
Figure imgb0001
in which
  • r the specific electrical resistance,
  • A the cross-sectional area,
  • l the length,
  • d the specific density and
  • c p is the specific heat capacity
of the resistance body of the resistance element through which a time-variable current I (t) flows. It can be seen from this that under boundary conditions which are determined by the specific resistance and the geometric dimensions of the resistance body, the response time is short if, according to the resistance element according to the invention, the specific heat and / or the specific heat capacity of its resistance body are kept as low as possible.

In einer bevorzugten Ausführungsform des erfindungsgemässen Widerstandselementes werden eine geringe spezifische Wärme und/oder eine geringe spezifische Wärmekapazität dadurch erreicht, dass die elektrisch leitenden Teilchen des in die Polymermatrix eingebetteten Füllstoffs jeweils kugel-, faser- oder plättchenförmig ausgebildet sind, und vorzugsweise jeweils in Form eines Verbundstoffkörpers vorliegen. Ein solcher Verbundstoffkörper weist überwiegend jeweils einen mit einer Schicht aus leitfähigem Material oberflächenbeschichteten, vorzugsweise hohl oder porös, gegebenenfalls aber auch massiv, ausgebildeten Tragkörper aus einem Material auf mit einer gegenüber dem leitfähigen Material geringeren spezifischen Dichte und/oder geringeren spezifischen Wärmekapazität.In a preferred embodiment of the resistance element according to the invention, a low specific heat and / or a low specific heat capacity are achieved in that the electrically conductive particles of the Polymer matrix embedded filler are each spherical, fibrous or plate-shaped, and are preferably each in the form of a composite body. Such a composite body predominantly has in each case a support body which is surface-coated with a layer of conductive material, preferably hollow or porous, but possibly also solid, and is made of a material with a lower specific density and / or lower specific heat capacity than the conductive material.

Eine weitere erhebliche Verringerung der Ansprechzeit lässt sich dann erreichen, wenn zumindest ein Teil der Polymermatrix von Polymerschaum gebildet ist.A further significant reduction in the response time can be achieved if at least part of the polymer matrix is formed by polymer foam.

KURZE BESCHREIBUNG DER ZEICHNUNGENBRIEF DESCRIPTION OF THE DRAWINGS

Bevorzugte Ausführungsbeispiele der Erfindung und die damit erzielbaren weiteren Vorteile werden nachfolgend anhand von Zeichnungen näher erläutert. Hierbei zeigt:

Fig. 1
eine Aufsicht durch einen Schnitt durch eine typische Ausführungsform des elektrischen Widerstandelementes nach der Erfindung,
Fig. 2
eine Aufsicht auf einen zentral geführten Schnitt durch ein als Kugel ausgeführtes Teilchen eines im Widerstandselement gemäss Fig. 1 vorgesehenen Füllstoffs, und
Fig. 3
eine Aufsicht auf einen zentral geführten Schnitt durch ein als Hohlkugel ausgeführtes Teilchen eines im Widerstandselement gemäss Fig. 1 vorgesehenen Füllstoffs.
Preferred exemplary embodiments of the invention and the further advantages achievable therewith are explained in more detail below with reference to drawings. Here shows:
Fig. 1
2 shows a top view through a section through a typical embodiment of the electrical resistance element according to the invention,
Fig. 2
a top view of a centrally guided section through a spherical particle of a filler provided in the resistance element according to FIG. 1, and
Fig. 3
a top view of a centrally performed section through a hollow ball particle of a filler provided in the resistance element according to FIG. 1.

WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS OF CARRYING OUT THE INVENTION

Das in Fig. 1 dargestellte Widerstandselement enthält einen zwischen zwei Kontaktanschlüssen 1, 2 angeordneten Widerstandskörper 3 mit PTC-Verhalten. Unterhalb einer Übergangstemperatur Tc weist dieses Widerstandselement einen geringen spezifischen Kaltwiderstand auf und bildet nach Einbau in ein durch Strombegrenzung zu schützendes elektrisches Netz mindestens einen zwischen den beiden Kontaktanschlüssen 1, 2 verlaufenden und vorzugsweise Nennstrom führenden Pfad. Oberhalb der Übergangstemperatur Tc weist das Widerstandselement einen verglichen mit seinem spezifischen Kaltwiderstand grossen spezifischen Heisswiderstand auf.The resistance element shown in FIG. 1 contains a resistance body 3 with PTC behavior arranged between two contact connections 1, 2. Below a transition temperature T c , this resistance element has a low specific cold resistance and, after installation in an electrical network to be protected by current limitation, forms at least one path which runs between the two contact connections 1, 2 and preferably carries a nominal current. Above the transition temperature T c , the resistance element has a high specific resistance compared to its specific cold resistance.

Der Widerstandskörper 3 ist gebildet von einer vorzugsweise ein Duro- oder Thermoplast oder ein Elastomer enthaltenden Polymermatrix 4. In diese Matrix 4 sind von elektrisch leitenden Teilchen 5 gebildete Füllstoffe eingebettet. Die Teilchen 5 sind zumindest teilweise jeweils als Verbundstoffkörper mit elektrisch leitender Oberfläche und/oder als hohler oder poröser Körper aus elektrisch leitendem Material ausgebildet. Die Teilchen 5 weisen gegenüber massiv ausgebildeten Teilchen aus leitfähigem Material jeweils eine geringere spezifische Dichte und/oder geringere spezifische Wärmekapazität auf.The resistance body 3 is formed from a polymer matrix 4 which preferably contains a thermoset or thermoplastic or an elastomer. Fillers formed by electrically conductive particles 5 are embedded in this matrix 4. The particles 5 are at least partially each formed as a composite body with an electrically conductive surface and / or as a hollow or porous body made of electrically conductive material. Compared to solid particles of conductive material, the particles 5 each have a lower specific density and / or a lower specific heat capacity.

Aus den Figuren 2 und 3 sind der Aufbau und die Struktur besonders zu bevorzugender Teilchen 5 zu erkennen. Ersichtlich sind diese Teilchen als Verbundstoffkörper ausgebildet und weisen jeweils einen mit einer Schicht 6 aus leitfähigem Material oberflächenbeschichteten Tragkörper 7 aus einem Material auf mit einer gegenüber dem leitfähigen Material geringeren spezifischen Dichte und/oder geringeren spezifischen Wärmekapazität. Ein Widerstandselement, welches derart ausgebildete Teilchen 5 enthält, weist praktisch die gleiche elektrische Leitfähigkeit im niederohmigen Zustand auf wie ein gleichartig bemessenes Widerstandselement, welches im Unterschied dazu massiv ausgebildete Teilchen enthält. Da es jedoch eine geringere spezifische Dichte und/oder geringere spezifische Wärmekapazität besitzt als ein mit massiv ausgebildeten Teilchen aus leitfähigem Material gefülltes Widerstandselement ist bei einem solchen Widerstandselement die Ansprechzeit beim Übergang vom niederin den hochohmigen Zustand wesentlich herabgesetzt.The structure and structure of particularly preferred particles 5 can be seen from FIGS. 2 and 3. As can be seen, these particles are designed as composite bodies and each have a support body 7 coated with a layer 6 of conductive material made of a material with a lower specific density and / or lower specific heat capacity than the conductive material. A resistance element, which contains particles 5 formed in this way, has practically the same electrical conductivity in the low-resistance state as a similarly dimensioned resistance element, which in contrast contains solid particles. However, since it has a lower specific density and / or a lower specific heat capacity than a resistance element filled with solidly formed particles of conductive material, the response time for such a resistance element is significantly reduced in the transition from the low to the high-resistance state.

In besonders leicht herzustellenden Ausführungsformen der Erfindung sind - wie aus Fig. 2 ersichtlich ist - die Tragkörper 7 der Teilchen 5 als massive Kugeln oder - wie aus Fig. 3 ersichtlich ist - als Hohlkugeln ausgebildet. Ein massive Kugeln enthaltendes Widerstandselement weist eine etwas höhere Wärmeleitung und damit auch eine etwas grössere Nennstromtragfähigkeit auf als ein Hohlkugeln enthaltendes Widerstandselement. Hingegen zeichnet sich ein Hohlkugeln enthaltendes Widerstandselement durch eine kleinere Masse, eine geringere spezifische Dichte, eine geringere spezifische Wärmekapazität und damit durch eine kürzere Ansprechzeit aus. Bei Pulszeiten, die kleiner sind als die Zeit für die Wärmeausbreitung über die Teilchen, wirkt sich zudem die etwas geringere Wärmeleitung in einem Hohlkugeln enthaltenden Widerstandselement nicht aus.In embodiments of the invention which are particularly easy to produce, the support bodies 7 of the particles 5 are formed as solid balls or, as can be seen from FIG. 3, as hollow balls, as can be seen from FIG. 2. A resistance element containing solid balls has a somewhat higher heat conduction and thus also a somewhat larger nominal current carrying capacity than a resistance element containing hollow balls. In contrast, a resistance element containing hollow spheres is distinguished by a smaller mass, a lower specific density, a lower specific heat capacity and thus by a shorter response time. In the case of pulse times that are shorter than the time for the heat to spread through the particles, the somewhat lower heat conduction in a resistance element containing hollow spheres also has no effect.

Das die Schichten 6 bildende leitfähige Material kann vorwiegend Kohlenstoff und/oder ein Metall, wie Ag, Au, Ni, Pd und/oder Pt, und/oder mindestens ein Borid, Silizid, Oxid und/oder Carbid, wie etwa SiC, TiC, TiB2, MoSi2, WSi2, RuO2 oder V2O3, jeweils in undotierter oder dotierter Form, enthalten.The conductive material forming the layers 6 can predominantly carbon and / or a metal, such as Ag, Au, Ni, Pd and / or Pt, and / or at least one boride, silicide, oxide and / or carbide, such as SiC, TiC, TiB 2 , MoSi 2 , WSi 2 , RuO 2 or V 2 O 3 , each in undoped or doped form.

Hingegen ist der Tragkörper von einem Polymer, von Glas oder von einer Keramik gebildet. Als Polymer können hierbei ein Duroplast - etwa auf der Basis von Epoxid oder Phenol - , ein Thermoplast oder aber auch ein Elastomer Verwendung finden.In contrast, the support body is formed from a polymer, from glass or from a ceramic. A polymer can be used here Thermoset - for example based on epoxy or phenol -, a thermoplastic or an elastomer can be used.

Gut bewährt als polymere Tragkörper 7 haben sich kommerziell erhältliche und mit Silber beschichtete Phenolharzkugeln mit Durchmessern von 1 bis 50 µm. Geeignete glashaltige oder keramische Tragkörper sind kommerziell erhältliche Kugeln auf der Basis von amorphem Quarz oder einem anderen Glas sowie von Al2O3, ZnO, Glimmer, Mullit oder Porzellan. Tragkörper aus ZnO fallen bei der Fertigung von Varistoren durch Sprühtrocknen von Pulversuspensionen und anschliessendes Sintern an. Die Tragkörper können neben Kugelform auch Faser- oder Plättchenform aufweisen. Sie können zudem nicht nur massiv oder hohl ausgebildet sein, sondern können auch poröse, schwammartige Struktur aufweisen. Zu bevorzugen ist ein keramischen oder glasartiger Schaumstoff, etwa auf der Basis von TiC oder TiB2, dessen Oberfläche mit einem metallischen Werkstoff imprägniert worden ist. Aus Metall können schwammartige Körper gebildet werden, welche ohne Beschichtung als leitfähige Teilchen 5 zu verwenden sind.Commercially available and silver-coated phenolic resin spheres with diameters of 1 to 50 μm have proven themselves as polymeric support bodies 7. Suitable glass-containing or ceramic carriers are commercially available spheres based on amorphous quartz or another glass as well as Al 2 O 3 , ZnO, mica, mullite or porcelain. Support bodies made of ZnO are produced in the manufacture of varistors by spray drying powder suspensions and subsequent sintering. In addition to the spherical shape, the supporting bodies can also have a fiber or plate shape. They can not only be solid or hollow, but can also have a porous, sponge-like structure. A ceramic or glass-like foam, for example based on TiC or TiB 2 , whose surface has been impregnated with a metallic material is preferred. Sponge-like bodies can be formed from metal, which are to be used as conductive particles 5 without coating.

Die Beschichtung der Tragkörper 7 kann durch bekannte Verfahren, wie beispielsweise Chemical Vapor Deposition, Sol-Gel-Technik, Fällung und/oder elektrolytische Beschichtung, erreicht werden. Die Dicken der Schichten 6 der dabei hergestellten Teilchen 5 liegen vorzugsweise zwischen 0,05 und 5 µm, wohingegen die Durchmesser der Teilchen 5 typischerweise zwischen 1 und 200 µm liegen.The coating of the support body 7 can be achieved by known methods, such as chemical vapor deposition, sol-gel technology, precipitation and / or electrolytic coating. The thicknesses of the layers 6 of the particles 5 produced thereby are preferably between 0.05 and 5 μm, whereas the diameters of the particles 5 are typically between 1 and 200 μm.

Zur Herstellung eines Widerstandselementes nach der Erfindung werden mit einem Schermischer oder mit einem Extruder in ein beispielsweise ein Epoxy oder ein Thermoplast enthaltendes Polymer eine die Teilchen 5 enthaltenden Füllstoffkomponente eingemischt. Typischerweise beträgt der Füllstoffanteil ca. 40 Volumenprozent am hierbei gebildete Komposit. Dieses Komposit wird bei Thermoplasten durch Heisspressen und bei Epoxiden durch Giessen und anschliessendes Aushärten bei erhöhter Temperatur zum Widerstandskörper 3 geformt. Die Kontaktanschlüsse 1, 2 werden durch Einpressen oder Eingiessen während der Formgebung oder mittels eines niedrigschmelzenden Lotes nach der Formgebung angebracht. Die Abmessungen des solchermassen hergestellten Widerstandselementes richten sich nach der jeweiligen Anwendung und können beispielsweise platten- rohr- oder stabförmig sein mit typischen Durchmessern im Millimeter- bis Zentimeterbereich.To produce a resistance element according to the invention, a filler component containing the particles 5 is mixed with a shear mixer or with an extruder into a polymer containing, for example, an epoxy or a thermoplastic. Typically, the proportion of filler in the composite formed is approximately 40 percent by volume. This composite is used for thermoplastics by hot pressing and Epoxides formed by casting and then curing at elevated temperature to the resistance body 3. The contact connections 1, 2 are attached by pressing or casting in during the shaping or by means of a low-melting solder after the shaping. The dimensions of the resistance element produced in this way depend on the respective application and can be, for example, plate-tube or rod-shaped with typical diameters in the millimeter to centimeter range.

In einer weiteren Ausführungsformen des erfindungsgemässen Widerstandselementes können die Tragkörper 7 jeweils auch als Hohlkugeln aus leitfähigem Material ausgebildet sein und kann die die Teilchen 5 einbettende Polymermatrix 4 zumindest teilweise von Polymerschaum gebildet sein.In a further embodiment of the resistance element according to the invention, the support bodies 7 can each be designed as hollow spheres made of conductive material and the polymer matrix 4 embedding the particles 5 can be at least partially formed by polymer foam.

Im Normalbetrieb bilden die im Widerstandskörper 3 des Widerstandselementes vorgesehenen Füllstoffe durch den Widerstandskörper 3 hindurchgehende niederohmige Strompfade. Durch einen Überstrom erwärmt sich das Widerstandselement stark und geht oberhalb der Übergangstemperatur Tc in einen hochohmigen Zustand über, in dem der Überstrom begrenzt wird. Die Ansprechzeiten von Widerstandselementen nach der Erfindung sind bei grossen Überlastströmen gegenüber den Ansprechzeiten von gleich gross bemessenen Widerstandselementen nach dem Stand der Technik zum Teil ganz erheblich verkürzt. Bei gleichen geometrischen Abmessung der Widerstandselemente und der Teilchen 5, einem Füllstoffanteil von jeweils 40 Volumenprozent, gleichen Überlastströmen und mit jeweils TiB2 als elektrisch leitendem Material ergeben sich gegenüber einem Widerstandselement nach dem Stand der Technik mit Füllstoffteilchen aus massivem TiB2 und einer Polymermatrix aus Epoxy die aus der nachfolgend angegebenen Zusammenstellung ersichtlichen erheblichen Verkürzungen der Ansprechzeiten: Füllstoff Polymermatrix Verkürzung der Ansprechzeit in % TiB2, massiv Epoxy --- TiB2, massiv Epoxyschaum 12 Quarzkugeln/TiB2 Epoxy 9 Quarzkugeln/TiB2 Epoxyschaum 25 Quarzhohlkugeln/TiB2 Epoxy 15 Quarzhohlkugeln/TiB2 Epoxyschaum 33 In normal operation, the fillers provided in the resistance body 3 of the resistance element form low-resistance current paths through the resistance body 3. Due to an overcurrent, the resistance element heats up considerably and, above the transition temperature T c, changes into a high-resistance state in which the overcurrent is limited. The response times of resistance elements according to the invention are in some cases considerably shortened in the case of large overload currents compared to the response times of resistance elements of the same size, according to the prior art. With the same geometrical dimensions of the resistance elements and the particles 5, a filler fraction of 40 volume percent each, the same overload currents and each with TiB 2 as the electrically conductive material, compared to a resistance element according to the prior art with filler particles made of solid TiB 2 and a polymer matrix made of epoxy the considerable reduction in response times that can be seen from the compilation below: filler Polymer matrix Shortening the response time in% TiB 2 , solid Epoxy --- TiB 2 , solid Epoxy foam 12th Quartz balls / TiB 2 Epoxy 9 Quartz balls / TiB 2 Epoxy foam 25th Quartz hollow balls / TiB 2 Epoxy 15 Quartz hollow balls / TiB 2 Epoxy foam 33

BEZUGSZEICHENLISTEREFERENCE SIGN LIST

1, 21, 2
KontaktanschlüsseContact connections
33rd
WiderstandskörperResistance body
44th
PolymermatrixPolymer matrix
55
TeilchenParticles
66
Schichtlayer
77
TragkörperSupporting body

Claims (11)

  1. Electrical resistance element having a resistance body (3) which is disposed between two contact terminals (1, 2) and has PTC behavior and which is composed of at least one polymer matrix and at least one filler component embedded in the polymer matrix (4) and composed of electrically conducting particles (5), characterized in that the proportion of filler of the electrically conducting particles constitutes about 40 per cent by volume of the resistance body (3) and in that the electrically conducting particles (5) are formed in each case as composite body having electrically conductive surface and/or as hollow or porous body composed of electrically conducting material and have in each case a lower specific density and/or a lower specific heat capacity than solidly formed particles composed of conductive material.
  2. Resistance element according to Claim 1, characterized in that the composite bodies and/or hollow or porous bodies are in each case of spherical, fibrous or platelet-like form.
  3. Resistance element according to either of Claims 1 or 2, characterized in that the particles (5) formed as composite bodies predominantly have in each case a supporting body (7) which is superficially coated with a layer (6) of conductive material and which is composed of a material having a lower specific density and/or a lower specific heat capacity than the conductive material.
  4. Resistance element according to Claim 3, characterized in that the supporting body (7) has a porous structure.
  5. Resistance element according to Claim 3, characterized in that the supporting body (7) is formed as solid sphere.
  6. Resistance element according to Claim 3, characterized in that the supporting body (7) is formed as hollow sphere.
  7. Resistance element according to any of Claims 1 to 6, characterized in that the conductive material contains carbon and/or a metal, such as Ag, Au, Ni, Pd and/or Pt, and/or at least one boride, silicide, oxide and/or carbide, such as for instance SiC, TiC, TiB2, MoSi2, WSi2, RuO2 or V2O3, in each case in undoped or doped form.
  8. Resistance element according to any of Claims 2 to 7, characterized in that the supporting body is formed from a polymer, such as in particular one based on a phenolic resin, from glass, such as in particular quartz glass, or from a ceramic, such as in particular one based on Al2O3, ZnO2 [sic], mica, mullite or porcelain.
  9. Resistance element according to any of Claims 1 to 8, characterized in that the particles (5) have diameters of between 1 and 200 µm.
  10. Resistance element according to any of Claims 2 to 9, characterized in that the thickness of the surface coating (6) applied to the supporting body (7) is between 0.05 and 5 µm.
  11. Resistance element according to any of Claims 1 to 10, characterized in that at least a part of the polymer matrix is formed from polymer foam.
EP93114118A 1992-10-01 1993-09-03 Resistance with PTC-behaviour Expired - Lifetime EP0590347B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4232969A DE4232969A1 (en) 1992-10-01 1992-10-01 Electrical resistance element
DE4232969 1992-10-01

Publications (2)

Publication Number Publication Date
EP0590347A1 EP0590347A1 (en) 1994-04-06
EP0590347B1 true EP0590347B1 (en) 1996-06-19

Family

ID=6469354

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93114118A Expired - Lifetime EP0590347B1 (en) 1992-10-01 1993-09-03 Resistance with PTC-behaviour

Country Status (4)

Country Link
US (1) US5416462A (en)
EP (1) EP0590347B1 (en)
JP (1) JPH06215903A (en)
DE (2) DE4232969A1 (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4427161A1 (en) * 1994-08-01 1996-02-08 Abb Research Ltd Process for the manufacture of a PTC resistor and resistor produced thereafter
TW298653B (en) * 1995-02-28 1997-02-21 Yunichica Kk
DE19520869A1 (en) * 1995-06-08 1996-12-12 Abb Research Ltd PTC resistor
US5614881A (en) * 1995-08-11 1997-03-25 General Electric Company Current limiting device
DE19534442A1 (en) * 1995-09-16 1997-03-27 Abb Research Ltd Over-current protection device for 11 to 17 kV networks
US6232866B1 (en) * 1995-09-20 2001-05-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Composite material switches
US5985182A (en) * 1996-10-08 1999-11-16 Therm-O-Disc, Incorporated High temperature PTC device and conductive polymer composition
DE19651166A1 (en) * 1996-12-10 1998-06-18 Kloeckner Moeller Gmbh Conductive polymer composition
US5929744A (en) * 1997-02-18 1999-07-27 General Electric Company Current limiting device with at least one flexible electrode
US6535103B1 (en) 1997-03-04 2003-03-18 General Electric Company Current limiting arrangement and method
US5977861A (en) * 1997-03-05 1999-11-02 General Electric Company Current limiting device with grooved electrode structure
US6191681B1 (en) 1997-07-21 2001-02-20 General Electric Company Current limiting device with electrically conductive composite and method of manufacturing the electrically conductive composite
JP3257521B2 (en) * 1997-10-07 2002-02-18 ソニーケミカル株式会社 PTC element, protection device and circuit board
US6373372B1 (en) 1997-11-24 2002-04-16 General Electric Company Current limiting device with conductive composite material and method of manufacturing the conductive composite material and the current limiting device
US6128168A (en) 1998-01-14 2000-10-03 General Electric Company Circuit breaker with improved arc interruption function
US6074576A (en) * 1998-03-24 2000-06-13 Therm-O-Disc, Incorporated Conductive polymer materials for high voltage PTC devices
US6290879B1 (en) 1998-05-20 2001-09-18 General Electric Company Current limiting device and materials for a current limiting device
US6124780A (en) * 1998-05-20 2000-09-26 General Electric Company Current limiting device and materials for a current limiting device
US6133820A (en) * 1998-08-12 2000-10-17 General Electric Company Current limiting device having a web structure
DE19842125A1 (en) * 1998-09-15 2000-03-23 Moeller Gmbh Contact arrangement used in electrical switches and protective devices has intermediate layer made of conducting elastomeric material between contact electrodes and electrically conducting polymer
US6144540A (en) * 1999-03-09 2000-11-07 General Electric Company Current suppressing circuit breaker unit for inductive motor protection
US6157286A (en) * 1999-04-05 2000-12-05 General Electric Company High voltage current limiting device
US6323751B1 (en) 1999-11-19 2001-11-27 General Electric Company Current limiter device with an electrically conductive composite material and method of manufacturing
DE60033126T2 (en) * 2000-01-25 2007-10-11 Abb Research Ltd. Electrical component made of PTC polymer for current limitation and short-circuit protection
US6497951B1 (en) * 2000-09-21 2002-12-24 Milliken & Company Temperature dependent electrically resistive yarn
US6798331B2 (en) * 2001-02-08 2004-09-28 Qortek, Inc. Current control device
US7034652B2 (en) * 2001-07-10 2006-04-25 Littlefuse, Inc. Electrostatic discharge multifunction resistor
JP2006013378A (en) * 2004-06-29 2006-01-12 Tdk Corp Thermistor element body forming resin composition and thermistor
WO2008089787A1 (en) * 2007-01-24 2008-07-31 Smm Medical Ab An elastomeric particle having an electrically conducting surface, a pressure sensor comprising said particles, a method for producing said sensor and a sensor system comprising sais sensors
DE102007042644A1 (en) * 2007-09-07 2009-03-12 Benecke-Kaliko Ag Electrically conductive, flexible sheet
JP5050265B2 (en) * 2007-11-09 2012-10-17 国立大学法人九州工業大学 Self-healing current limiting fuse
JP5050266B2 (en) * 2008-01-10 2012-10-17 国立大学法人九州工業大学 Mechanical fuse and its sensitivity setting method
JP5569101B2 (en) * 2010-03-31 2014-08-13 株式会社村田製作所 Laminated positive temperature coefficient thermistor and laminated positive temperature coefficient thermistor manufacturing method
KR102693104B1 (en) 2019-12-04 2024-08-07 나믹스 가부시끼가이샤 Paste for forming varistor, cured product thereof, and varistor
WO2021177207A1 (en) * 2020-03-02 2021-09-10 ナミックス株式会社 Low voltage varistor, circuit board, semiconductor component package and interposer

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4359414A (en) * 1972-12-22 1982-11-16 E. I. Du Pont De Nemours And Company Insulative composition for forming polymeric electric current regulating junctions
US4534889A (en) * 1976-10-15 1985-08-13 Raychem Corporation PTC Compositions and devices comprising them
GB1595198A (en) * 1976-10-15 1981-08-12 Raychem Corp Ptc compositions and devices comprising them
US4237441A (en) * 1978-12-01 1980-12-02 Raychem Corporation Low resistivity PTC compositions
JPS565840A (en) * 1979-06-28 1981-01-21 Shin Etsu Polymer Co Ltd Anisotropic pressure electrically-conductive elastomer molded article
DE3402091C2 (en) * 1984-01-21 1994-01-13 Rau Gmbh G Composite material for electrical contact pieces
US4616125A (en) * 1984-02-03 1986-10-07 Eltac Nogler & Daum Kg Heating element
DE3640586A1 (en) * 1986-11-27 1988-06-09 Norddeutsche Affinerie METHOD FOR PRODUCING HOLLOW BALLS OR THEIR CONNECTED WITH WALLS OF INCREASED STRENGTH
FR2614130B1 (en) * 1987-04-15 1992-01-17 Lorraine Carbone MATERIAL HAVING A POSITIVE TEMPERATURE COEFFICIENT RESISTIVITY
DE3724156A1 (en) * 1987-07-22 1989-02-02 Norddeutsche Affinerie METHOD FOR PRODUCING METALLIC OR CERAMIC HOLLOW BALLS
US4910389A (en) * 1988-06-03 1990-03-20 Raychem Corporation Conductive polymer compositions
FR2655206B1 (en) * 1989-11-29 1993-12-31 Merlin Gerin SINTERED COMPOSITE MATERIAL FOR ELECTRIC CONTACT, AND CONTACT PAD USING THE SAME.

Also Published As

Publication number Publication date
EP0590347A1 (en) 1994-04-06
DE4232969A1 (en) 1994-04-07
DE59303003D1 (en) 1996-07-25
US5416462A (en) 1995-05-16
JPH06215903A (en) 1994-08-05

Similar Documents

Publication Publication Date Title
EP0590347B1 (en) Resistance with PTC-behaviour
EP0576836B1 (en) Current limiting element
EP0640995B1 (en) Electrical resistor and application of this resistor in a current limiter
EP0649150B1 (en) Composite material
DE2948281C2 (en) Electrical circuit and circuit protection device
DE3707503C2 (en) PTC composition
DE3685849T2 (en) PTC thermistor arrangements based on conductive polymers.
DE3512483C2 (en)
DE2903442C2 (en)
DE4142523A1 (en) RESISTANCE WITH PTC BEHAVIOR
DE69221392T2 (en) Method of making a PTC device
CH642772A5 (en) ELECTRICAL MELTFUSE AND THEIR PRODUCTION METHOD.
WO1999056290A1 (en) Non-linear resistance with varistor behaviour and method for the production thereof
DE2459664A1 (en) COLD CONDUCTOR CONNECTING DEVICE
DE2752559B2 (en) Thick film varistor
EP0755058A2 (en) Electrically and thermically conductive plastics material and the application thereof
EP0747910A2 (en) PTC resistance
DE2941196C2 (en)
EP0696036A1 (en) Process for the preparation of a PTC resistance and resistance obtained therefrom
DE69509774T2 (en) OVERCURRENT PROTECTION DEVICE FOR ELECTRICAL CIRCUITS
DE2853134C2 (en) Ceramic varistor
WO2015177085A1 (en) Electronic component and method for the production thereof
DE10011009B4 (en) Thermistor with negative temperature coefficient
DE2349233A1 (en) MATRIX OF PHOTOCONDUCTIVE CELLS
DE19510100A1 (en) Elastically deformable resistor esp. for limiting or switching current

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19940905

17Q First examination report despatched

Effective date: 19941216

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI SE

REF Corresponds to:

Ref document number: 59303003

Country of ref document: DE

Date of ref document: 19960725

ITF It: translation for a ep patent filed
ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960829

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ASEA BROWN BOVERI AG ABT. TEI-IMMATERIALGUETERRECH

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080915

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080925

Year of fee payment: 16

Ref country code: FR

Payment date: 20080912

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080918

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20090915

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090922

Year of fee payment: 17

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090903

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090903

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59303003

Country of ref document: DE

Effective date: 20110401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100904