EP0547374B1 - Gastight sealed gas discharge lamp - Google Patents

Gastight sealed gas discharge lamp Download PDF

Info

Publication number
EP0547374B1
EP0547374B1 EP92119328A EP92119328A EP0547374B1 EP 0547374 B1 EP0547374 B1 EP 0547374B1 EP 92119328 A EP92119328 A EP 92119328A EP 92119328 A EP92119328 A EP 92119328A EP 0547374 B1 EP0547374 B1 EP 0547374B1
Authority
EP
European Patent Office
Prior art keywords
gas discharge
discharge lamp
oxygen
lamp
water vapour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92119328A
Other languages
German (de)
French (fr)
Other versions
EP0547374A1 (en
Inventor
Andrzej Marek Rolski
Michael Zöchbauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Training Center GmbH and Co KG
Original Assignee
Hartmann and Braun AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hartmann and Braun AG filed Critical Hartmann and Braun AG
Publication of EP0547374A1 publication Critical patent/EP0547374A1/en
Application granted granted Critical
Publication of EP0547374B1 publication Critical patent/EP0547374B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/24Means for obtaining or maintaining the desired pressure within the vessel
    • H01J61/28Means for producing, introducing, or replenishing gas or vapour during operation of the lamp
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/70Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr
    • H01J61/76Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr having a filling of permanent gas or gases only
    • H01J61/78Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr having a filling of permanent gas or gases only with cold cathode; with cathode heated only by discharge, e.g. high-tension lamp for advertising

Definitions

  • the invention relates to a gas-tight gas discharge lamp which is filled with a nitrogen-oxygen mixture at reduced pressure and in which a discharge current flows during operation.
  • Such gas discharge lamps are used in particular in photometers to determine the concentration of gases contained in a gas mixture, which absorb in the ultraviolet spectrum from 200 to 600 nm, such as. B. nitrogen oxide or sulfur dioxide.
  • Hollow cathode lamps are usually used as gas discharge lamps.
  • a photometer for determining the concentration of nitrogen oxide is known from DE-PS 25 41 162.
  • This photometer contains a gas discharge lamp in the form of a carbon cathode lamp filled with air at negative pressure, which is operated with a low discharge current, and a radiation detector for receiving the nitrogen oxide resonance radiation emitted by the hollow cathode lamp after passage through the gas mixture.
  • the hollow cathode lamp is sealed in a vacuum-tight manner, the pressure in the hollow cathode lamp is 1 to 5 mbar.
  • the life of the nitrogen oxide radiation is so short because of the oxygen from the nitrogen-oxygen mixture which is consumed during operation of the hollow cathode lamp that such a hollow cathode lamp, although without additional measures for laboratory applications, is not is suitable for industrial applications.
  • Increasing the pressure in the hollow cathode lamp increases the life of the nitrogen oxide radiation, but at the same time reduces the intensity of this radiation.
  • Another photometer with a gas discharge lamp in the form of a hollow cathode lamp is known from DE-PS 25 46 565.
  • This photometer is primarily designed for the determination of sulfur dioxide in a gas mixture. According to one embodiment of the photometer, it is also provided for the additional determination of nitrogen oxide in a gas mixture.
  • the hollow cathode lamp is filled with a dried nitrogen-oxygen mixture and is sealed in a vacuum-tight manner after it has been filled.
  • the lifespan of the nitrogen oxide radiation of the hollow cathode lamp required for determining the concentration of nitrogen oxide is so short because of the oxygen consumed from the nitrogen-oxygen mixture during operation of the hollow cathode lamp that such a hollow cathode lamp can be used for laboratory applications without additional measures , but is not suitable for industrial applications.
  • Such a hollow cathode lamp is known from DE-OS 29 25 410.
  • the cabbage cathode lamp is filled with a nitrogen-oxygen mixture at negative pressure and sealed gas-tight.
  • the influence of gas consumption is to be reduced by introducing a quantity of metal dioxide into the hollow cathode lamp.
  • the oxygen release of the metal dioxide at the temperatures prevailing during operation of the hollow cathode lamp is too low to replace the consumed oxygen.
  • the oxygen emitted by the metal dioxide due to the negative pressure prevailing in the carbon cathode lamp is also too low to replace the consumed oxygen.
  • the invention has for its object to improve a gas discharge lamp of the type mentioned so that the life of the used for the determination of the concentration of gases that absorb in the ultraviolet spectrum of 200 to 300 nm, extended.
  • the additional oxygen used to extend the life of the nitrogen oxide radiation is stored in the form of water vapor in the gas discharge lamp.
  • the additional oxygen is only obtained from the water vapor added to the nitrogen-oxygen mixture when the gas discharge lamp is operating within the discharge zone.
  • the invention is based on the finding that water vapor is stored in the gas discharge lamp instead of oxygen and that the oxygen required is only obtained from the water vapor when required.
  • the storage of water vapor has the advantage over the direct storage of oxygen that even with the low pressure in the gas discharge lamp, which is of the order of 10 mbar, so much water vapor can be stored that the photometer can be operated for one year to determine the concentration of nitrogen oxide without having to replace the gas discharge lamp.
  • the pressure in the gas discharge lamp which is increased to 5 to 20 mbar compared to the prior art (1 to 5 mbar), leads to a further increase in the life of the nitrogen oxide radiation with only a slightly reduced intensity of the emitted radiation.
  • the water vapor-storing medium is advantageously contained in a storage vessel connected to the gas discharge lamp. By heating the water vapor storage medium contained in the storage vessel, water vapor is supplied to the interior of the gas discharge lamp if necessary.
  • the use of manganese dioxide as a medium storing water vapor has proven to be particularly suitable, since it is chemically passive, stable under pressure and temperature and has a large storage capacity for water vapor.
  • the stored water vapor can be released in a defined manner by metered heating.
  • the gas discharge lamp is advantageously an electrodeless gas discharge lamp with high-frequency excitation or a hollow cathode lamp.
  • FIG. 1 shows a gas discharge lamp excited with high frequency, which is made of glass.
  • the lamp bulb 1 is from a coil 2 made of copper surround.
  • An alternating current flowing in the coil 2 serves to excite the plasma formation in the gas discharge lamp.
  • the frequency of the alternating current is in the order of 100 MHz.
  • the lamp bulb 1 is connected to a reservoir 4 via a connecting tube 3.
  • a small piston 5 is connected to the connecting pipe 3 and contains manganese dioxide 6 serving as a water vapor store.
  • the manganese dioxide filling can be fixed with floss 5 in the flask 5 using glass wool.
  • Arranged around the piston 5 is an electrical heating winding 7, only shown schematically, which serves to heat the manganese dioxide 6 if necessary.
  • the gas discharge lamp is filled with a nitrogen-oxygen mixture that is enriched with water vapor.
  • the nitrogen-oxygen mixture is enriched with water vapor in a known manner. This can e.g. B. when passing the nitrogen-oxygen mixture through a vessel filled with distilled water, in which the desired water vapor partial pressure is set via the temperature of the water.
  • the filling mixture produced in this way which consists of the nitrogen-oxygen mixture with water vapor components, is passed through the gas discharge lamp. If the manganese dioxide has not already been moistened beforehand, the manganese dioxide serving as a water vapor-storing medium is also moistened. After the vacuum of preferably 5 to 20 mbar required for the operation of the hollow cathode lamp has been set, the gas discharge lamp is closed in a gas-tight manner by melting.
  • water vapor is emitted by the manganese dioxide.
  • water vapor can also be released by heating the manganese dioxide.
  • the type and duration of the heating is selected so that essentially only the oxygen used is supplemented, so that the oxygen partial pressure in the gas discharge lamp remains approximately constant in the long term. This results in a significant extension of the life of the nitrogen oxide radiation emitted by the gas discharge lamp, which is used to determine the concentration of gases in the ultraviolet spectrum from 200 to 300 nm.
  • a photometer equipped with such a gas discharge lamp can be operated for one year to determine the concentration of nitrogen oxide without having to replace the gas discharge lamp.
  • FIG. 2 shows a gas discharge lamp designed as a hollow cathode lamp, which is made of glass.
  • a cathode 8 and an anode 9 are located in the lamp bulb 1.
  • the further construction of the hollow cathode lamp corresponds to that of the gas discharge lamp shown in FIG.
  • water vapor is emitted from the manganese dioxide when the pressure in the hollow cathode lamp drops, the consumed oxygen being obtained from the water vapor within the discharge zone.

Landscapes

  • Discharge Lamp (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

Die Erfindung betrifft eine gasdicht abgeschlossene Gasentladungslampe, die mit einem Stickstoff-Sauerstoff-Gemisch bei Unterdruck gefüllt ist und in der beim Betrieb ein Entladungsstrom fließt.The invention relates to a gas-tight gas discharge lamp which is filled with a nitrogen-oxygen mixture at reduced pressure and in which a discharge current flows during operation.

Derartige Gasentladungslampen werden insbesondere in Photometern zur Bestimmung der Konzentration von in einem Gasgemisch enthaltenen Gasen verwendet, die im ultravioletten Spektrum von 200 bis 600 nm absorbieren, wie z. B. Stickoxid oder Schwefeldioxid. Als Gasentladungslampen dienen dabei üblicherweise Hohlkathodenlampen.Such gas discharge lamps are used in particular in photometers to determine the concentration of gases contained in a gas mixture, which absorb in the ultraviolet spectrum from 200 to 600 nm, such as. B. nitrogen oxide or sulfur dioxide. Hollow cathode lamps are usually used as gas discharge lamps.

Ein Photometer zur Bestimmung der Konzentration von Stickoxid ist aus der DE-PS 25 41 162 bekannt. Dieses Photometer enthält eine Gasentladungslampe in Form einer mit Luft bei Unterdruck gefüllten Kohlkathodenlampe, die mit einem geringen Entladungsstrom betrieben ist, sowie einen Strahlungsdetektor zum Empfang der von der Hohlkathodenlampe emittierten Stickoxidresonanzstrahlung nach Durchgang durch das Gasgemisch Die Hohlkathodenlampe ist vakuumdicht abgeschlossen, der Druck in der Hohlkathodenlampe beträgt 1 bis 5 mbar. Bei einer derartigen Kohlkathodenlampe ist die Lebensdauer der Stickoxidstrahlung wegen des beim Betrieb der Hohlkathodenlampe aufgezehrten Sauerstoffs aus dem Stickstoff-Sauerstoff-Gemisch so gering, daß eine derartige Hohlkathodenlampe ohne zusätzliche Maßnahmen zwar für Laboranwendungen, jedoch nicht für Anwendungen im industriellen Bereich geeignet ist. Eine Erhöhung des Drucks in der Hohlkathodenlampe erhöht zwar die Lebensdauer der Stickoxidstrahlung, verringert jedoch gleichzeitig die Intensität dieser Strahlung.A photometer for determining the concentration of nitrogen oxide is known from DE-PS 25 41 162. This photometer contains a gas discharge lamp in the form of a carbon cathode lamp filled with air at negative pressure, which is operated with a low discharge current, and a radiation detector for receiving the nitrogen oxide resonance radiation emitted by the hollow cathode lamp after passage through the gas mixture.The hollow cathode lamp is sealed in a vacuum-tight manner, the pressure in the hollow cathode lamp is 1 to 5 mbar. In the case of a carbon cathode lamp of this type, the life of the nitrogen oxide radiation is so short because of the oxygen from the nitrogen-oxygen mixture which is consumed during operation of the hollow cathode lamp that such a hollow cathode lamp, although without additional measures for laboratory applications, is not is suitable for industrial applications. Increasing the pressure in the hollow cathode lamp increases the life of the nitrogen oxide radiation, but at the same time reduces the intensity of this radiation.

Ein weiteres Photometer mit einer Gasentladungslampe in Form einer Hohlkathodenlampe ist aus der DE-PS 25 46 565 bekannt. Dieses Photometer ist in erster Linie für die Bestimmung von Schwefeldioxid in einem Gasgemisch ausgebildet. Gemäß einer Ausgestaltung des Photometers ist es auch für die zusätzliche Bestimmung von Stickoxid in einem Gasgemisch vorgesehen. Die Hohlkathodenlampe ist mit einem getrockneten Stickstoff-Sauerstoff-Gemisch gefüllt und wird nach ihrer Füllung durch Abschmelzen vakuumdicht abgeschlossen. Auch für dieses Photometer gilt, daß die Lebensdauer der für die Bestimmung der Konzentration von Stickoxid erforderlichen Stickoxidstrahlung der Hohlkathodenlampe wegen des beim Betrieb der Hohlkathodenlampe aus dem Stickstoff-Sauerstoff-Gemisch aufgezehrten Sauerstoffs so gering ist, daß eine derartige Hohlkathodenlampe ohne zusätzliche Maßnahmen zwar für Laboranwendungen, jedoch nicht für Anwendungen im industriellen Bereich geeignet ist.Another photometer with a gas discharge lamp in the form of a hollow cathode lamp is known from DE-PS 25 46 565. This photometer is primarily designed for the determination of sulfur dioxide in a gas mixture. According to one embodiment of the photometer, it is also provided for the additional determination of nitrogen oxide in a gas mixture. The hollow cathode lamp is filled with a dried nitrogen-oxygen mixture and is sealed in a vacuum-tight manner after it has been filled. Also for this photometer, the lifespan of the nitrogen oxide radiation of the hollow cathode lamp required for determining the concentration of nitrogen oxide is so short because of the oxygen consumed from the nitrogen-oxygen mixture during operation of the hollow cathode lamp that such a hollow cathode lamp can be used for laboratory applications without additional measures , but is not suitable for industrial applications.

Nachdem man erkannt hatte, daß die geringe Lebensdauer der Stickoxidstrahlung einer Hohlkathodenlampe, wie sie aus den obengenannten Druckschriften bekannt ist, für Anwendungen im industriellen Bereich zur Bestimmung der Konzentration von Gasen, die im ultravioletten Spektrum von 200 bis 300 nm absorbieren, auf die Aufzehrung des Sauerstoffs aus dem Stickstoff-Sauerstoff-Gemisch zurückzuführen ist, hat man versucht, den aufgezehrten Sauerstoff durch von einem Sauerstoff speichernden oder Sauerstoff spendenden Medium abgegebenen Sauerstoff zu ersetzen. Dabei wurde u. a. von der Überlegung ausgegangen, daß Metalldioxide, wie Mangandioxid, bei Unterdruck oder bei einer Erhöhung der Temperatur unter Sauerstoffabgabe zerfallen.After it had been recognized that the short lifespan of the nitrogen oxide radiation of a hollow cathode lamp, as is known from the abovementioned publications, for applications in the industrial sector for determining the concentration of gases which absorb in the ultraviolet spectrum from 200 to 300 nm, on the consumption of the Oxygen is due to the nitrogen-oxygen mixture, attempts have been made to replace the consumed oxygen with oxygen released by an oxygen-storing or oxygen-donating medium. It was assumed, among other things, that metal dioxides, such as manganese dioxide, break down under reduced pressure or when the temperature rises while releasing oxygen.

Eine derartige Hohlkathodenlampe ist aus der DE-OS 29 25 410 bekannt. Die Kohlkathodenlampe ist mit einem Stickstoff-Sauerstoff-Gemisch bei Unterdruck gefüllt und gasdicht abgeschlossen. Durch Einbringen eines Quantums Metalldioxid in die Hohlkathodenlampe soll der Einfluß der Gasaufzehrung verringert werden. Es hat sich aber gezeigt, daß die Sauerstoffabgabe des Metalldioxids bei den beim Betrieb der Hohlkathodenlampe herrschenden Temperaturen zu gering ist, um den aufgezehrten Sauerstoff zu ersetzen. Auch der aufgrund des in der Kohlkathodenlampe herrschenden Unterdruckes von dem Metalldioxid abgegebene Sauerstoff ist zu gering, um den aufgezehrten Sauerstoff zu ersetzen.Such a hollow cathode lamp is known from DE-OS 29 25 410. The cabbage cathode lamp is filled with a nitrogen-oxygen mixture at negative pressure and sealed gas-tight. The influence of gas consumption is to be reduced by introducing a quantity of metal dioxide into the hollow cathode lamp. However, it has been shown that the oxygen release of the metal dioxide at the temperatures prevailing during operation of the hollow cathode lamp is too low to replace the consumed oxygen. The oxygen emitted by the metal dioxide due to the negative pressure prevailing in the carbon cathode lamp is also too low to replace the consumed oxygen.

Der Erfindung liegt die Aufgabe zugrunde, eine Gasentladungslampe der eingangs genannten Art so zu verbessern, daß die Lebensdauer der für die Bestimmung der Konzentration von Gasen, die im ultravioletten Spektrum von 200 bis 300 nm absorbieren, ausgenutzten Stickoxidstrahlung verlängert wird.The invention has for its object to improve a gas discharge lamp of the type mentioned so that the life of the used for the determination of the concentration of gases that absorb in the ultraviolet spectrum of 200 to 300 nm, extended.

Diese Aufgabe ist bei einer gattungsgemäßen Gasentladungslampe durch die im kennzeichnenden Teil des Anspruchs 1 angegebenen Merkmale gelöst. Der zur Verlängerung der Lebensdauer der Stickoxidstrahlung dienende zusätzliche Sauerstoff ist in Form von Wasserdampf in der Gasentladungslampe gespeichert. Der zusätzliche Sauerstoff wird erst beim Betrieb der Gasentladungslampe innerhalb der Entladungszone aus dem dem Stickstoff-Sauerstoff-Gemisch zugesetzten Wasserdampf gewonnen. Der Erfindung liegt dabei die Erkenntnis zugrunde, in der Gasentladungslampe anstelle von Sauerstoff Wasserdampf zu speichern und erst bei Bedarf den benötigten Sauerstoff aus dem Wasserdampf zu gewinnen. Die Speicherung von Wasserdampf hat gegenüber der direkten Speicherung von Sauerstoff den Vorteil, daß auch bei dem geringen Druck in der Gasentladungslampe, der in der Größenordnung von 10 mbar liegt, so viel Wasserdampf gespeichert werden kann, daß das Photometer ein Jahr lang zur Bestimmung der Konzentration von Stickoxid betrieben werden kann, ohne daß die Gasentladungslampe ausgewechselt werden muß.This object is achieved in a generic gas discharge lamp by the features specified in the characterizing part of claim 1. The additional oxygen used to extend the life of the nitrogen oxide radiation is stored in the form of water vapor in the gas discharge lamp. The additional oxygen is only obtained from the water vapor added to the nitrogen-oxygen mixture when the gas discharge lamp is operating within the discharge zone. The invention is based on the finding that water vapor is stored in the gas discharge lamp instead of oxygen and that the oxygen required is only obtained from the water vapor when required. The storage of water vapor has the advantage over the direct storage of oxygen that even with the low pressure in the gas discharge lamp, which is of the order of 10 mbar, so much water vapor can be stored that the photometer can be operated for one year to determine the concentration of nitrogen oxide without having to replace the gas discharge lamp.

Vorteilhafte Weiterbildungen der Gasentladungslampe nach Anspruch 1 sind in den Ansprüchen 2 bis 6 gekennzeichnet. Der gegenüber dem Stand der Technik (1 bis 5 mbar) erhöhte Druck in der Gasentladungslampe auf 5 bis 20 mbar führt bei nur geringfügig verringerter Intensität der emittierten Strahlung zu einer weiteren Verlängerung der Lebensdauer der Stickoxidstrahlung. In vorteilhafter Weise ist das Wasserdampf speichernde Medium in einem mit der Gasentladungslampe verbundenen Vorratsgefäß enthalten. Durch Erwärmung des in dem Vorratsgefäß enthaltenen Wasserdampf speichernden Mediums wird dem Inneren der Gasentladungslampe bei Bedarf Wasserdampf zugeführt. Die Verwendung von Mangandioxid als Wasserdampf speicherndes Medium hat sich als besonders gut geeignet erwiesen, da es chemisch passiv sowie druck- und temperaturstabil ist und eine große Speicherkapazität für Wasserdampf besitzt. Der gespeicherte Wasserdampf läßt sich durch dosierte Beheizung definiert freisetzen. In vorteilhafter Weise ist die Gasentladungslampe eine elektrodenlose Gasentladungslampe mit Hochfrequenzanregung oder eine Hohlkathodenlampe.Advantageous further developments of the gas discharge lamp according to claim 1 are characterized in claims 2 to 6. The pressure in the gas discharge lamp, which is increased to 5 to 20 mbar compared to the prior art (1 to 5 mbar), leads to a further increase in the life of the nitrogen oxide radiation with only a slightly reduced intensity of the emitted radiation. The water vapor-storing medium is advantageously contained in a storage vessel connected to the gas discharge lamp. By heating the water vapor storage medium contained in the storage vessel, water vapor is supplied to the interior of the gas discharge lamp if necessary. The use of manganese dioxide as a medium storing water vapor has proven to be particularly suitable, since it is chemically passive, stable under pressure and temperature and has a large storage capacity for water vapor. The stored water vapor can be released in a defined manner by metered heating. The gas discharge lamp is advantageously an electrodeless gas discharge lamp with high-frequency excitation or a hollow cathode lamp.

Die Erfindung ist im folgenden anhand von zwei Ausführungsbeispielen näher beschrieben. Es zeigen

Figur 1
eine mit Hochfrequenz angeregte Gasentladungslampe gemäß der Erfindung und
Figur 2
eine als Hohlkathodenlampe ausgestaltete Gasentladungslampe gemäß der Erfindung.

Gleiche Teile sind mit denselben Bezugszeichen versehen.The invention is described in more detail below with reference to two exemplary embodiments. Show it
Figure 1
a high-frequency excited gas discharge lamp according to the invention and
Figure 2
a gas discharge lamp designed as a hollow cathode lamp according to the invention.

The same parts are provided with the same reference numerals.

Die Figur 1 zeigt eine mit Hochfrequenz angeregte Gasentladungslampe, die aus Glas hergestellt ist. Der Lampenkolben 1 ist von einer aus Kupfer bestehenden Spule 2 umgeben. In der Spule 2 fließt ein zur Anregung der Plasmabildung in der Gasentladungslampe dienender Wechselstrom. Die Frequenz des Wechselstromes liegt in der Größenordnung von 100 MHz. Der Lampenkolben 1 ist über ein Verbindungsrohr 3 mit einem Reservoir 4 verbunden. An das Verbindungsrohr 3 ist ein kleiner Kolben 5 angeschlossen, der als Wasserdampfspeicher dienendes Mangandioxid 6 enthält. Die Mangandioxidfüllung kann bei Bedarf mit Glaswatte in dem Kolben 5 fixiert werden. Um den Kolben 5 ist eine nur schematisch dargestellte elektrische Heizwicklung 7 angeordnet, die bei Bedarf zur Erwärmung des Mangandioxids 6 dient.FIG. 1 shows a gas discharge lamp excited with high frequency, which is made of glass. The lamp bulb 1 is from a coil 2 made of copper surround. An alternating current flowing in the coil 2 serves to excite the plasma formation in the gas discharge lamp. The frequency of the alternating current is in the order of 100 MHz. The lamp bulb 1 is connected to a reservoir 4 via a connecting tube 3. A small piston 5 is connected to the connecting pipe 3 and contains manganese dioxide 6 serving as a water vapor store. The manganese dioxide filling can be fixed with floss 5 in the flask 5 using glass wool. Arranged around the piston 5 is an electrical heating winding 7, only shown schematically, which serves to heat the manganese dioxide 6 if necessary.

Die Gasentladungslampe ist mit einem Stickstoff-Sauerstoff-Gemisch gefüllt, das mit Wasserdampf angereichert ist. Die Anreicherung des Stickstoff-Sauerstoff-Gemisches mit Wasserdampf erfolgt in bekannter Weise. Dies kann z. B. beim Durchleiten des Stickstoff-Sauerstoff-Gemisches durch ein mit destilliertem Wasser gefülltes Gefäß erfolgen, in dem der gewünschte Wasserdampfpartialdruck über die Temperatur des Wassers eingestellt wird. Das auf diese Weise hergestellte Füllgemisch, das aus dem Stickstoff-Sauerstoff-Gemisch mit Wasserdampfanteilen besteht, wird durch die Gasentladungslampe hindurchgeleitet. Soweit das Mangandioxid nicht bereits vorab befeuchtet worden ist, erfolgt dabei auch die Befeuchtung des als Wasserdampf speicherndes Medium dienenden Mangandioxids. Nach dem Einstellen des für den Betrieb der Hohlkathodenlampe erforderlichen Unterdrucks von vorzugsweise 5 bis 20 mbar wird die Gasentladungslampe durch Abschmelzen gasdicht abgeschlossen.The gas discharge lamp is filled with a nitrogen-oxygen mixture that is enriched with water vapor. The nitrogen-oxygen mixture is enriched with water vapor in a known manner. This can e.g. B. when passing the nitrogen-oxygen mixture through a vessel filled with distilled water, in which the desired water vapor partial pressure is set via the temperature of the water. The filling mixture produced in this way, which consists of the nitrogen-oxygen mixture with water vapor components, is passed through the gas discharge lamp. If the manganese dioxide has not already been moistened beforehand, the manganese dioxide serving as a water vapor-storing medium is also moistened. After the vacuum of preferably 5 to 20 mbar required for the operation of the hollow cathode lamp has been set, the gas discharge lamp is closed in a gas-tight manner by melting.

Sinkt während des Betriebes der Gasentladungslampe durch Gasaufzehrung der Druck in der Gasentladungslampe, so wird vom Mangandioxid Wasserdampf abgegeben. Zusätzlich kann Wasserdampf auch durch Erwärmung des Mangandioxids freigesetzt werden. Dabei ist Art und Dauer der Erwärmung so gewählt, daß im wesentlichen nur der verbrauchte Sauerstoff ergänzt wird, so daß der Sauerstoffpartialdruck in der Gasentladungslampe langfristig annähernd konstant bleibt. Damit ergibt sich eine wesentliche Verlängerung der Lebensdauer der von der Gasentladungslampe emittierten Stickoxidstrahlung, die zur Bestimmung der Konzentration von Gasen im ultravioletten Spektrum von 200 bis 300 nm dient. Ein mit einer derartigen Gasentladungslampe ausgerüstetes Photometer kann ein Jahr lang zu Bestimmung der Konzentration von Stickoxid betrieben werden, ohne daß die Gasentladungslampe ausgewechselt zu werden braucht.If the pressure in the gas discharge lamp drops due to gas consumption during operation of the gas discharge lamp, water vapor is emitted by the manganese dioxide. In addition, water vapor can also be released by heating the manganese dioxide. The type and duration of the heating is selected so that essentially only the oxygen used is supplemented, so that the oxygen partial pressure in the gas discharge lamp remains approximately constant in the long term. This results in a significant extension of the life of the nitrogen oxide radiation emitted by the gas discharge lamp, which is used to determine the concentration of gases in the ultraviolet spectrum from 200 to 300 nm. A photometer equipped with such a gas discharge lamp can be operated for one year to determine the concentration of nitrogen oxide without having to replace the gas discharge lamp.

Die Figur 2 zeigt eine als Hohlkathodenlampe ausgestaltete Gasentladungslampe, die aus Glas hergestellt ist. In dem Lampenkolben 1 befinden sich eine Kathode 8 und eine Anode 9. Der weitere Aufbau der Hohlkathodenlampe entspricht demjenigen der in der Figur 1 dargestellten Gasentladungslampe. Auch in diesem Ausführungsbeispiel wird bei Druckabfall in der Hohlkathodenlampe von dem Mangandioxid Wasserdampf abgegeben, wobei der verbrauchte Sauerstoff innerhalb der Entladungszone aus dem Wasserdampf gewonnen wird.FIG. 2 shows a gas discharge lamp designed as a hollow cathode lamp, which is made of glass. A cathode 8 and an anode 9 are located in the lamp bulb 1. The further construction of the hollow cathode lamp corresponds to that of the gas discharge lamp shown in FIG. In this exemplary embodiment, too, water vapor is emitted from the manganese dioxide when the pressure in the hollow cathode lamp drops, the consumed oxygen being obtained from the water vapor within the discharge zone.

Claims (6)

  1. Gastight sealed gas discharge lamp (1), which is filled with a nitrogen-oxygen mixture at an underpressure and in which a discharge current flows during operation,
    characterised in
    - that the nitrogen-oxygen mixture is enriched with water vapour in the gas discharge lamp (1),
    - that a medium (6) which is moistened with and stores water vapour is disposed in the gas discharge lamp or in a reservoir (5), which is connected to the gas discharge lamp (1) and
    - that the medium (6) storing the water vapour delivers water vapour when the gas pressure drops.
  2. Gas discharge lamp according to claim 1, characterised in that the pressure in the gas discharge lamp is between 5 and 20 mbar.
  3. Gas discharge lamp according to claim 1, characterised in that the medium (6) storing the water vapour contained in the reservoir (5) is heated by a heater winding (7) surrounding the reservoir (5).
  4. Gas discharge lamp according to one of the preceding claims, characterised in that manganese dioxide is used as the medium (6) which stores water vapour.
  5. Gas discharge lamp according to one of the preceding claims, characterised in that the gas discharge lamp is an electrodeless gas discharge lamp (1) with high-frequency excitation (2).
  6. Gas discharge lamp according to one of claims 1 to 4, characterised in that the gas discharge lamp is a hollow-cathode lamp (1, 8, 9).
EP92119328A 1991-11-22 1992-11-12 Gastight sealed gas discharge lamp Expired - Lifetime EP0547374B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4138425A DE4138425C1 (en) 1991-11-22 1991-11-22
DE4138425 1991-11-22

Publications (2)

Publication Number Publication Date
EP0547374A1 EP0547374A1 (en) 1993-06-23
EP0547374B1 true EP0547374B1 (en) 1995-04-05

Family

ID=6445349

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92119328A Expired - Lifetime EP0547374B1 (en) 1991-11-22 1992-11-12 Gastight sealed gas discharge lamp

Country Status (3)

Country Link
US (1) US5394058A (en)
EP (1) EP0547374B1 (en)
DE (2) DE4138425C1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2074454C1 (en) * 1995-08-01 1997-02-27 Акционерное общество закрытого типа Научно-техническое агентство "Интеллект" Method for generation of light and discharge lamp which implements said method
DE19602924C2 (en) * 1996-01-22 1998-07-02 Hartmann & Braun Gmbh & Co Kg Electrodeless discharge lamp for measuring resonance radiation
EP1798753A1 (en) * 2005-12-13 2007-06-20 ABB PATENT GmbH Electrodeless lamp and its fonctionning method
WO2009123258A1 (en) * 2008-04-02 2009-10-08 富山県 Ultraviolet generation device and lighting device using same
FR2980912A1 (en) * 2012-02-23 2013-04-05 Centre Nat Rech Scient Gas discharge lamp, has casing comprising active gas containing oxygen and/or nitrogen oxide, where mixture of plasma gas and active gas emits UV or visible radiation and mercury content in casing is zero
WO2017116743A1 (en) * 2015-12-30 2017-07-06 Mattson Technology, Inc. Nitrogen injection for arc lamps

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR579449A (en) * 1924-03-04 1924-10-16 Further development of rarefied atmosphere tubes
US2103039A (en) * 1929-07-10 1937-12-21 Gen Electric Gaseous electric discharge device
DE1539097B2 (en) * 1965-07-26 1970-05-06 Western Electric Company Inc., New York, N.Y. (V.St.A.) Optical transmitter or amplifier with a gas mixture (gas laser)
DE2246365C3 (en) * 1972-09-21 1975-05-15 Deutsche Forschungs- U. Versuchsanstalt Fuer Luft- Und Raumfahrt E.V., 5300 Bonn Method and device for determining the nitrogen oxide concentration in a gas mixture
DE2541162C3 (en) * 1975-09-16 1981-05-21 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln Device for determining the nitrogen oxide concentration in a gas mixture
DE2546565C3 (en) * 1975-10-17 1978-06-15 Deutsche Forschungs- Und Versuchsanstalt Fuer Luft- Und Raumfahrt E.V., 5300 Bonn Method and device for determining the concentration of sulfur dioxide
DE2925410A1 (en) * 1979-06-23 1981-01-08 Hartmann & Braun Ag LOW-PRESSURE HOLLOW CATHODE LAMP WITH A NITROGEN-OXYGEN FILLING
DE3617110A1 (en) * 1986-05-21 1987-11-26 Leybold Heraeus Gmbh & Co Kg Lamp for producing resonant gas radiation

Also Published As

Publication number Publication date
DE59201841D1 (en) 1995-05-11
DE4138425C1 (en) 1993-02-25
EP0547374A1 (en) 1993-06-23
US5394058A (en) 1995-02-28

Similar Documents

Publication Publication Date Title
DE2626700C2 (en) High pressure gas discharge lamp and process for their manufacture
EP0338637A2 (en) High pressure mercury vapour discharge lamp
DE1589171B1 (en) HIGH INTENSITY SODIUM VAPOR LAMP WITH MERCURY
DE68911954T2 (en) Electric lamp.
DE69402641T2 (en) Cadmium discharge lamp
DE69513703T2 (en) Fluorescent lamp
EP0547374B1 (en) Gastight sealed gas discharge lamp
DE2835575C2 (en) Phosphor for a low-pressure mercury vapor discharge lamp
DE2513616A1 (en) LOW POWER HIGH PRESSURE SODIUM VAPOR LAMPS
DE3038993C2 (en) Metal vapor discharge lamp
DE873290C (en) Electric incandescent lamp with light body made of refractory metals or metal compounds
DE4018792C2 (en) Process for producing a gas discharge light source and gas discharge tube
DE19534686A1 (en) Integrated ignition and operating amalgam component for electrodeless fluorescent lamp
DE2920042A1 (en) SHORT ARC DISCHARGE LAMP
DD259281A5 (en) A COMPACT LOW PRESSURE MERCURY STEAM DISCHARGE LAMP
DE69608261T2 (en) LOW PRESSURE DISCHARGE LAMP
EP0040812A1 (en) Low-pressure discharge lamp
DE2952022C2 (en) Use of an amalgam in the discharge vessel of a high pressure mercury vapor discharge lamp
EP3699951B1 (en) Low pressure mercury vapour radiation source, method for operating same and use of mercury halide in the discharge space of the same
DE1938955B2 (en) Electric light bulb
DE661519C (en) Electric tellurium vapor discharge lamp
DE1589178C (en)
AT232130B (en) Electric gas discharge lamp
AT117992B (en) Method of operating an electric discharge tube.
DE2303282B2 (en) Low pressure gas discharge lamp

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19930525

17Q First examination report despatched

Effective date: 19931119

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59201841

Country of ref document: DE

Date of ref document: 19950511

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950627

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961118

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961112

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051112