EP0546456A1 - Process for handling alkali metals - Google Patents

Process for handling alkali metals Download PDF

Info

Publication number
EP0546456A1
EP0546456A1 EP92120682A EP92120682A EP0546456A1 EP 0546456 A1 EP0546456 A1 EP 0546456A1 EP 92120682 A EP92120682 A EP 92120682A EP 92120682 A EP92120682 A EP 92120682A EP 0546456 A1 EP0546456 A1 EP 0546456A1
Authority
EP
European Patent Office
Prior art keywords
alkali metal
carbon dioxide
carbon monoxide
filling
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP92120682A
Other languages
German (de)
French (fr)
Inventor
Günther Steinleitner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Patent GmbH
Original Assignee
ABB Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Patent GmbH filed Critical ABB Patent GmbH
Publication of EP0546456A1 publication Critical patent/EP0546456A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/006General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with use of an inert protective material including the use of an inert gas
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals

Definitions

  • the invention relates to a method for handling alkali metals according to the preamble of claim 1.
  • Such a method is used in the filling and decanting, storage or intermediate treatment of alkali metals.
  • Alkali metals are very strong reducing agents, especially in the liquid state, and therefore must not be handled in air.
  • Liquid alkali metals are usually handled under a protective gas atmosphere, or with a corresponding additional outlay on equipment, under vacuum.
  • Protective gases are primarily noble gases in the form of argon, helium, neon and xenon.
  • the nitrogen which is cheaper than the noble gases, can also be used for many technical applications. Of the alkali metals, only the lithium reacts with the nitrogen, so that one of the noble gases mentioned above must be used for this.
  • the inert gas When handling alkali metals under a protective gas atmosphere, most of which involves filling or transferring alkali metals, the inert gas is often included in the alkali metal. On the one hand, these inclusions cause the formation of gas bubbles within the metal in the solidifying alkali metal. On the other hand, the gas is adsorbed on the metal surface, especially when there are oxide layers on the liquid metal that are unwanted, but almost never avoidable. These enclosed or superficially deposited inert gases can have a disruptive effect when using these alkali metals for heat transfer or for generating electricity. For example, the inclusion of gas in sodium, which is used in the cooling circuits of reactors, can hinder the heat transfer.
  • nitrogen is also used in the formation of the sodium electrode.
  • nitrogen can be included in the sodium or the nitrogen can be adsorbed on the metal surface.
  • This introduced inert gas leads to a reduction in the active surface of the solid electrolyte in such storage cells. As a result, the internal resistance of the memory cell is increased and the intended current transport is reduced.
  • the invention has for its object to provide a method by means of which the handling of Alikali metals can be carried out with the exclusion of disruptive influences of such protective gases.
  • a protective gas in the form of carbon dioxide, carbon monoxide or a protective gas which essentially consists of one of these gases or a mixture of these gases all known disadvantages which occur when nitrogen is used as protective gas are prevented.
  • the sodium is preferably filled at a temperature of 100 to 130 ° C.
  • the melting point of the metal is 97 ° .
  • Carbon dioxide and carbon monoxide are protective gases which are inert towards the alkali metal, in particular sodium, in this temperature range. At temperatures of 300 ° C and above, at which the sodium in a high-temperature storage cell is used to generate electricity, a reaction of carbon dioxide or carbon monoxide with sodium can take place.
  • the method according to the invention is explained in more detail below with the aid of a schematic drawing.
  • the only figure belonging to the description shows a cartridge 1 to be filled with sodium, which is later inserted into an electrochemical storage cell (not shown here).
  • the cartridge 1 is arranged in a filling space 2 which is filled with carbon dioxide, carbon monoxide or a mixture of both gases 3.
  • a line 4 the flow rate of which can be controlled with a valve 4A, sodium 5 is filled into the interior of the cartridge 1 from a storage container 6 which contains sodium 5.
  • the cartridge 1 is then closed. It can then be stored in a high-temperature storage cell (not shown here) until it is used.
  • the filling room 2 can also be filled with nitrogen as a protective gas.
  • the cartridge 1 is evacuated at the melting temperature of the sodium 5 before installation in a high-temperature storage cell (not shown here) in order to remove the enclosed nitrogen bubbles or the nitrogen adsorbed on the surface of the metal by carbon dioxide or carbon monoxide to replace.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Secondary Cells (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The invention relates to a method for handling alkali metals. According to the invention, a protective gas is used which within a defined temperature range behaves inertly with respect to the alkali metal and outside this temperature range reacts with the alkali metal to form solid reaction products. <IMAGE>

Description

Die Erfindung bezieht sich auf ein Verfahren zur Handhabung von Alkalimetallen gemäß dem Oberbegriff des Patentanspruches 1.The invention relates to a method for handling alkali metals according to the preamble of claim 1.

Ein solches Verfahren findet beim Ab- und Umfüllen, Lagern oder der Zwischenbehandlung von Alkalimetallen eine Anwendung. Alkalimetalle sind vor allem im flüssigem Zustand sehr starke Reduktionsmittel, und dürfen daher nicht an Luft gehandhabt werden. Üblicherweise werden flüssige Alkalimetalle unter einer Schutzgasatmosphäre, oder mit entsprechendem apperativem Mehraufwand unter Vakuum gehandhabt. Als Schutzgase kommen in erster Linie Edelgase in Form von Argon, Helium, Neon und Xenon in Frage. Für viele technische Anwendungen kann auch der im Vergleich zu den Edelgasen billigere Stickstoff verwendet werden. Von den Alkalimetallen reagiert lediglich das Lithium mit dem Stickstoff, so daß hierfür eines der obengenannten Edelgase verwendet werden muß.Such a method is used in the filling and decanting, storage or intermediate treatment of alkali metals. Alkali metals are very strong reducing agents, especially in the liquid state, and therefore must not be handled in air. Liquid alkali metals are usually handled under a protective gas atmosphere, or with a corresponding additional outlay on equipment, under vacuum. Protective gases are primarily noble gases in the form of argon, helium, neon and xenon. The nitrogen, which is cheaper than the noble gases, can also be used for many technical applications. Of the alkali metals, only the lithium reacts with the nitrogen, so that one of the noble gases mentioned above must be used for this.

Bei der Handhabung von Alkalimetallen unter einer Schutzgasatmosphäre, wobei es sich meisten um das Ab- oder Umfüllen von Alkalimetallen handelt, kommt es häufig zu Einschlüssen des Inertgases in das Alkalimetall. Diese Einschlüsse bewirken zum einen bei dem erstarrenden Alkalimetall die Bildung von Gasblasen innerhalb des Metalls. Zum anderen kommt es zur Adsorption des Gases an der Metalloberfläche, vor allem dann, wenn sich ungewollt, jedoch fast nie vermeidbar, Oxidschichten auf dem flüssigen Metall befinden. Diese eingeschlossenen oder auch oberflächlich angelagerten Inertgase können bei Verwendung dieser Alkalimetalle zur Wärmeübertragung oder zur Stromerzeugung störend wirken. So kann beispielsweise der Gaseinschluß bei Natrium, das in Kühlkreisläufen von Reaktoren zum Einsatz kommt, die Wärmeübertragung behindern. Für die Herstellung von Hochtemperaturspeicherbatterien auf der Basis von Natrium und Schwefel wird Stickstoff bei der Ausbildung der Natriumelektrode ebenfalls verwendet. Hierbei kann es beim Abfüllen des Natriums in Kartuschen, was bis jetzt unter einer Schutzgasatmosphäre aus Stickstoff durchgeführt wird, zu Einschlüssen von Stickstoff in das Natrium bzw. zur Adsorption des Stickstoffs an der Metalloberfläche kommen. Dieses eingeschleppte Inertgas führt zu einer Reduzierung der aktiven Oberfläche des Festelektrolyten in solchen Speicherzellen. Hierdurch wird der Innenwiderstand der Speicherzelle erhöht und der vorgesehene Stromtransport reduziert.When handling alkali metals under a protective gas atmosphere, most of which involves filling or transferring alkali metals, the inert gas is often included in the alkali metal. On the one hand, these inclusions cause the formation of gas bubbles within the metal in the solidifying alkali metal. On the other hand, the gas is adsorbed on the metal surface, especially when there are oxide layers on the liquid metal that are unwanted, but almost never avoidable. These enclosed or superficially deposited inert gases can have a disruptive effect when using these alkali metals for heat transfer or for generating electricity. For example, the inclusion of gas in sodium, which is used in the cooling circuits of reactors, can hinder the heat transfer. For the production of high temperature storage batteries based on sodium and sulfur, nitrogen is also used in the formation of the sodium electrode. Here, when filling the sodium into cartridges, which has hitherto been carried out under a protective gas atmosphere made of nitrogen, nitrogen can be included in the sodium or the nitrogen can be adsorbed on the metal surface. This introduced inert gas leads to a reduction in the active surface of the solid electrolyte in such storage cells. As a result, the internal resistance of the memory cell is increased and the intended current transport is reduced.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren aufzuzeigen, mit dessen Hilfe die Handhabung von Alikali-metallen unter Ausschluß von störenden Einflüssen solcher Schutzgase durchgeführt werden kann.The invention has for its object to provide a method by means of which the handling of Alikali metals can be carried out with the exclusion of disruptive influences of such protective gases.

Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Patentanspruches 1 gelöst.This object is achieved by the features of claim 1.

Durch die Verwendung eines Schutzgases in Form von Kohlendioxid, Kohlenmonoxid oder eines Schutzgases, das im wesentlichen aus einem dieser Gase oder einem Gemisch dieser Gase besteht, werden alle bekannten Nachteile, die bei der Verwendung von Stickstoff als Schutzgas auftreten, unterbunden. Das Abfüllen von Natrium erfolgt vorzugsweise bei einer Temperatur von 100 bis 130°C. Der Schmelzpunkt des Metalls liegt bei 97°. Kohlendioxid und Kohlenmonoxid sind Schutzgase, die sich in diesem Temperaturbereich gegenüber dem Alkalimetall, insbesondere dem Natrium, inert verhalten. Bei Temperaturen von 300 °C und mehr, bei denen das in einer Hochtemperaturspeicherzelle befindliche Natrium für die Erzeugung vom Strom genutzt wird, kann eine Reaktion von Kohlendioxid oder Kohlenmonoxid mit Natrium stattfinden. Es entstehen jedoch keine gasförmigen, sondern nur in geringem Umfang feste Reaktionsprodukte, welche die Funktion der Hochtemperaturspeicherzelle nicht beeinflussen. Falls diese geringen Mengen der sich bildenden Feststoffe dennoch stören sollten, besteht die Möglichkeit, diese Stoffe mit der in der Reaktortechnik üblichen Kühlfallentechnik zu entfernen. Neben diesen positiven Eigenschaften, die Kohlendioxid und Kohlenmonoxid während des Ab-und Umfüllvorgangs sowie beim Einsatz der Alkalimetalle in Verfahrensprozessen zeigen, sind sie auch für die Lagerung von festen Alkalimetallen, die in Behälter gefüllt sind, bei speziellen Anwendungen besser geeignet als ein Inertgas. Bei Alkalimetallen, die sich in einem festem Zustand befinden, kommt es ebenfalls zu einer Adsorption von Inertgasen im Bereich der Oberfläche, insbesondere in den Oxidschichten, wenn sie mit mit diesen in Kontakt kommen. Dieses wird vermieden, wenn sich an diesen Stellen bereits Kohlenmonoxid oder Kohlendioxid angelagert hat. Die Adsorption von Inertgas bei der Lagerung oder der anschließenden Weiterverarbeitung des Alkalimetalls ist damit ausgeschlossen. Anstelle des Abfüllens unter einer Schutzgasatmosphäre aus Kohlendioxid oder Kohlenmonoxid kann das Abfüllen auch wie bisher unter einer Schutzgasatmosphäre aus Stickstoff oder Edelgasen erfolgen. Erfindungsgemäß kann Stickstoff, der an der Oberfläche von Alkalimetallen adsorbiert ist, bzw. der zwischen der Oberfläche des Alkalimetalls und der Wand des Behälters, in dem sich das Alkalimetall befindet, eingeschlossen ist, durch längeres Evakuieren und Spülen mit Kohlendioxid oder Kohlenmonoxid ausgetauscht werden. Das ist beispielsweise bei Kartuschen, die Natrium für Hochtemperaturspeicherzellen enthalten, problemlos vor dem Einbau der Kartuschen in die Hochtemperaturspeicherzelle möglich. Hierbei ist es sinnvoll, die mit Natrium gefüllten Kartuschen oberhalb des Schmelzpunktes dieses Alkalimetalls zu evakuieren, um eingeschlossene Stickstoffblasen entgasen zu können. Der Stickstoff wird auch hierbei gegen Kohlenmooxid oder Kohlendioxid ausgetauscht, um die Adsorption eines Gases, das sich nachteilig auf die Eigenschaften des Natriums auswirkt, auch zu einem späteren Zeitpunkt auszuschließen.By using a protective gas in the form of carbon dioxide, carbon monoxide or a protective gas which essentially consists of one of these gases or a mixture of these gases, all known disadvantages which occur when nitrogen is used as protective gas are prevented. The sodium is preferably filled at a temperature of 100 to 130 ° C. The melting point of the metal is 97 ° . Carbon dioxide and carbon monoxide are protective gases which are inert towards the alkali metal, in particular sodium, in this temperature range. At temperatures of 300 ° C and above, at which the sodium in a high-temperature storage cell is used to generate electricity, a reaction of carbon dioxide or carbon monoxide with sodium can take place. However, there are no gaseous, but only to a small extent solid reaction products which do not influence the function of the high-temperature storage cell. If these small amounts of the solids that form should nevertheless interfere, there is the possibility of removing these substances using the cooling trap technique customary in reactor technology. In addition to these positive properties, which carbon dioxide and carbon monoxide show during the filling and decanting process and when using the alkali metals in process processes, they are also better suited for the storage of solid alkali metals that are filled in containers in special applications than an inert gas. In the case of alkali metals which are in a solid state, inert gases are also adsorbed in the area of the surface, in particular in the oxide layers, when they come into contact with them. This is avoided if carbon monoxide or carbon dioxide has already accumulated at these points. The adsorption of inert gas during storage or subsequent further processing of the alkali metal is therefore excluded. Instead of filling under a protective gas atmosphere made of carbon dioxide or carbon monoxide, the filling can also take place under a protective gas atmosphere made of nitrogen or noble gases. According to the invention, nitrogen which is adsorbed on the surface of alkali metals or which is enclosed between the surface of the alkali metal and the wall of the container in which the alkali metal is located can be replaced by longer evacuation and flushing with carbon dioxide or carbon monoxide. For cartridges that contain sodium for high-temperature storage cells, for example, this is possible without any problems before the cartridges are installed in the high-temperature storage cell. It makes sense to do this evacuate cartridges filled with sodium above the melting point of this alkali metal in order to be able to degas enclosed nitrogen bubbles. Here, too, the nitrogen is exchanged for carbon monoxide or carbon dioxide in order to exclude the adsorption of a gas which has a negative effect on the properties of the sodium at a later point in time.

Weitere erfinderische Merkmale sind in den Unteranspürchen gekennzeichnet.Further inventive features are identified in the subordinate claims.

Das erfindungsgemäße Verfahren wird nachfolgend anhand einer schematischen Zeichnung näher erläutert. Die einzige zur Beschreibung gehörende Figur zeigt eine mit Natrium zu füllende Kartusche 1, die später in eine elektrochemische Speicherzelle (hier nicht dargestellt) eingesetzt wird. Hierfür wird die Kartusche 1 in einem Abfüllraum 2 angeordnet, der mit Kohlendioxid, Kohlenmonoxid oder einem Gemisch aus beiden Gasen 3 gefüllt ist. Über eine Leitung 4, deren Durchflußmenge mit einem Ventil 4A gesteuert werden kann, wird Natrium 5 aus einem Vorratsbehälter 6, der Natrium 5 enthält, in das Innere der Kartusche 1 gefüllt. Anschließend wird die Kartusche 1 verschlossen. Sie kann dann bis zum Einsatz in einer Hochtemperaturspeicherzelle (hier nicht dargestellt) gelagert werden. Erfindungsgemäß kann der Abfüllraum 2 auch mit Stickstoff als Schutzgas gefüllt werden. Um die Nachteile des Stickstoffs auszuschließen, wird die Kartusche 1 vor dem Einbau in eine Hochtemperaturspeicherzelle ( hier nicht dargestellt) bei der Schmelztemperatur des Natriums 5 evakuiert, um die eingeschlossenen Stickstoffblasen zu entfernen bzw. den an der Oberfläche des Metalls adsorbierten Stickstoff durch Kohlendioxid oder Kohlenmonoxid zu ersetzen.The method according to the invention is explained in more detail below with the aid of a schematic drawing. The only figure belonging to the description shows a cartridge 1 to be filled with sodium, which is later inserted into an electrochemical storage cell (not shown here). For this purpose, the cartridge 1 is arranged in a filling space 2 which is filled with carbon dioxide, carbon monoxide or a mixture of both gases 3. Via a line 4, the flow rate of which can be controlled with a valve 4A, sodium 5 is filled into the interior of the cartridge 1 from a storage container 6 which contains sodium 5. The cartridge 1 is then closed. It can then be stored in a high-temperature storage cell (not shown here) until it is used. According to the invention, the filling room 2 can also be filled with nitrogen as a protective gas. In order to rule out the disadvantages of nitrogen, the cartridge 1 is evacuated at the melting temperature of the sodium 5 before installation in a high-temperature storage cell (not shown here) in order to remove the enclosed nitrogen bubbles or the nitrogen adsorbed on the surface of the metal by carbon dioxide or carbon monoxide to replace.

Claims (7)

1. Verfahren zur Handhabung von Alkalimetallen dadurch gekennzeichnet, daß ein Schutzgas verwendet wird, das sich in mindestens einem definierten Temperaturbereich gegenüber dem Alkalimetall inert verhält, und in den übrigen Temperaturbereichen, bei denen das Akalimetall zum Einsatz kommt, mit diesem zu Feststoffen reagiert oder in Lösung geht.1. A method for handling alkali metals, characterized in that a protective gas is used which is inert towards the alkali metal in at least one defined temperature range, and in the other temperature ranges in which the alkali metal is used, with which it reacts to form solids or in Solution works. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß für das Ab- und Umfüllen, Lagern und Zwischenbehandeln des Alkalimetalls ein Schutzgas verwendet wird, das im Bereich des Schmelzpunktes des Alkalimetalls inert ist.2. The method according to claim 1, characterized in that a protective gas is used for the filling and transferring, storage and intermediate treatment of the alkali metal, which is inert in the range of the melting point of the alkali metal. 3. Verfahren zur Handhabung von Alkalimetallen nach einem der Ansprüche 1 oder 2 , dadurch gekennzeichnet, daß das Ab- und Umfüllen, Lagern und Zwischenbehandeln des Alkalimetalls unter einer Schutzgasatmosphäre aus Kohlendioxid oder einem Gas, dessen wesentlicher Bestandteil Kohlendioxid ist, durchgeführt wird.3. A method for handling alkali metals according to one of claims 1 or 2, characterized in that the filling and decanting, storage and intermediate treatment of the alkali metal is carried out under a protective gas atmosphere of carbon dioxide or a gas, the essential component of which is carbon dioxide. 4. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß das Ab- und Umfüllen, Lagern und Zwischenbehandeln des Alkalimetalls unter einer Schutzgasatmosphäre aus Kohlenmonoxid oder einem Gas, dessen wesentlicher Bestandteil Kohlenmonoxid ist, durchgeführt wird.4. The method according to any one of claims 1 or 2, characterized in that the filling and decanting, storage and intermediate treatment of the alkali metal is carried out under a protective gas atmosphere made of carbon monoxide or a gas, the essential component of which is carbon monoxide. 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Ab- und Umfüllen, Lagern und Zwischenbehandeln des Alkalimetalls unter einer Schutzgasatmosphäre aus Kohlenmonoxid und Kohlendioxid oder einem Gas, dessen wesentliche Bestandteile Kohlenmonoxid und Kohlendioxid sind, durchgeführt wird.5. The method according to claim 1, characterized in that the filling and decanting, storage and intermediate treatment of the alkali metal is carried out under a protective gas atmosphere of carbon monoxide and carbon dioxide or a gas, the essential components of which are carbon monoxide and carbon dioxide. 6. Verfahren zur Handhabung von Alkalimetallen, dadurch gekennzeichnet, daß das Alkalimetall in einer Stickstoff- oder Edelgasatmoshäre abgefüllt und die dabei eingeschlossenen Gasblasen bzw. das sich dabei an der Oberfläche des Metalls angelagernde Gas vor dem Einsatz in Reaktoren oder Hochtemperaturspeicherbatterien durch Kohlenmonoxid oder Kohlendioxid ersetzt wird.6. A method for handling alkali metals, characterized in that the alkali metal is filled in a nitrogen or noble gas atmosphere and the gas bubbles enclosed or the gas accumulating on the surface of the metal are replaced by carbon monoxide or carbon dioxide before use in reactors or high-temperature storage batteries becomes. 7. Verwendung von Kohlendioxid, Kohlenmonoxid oder Gasen, deren wesentliche Bestandteile Kohlendioxid oder Kohlenmonoxid sind, beim Ab- und Umfüllen, Zwischenbehandeln und Lagern von Natrium (5) in Kartuschen (1) von Hochtemperaturspeicherzellen.7. Use of carbon dioxide, carbon monoxide or gases, the essential components of which are carbon dioxide or carbon monoxide, in the filling and transferring, intermediate treatment and storage of sodium (5) in cartridges (1) of high-temperature storage cells.
EP92120682A 1991-12-13 1992-12-04 Process for handling alkali metals Withdrawn EP0546456A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4141058 1991-12-13
DE4141058A DE4141058A1 (en) 1991-12-13 1991-12-13 METHOD FOR HANDLING ALKALINE METALS

Publications (1)

Publication Number Publication Date
EP0546456A1 true EP0546456A1 (en) 1993-06-16

Family

ID=6446927

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92120682A Withdrawn EP0546456A1 (en) 1991-12-13 1992-12-04 Process for handling alkali metals

Country Status (4)

Country Link
US (1) US5302185A (en)
EP (1) EP0546456A1 (en)
JP (1) JPH05255774A (en)
DE (1) DE4141058A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5909231A (en) * 1995-10-30 1999-06-01 Hewlett-Packard Co. Gas flush to eliminate residual bubbles
JP5119412B2 (en) * 2007-12-19 2013-01-16 独立行政法人石油天然ガス・金属鉱物資源機構 Management method of wax fraction storage tank

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE23040C (en) * W. GG. OTTO in Darmstadt Process for the production of dense metal castings
US2008731A (en) * 1934-07-24 1935-07-23 Aluminum Co Of America Treatment of easily oxidizable alloys
DE1981951U (en) * 1965-04-30 1968-03-28 Elektrometallurgie M B H Ges DEVICE FOR PREVENTING THE ABSORPTION OF GASES BY METALS AND METAL ALLOYS.
DE2210666A1 (en) * 1972-03-06 1973-09-20 Degussa Cannin of molten alkli metal - by solidification in inverted tin

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE158409C (en) *
US2789047A (en) * 1954-09-15 1957-04-16 Du Pont Thermal production of sodium
US2810636A (en) * 1956-06-04 1957-10-22 Dow Chemical Co Method for producing sodium
US5024675A (en) * 1987-08-03 1991-06-18 Chloride Silent Power Limited Apparatus for filling and sealing alkali metal electrode containers for alkali metal energy conversion devices and method of filling alkali metal electrode containers for alkali metal energy conversion devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE23040C (en) * W. GG. OTTO in Darmstadt Process for the production of dense metal castings
US2008731A (en) * 1934-07-24 1935-07-23 Aluminum Co Of America Treatment of easily oxidizable alloys
DE1981951U (en) * 1965-04-30 1968-03-28 Elektrometallurgie M B H Ges DEVICE FOR PREVENTING THE ABSORPTION OF GASES BY METALS AND METAL ALLOYS.
DE2210666A1 (en) * 1972-03-06 1973-09-20 Degussa Cannin of molten alkli metal - by solidification in inverted tin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C.C.ADDISON 'The chemistry of the liquid alkali metals' 1984 , JOHN WILEY & SONS , CHICHESTER -NEW YORK ET AL. Seite 8-11 und 189-192 *

Also Published As

Publication number Publication date
DE4141058A1 (en) 1993-06-17
US5302185A (en) 1994-04-12
JPH05255774A (en) 1993-10-05

Similar Documents

Publication Publication Date Title
DE2529862C2 (en) Method and device for filling electrical cells and electrical cells filled according to this method
DE4030469C2 (en) Process for checking the oxygen content in tantalum materials
DE19845668A1 (en) Secondary lithium-ion cell
DE3033438C2 (en) Electrochemical storage cell
DE68908048T2 (en) Process and container for the production of very fine, very clean, reactive metal powder.
DE3222633A1 (en) OXYGEN STABILIZED ZIRCON VANADIUM IRON ALLOY
DE3117382C2 (en) Electrochemical storage cell
DE19505081A1 (en) Hermetically housed high voltage capacitor
EP0546456A1 (en) Process for handling alkali metals
DE2831791C2 (en) Component made of metallic material with a surface at risk of being charged and use therefor
EP0078428B1 (en) Method of manufacturing sintered oxidic nuclear fuel bodies
CH633047A5 (en) METHOD FOR PRODUCING A SUPRAL-CONDUCTIVE NB3SN LAYER ON A NIOBO SURFACE FOR HIGH-FREQUENCY APPLICATIONS.
DE1807945C3 (en) Radioactive source for heat generation
DE19911800C1 (en) Electrolyte filling equipment especially for filling rechargeable cell with lithium aluminum chloride solution in sulfur dioxide comprises filling cannula which passes through cell filling socket
EP0575743B1 (en) Method for the fabrication of heat insulating elements and elements obtained thereby
DE19808834C1 (en) Multi-core BSCCO high temperature superconductor useful as wire or tape for high current cables, transformers and energy storage devices
DE3418207C2 (en)
EP0208844B1 (en) Sealing material made of fluoroelastomers and its use
DE2828412C2 (en) Implementation of a line through a wall part of a container
DE3876352T2 (en) VESSEL FOR STORING LIQUID HELIUM.
DE3227868C2 (en) Process for treating plutonium dioxide or plutonium-uranium mixed dioxide
DE1942922A1 (en) Process for the vacuum-tight closure of thin beryllium windows and X-ray tubes provided with such a window
DE102010053034A1 (en) Battery and lid for this
DE112006000279T5 (en) Gas absorbing substance, gas absorbing alloy and gas absorbing material
DE2141145A1 (en) METHOD AND DEVICE FOR GENERATING ELECTRONS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19930715

17Q First examination report despatched

Effective date: 19951026

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19970103