EP0542597A1 - Procédé de pyrolyse thermique d'hydrocarbures utilisant un four électrique - Google Patents

Procédé de pyrolyse thermique d'hydrocarbures utilisant un four électrique Download PDF

Info

Publication number
EP0542597A1
EP0542597A1 EP92402951A EP92402951A EP0542597A1 EP 0542597 A1 EP0542597 A1 EP 0542597A1 EP 92402951 A EP92402951 A EP 92402951A EP 92402951 A EP92402951 A EP 92402951A EP 0542597 A1 EP0542597 A1 EP 0542597A1
Authority
EP
European Patent Office
Prior art keywords
sheaths
gas
heating
zone
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92402951A
Other languages
German (de)
English (en)
Other versions
EP0542597B1 (fr
Inventor
Jacques Alagy
Paul Broutin
Christian Busson
Jérôme Weill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0542597A1 publication Critical patent/EP0542597A1/fr
Application granted granted Critical
Publication of EP0542597B1 publication Critical patent/EP0542597B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/24Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by heating with electrical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S585/00Chemistry of hydrocarbon compounds
    • Y10S585/919Apparatus considerations
    • Y10S585/921Apparatus considerations using recited apparatus structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S585/00Chemistry of hydrocarbon compounds
    • Y10S585/919Apparatus considerations
    • Y10S585/921Apparatus considerations using recited apparatus structure
    • Y10S585/924Reactor shape or disposition
    • Y10S585/926Plurality or verticality

Definitions

  • the invention relates to a process for thermal pyrolysis of hydrocarbons using an electric furnace. This process is in particular intended to produce light olefins, and more particularly ethylene and propylene.
  • thermal pyrolysis and notably steam cracking furnaces has essentially been geared towards obtaining shorter residence times and a reduction in pressure drop, which has led manufacturers to reduce the length of tubular reactors, therefore to increase the density of heat flux.
  • the increase in this last factor can be essentially obtained by increasing the skin temperature of the tubular reactors and / or by reducing the diameter of the tubes (which makes it possible to increase the s / v ratio, s being the exchange surface and v the reaction volume).
  • the technique has also evolved towards the use of smaller diameter tubes, placed in parallel in order to maintain a satisfactory capacity, and to remain in a suitable pressure drop range.
  • thermal pyrolysis reactors and in particular steam cracking has thus evolved, from the use of horizontal tubes of approximately 100 meters (m) in length and internal diameters of the order of 90 to 140 millimeters (mm), up to to the classic technique of vertically hanging tubes of approximately 40 m in length and diameter of around 60 mm operating with residence times of around 0.3 to 0.4 seconds (s), and finally the so-called millisecond technique proposed by PULLMAN-KELLOG (patent US-A-3671198) which uses tubes of approximately 10 m in length, vertical and straight, with an internal diameter of 25 to 35 mm, these tubes being brought to temperatures of 1100 ° C (temperature most often very close to that of the limit of use of the metal).
  • the residence time of the charges is, in this type of oven, of the order of 0.07 s; the pressure drop observed is of the order of 0.9 to 1.8 bar (1 bar is equal to 0.1 megapascal), and the calculation of the ratio of the exchange surface s to the reaction volume v leads to values of the order of 120 m ⁇ 1.
  • the present invention proposes a method and a device for its implementation bringing notable improvements compared to the embodiments according to the prior art such as for example an easier, more flexible and better controlled implementation and a lower cost, also both at the investment level and at the utility level.
  • the flexibility of use is linked to the use of electricity which makes it possible to regulate the heat flow and therefore the temperature profile of the process gas as desired.
  • the invention relates to a process for thermal pyrolysis of hydrocarbons in a reaction zone, of elongated shape in a direction (an axis), comprising a heating zone and a cooling zone, following said heating zone, in which a gaseous mixture containing at least one hydrocarbon containing at least two carbon atoms is circulated in the heating zone, in a flow direction substantially parallel to the direction (at l axis) of the reaction zone, said heating zone comprising a plurality of electric heating means arranged in sheets, substantially parallel to one another, forming in transverse projection a beam with triangular, square or rectangular pitch, said heating means being grouped together by successive transverse sections substantially perpendicular to the direction (to the axis) of the reaction zone, independent of each other and supplied with electrical energy so as to determine at least two parts in the heating zone, the first part making it possible to carry the charging up to a temperature at most equal to about 1300 ° C.
  • the electrical heating means are isolated from direct contact with the gas mixture containing at least one hydrocarbon by sheaths into which a gas G, called sheath gas or gas, is introduced sealing, said sheaths having an appropriate permeability and the gas being introduced inside said sheaths at a pressure such that there is diffusion, at least in certain points, of at least part of this gas G from the inside said sheaths towards the outside of said sheaths, this gas G can then be diluted in said gaseous mixture.
  • a gas G called sheath gas or gas
  • the gas mixture circulating in the reaction space can also contain up to 20% by volume of methane. This mixture will preferably contain less than 10% by volume of methane.
  • the thermal pyrolysis process of the present invention applies in particular to the thermal pyrolysis of ethane or of a mixture of hydrocarbons containing ethane, in the presence of hydrogen.
  • the gaseous mixture, circulating in the reaction space can also contain water vapor.
  • the thermal pyrolysis process is usually described under the term steam cracking. The following description of the process of the present invention is made in connection with this case.
  • the heating zone is heated by supplying electrical energy through heating means such as electrical resistors, the heat released by the Joule effect in these resistors is transmitted mainly by radiation to the sheaths arranged around the resistors in a non-contiguous manner.
  • These sheaths are usually made of ceramic material or any refractory material supporting the required temperatures and the reducing and / or oxidizing atmospheres of the medium, such as for example certain new metal alloys from the firm KANTHAL SA such as KANTHAL AF, or KANTHAL APM.
  • the gas mixture containing at least one hydrocarbon, which circulates in the heating zone in a manner substantially perpendicular to the axis of the ducts, is heated essentially by convection and by radiation.
  • Heat exchanges are one of the key elements for this type of very endothermic reaction where it is necessary to transfer very large amounts of energy from the resistors to the gas mixture containing at least one hydrocarbon containing at least two carbon atoms called below gas process.
  • the heat exchange from the resistance to the sheath is an exchange essentially radiative, but on the other hand there is little radiative exchange between the sheath and the process gas. In fact, this usually consists essentially of a hydrocarbon-water mixture, a mixture which absorbs little of the radiation emitted by the sheaths.
  • the thermal transfer, between the process gas and the sheaths, is therefore in the case envisaged in the present invention mainly a convection transfer.
  • the quality of the heat exchanges will be directly linked to the available exchange surface and to the surface / volume ratio.
  • the walls participate in an important way in the heat exchange, since they are able to absorb the radiation emitted by the sheaths and consequently the temperatures of the sheaths and the walls tend to equilibrate. So he is possible to significantly increase the exchange surface and practically to double it by modifying the design of the device as follows: whereas, in the initial design, the sheaths protecting the resistors and permitting the transfer of heat to the process gas were preferably staggered, according to a preferred embodiment of the present invention, they will be aligned, which makes it possible to constitute n rows or layers of m resistors in the longitudinal direction (for a total number of resistors equal to nxm), this will form at least one longitudinal zone and most often at least two longitudinal zones each comprising at least one and often several layers of heating elements, each zone being separated from the next by a wall of refractory material.
  • the term heating element designates the assembly consisting of a protective sheath and at least one resistance inside said sheath.
  • each zone will comprise a single layer of heating elements.
  • the convective exchanges between the process gas and the walls are greatly increased and they can be further improved by imposing significant speeds on the process gas and by creating zones of turbulence.
  • the increase in the speed of the process gas can for example be obtained by using walls whose shape favors this increase in speed and the appearance of zones of turbulence. Particularly shaped walls are shown without limitation in Figure 1C.
  • the walls are usually made of refractory material. Any refractory material can be used to make the walls and we can cite as examples not limiting zirconia, silicon carbide, mullite and various refractory concretes.
  • the sheaths can have a width of the order of 150 mm, for a wall thickness having a value of the order of 50 mm, which only causes an increase in overall width of the oven. around 30%.
  • An additional advantage of this embodiment comprising walls is to allow a simpler embodiment of the oven, the vertical walls allowing, in addition to improving the heat transfer by convection, to support the roof of the oven.
  • each wall has at least one means for balancing the pressures in the longitudinal zones located on either side of the wall.
  • a simple but effective means for balancing the pressures mention may be made of the creation of zones comprising one or more perforations or of porous zones.
  • the electrical resistances which supply heat to the heating zone are supplied independently with electrical energy, either individually or in transverse rows, or even in small groups, so as to define heating sections along the heating zone and thus be able to modulate the quantity of energy supplied while in the ding of this zone.
  • the heating zone is usually composed of 2 to 20 heating sections, preferably 5 to 12 sections.
  • the mixture gaseous containing at least one hydrocarbon previously heated to about 600 ° C, is usually brought to a temperature at most equal to about 1300 ° C, and advantageously between 800 and 1100 ° C (the start of the heating zone is located at the where the charge is introduced).
  • the modulation of these heating sections is carried out in a conventional manner; the heating elements corresponding to the aforementioned sections are generally supplied by thyristor modulator assemblies. Transformers can be used to adapt the voltages a priori, while the modulators allow fine and continuous adjustment of the injected power.
  • each heating section can be provided with a thermocouple pyrometric rod adapted to the temperature level; these rods are arranged in the spaces where the load circulates, the information is transmitted to the regulator which controls the thyristor modulator.
  • the length of the first part of the heating zone usually represents from 5 to 50% of the total length of the heating zone, advantageously from 10 to 20%.
  • the electrical energy supplied to this first part of the heating zone is such that it generates a strong temperature gradient which makes it possible to have a relatively high average temperature of the load, over the entire heating zone, which is favorable to the selectivity in light olefins.
  • the electrical energy supplied to the different heating sections of this zone is modulated so that the temperature variation throughout this zone is small, usually less than about 50 ° C. (+ or - 25 ° C around the setpoint value) and advantageously less than about 20 ° C (+ or - 10 ° C around the setpoint value).
  • the length of the heating zone is usually about 50 to about 90% of the total length of the reaction zone.
  • the heating zone is followed by a cooling (or quenching) zone so as to very quickly lower the temperature of the effluents from the heating zone to around 300 ° C. for example.
  • Areas heating and quenching may or may not be incorporated in the same enclosure, hereinafter referred to as a reactor.
  • a direct quenching is carried out; the reaction effluents leave the heating zone and are very quickly cooled by direct contact with a cooling fluid which is injected into the effluents by means of at least one injector, usually made of ceramic material, disposed at the periphery of the reactor. Hydrocarbon oils or water can be used as the coolant.
  • the total effluents resulting from the mixture are then collected and separated.
  • reaction effluents from the heating zone are cooled by indirect contact with a cooling fluid, for example by circulating said fluid in sealed conduits inside the cooling zone .
  • the hydrocarbon feedstocks usable within the general framework of the present invention include saturated aliphatic hydrocarbons, such as ethane, mixtures of alkanes, or petroleum fractions such as naphthas, atmospheric gas oils and vacuum gas oils, the latter can have a final point of distillation of the order of 570 ° C.
  • the petroleum fractions can have, if necessary, undergone a pretreatment such as, for example, a hydrotreatment.
  • These feedstocks can also contain hydrogen in an amount which can range, for example, up to 90% by volume.
  • These charges generally include at least one hydrocarbon having two carbon atoms in its molecule. Fillers are very often used comprising mainly (more than 50% by volume) of hydrocarbons having at least two carbon atoms in their molecule.
  • the thermal cracking of these cuts is preferably done using hydrogen as diluent.
  • the sealing gas G which is introduced into the sheaths surrounding the resistors will preferably be substantially pure hydrogen; given the use of such a sealing gas, the sheaths will be made of a preferably non-porous material, the leakage of gas G to the process gas will result from the sealing on each sheath which will be carried out voluntarily imperfectly.
  • the weight ratio of the dilution water vapor to the hydrocarbon charge varies according to the charges to be treated. It can be from approximately 0.2: 1 to approximately 1.5: 1, generally, the ratio used is of the order of 1: 1 when using diesel under vacuum and of the order of 0, 5: 1 for steam cracking naphtha.
  • Part of the dilution water vapor can be introduced with gas G. This fraction introduced with gas G can then represent up to 100% of the amount of water required for steam cracking. Preferably, this fraction represents from 0 to 50% of this amount.
  • the charges to be treated have a residence time in the reaction zone, usually from about 2 milliseconds to about 1 second and preferably from about 30 to about 400 milliseconds.
  • the gas G which is introduced into the sheaths surrounding the resistors is usually a gas free from any hydrocarbon capable of a thermal conversion reaction leading to the formation of coke. This gas is also chosen so that it does not damage the resistors used and does not cause accelerated aging of these resistors.
  • This gas can be steam alone, hydrogen alone, a mixture of gases containing steam and hydrogen.
  • This gas G can also be an inert gas such as nitrogen or a rare gas such as helium or argon.
  • This gas G can also be a mixture of gases containing, in addition to water vapor and / or hydrogen, an inert gas or a rare gas such as for example those mentioned above.
  • a gas G containing water vapor and / or hydrogen it is usually preferred to use a gas G containing water vapor and / or hydrogen and most often a gas containing a proportion of water vapor and / or hydrogen by volume greater than about 50%. In most cases, it is recommended to use a G gas containing water vapor.
  • the permeability of the sheaths must be sufficient to allow, at least at certain points, the diffusion of at least part of the gas G introduced into the space of the resistors towards the process space. It would not go beyond the scope of the invention if the sheath permeability is such that it allows the diffusion of all of the gaseous compounds, contained in the gas G introduced into the space of the resistors, towards the process area.
  • This permeability can result from a tightness on each sheath produced voluntarily imperfectly and / or from the use of a material constituting the sheaths having an open porosity allowing the passage of at least part of the gas G, it is in other words, a permeable material. Most often, it is recommended to use a permeable material.
  • the sheaths, insulating the electrical heating means from direct contact with the gas mixture containing at least one hydrocarbon are made of a porous material whose porosity is sufficient to allow the diffusion of 'at least part of the gas G through said sheaths.
  • These sheaths are thus preferably made of a porous material having an open porosity of at least about 1% and at most about 40% by volume relative to the volume of the wall, and usually from about 5% to about 30 %.
  • gas G containing water vapor and / or hydrogen, which diffuses at least in part towards the process space, provides several advantages. It does not complicate the separations downstream of the pyrolysis oven since the water vapor is a compound present in the process space and the hydrogen can be a compound present in the process space as a product of the cracking reaction. and possibly also as a component of the load.
  • the cost of producing the furnace is reduced while also decreasing thermo-mechanical constraints at the sheath connections, which increases the reliability of the entire device.
  • ceramic sheaths in particular of silicon carbide, of medium quality, having an open porosity of at least about 1% by volume (for example about 20% by volume), is thus not only possible but even desirable, which lowers the cost of making the oven. Furthermore, the very existence of this open porosity creates on the surface of the ceramic sheath on the process space side a partial pressure of the gas G introduced into the space of the resistors insulating in a way the surface of the ceramic from the process gas which, without wishing to be bound by any theory, explains the notable reduction in the formation of coke since this usually usually forms on the surface of the sheaths and, on the contrary, the products formed will be in a less favorable local atmosphere to the formation of coke.
  • the description of the present invention designates the porosity consisting of microcavities included in the solid ceramic pieces considered, the open adjective signifying that there is free passage on the one hand between most of said microcavities, and on the other hand between said microcavities and the internal and external surfaces of the parts considered; the concept of free passage must also be considered according to the nature of the environment and the physical conditions in which the ceramic is found. For example, for small molecules such as hydrogen or helium, free passage will be easy, all the more so if there is a pressure difference between the two surfaces of the part ceramic. In this case, the part is said to be permeable, for example with hydrogen, or not waterproof.
  • closed porosity designates the porosity consisting of microcavities which do not communicate with the surface of the part. In this case, this closed porosity only causes an overall decrease in the density of the part.
  • the method according to the invention can be implemented in a device comprising a reactor (1) of elongated shape along an axis, preferably of square or rectangular section, comprising at a first end supply means (5) in mixture gaseous, containing at least one hydrocarbon, at the opposite end of the means for discharging (10) the effluents produced and between these two ends of the means for supplying cooling fluid, said reactor comprising in a first part (side of the first end ) a plurality of electric heating means (3) surrounded by sheaths (4), said means substantially parallel to each other being arranged in substantially parallel sheets, perpendicular to the axis of the reactor so as to define between the sheaths and / or the sheets formed by these sheaths spaces or passages for the circulation of gas mixtures and / or effluents, said heating means and said sheaths being adapted to heat said successive cross-sectional passages, independent and substantially perpendicular to the axis of the reactor, said reactor further comprising control and modulation heating
  • the means for introducing gas G at an appropriate pressure are those known to those skilled in the art. They may also comprise means for regulating and controlling the pressures prevailing inside and outside said sheaths.
  • Said cooling means are means suitable for cooling by direct contact or by indirect contact the effluents leaving the heating zone.
  • the sheaths surrounding the resistors can be arranged in a superimposed or staggered fashion and can form in transverse projection a beam with triangular, square or rectangular pitch.
  • the total number of layers comprising heating means and the number of heating means in each sheath and per layer are not decisive in the process; they are obviously a function of the size, the heating means, the sheaths which surround them and, where they exist, the walls separating the sheets.
  • the heating elements can be identical to each other or different, both in size and in heating power.
  • a heating element may include inside the sheath from 1 to 5 resistors and most often from 1 to 3 resistors.
  • the number of heating elements determines the maximum electrical power available for a given reaction volume and also influences the residence time of the load; it will be chosen according to the admissible charge flow, taking into account these parameters.
  • the electric heating means which can be used in the context of the present invention are preferably heating resistors capable of being used up to temperatures of the order of 1500 ° C .; it is preferred to use resistors made of molybdenum bisilicide, for example hairpin resistors.
  • the sheaths which surround the resistors, so as to avoid direct contact between the gas mixtures of the load and the resistors, are preferably of tubular shape.
  • These refractory sheaths are usually either ceramic or sintered metal. Ceramics such as mullite, cordierite, silicon nitride, silicon carbide, silica or alumina can be used; silicon carbide is the preferred material because it has good thermal conductivity. In the case where the sheets are separated by walls, the material chosen to make these walls may be the same as that used for the sheaths, but it is often different, in particular for reasons of cost of manufacturing the oven.
  • ducts are usually used tubular or cylindrical with diameter D usually from about 1.2 xd to about 8 xd, and most often about 1 , 5 xd to about 4 x d.
  • the heating elements are arranged in parallel layers substantially perpendicular to the direction of flow of the charge (process gas), preferably substantially aligned, so that the distance between two neighboring ducts is as small as possible, while taking into account allowable pressure drop requirements; the distance between the sheaths of two neighboring plies or that between the sheaths of a ply and the nearest wall in the case where the plies are separated by walls is usually the same as that between two consecutive sheaths in a given ply.
  • This distance will usually be such that the passages formed between the sheaths or between the sheaths and the nearest wall, passages in which the gas mixture containing hydrocarbons circulates will have a dimension of approximately 1 to approximately 100 mm, and most often d '' about 5 to about 40 mm.
  • the free spaces or passages defined above, intended for the circulation of the process gas are at least partially occupied by linings, usually made of ceramic, preferentially heat conductors. It is thus possible, for a given type of reactor, to reduce the residence time of the charge in this reactor while homogenizing the flow of the gaseous mixture and better distributing the dissipated heat.
  • linings can have various shapes and be presented for example in the form of rings (Raschig, Lessing or Pall rings), saddles (Berl saddles), bars, closed cylindrical tubes.
  • a vertical reactor (1) of elongated shape and of rectangular section comprising a distributor (2) making it possible to supply the reactor with an inlet orifice (5) in reaction gas mixture.
  • the latter which contains a mixture of steam and at least one hydrocarbon, has been preheated in a conventional preheating zone, not shown in the figure, preferably by convection.
  • the reactor comprises a plurality of electrical heating means (3) surrounded by sheaths (4) arranged in parallel sheets and forming in a plane (plane of the figure) a bundle with square pitch. These layers define transverse heating sections substantially perpendicular to the axis of the reactor defined in the direction of flow of the charge.
  • thermocouple pyrometric probes 7 in FIGS. 1D and 1E are housed in the spaces where the charge circulates between the sheaths (4) and allow regulation automatically the temperature of each heating section, by a conventional regulator and modulator device not shown in the figure.
  • the ducts are heated so that the temperature of the charge rapidly rises from 600 ° C (preheating temperature) to approximately 900 ° C; this heating zone generally represents approximately 15% of the total length of the heating zone; the gas mixture then circulates in the second part of the heating zone where the temperature is generally maintained at a constant value substantially equal to that reached at the end of the first heating zone, that is to say approximately 900 ° C.
  • the electrical power supplied to several heating sections which constitute the second part of the heating zone is modulated; this results in a temperature variation not exceeding around 10 ° C around the setpoint value.
  • the length of this second heating zone represents approximately 85% of the total length of the heating zone.
  • reaction effluents On leaving the heating zone, the reaction effluents are cooled in a cooling zone (8). They are brought into contact with a quenching agent such as water introduced via injectors (9), quenching, arranged at the periphery of the reactor (1) and connected to an external source of water not represented. All of the effluent gases are cooled to a temperature of approximately 500 ° C. and collected by an outlet orifice (10) at the end of the reaction zone (1).
  • a quenching agent such as water introduced via injectors (9), quenching
  • the effluents can be cooled by circulating through sealed conduits arranged in the zone (8) through which the quenching agent flows, these conduits being connected to the external source of the quenching.
  • the reactor identical to that shown diagrammatically in FIG. 1A, comprises in the space where the charge circulates a lining (20), advantageously made of ceramic material, which is retained by a grid ( 21) at the end of the heating zone.
  • the sheaths (4) are arranged in parallel layers and form in a plane (plane of the figure) a beam with triangular pitch (staggered arrangement).
  • FIG. 1C there is shown, according to one embodiment, a horizontal reactor (1) of elongated shape and of rectangular section, which differs from the reactor shown in FIG. 1A only in that it is substantially horizontal, that it comprises sheaths arranged in parallel plies and forming in a plane (plane of the figure) a bundle with square pitch, and in that these plies are separated from each other by walls (22) advantageously made of ceramic material.
  • These walls have a shape, adapted to create turbulence, comprising cells at each sheath (4).
  • FIG. 1F differs from that shown diagrammatically in FIG. 1C only in that several layers of heating elements are situated between two walls (22).
  • FIG. 1D represents, for a horizontal reactor, the same elements as those described in connection with FIG. 1A; there is shown, moreover, a protective housing (11) comprising an orifice (12) through which gas G containing for example steam is introduced and an orifice (13) provided with a valve (24) making it possible to regulate the flow of this gas G.
  • This box (11) is fixed to the metal frame of the reactor (1) and surrounds all the electrical resistances and sheaths containing them, with the exception of the ends of the electrical resistances where the electrical energy is supplied.
  • the resistors (3), in a pin, are positioned in the sheaths (4) using washers (18), for example made of ceramic fiber, having passages (23) allowing gas G, for example steam d water, to enter the space between the resistors and the sheaths.
  • washers (18) for example made of ceramic fiber, having passages (23) allowing gas G, for example steam d water, to enter the space between the resistors and the sheaths.
  • Figure 1E shows the same elements as those described in connection with Figure 1A; there is shown, moreover, the protective boxes (11) provided with orifice (12) and (13) allowing the circulation in the boxes of the gas G containing for example water vapor which penetrates into the space of the resistances through the holes (23) of the washers (18) ensuring the positioning of the resistances.
  • the orifices (13) are provided with valves (24) allowing easier regulation of the flow of the gas G containing for example water vapor.
  • These boxes (11) are fixed to the metal frame of the reactor and surround all the electrical resistances and sheaths containing them, with the exception of the end of the electrical resistances through which the electrical energy is supplied.
  • the circulation of the gas G is carried out in slight overpressure compared to the pressure of the process gas within the reactor, thus ensuring a perfectly controlled atmosphere and a better diffusion of this gas G towards the process space.
  • the absolute pressure difference between the space of the resistors and the process space, or overpressure will preferably be such that the pressure in the space of the resistors is at least 0.1% higher and most often at least minus 1% at the pressure in the process space. It is not necessary to have a very high overpressure and most often the pressure in the space of the resistors remains less than 2 times the pressure in the process space.
  • FIG. 2 shows a detail of an embodiment of the heating zone according to the invention.
  • Resistors (3) of cylindrical shape are used as the means of electric heating. These resistors comprise at each of their ends cold zones and a part of the central zone which is the hot zone representing for example approximately 68% of the total length.
  • a reactor of rectangular section is produced, the walls of which are made of insulating refractory concrete (14) and by a metal frame (15).
  • a circular hole is drilled in two opposite side walls, through which a sheath (4), for example made of ceramic, is passed, with a diameter twice that of the electrical resistance (3).
  • the sheath (4) is positioned by means of a cable gland system (16) acting in a groove at the level of the metal frame on a braid of refractory material (17), for example a braid of ceramic material.
  • the positioning of the resistance (3) in the sheath (4) is carried out by means of washers (18), for example made of ceramic fiber, comprising orifices (23) allowing the passage of the gas G, containing for example steam of water, introduced into the housing (11) through the conduit (12) into the space of the resistors (24).
  • washers (18) for example made of ceramic fiber, comprising orifices (23) allowing the passage of the gas G, containing for example steam of water, introduced into the housing (11) through the conduit (12) into the space of the resistors (24).
  • the hot zone of the resistor (3) is positioned so that it does not enter the opening through the wall of insulating concrete. It is not essential to use a braid (17) at the level of the cable gland since the latter has, within the framework of the invention, the role of positioning means and that it does not have the main purpose to ensure as perfect a seal as possible between the inside and the outside of the reactor.
  • This gland can also advantageously be replaced by a simpler means of positioning the sheaths such as for example simple washers made of refractory material.
  • heating resistors sheathed in walls for example of ceramic material, in successive horizontal rows, these rows preferably being aligned so that, on the side walls of the oven, they form a bundle square or rectangular pitch.
  • a housing (11), of which only protrude the ends of the resistors and / or their electrical supply (6), is traversed by a stream of gas G containing for example water vapor.
  • a horizontal indirect quenching reactor is used, the length of the pyrolysis zone of which is 2.21 meters and of rectangular section of 1.4 ⁇ 3.72 m.
  • the heating means of this reactor consist of electrical resistors made of hairpin, made of molybdenum bisilicide (MoSi2); these resistors are surrounded by ceramic sheaths, arranged concentrically with respect to the center of the circle encompassing the resistors.
  • sheaths are made of silicon carbide and have an open porosity of 15% by volume. Each sheath, closed at one end, surrounds 2 pin resistors (Figure 1C and 1D). These sheaths are arranged perpendicular to the direction of flow of the load (vertically), in parallel sheets, and form in perpendicular projection a beam with square pitch.
  • the length of each branch of the pin of the electrical resistance is 1.4 m and the diameter of the resistance is 9 mm.
  • the ceramic sheaths have a length of 1.4 m, an outside diameter of 150 mm and an inside diameter of 130 mm; the distance Eg ( Figure 1C) separating two neighboring sheaths is 20 mm.
  • the sheath layers are separated by a refractory concrete wall based on electrofused alumina.
  • the distance Ee ( Figure 1C) between the ducts and the walls or dimension of the passages is 10 mm.
  • the walls have in their thinnest part a thickness Ep ( Figure 1C) of 15 mm.
  • the first part of the heating zone 34 cm long, includes 20 resistance layers, each layer comprising 2 sheaths; in this zone, the load, preheated to 600 ° C, is brought to 900 ° C.
  • This zone is thermally regulated by means of thermocouples arranged in the spaces where the charge circulates.
  • the second part of the heating zone adjacent to said first part, is 1.87 m long; it consists of 20 layers of 11 sheaths, arranged in the same way as in the first part of the heating zone.
  • This zone is made up of 5 heating sections, independently regulated, ensuring that the temperature in this zone is maintained at 900 ° C plus or minus 10 ° C.
  • the effluent gases are firstly cooled to 500 ° C by indirect exchange with the gases in the feed; other temperature exchangers then make it possible to lower their temperature to approximately 350 ° C.
  • Naphtha with a density d 20/4 0.715 and whose boiling range is between 38 and 185 ° C. diluted with water in a water vapor / charge weight ratio of 0.5 is used as the charge. : 1.
  • This mixture is preheated to 600 ° C and cracked at 900 ° C in the reactor described above.
  • the absolute pressure of the gas mixture in the reactor is kept substantially constant and equal to 0.170 MPa. Resistors of substantially pure water are introduced into the space so as to obtain and maintain in this space a substantially constant absolute pressure equal to 0.175 MPa.
  • Example 1 of US Pat. No. 4,780,196 comprising a multichannel pyrolysis zone, made of silicon carbide, each channel having a square section of 10 mm side and having a length of 3 m.
  • the operating conditions are such that the feed is introduced into this reactor at the temperature of 600 ° C. and the effluents at the end of the pyrolysis are at 900 ° C. In this installation, heating is provided by a heat transfer fluid.
  • the process according to the invention therefore makes it possible to obtain the ethylene-propylene assembly with an improved yield of approximately 14% and to reduce the initial maximum coking speed by approximately 33%.

Abstract

Procédé de pyrolyse thermique d'hydrocarbures dans un réacteur (1) de forme allongée, comportant à une première extrémité des moyens d'alimentation (5) en mélange gazeux, renfermant au moins un hydrocarbure, à l'extrémité opposée des moyens d'évacuation (10) des effluents produits et entre ces deux extrémités des moyens d'alimentation (9) en fluide de refroidissement des effluents, le réacteur comprenant dans une première partie (côté première extrémité) une pluralité de moyens de chauffage électrique (3) entourés de gaines (4) disposés en nappes sensiblement parallèles entre elles et perpendiculaires à l'axe du réacteur de façon à définir, entre les gaines et/ou les gaines et les parois (22), des espaces ou passages pour la circulation des mélanges gazeux et/ou des effluents. Ces moyens de chauffage sont adaptés à chauffer les passages par sections transversales successives, indépendantes et sensiblement perpendiculaires à l'axe du réacteur. Le réacteur comprend des moyens d'introduction, d'un gaz G dit gaz de gaine, contenant de préférence de la vapeur d'eau et/ou de l'hydrogène, à l'intérieur des gaines (4). Les gaines ont une perméabilité suffisante pour permettre, au moins en certains points, la diffusion d'au moins une partie de ce gaz G depuis l'intérieur des gaines vers l'extérieur des gaines, ce gaz G se diluant alors dans le mélange gazeux. <IMAGE>

Description

  • L'invention concerne un procédé de pyrolyse thermique d'hydrocarbures utilisant un four électrique. Ce procédé est notamment destiné à produire des oléfines légères, et plus particulièrement de l'éthylène et du propylène.
  • De nombreux brevets décrivent des procédés et des réacteurs pour la mise en oeuvre de ces procédés. On peut en particulier citer le brevet US-A-4780196 au nom de la demanderesse qui décrit un procédé de pyrolyse thermique en présence de vapeur d'eau, dit procédé de vapocraquage, mis en oeuvre dans un réacteur multicanaux en matière céramique. Ce procédé fournit de bons rendements en éthylène et en propylène. Cependant la conception du réacteur est délicate, les céramiques employées pour sa réalisation sont des céramiques relativement chères et il est difficile de maintenir une température constante tout au long de la zone réactionnelle, ce qui pénalise le procédé.
  • L'art antérieur est notamment illustré par les brevets EP-A-323 287, EP-A-457 643, FR-A-1 305 287 et US-A-1 407 339.
  • L'un des problèmes les plus importants que l'on rencontre dans la mise en oeuvre de la pyrolyse thermique et en particulier du vapocraquage d'hydrocarbures est lié à la formation du coke. Cette formation est due en grande partie à des réactions secondaires telles que la formation d'hydrocarbures aromatiques polycycliques condensés, ainsi qu'à la polymérisation des oléfines formées. Cette dernière réaction provient de la tendance que présentent les oléfines à se polymériser lorsque la température est de l'ordre de 500 °C à 600 °C ; aussi est-on amené, pour diminuer l'importance de cette réaction secondaire, à procéder à un refroidissement rapide (souvent nommé trempe) des effluents de la réaction, de façon à les amener rapidement de la température à laquelle s'effectue la pyrolyse à une température inférieure à environ 500 °C, généralement grâce à un échangeur indirect de chaleur.
  • Les études thermodynamiques et cinétiques des réactions de pyrolyse d'hydrocarbures conduisent donc, afin d'augmenter la sélectivité de la réaction vers la production d'oléfines, à intervenir sur les paramètres suivants :
    • augmentation rapide de la température de la charge jusqu'à la température optimale de pyrolyse pour une charge donnée, et maintien de cette température la plus constante possible dans la zone réactionnelle,
    • diminution du temps de séjour de la charge dans la partie réactionnelle,
    • diminution de la pression partielle de la charge hydrocarbonée,
    • trempe rapide et efficace des effluents de réaction.
  • Il est donc particulièrement important de minimiser le temps de contact entre les produits de la réaction et les parois chaudes du réacteur.
  • Sur le plan de la technologie, ces impératifs ont rapidement conduit à un schéma général de procédé consistant en :
    • a) un préchauffage de la charge éventuellement diluée par de la vapeur d'eau,
    • b) un chauffage à haute température de cette charge ou du mélange charge-vapeur d'eau, dans des fours tubulaires afin de limiter le temps de séjour des hydrocarbures au cours de cette phase de pyrolyse,
    • c) une trempe rapide des effluents de réaction.
  • L'évolution des fours de pyrolyse thermique et notamment de vapocraquage a essentiellement été axée vers l'obtention de temps de séjour plus réduits et de diminution de la perte de charge, ce qui a conduit les constructeurs à réduire la longueur des réacteurs tubulaires, donc à augmenter la densité de flux thermique.
  • L'accroissement de ce dernier facteur peut être essentiellement obtenu en augmentant la température de peau des réacteurs tubulaires et/ou en diminuant le diamètre des tubes (ce qui permet d'augmenter le rapport s/v, s étant la surface d'échange et v le volume réactionnel).
  • Les progrès réalisés en métallurgie sur des alliages spéciaux résistant à des températures de plus en plus élevées (INCOLOY 800H, HK 40, HP 40 par exemple) ont permis aux constructeurs de fours de pyrolyse notamment pour vapocraquage d'augmenter les températures de fonctionnement de ces fours tubulaires, les limites actuelles de la métallurgie étant situées vers environ 1300 °C.
  • Par ailleurs, la technique a également évolué vers l'utilisation de tubes de diamètre plus réduit, placés en parallèle afin de maintenir une capacité satisfaisante, et de rester dans un domaine de perte de charge convenable.
  • On a également proposé plusieurs modèles de four de pyrolyse, tendant tous à augmenter la densité de flux thermique vers le début du tube de pyrolyse et à la réduire par la suite, soit en utilisant des réacteurs tubulaires de diamètre croissant, soit en rassemblant au moins deux tubes de pyrolyse en un seul après une certaine longueur de zone réactionnelle (voir par exemple l'article de F. WALL et al publié dans Chemical Engineering Progress, décembre 1983, pages 50 à 55) ; on a également décrit des fours tubulaires non cylindriques, tendant à augmenter le rapport s/v ; c'est ainsi que le brevet US-A-3572999 décrit l'utilisation de tubes de section ovale et que le brevet US-A-3964873 décrit celle de tubes dont la section est en forme d'haltère.
  • La technologie des réacteurs de pyrolyse thermique et notamment de vapocraquage a ainsi évolué, depuis l'utilisation de tubes horizontaux de 100 mètres (m) de long environ et de diamètres intérieurs de l'ordre de 90 à 140 millimètres (mm), jusqu'à la technique classique de tubes suspendus verticalement de 40 m de longueur environ et de diamètre de l'ordre de 60 mm fonctionnant avec des temps de résidence de l'ordre de 0,3 à 0,4 seconde (s), et enfin la technique dite milliseconde proposée par PULLMAN-KELLOG (brevet US-A-3671198) qui utilise des tubes de 10 m environ de longueur, verticaux et rectilignes, de diamètre intérieur de 25 à 35 mm, ces tubes étant portés à des températures de l'ordre de 1100 °C (température le plus souvent très voisine de celle de la limite d'utilisation du métal). Le temps de résidence des charges est, dans ce type de four, de l'ordre de 0,07 s ; la perte de charge observée est de l'ordre de 0,9 à 1,8 bar (1 bar est égal à 0,1 mégapascal), et le calcul du rapport de la surface d'échange s au volume réactionnel v conduit à des valeurs de l'ordre de 120 m⁻¹.
  • Un des objets de l'invention est de remédier aux inconvénients décrits ci-avant. Les objectifs que l'on se propose d'atteindre et qui répondent aux problèmes soulevés par l'art antérieur sont essentiellement les suivants :
    • limiter au maximum la formation de coke, en particulier sur les surfaces chaudes telles que par exemple les parois des gaines entourant les résistances,
    • utiliser comme gaz dans l'espace des résistances un gaz ou un mélange de gaz comprenant de préférence un gaz déjà présent dans le mélange de gaz circulant dans l'espace process, ce qui permet d'employer des gaines dont l'étanchéité n'a pas besoin d'être très grande,
    • améliorer les échanges thermiques entre le mélange gazeux, contenant au moins un hydrocarbure comprenant au moins deux atomes de carbone ou un mélange d'hydrocarbures contenant au moins deux hydrocarbures dont l'un au moins est un hydrocarbure ayant au moins deux atomes de carbone, et les surfaces chaudes en contact avec ce mélange,
    • augmenter la fiabilité du dispositif,
    • augmenter les rendements en éthylène et propylène par rapport aux procédés existants.
  • La présente invention propose un procédé et un dispositif pour sa mise en oeuvre apportant des améliorations notables par rapport aux réalisations selon l'art antérieur telles que par exemple une mise en oeuvre plus facile, plus souple et mieux contrôlée et un coût moins élevé, aussi bien au niveau des investissements qu'au niveau des utilités. La souplesse d'utilisation est liée à l'emploi de l'électricité qui permet de réguler à souhait le flux thermique et donc le profil de température du gaz process.
  • Plus particulièrement, l'invention concerne un procédé de pyrolyse thermique d'hydrocarbures dans une zone de réaction, de forme allongée selon une direction (un axe), comprenant une zone de chauffage et une zone de refroidissement, faisant suite à ladite zone de chauffage, dans lequel on fait circuler, dans la zone de chauffage, un mélange gazeux renfermant au moins un hydrocarbure à au moins deux atomes de carbone, selon une direction d'écoulement sensiblement parallèle à la direction (à l'axe) de la zone de réaction, ladite zone de chauffage comportant une pluralité de moyens de chauffage électrique disposés en nappes, sensiblement parallèles entre elles, formant en projection transversale un faisceau à pas triangulaire, carré ou rectangulaire, lesdits moyens de chauffage étant regroupés par sections successives transversales sensiblement perpendiculaires à la direction ( à l'axe) de la zone de réaction, indépendantes entre elles et alimentées en énergie électrique de façon à déterminer au moins deux parties dans la zone de chauffage, la première partie permettant de porter la charge jusqu'à une température au plus égale à environ 1300°C et la deuxième partie, subséquente de la première partie, permettant de maintenir la charge à une température sensiblement égale à la température maximum à laquelle elle a été portée dans ladite première partie, et dans lequel on refroidit les effluents de la zone de chauffage, puis on recueille les produits formés à l'extrémité de la zone réactionnelle, ledit procédé étant caractérisé en ce que les moyens de chauffage électrique sont isolés du contact direct avec le mélange gazeux renfermant au moins un hydrocarbure par des gaines dans lesquelles on introduit un gaz G dit gaz de gaine ou gaz d'étanchéité, lesdites gaines ayant une perméabilité appropriée et le gaz étant introduit à l'intérieur desdites gaines à une pression telle qu'il y a diffusion, au moins en certains points, d'au moins une partie de ce gaz G depuis l'intérieur desdites gaines vers l'extérieur desdites gaines, ce gaz G pouvant se diluer alors dans ledit mélange gazeux.
  • Dans la réalisation de ce procédé, on définit au sein du réacteur deux espaces :
    • d'une part, l'espace de réaction ou espace process, à l'extérieur des gaines protégeant les résistances, dans lequel circule le mélange gazeux contenant au moins un hydrocarbure à au moins deux atomes de carbone,
    • d'autre part, l'espace des résistances formé par le volume compris entre les résistances proprement dites et les gaines d'isolement, dans lequel on introduit le gaz G.
  • Le mélange gazeux circulant dans l'espace de réaction peut également contenir jusqu'à 20 % en volume de méthane. Ce mélange contiendra de préférence moins de 10 % en volume de méthane.
  • Le procédé de pyrolyse thermique de la présente invention s'applique en particulier à la pyrolyse thermique de l'éthane ou d'un mélange d'hydrocarbures contenant de l'éthane, en présence d'hydrogène.
  • Dans le procédé de pyrolyse thermique de la présente invention le mélange gazeux, circulant dans l'espace de réaction, peut en outre contenir de la vapeur d'eau. Dans ce dernier cas le procédé de pyrolyse thermique est habituellement décrit sous le terme de vapocraquage. La suite de la description du procédé de la présente invention est faite en liaison avec ce cas.
  • La zone de chauffage est chauffée par apport d'énergie électrique à travers des moyens de chauffage tels que des résistances électriques, la chaleur dégagée par effet Joule dans ces résistances est transmise principalement par radiation aux gaines disposées autour des résistances de façon non jointive. Ces gaines sont habituellement en matériau céramique ou en tout matériau réfractaire supportant les températures requises et les atmosphères réductrices et/ou oxydantes du milieu, comme par exemple certains nouveaux alliages métalliques de la firme KANTHAL SA comme le KANTHAL AF, ou le KANTHAL APM. Le mélange gazeux, contenant au moins un hydrocarbure, qui circule dans la zone de chauffage de manière sensiblement perpendiculaire à l'axe des gaines, est chauffé essentiellement par convection et par radiation.
  • Le vapocraquage d'hydrocarbures, à au moins deux atomes de carbone, est une réaction fortement endothermique et nécessite l'obtention, à un niveau élevé de température, de l'ordre de 800 à 1300°C, d'une densité de flux thermique très importante. Il est nécessaire que l'apport maximum de chaleur soit effectué dans la zone où s'effectuent les réactions endothermiques de craquage et de déshydrogénation ; par ailleurs, compte tenu de la réactivité des produits formés, comme l'éthylène et/ou le propylène, il est nécessaire d'avoir un temps de contact contrôlé, relativement court, suivi d'une trempe rapide, de façon à obtenir un profil de température de type 'carré' et à éviter une trop grande formation de coke.
  • Les échanges thermiques sont l'un des éléments clé pour ce type de réaction très endothermique où il est nécessaire de transférer des quantités d'énergie très importantes depuis les résistances vers le mélange gazeux contenant au moins un hydrocarbure à au moins deux atomes de carbone dénommé ci-après gaz process. Au cours de l'étude préliminaire effectuée par la demanderesse sur les échanges thermiques dans un four à pyrolyse construit selon le modèle utilisé dans la présente invention, on s'est aperçu que l'échange de chaleur depuis la résistance vers la gaine est un échange essentiellement radiatif, mais par contre il n'y a que peu d'échange radiatif entre la gaine et le gaz process. En effet, celui-ci est habituellement essentiellement constitué d'un mélange hydrocarbures-eau, mélange qui absorbe peu le rayonnement émis par les gaines. Le transfert thermique, entre le gaz process et les gaines, est donc dans le cas envisagé dans la présente invention principalement un transfert par convection. Dans un tel cas, la qualité des échanges thermiques sera directement liée à la surface d'échange disponible et au rapport surface/volume.
  • Ainsi, si la surface d'échange est relativement faible, il sera nécessaire, pour obtenir une température de gaz process donnée correspondant à un taux de conversion préalablement choisi, d'augmenter la température des gaines dans des proportions d'autant plus importantes que cette surface est faible, ce qui implique un risque accru de formation de coke et également la nécessité d'augmenter la température des résistances, ce qui entraîne un vieillissement plus rapide de ces résistances ou même, si le taux de conversion préalablement choisi est très élevé, la quantité d'énergie à transférer devient très grande et le risque de détérioration des résistances augmente très fortement.
  • Les parois participent de manière importante à l'échange thermique, puisqu'elles sont capables d'absorber le rayonnement émis par les gaines et par conséquent les températures des gaines et des parois ont tendance à s'équilibrer. Il est alors possible d'augmenter notablement la surface d'échange et pratiquement de la doubler en modifiant la conception du dispositif de la manière suivante :
    alors que, dans la conception initiale, les gaines protégeant les résistances et permettant le transfert de chaleur au gaz process étaient de préférence disposées en quinconce, selon une forme préférée de mise en oeuvre de la présente invention elles seront alignées, ce qui permet de constituer n rangées ou nappes de m résistances dans le sens de la longueur (pour un nombre total de résistances égal à n x m), on formera ainsi au moins une zone longitudinale et le plus souvent au moins deux zones longitudinales comprenant chacune au moins une et souvent plusieurs nappes d'éléments chauffants, chaque zone étant séparée de la suivante par une paroi en matériau réfractaire. Par radiation, la température de ces parois augmente et a tendance à atteindre la même valeur que celle des gaines entourant les résistances. Ces parois participeront donc également au chauffage par convection du gaz process. Ainsi, dans cette forme de réalisation, la surface d'échange étant notablement augmentée on pourra obtenir la même température de gaz process avec une température des gaines et des parois relativement plus faible, ce qui permet en conséquence une diminution de la formation de coke. Dans la présente description, le terme élément chauffant désigne l'ensemble constitué d'une gaine de protection et d'au moins une résistance à l'intérieur de ladite gaine.
  • Dans une forme particulière de réalisation de l'invention, chaque zone comprendra une seule nappe d'éléments chauffants.
  • Selon ces deux formes de réalisation, les échanges convectifs entre le gaz process et les parois sont largement augmentés et ils peuvent être encore améliorés en imposant au gaz process des vitesses importantes et en créant des zones de turbulence. L'augmentation de la vitesse du gaz process peut par exemple être obtenue en utilisant des parois dont la forme favorise cette augmentation de vitesse et l'apparition de zones de turbulence. Des parois de forme particulière sont représentées à titre non limitatif sur la figure 1C.
  • Les parois sont habituellement en matériau réfractaire. Tout matériau réfractaire peut être utilisé pour réaliser les parois et on peut citer à titre d'exemples non limitatifs la zircone, le carbure de silicium, la mullite et divers bétons réfractaires.
  • Etant donné qu'il n'est nullement nécessaire d'avoir une étanchéité au niveau des parois, puisque la composition du gaz est pratiquement identique de chaque côté des parois, cette réalisation n'induit qu'une augmentation minime du coût du four. En effet, d'une part il n'est pas nécessaire d'avoir des parois spécialement épaisses, ni une réalisation particulièrement complexe, d'autre part les dimensions globales du four augmentent peu car l'essentiel de la largeur de ce four est due à la largeur des gaines. A titre d'exemple, les gaines peuvent avoir une largeur de l'ordre de 150 mm, pour une épaisseur de paroi ayant une valeur de l'ordre de 50 mm, ce qui ne provoque qu'une augmentation de largeur globale du four de l'ordre de 30 %.
  • Un avantage supplémentaire de cette réalisation comportant des parois est de permettre une réalisation plus simple du four, les parois verticales permettant, outre l'amélioration du transfert thermique par convection, de supporter la voûte du four.
  • Par ailleurs il est préférable que chaque paroi comporte au moins un moyen permettant d'équilibrer les pressions dans les zones longitudinales situées de part et d'autre de la paroi. A titre d'exemple de moyen simple mais efficace permettant d'équilibrer les pressions, on peut citer la création de zones comportant une ou plusieurs perforations ou de zones poreuses.
  • Selon l'une des caractéristiques de l'invention, les résistances électriques qui fournissent de la chaleur à la zone de chauffage sont alimentées de façon indépendante en énergie électrique, soit isolément, soit par rangées transverses, soit encore par petits groupes, de façon à définir des sections de chauffage le long de la zone de chauffage et à pouvoir ainsi moduler la quantité d'énergie fournie tout au ding de cette zone.
  • La zone de chauffage est habituellement composée de 2 à 20 sections de chauffage, de préférence de 5 à 12 sections. Dans la première partie de cette zone, le mélange gazeux renfermant au moins un hydrocarbure, préalablement chauffé à environ 600°C, est habituellement porté à une température au plus égale à environ 1300°C, et avantageusement entre 800 et 1100°C (le début de la zone de chauffage est situé à l'endroit où la charge est introduite).
  • La modulation de ces sections de chauffage est réalisée de façon classique ; les éléments chauffants correspondant aux sections précitées sont en général alimentés par des ensembles modulateurs à thyristors. Des transformateurs permettent éventuellement d'adapter les tensions à priori, alors que les modulateurs permettent le réglage fin et continu de la puissance injectée.
  • Afin de permettre la régulation de l'ensemble, chaque section de chauffage peut être munie d'une canne pyrométrique à thermocouple adaptée au niveau de température ; ces cannes sont disposées dans les espaces où circule la charge, les informations sont transmises au régulateur qui commande le modulateur à thyristor.
  • La longueur de la première partie de la zone de chauffage représente habituellement de 5 à 50 % de la longueur totale de la zone de chauffage, avantageusement de 10 à 20 %.
  • L'énergie électrique fournie à cette première partie de la zone de chauffage est telle qu'elle génère un fort gradient de température qui permet d'avoir une température moyenne de la charge, sur l'ensemble de la zone de chauffage, relativement élevée, ce qui est favorable à la sélectivité en oléfines légères.
  • Dans la deuxième partie de la zone de chauffage, on module l'énergie électrique fournie aux différentes sections de chauffage de cette zone de façon à ce que la variation de température tout au long de cette zone soit faible, habituellement inférieure à environ 50°C (+ ou - 25 °C autour de la valeur de la consigne) et avantageusement inférieure à environ 20 °C (+ ou - 10 °C autour de la valeur de la consigne).
  • Par ailleurs, l'utilisation de différentes sections transversales de chauffage, indépendantes les unes des autres, permet d'apporter, au niveau de la deuxième partie de la zone de chauffage, le maximum d'énergie thermique à l'endroit où s'effectue la plus grande partie des réactions endothermiques, et de maintenir dans le reste de la zone de chauffage une température quasi uniforme.
  • La longueur de la zone de chauffage est habituellement d'environ 50 à environ 90 % de la longueur totale de la zone réactionnelle.
  • On obtient, notamment dans les conditions de chauffage ci-dessus, un flux thermique très important à un niveau de température élevé. Ceci implique habituellement un choix particulier pour le matériau constitutif des résistances qui doit, outre le fait d'être résistant à l'atmosphère dans laquelle baignent les résistances dans les conditions de température du fonctionnement, être capable de délivrer une puissance par unité de surface relativement importante. A titre d'exemple de matériau utilisable pour la réalisation des résistances, on peut citer le carbure de silicium, le nitrure de bore, le nitrure de silicium et le bisiliciure de molybdène (MoSi₂). On préfère habituellement employer des résistances en bisiliciure de molybdène qui présentent de nombreux avantages lors de leur utilisation à haute température :
    • elles acceptent une charge (puissance émise par unité de surface) importante qui peut aller jusqu'à 20 W/cm²,
    • elles peuvent travailler à très haute température,
    • elles accusent dans le temps un vieillissement négligeable,
    • elles supportent facilement des atmosphères réductrices à des températures élevées.
  • Dans le procédé de l'invention, la zone de chauffage est suivie d'une zone de refroidissement (ou trempe) de façon à abaisser très rapidement la température des effluents de la zone de chauffage vers environ 300 °C par exemple. Les zones de chauffage et de trempe peuvent être incorporées ou non dans une même enceinte dénommée par la suite réacteur.
  • Selon un mode de réalisation, on procède à une trempe directe ; les effluents de réaction quittent la zone de chauffage et sont très rapidement refroidis par une mise en contact direct avec un fluide de refroidissement qui est injecté dans les effluents au moyen d'au moins un injecteur, habituellement en matériau céramique, disposé à la périphérie du réacteur. On peut utiliser, comme fluide de refroidissement, des huiles hydrocarbonées ou de l'eau. Les effluents totaux résultant du mélange sont ensuite recueillis et séparés.
  • Selon un mode de réalisation préféré, les effluents de réaction issus de la zone de chauffage sont refroidis par mise en contact indirect avec un fluide de refroidissement, par exemple en faisant circuler ledit fluide dans des conduits étanches à l'intérieur de la zone de refroidissement.
  • L'ensemble de ces caractéristiques permet d'obtenir, grâce à ce procédé, un craquage des hydrocarbures en éthylène et en propylène s'effectuant avec un bon taux de conversion et une sélectivité, en ces produits, élevée.
  • Les charges hydrocarbonées utilisables dans le cadre général de la présente invention comprennent des hydrocarbures aliphatiques saturés, tel que l'éthane, des mélanges d'alcanes, ou des coupes pétrolières telles que les naphtas, les gazoles atmosphériques et les gazoles sous vide, ces derniers pouvant présenter un point final de distillation de l'ordre de 570 °C. Les coupes pétrolières peuvent avoir, le cas échéant, subi un prétraitement tel que, par exemple, un hydrotraitement. Ces charges peuvent également contenir de l'hydrogène en une quantité pouvant aller par exemple jusqu'à 90 % en volume. Ces charges comprennent le plus souvent au moins un hydrocarbure ayant deux atomes de carbone dans sa molécule. On utilise très souvent des charges comprenant en majorité (plus de 50 % en volume) des hydrocarbures ayant au moins deux atomes de carbone dans leur molécule.
  • A titre d'illustration, il est possible d'envisager comme coupe pétrolière, une coupe de GPL issue de la distillation du brut ou une coupe issue du vapocraquage de naphta ou de gas oil telles que par exemple les coupes C4.
  • Parmi ces coupes, il est intéressant de craquer thermiquement, en vu d'obtenir entre autres de l'acétylène, du méthylacétylène, et du propadiène, les coupes suivantes :
    • la coupe C4 riche en n-butane et isobutane issue de la distillation atmosphérique du brut,
    • la coupe C4 totale issue du vapocraqueur,
    • la coupe butadiène 1-3 issue de la distillation extractive du butadiène de la coupe C4 totale du vapocraqueur,
    • le raffinat issu de la distillation extractive du butadiène de la coupe C4 totale du vapocraqueur, raffinat qui est riche en n-butènes et en isobutène,
    • une coupe riche en isobutène.
  • Vu le niveau élevé de la température réactionnelle (comprise le plus souvent entre 900 et 1200 °C) qui est requis pour maximiser les rendements en hydrocarbures acétyléniques, le craquage thermique de ces coupes se fait de préférence en utilisant de l'hydrogène comme diluant. De ce fait, le gaz G d'étanchéité que l'on introduit dans les gaines entourant les résistances sera de préférence de l'hydrogène sensiblement pur ; vu l'emploi d'un tel gaz d'étanchéité, les gaines seront réalisées dans un matériau de préférence non poreux, la fuite de gaz G vers le gaz process résultera de l'étanchéité sur chaque gaine qui sera réalisée volontairement de façon imparfaite.
  • Le rapport pondéral de la vapeur d'eau de dilution à la charge hydrocarbonée varie suivant les charges à traiter. Il peut être d'environ 0,2 : 1 à environ 1,5 : 1, généralement, le rapport utilisé est de l'ordre de 1 : 1 lorsque l'on utilise du gazole sous vide et de l'ordre de 0,5 : 1 pour effectuer le vapocraquage de naphta. Une partie de la vapeur d'eau de dilution peut être introduite avec le gaz G. Cette fraction introduite avec le gaz G peut alors représenter jusqu'à 100 % de la quantité d'eau nécessaire au vapocraquage. De préférence, cette fraction représente de 0 à 50 % de cette quantité.
  • Les charges à traiter ont un temps de séjour dans la zone réactionnelle habituellement d'environ 2 millisecondes à environ 1 seconde et de préférence d'environ 30 à environ 400 millisecondes.
  • Le gaz G que l'on introduit dans les gaines entourant les résistances est habituellement un gaz exempt de tout hydrocarbure susceptible d'une réaction de conversion thermique conduisant à la formation de coke. Ce gaz est également choisi de manière à ce qu'il n'endommage pas les résistances utilisées et ne provoque pas un vieillissement accéléré de ces résistances. Ce gaz peut être de la vapeur d'eau seule, de l'hydrogène seul, un mélange de gaz contenant de la vapeur d'eau et de l'hydrogène. Ce gaz G peut également être un gaz inerte tel que l'azote ou un gaz rare tel que l'hélium ou l'argon. Ce gaz G peut aussi être un mélange de gaz contenant outre de la vapeur d'eau et/ou de l'hydrogène, un gaz inerte ou un gaz rare tel que par exemple ceux cités ci-avant.
  • On préfère habituellement employer un gaz G contenant de la vapeur d'eau et/ou de l'hydrogène et le plus souvent un gaz contenant une proportion de vapeur d'eau et/ou d'hydrogène en volume supérieure à environ 50 %. Le plus souvent, il est recommandé d'utiliser un gaz G contenant de la vapeur d'eau.
  • La perméabilité des gaines doit être suffisante pour permettre, au moins en certains points, la diffusion d'au moins une partie du gaz G introduit dans l'espace des résistances vers l'espace process. On ne sortirait pas du cadre de l'invention dans le cas où la perméabilité des gaines serait telle qu'elle permette la diffusion de l'ensemble des composés gazeux, contenu dans le gaz G introduit dans l'espace des résistances, vers l'espace process. Cette perméabilité peut résulter d'une étanchéité sur chaque gaine réalisée volontairement de façon imparfaite et/ou de l'utilisation d'un matériau constitutif des gaines ayant une porosité ouverte permettant le passage d'au moins une partie du gaz G, c'est-à-dire en d'autres termes un matériau perméable. Le plus souvent, il est recommandé d'utiliser un matériau perméable.
  • Ainsi, selon une réalisation préférée de l'invention, les gaines, isolant les moyens de chauffage électrique du contact direct avec le mélange gazeux renfermant au moins un hydrocarbure, sont constituées d'un matériau poreux dont la porosité est suffisante pour permettre la diffusion d'au moins une partie du gaz G à travers lesdites gaines. Ces gaines sont ainsi, de préférence, fabriquées en une matière poreuse présentant une porosité ouverte d'au moins environ 1 % et d'au plus environ 40 % en volume par rapport au volume de la paroi, et habituellement d'environ 5 % à environ 30 %.
  • L'utilisation du gaz G, contenant de la vapeur d'eau et/ou de l'hydrogène, qui diffuse au moins en partie vers l'espace process, procure plusieurs avantages. Il ne complique pas les séparations en aval du four à pyrolyse puisque la vapeur d'eau est un composé présent dans l'espace process et l'hydrogène peut être un composé présent dans l'espace process en tant que produit de la réaction de craquage et éventuellement également en tant que composant de la charge.
  • Par ailleurs, selon la présente invention, étant donné qu'il n'est plus souhaitable de rechercher des étanchéités aussi parfaites que possible entre l'espace process et l'espace des résistances, on diminue le coût de réalisation du four tout en diminuant également les contraintes thermo-mécaniques au niveau des raccords des gaines, ce qui augmente la fiabilité de l'ensemble du dispositif.
  • Dans le cas de l'emploi de gaines en matière céramique, il est bien connu de l'homme du métier qu'il existe de nombreuses variétés de céramique, et notamment de carbure de silicium, qui proviennent de qualité de poudre constitutive et de conditions de frittage très différentes. Sans vouloir entrer dans le détail, on peut cependant noter qu'un des critères de qualité est lié à la plus faible rémanence de porosité après frittage. Il est bien connu que si une partie de cette porosité se trouve être fermée, c'est-à-dire sans effet sur l'étanchéité globale du matériau, une autre partie, non négligeable, surtout pour le carbure de silicium le plus courant, est une porosité ouverte et que notamment il y a, à haute température, diffusion d'au moins une partie du gaz G (ou d'au moins l'un des constituants du mélange de gaz) à travers ce matériau. On comprend donc bien que lorsque l'on utilise comme gaz d'étanchéité un gaz tel que de la vapeur d'eau et/ou de l'hydrogène il n'est pas nécessaire d'employer des gaines en matière céramique, et en particulier en carbure de silicium, aussi étanches que possibles, c'est-à-dire de très grande qualité et donc de très grand prix.
  • L'utilisation de gaines en céramique, notamment en carbure de silicium, de qualité moyenne, comportant une porosité ouverte d'au moins environ 1 % en volume (par exemple d'environ 20 % en volume), est ainsi non seulement possible mais même souhaitable, ce qui abaisse le coût de réalisation du four. Par ailleurs, l'existence même de cette porosité ouverte crée en surface de la gaine en céramique côté espace process une pression partielle du gaz G introduit dans l'espace des résistances isolant en quelque sorte la surface de la céramique du gaz process ce qui, sans vouloir être lié par une quelconque théorie, explique la réduction notable de la formation de coke puisque celui-ci se forme habituellement pour l'essentiel à la surface des gaines et qu'au contraire les produits formés se trouveront dans une atmosphère locale moins favorable à la formation de coke.
  • Par porosité ouverte, on désigne dans la description de la présente invention la porosité constituée de microcavités incluses dans les pièces en céramiques massives considérées, l'adjectif ouvert signifiant qu'il y a libre passage d'une part entre la plupart desdites microcavités, et d'autre part entre lesdites microcavités et les surfaces internes et externes des pièces considérées ; la notion de libre passage doit aussi être considérée en fonction de la nature du milieu et des conditions physiques dans lesquelles se trouve la céramique. A titre d'exemple, pour des molécules de petites tailles comme l'hydrogène ou l'hélium, le libre passage sera facile, d'autant plus d'ailleurs si l'on a une différence de pression entre les deux surfaces de la pièce en céramique. Dans ce cas, la pièce est dite perméable, à l'hydrogène par exemple, ou non étanche.
  • Par porosité fermée, on désigne dans la description de la présente invention la porosité constituée de microcavités ne communiquant pas avec la surface de la pièce. Dans ce cas là, cette porosité fermée ne provoque qu'une diminution globale de la densité de la pièce.
  • Le procédé selon l'invention peut être mis en oeuvre dans un dispositif comprenant un réacteur (1) de forme allongée selon un axe, de préférence à section carrée ou rectangulaire, comportant à une première extrémité des moyens d'alimentation (5) en mélange gazeux, renfermant au moins un hydrocarbure, à l'extrémité opposée des moyens d'évacuation (10) des effluents produits et entre ces deux extrémités des moyens d'alimentation en fluide de refroidissement, ledit réacteur comprenant dans une première partie (côté première extrémité) une pluralité de moyens de chauffage électrique (3) entourés de gaines (4), lesdits moyens sensiblement parallèles entre eux étant disposés en nappes sensiblement parallèles, perpendiculaires à l'axe du réacteur de façon à définir entre les gaines et/ou les nappes formées par ces gaines des espaces ou passages pour la circulation des mélanges gazeux et/ou des effluents, lesdits moyens de chauffage et lesdites gaines étant adaptés à chauffer lesdits passages par section transversales successives, indépendantes et sensiblement perpendiculaires à l'axe du réacteur, ledit réacteur comportant en outre des moyens d'asservissement et de modulation de chauffage reliés auxdits moyens de chauffage, et comportant dans une deuxième partie (8) (côté extrémité opposée) contiguë à la première partie des moyens de refroidissement (9) des effluents reliés auxdits moyens d'alimentation en fluide de refroidissement, ledit dispositif comprenant des moyens d'introduction, à une pression appropriée, d'un gaz G dit gaz de gaine ou gaz d'étanchéité, contenant de préférence de la vapeur d'eau et/ou de l'hydrogène, à l'intérieur des gaines (4) et en ce que lesdites gaines ont une perméabilité suffisante pour permettre, au moins en certains points, la diffusion d'au moins une partie de ce gaz G depuis l'intérieur desdites gaines vers l'extérieur desdites gaines, ce gaz G se diluant alors dans ledit mélange gazeux.
  • Les moyens d'introduction, à une pression appropriée, du gaz G sont ceux connus de l'homme du métier. Ils peuvent comprendre par ailleurs des moyens de régulation et de contrôle des pressions régnant à l'intérieur et à l'extérieur desdites gaines.
  • Lesdits moyens de refroidissements sont des moyens adaptés à refroidir par contact direct ou par contact indirect les effluents quittant la zone de chauffage.
  • Les gaines entourant les résistances, habituellement de façon non jointive, peuvent être disposées de façon superposée ou en quinconce et peuvent former en projection transversale un faisceau à pas triangulaire, carré ou rectangulaire.
  • Le nombre total de nappes comportant des moyens de chauffage et le nombre des moyens de chauffage dans chaque gaine et par nappe ne sont pas déterminants dans le procédé ; ils sont évidemment fonction de la dimension, des moyens de chauffage, des gaines qui les entourent et, lorsqu'elle existent, des parois séparant les nappes. Les éléments de chauffage peuvent être identiques entre eux ou différents, tant par leurs dimensions que par leur puissance de chauffage. A titre d'exemple, un élément chauffant pourra comprendre à l'intérieur de la gaine de 1 à 5 résistances et le plus souvent de 1 à 3 résistances.
  • Le nombre d'éléments chauffant détermine la puissance électrique maximum disponible pour un volume réactionnel donné et influe également sur le temps de séjour de la charge ; il sera choisi en fonction du débit de charge admissible, compte tenu de ces paramètres.
  • On peut, dans le cadre de la présente invention, réaliser l'ensemble du réacteur zone de chauffage et zone de trempe soit sous forme monobloc, soit encore par juxtaposition jointive de divers éléments de forme identique, qui sont assemblés entre eux par tout moyen utilisable comme, par exemple, à l'aide de brides.
  • Les moyens de chauffage électrique utilisables dans le cadre de la présente invention sont de préférence des résistances chauffantes susceptibles d'être utilisées jusqu'à des températures de l'ordre de 1500°C ; on préfère utiliser des résistances en bisiliciure de molybdène, par exemple des résistances en épingle.
  • Les gaines qui entourent les résistances, de façon à éviter un contact direct entre les mélanges gazeux de la charge et les résistances, sont, de préférence, de forme tubulaire. Ces gaines en matériau réfractaire sont habituellement soit en céramique, soit en métal fritté. On peut utiliser des céramiques comme la mullite, la cordiérite, le nitrure de silicium, le carbure de silicium, la silice ou l'alumine ; le carbure de silicium est le matériau préférentiellement choisi car il présente une bonne conductivité thermique. Dans le cas où les nappes sont séparées par des parois, le matériau choisi pour réaliser ces parois peut être le même que celui utilisé pour les gaines, mais il est souvent différent, en particulier pour des questions de coût de fabrication du four.
  • La distance qui sépare les éléments chauffants des gaines est fonction de la section de l'élément chauffant. Pour des moyens de chauffage dont le diamètre maximal du cercle les englobant est égal à d, on utilise des gaines habituellement tubulaires ou cylindriques de diamètre D habituellement d'environ 1,2 x d à environ 8 x d, et le plus souvent d'environ 1,5 x d à environ 4 x d.
  • Les éléments de chauffage sont disposés en nappes parallèles sensiblement perpendiculaires au sens d'écoulement de la charge (gaz process), préférentiellement sensiblement alignés, de façon à ce que la distance qui sépare deux gaines voisines soit la plus réduite possible, tout en tenant compte des impératifs de perte de charge admissible ; la distance entre les gaines de deux nappes voisines ou celle entre les gaines d'une nappe et la paroi la plus proche dans le cas où les nappes sont séparées par des parois est habituellement la même que celle entre deux gaines consécutives dans une nappe donnée. Cette distance sera habituellement telle que les passages formés entre les gaines ou entre les gaines et la paroi la plus proche, passages dans lesquels circule le mélange gazeux renfermant des hydrocarbures auront une dimension d'environ 1 à environ 100 mm, et le plus souvent d'environ 5 à environ 40 mm.
  • Selon un mode de réalisation de l'invention, les espaces libres ou passages définis ci-avant, destinés à la circulation du gaz process, sont au moins partiellement occupés par des garnissages, habituellement en céramique, préférentiellement conducteurs de la chaleur. On peut ainsi, pour un type de réacteur donné, diminuer le temps de séjour de la charge dans ce réacteur tout en homogénéisant l'écoulement du mélange gazeux et en répartissant mieux la chaleur dissipée. Ces garnissages peuvent avoir des formes diverses et se présenter par exemple sous forme d'anneaux ( anneaux de Raschig, de Lessing ou de Pall), de selles (selles de Berl), de barreaux, de tubes cylindriques fermés.
  • L'invention sera mieux comprise par la description de quelques modes de réalisation, donnés à titre purement illustratif mais nullement limitatif, qui en sera faite ci-après à l'aide des figures annexées, sur lesquelles les organes similaires sont désignés par les même chiffres et lettres de référence.
    • Les figures 1A, 1B, 1C et 1F représentent une coupe longitudinale d'un réacteur suivant un plan perpendiculaire à l'axe des gaines. Dans le cas de la figure 1B, ce réacteur contient un garnissage. Dans le cas des figures 1C et 1F, ce réacteur comporte des parois séparant une ou plusieurs nappes de gaines contenant les moyens de chauffage électrique.
    • Les figures 1D et 1E représentent une coupe longitudinale d'un réacteur suivant l'axe des gaines.
    • La figure 2 illustre un détail de réalisation de la zone de chauffage dans un plan identique à celui des figures 1D et 1E.
  • Sur la figure 1A, on a représenté, selon un mode de réalisation, un réacteur (1) vertical de forme allongée et de section rectangulaire, comprenant un distributeur (2) permettant d'alimenter par un orifice d'entrée (5) le réacteur en mélange gazeux réactionnel. Ce dernier, qui contient un mélange de vapeur d'eau et d'au moins un hydrocarbure, a été préchauffé dans une zone de préchauffage conventionnelle, non représentée sur la figure, de préférence par convection. Le réacteur comprend une pluralité de moyens de chauffage électrique (3) entourés de gaines (4) disposées en nappes parallèles et formant dans un plan (plan de la figure) un faisceau à pas carré. Ces nappes définissent des sections de chauffage transversales sensiblement perpendiculaires à l'axe du réacteur défini selon la direction d'écoulement de la charge.
  • Ces sections de chauffage sont alimentées en énergie électrique, de façon indépendante, grâce à une paire d'électrodes (6a, 6b sur les figures 1D et 1E), des sondes pyrométriques à thermocouple (7 sur les figures 1D et 1E) sont logées dans les espaces où circule la charge entre les gaines (4) et permettent de réguler automatiquement la température de chaque section de chauffage, par un dispositif classique de régulateur et de modulateur non représenté sur la figure.
  • Dans la première partie de la zone de chauffage, les gaines sont chauffées de façon à ce que la température de la charge passe rapidement de 600°C (température de préchauffage) à 900°C environ ; cette zone de chauffage représente en général environ 15 % de la longueur totale de la zone de chauffage ; le mélange gazeux circule ensuite dans la deuxième partie de la zone de chauffage où l'on maintient généralement la température à une valeur constante sensiblement égale à celle atteinte à la fin de la première zone de chauffage, soit en général 900°C environ. A cet effet, on module la puissance électrique fournie à plusieurs sections de chauffage qui constituent la deuxième partie de la zone de chauffage ; on parvient ainsi à obtenir une variation de température ne dépassant pas environ 10°C autour de la valeur de la consigne. La longueur de cette deuxième zone de chauffage représente environ 85 % de la longueur totale de la zone de chauffage.
  • A la sortie de la zone de chauffage, les effluents de la réaction sont refroidis dans une zone de refroidissement (8). Ils sont mis en contact avec un agent de trempe tel que de l'eau introduite par l'intermédiaire d'injecteurs (9), de trempe, disposés à la périphérie du réacteur (1) et reliés à une source extérieure d'eau non représentée. L'ensemble des gaz effluents est refroidi à une température d'environ 500 °C et recueilli par un orifice de sortie (10) à l'extrémité de la zone réactionnelle (1).
  • Selon un autre mode non illustré, les effluents peuvent être refroidis en circulant à travers des conduits étanches disposés dans la zone (8) par lesquels s'écoule l'agent de trempe, ces conduits étant reliés à la source extérieure de l'agent de trempe.
  • Selon le mode de réalisation schématisé sur la figure 1B, le réacteur, identique à celui schématisé sur la figure 1A, comporte dans l'espace où circule la charge un garnissage (20), avantageusement en matière céramique, qui est retenu par une grille (21) à l'extrémité de la zone de chauffage. Les gaines (4) sont disposées en nappes parallèles et forment dans un plan (plan de la figure) un faisceau à pas triangulaire (disposition en quinconce).
  • Sur la figure 1C, on a représenté, selon un mode de réalisation, un réacteur (1) horizontal de forme allongée et de section rectangulaire, qui ne diffère du réacteur représenté sur la figure 1A que par le fait qu'il est sensiblement horizontal, qu'il comporte des gaines disposées en nappes parallèles et formant dans un plan (plan de la figure) un faisceau à pas carré, et en ce que ces nappes sont séparées les unes des autres par des parois (22) avantageusement en matière céramique. Ces parois ont une forme, adaptée à créer des turbulences, comportant des alvéoles au niveau de chaque gaine (4).
  • Le mode de réalisation schématisé sur la figure 1F ne diffère de celui schématisé sur la figure 1C qu'en ce que plusieurs nappes d'éléments chauffants sont situées entre deux parois (22).
  • La figure 1D représente, pour un réacteur horizontal, les mêmes éléments que ceux décrits en liaison avec la figure 1A ; on a représenté, de plus, un boîtier de protection (11) comportant un orifice (12) par lequel on introduit le gaz G contenant par exemple de la vapeur d'eau et un orifice (13) muni d'une vanne (24) permettant de réguler le flux de ce gaz G. Ce boîtier (11) est fixé sur l'armature métallique du réacteur (1) et entoure l'ensemble des résistances électriques et des gaines les contenant, à l'exception de l'extrémité des résistances électriques par où se fait l'alimentation en énergie électrique. Les résistances (3), en épingle, sont positionnées dans les gaines (4) à l'aide de rondelles (18), par exemple en fibre céramique, comportant des passages (23) permettant au gaz G, par exemple de la vapeur d'eau, de pénétrer dans l'espace compris entre les résistances et les gaines.
  • La figure 1E représente les mêmes éléments que ceux décrits en liaison avec la figure 1A ; on a représenté, de plus, les boîtiers de protection (11) munis d'orifice (12) et (13) permettant la circulation dans les boîtiers du gaz G contenant par exemple de la vapeur d'eau qui pénètre dans l'espace des résistances par les orifices (23) des rondelles (18) assurant le positionnement des résistances. Les orifices (13) sont munis de vannes (24) permettant une régulation plus facile du flux du gaz G contenant par exemple de la vapeur d'eau. Ces boîtiers (11) sont fixés sur l'armature métallique du réacteur et entourent l'ensemble des résistances électriques et des gaines les contenant, à l'exception de l'extrémité des résistances électriques par où se fait l'alimentation en énergie électrique. La circulation du gaz G est effectuée en légère surpression par rapport à la pression du gaz process au sein du réacteur, assurant ainsi une atmosphère parfaitement contrôlée et une meilleure diffusion de ce gaz G vers l'espace process.
  • La différence de pression absolue entre l'espace des résistances et l'espace process, ou surpression, sera de préférence telle que la pression dans l'espace des résistances soit supérieure d'au moins 0,1 % et le plus souvent d'au moins 1 % à la pression dans l'espace process. Il n'est pas nécessaire d'avoir une très grande surpression et le plus souvent la pression dans l'espace des résistances reste inférieure à 2 fois la pression dans l'espace process.
  • La figure 2 représente un détail d'un mode de réalisation de la zone de chauffage suivant l'invention. On utilise comme moyen de chauffage électrique des résistances (3) de forme cylindrique. Ces résistances comportent à chacune de leur extrémité des zones froides et une partie de la zone centrale qui est la zone chaude représentant par exemple environ 68 % de la longueur totale.
  • On réalise un réacteur de section rectangulaire, dont les parois sont constituées de béton réfractaire isolant (14) et par une armature métallique (15). On perce dans deux parois latérales opposées un trou circulaire, dans lequel on fait passer une gaine (4), par exemple en céramique, de diamètre double de celui de la résistance électrique (3). La gaine (4) est positionnée au moyen d'un système presse étoupe (16) agissant dans une gorge au niveau de l'armature métallique sur une tresse en matière réfractaire (17), par exemple une tresse en matière céramique. Le positionnement de la résistance (3) dans la gaine (4) est effectué au moyen de rondelles (18), par exemple en fibre céramique, comportant des orifices (23) permettant le passage du gaz G, contenant par exemple de la vapeur d'eau, introduit dans le boîtier (11) par le conduit (12) dans l'espace des résistances (24).
  • La zone chaude de la résistance (3) est positionnée de façon à ce qu'elle ne pénètre pas dans l'orifice de passage à travers la paroi de béton isolant. Il n'est pas indispensable d'utiliser une tresse (17) au niveau du presse étoupe puisque celui-ci a, dans le cadre de l'invention, le rôle de moyen de positionnement et qu'il n'a pas pour but principal d'assurer une étanchéité aussi parfaite que possible entre l'intérieur et l'extérieur du réacteur. Ce presse étoupe peut d'ailleurs avantageusement être remplacé par un moyen plus simple de positionnement des gaines tel que par exemple des simples rondelles en matériau réfractaire.
  • On dispose ainsi d'un certain nombre de résistances chauffantes gainées dans des parois, par exemple en matière céramique, par rangées horizontales successives, ces rangées étant de préférence alignées de façon à ce que, sur les parois latérales du four, elles forment un faisceau à pas carré ou rectangulaire. Un boîtier (11), dont dépassent seulement les extrémités des résistances et/ou leur alimentation électrique (6), est parcouru par un courant de gaz G contenant par exemple de la vapeur d'eau.
  • Exemple
  • On utilise un réacteur horizontal à trempe indirecte, dont la longueur de la zone de pyrolyse est de 2,21 mètres et de section rectangulaire de 1,4 x 3,72 m. Les moyens de chauffage de ce réacteur sont constitués par des résistances électriques en épingle, en bisiliciure de molybdène (MoSi₂) ; ces résistances sont entourées de gaines en céramique, disposées concentriquement par rapport au centre du cercle englobant les résistances.
  • Ces gaines sont en carbure de silicium et ont une porosité ouverte de 15 % en volume. Chaque gaine, fermée à une extrémité, entoure 2 résistances en épingle (Figure 1C et 1D). Ces gaines sont disposées perpendiculairement au sens de circulation de la charge (verticalement), en nappes parallèles, et forment en projection perpendiculaire un faisceau à pas carré. La longueur de chaque branche de l'épingle de la résistance électrique est de 1,4 m et le diamètre de la résistance est de 9 mm. Les gaines en céramique ont une longueur de 1,4 m, un diamètre extérieur de 150 mm et un diamètre intérieur de 130 mm ; la distance Eg (Figure 1C) séparant deux gaines voisines est de 20 mm. Les nappes de gaines sont séparées par une paroi en béton réfractaire à base d'alumine électrofondue. La distance Ee (Figure 1C) entre les gaines et les parois ou dimension des passages est de 10 mm. Les parois ont dans leur partie la plus mince une épaisseur Ep (Figure 1C) de 15 mm.
  • La première partie de la zone de chauffage, longue de 34 cm, comprend 20 nappes de résistances, chaque nappe comprenant 2 gaines ; dans cette zone, la charge, préchauffée à 600 °C, est portée à 900 °C. Cette zone est régulée thermiquement par l'intermédiaire de thermocouples disposés dans les espaces où circule la charge.
  • La deuxième partie de la zone de chauffage, adjacente à ladite première partie, est longue de 1,87 m ; elle est constituée de 20 nappes de 11 gaines, disposées de la même façon que dans la première partie de la zone de chauffage. Cette zone est constituée par 5 sections de chauffage, régulées indépendamment, permettant d'assurer le maintien de la température dans cette zone à 900 °C plus ou moins 10 °C.
  • Les gaz effluents sont refroidis dans un premier temps à 500 °C par échange indirect avec les gaz de la charge ; d'autres échangeurs de température permettent ensuite d'abaisser leur température à 350 °C environ.
  • On utilise comme charge du naphta de densité d 20/4 = 0,715 et dont l'intervalle d'ébullition est compris entre 38 et 185 °C dilué avec de l'eau dans un rapport pondéral vapeur d'eau/charge de 0,5 : 1. Ce mélange est préchauffé à 600 °C et craqué à 900 °C dans le réacteur décrit ci-avant. La pression absolue du mélange de gaz dans le réacteur est maintenue sensiblement constante et égale à 0,170 MPa. On introduit dans l'espace des résistances de l'eau sensiblement pure de manière à obtenir et à maintenir dans cet espace une pression absolue sensiblement constante et égale à 0,175 MPa.
  • La même charge a été craquée dans une installation conforme à celle décrite dans l'exemple 1 du brevet US-A-4780196 comprenant une zone de pyrolyse multicanaux, en carbure de silicium, chaque canal ayant une section carrée de 10 mm de côté et ayant une longueur de 3 m. Les conditions de fonctionnement sont telles que la charge est introduite dans ce réacteur à la température de 600 °C et les effluents en fin de pyrolyse sont à 900 °C. Dans cette installation, le chauffage est assuré par un fluide caloporteur.
  • Après refroidissement à température ambiante, on obtient dans le cas du procédé selon l'invention un rendement pondéral en éthylène de 39,6 % et un rendement pondéral en propylène de 16,4 %. Dans le cas de l'utilisation du réacteur multicanaux décrit dans le brevet US-A-4780196, on obtient un rendement pondéral en éthylène de 38,5 % et un rendement pondéral en propylène de 15,0 %.
  • Dans le cas du procédé selon l'invention, on observe une vitesse initiale maximale de cokage de 10 g x h⁻¹ x m⁻². Dans le cas de l'utilisation du réacteur multicanaux en carbure de silicium décrit dans le brevet US-A-4780196, la vitesse initiale maximale de cokage observée est de 15 g x h⁻¹ x m⁻².
  • Le procédé selon l'invention permet donc d'obtenir l'ensemble éthylène-propylène avec un rendement amélioré d'environ 14 % et de diminuer d'environ 33 % la vitesse initiale maximale de cokage.

Claims (12)

1 - Procédé de pyrolyse thermique d'hydrocarbures dans une zone de réaction, de forme allongée selon une direction (un axe), comprenant une zone de chauffage et une zone de refroidissement, faisant suite à ladite zone de chauffage, dans lequel on fait circuler, dans la zone de chauffage, un mélange gazeux, renfermant au moins un hydrocarbure à au moins deux atomes de carbone, selon une direction d'écoulement sensiblement parallèle à la direction (à l'axe) de la zone de réaction, ladite zone de chauffage comportant une pluralité de moyens de chauffage électrique disposés en nappes, sensiblement parallèles entre elles, formant en projection transversale un faisceau à pas triangulaire, carré ou rectangulaire, lesdits moyens de chauffage étant regroupés par sections successives transversales sensiblement perpendiculaires à la direction (à l'axe) de la zone de réaction, indépendantes entre elles et alimentées en énergie électrique de façon à déterminer au moins deux parties dans la zone de chauffage, la première partie permettant de porter la charge jusqu'à une température au plus égale à environ 1300°C, et la deuxième partie, subséquente de la première partie, permettant de maintenir la charge à une température sensiblement égale à la température maximum à laquelle elle a été portée dans ladite première partie, et dans lequel on refroidit les effluents de la zone de chauffage, puis on recueille les produits formés à l'extrémité de la zone réactionnelle, ledit procédé étant caractérisé en ce que les moyens de chauffage électrique sont isolés du contact direct avec le mélange gazeux renfermant au moins un hydrocarbure par des gaines dans lesquelles on introduit un gaz G dit gaz de gaine ou gaz d'étanchéité, lesdites gaines ayant une perméabilité appropriée et le gaz étant introduit à l'intérieur desdites gaines à une pression telle qu'il y a diffusion, au moins en certains points, d'au moins une partie de ce gaz G depuis l'intérieur desdites gaines vers l'extérieur desdites gaines, ce gaz G pouvant se diluer alors dans ledit mélange gazeux.
2 - Procédé selon la revendication 1 dans lequel on chauffe une première partie de la zone de chauffage jusqu'à une température maximale au plus égale à environ 1300°C et dans lequel on chauffe la deuxième partie, subséquente de ladite première partie, de façon à ce que la variation de température tout au long de cette deuxième partie de la zone de chauffage soit inférieure à environ 50°C et de préférence inférieure à environ 20°C.
3 - Procédé selon la revendication 1 ou 2 dans lequel la pression du gaz dans les gaines est supérieure d'au moins 0,1 % à la pression à l'extérieur desdites gaines.
4 - Procédé selon l'une des revendications 1 à 3 dans lequel les gaines isolant les moyens de chauffage électrique du contact direct avec le mélange gazeux, sont constituées d'un matériau poreux dont la porosité est suffisante pour permettre la diffusion d'au moins une partie du gaz G à travers lesdites gaines.
5 - Procédé selon la revendication 4 dans lequel les gaines sont en matière céramique poreuse présentant une porosité ouverte d'au moins environ 1 % et d'au plus environ 40 % en volume.
6 - Procédé selon l'une des revendications 1 à 5 dans lequel les moyens de chauffage sont isolés du contact direct avec le mélange gazeux par des gaines cylindriques dont le diamètre est d'environ 1,2 à environ 4 fois le diamètre maximal du cercle englobant lesdits moyens de chauffage.
7 - Procédé selon l'une des revendications 1 à 6 dans lequel la dimension des passages dans lesquels circule le mélange gazeux est d'environ 1 à environ 100 mm.
8 - Procédé selon l'une des revendications 1 à 7 dans lequel la zone de réaction comprend au moins deux zones longitudinales, chaque zone longitudinale comportant au moins une nappe d'éléments chauffants et étant séparée de la suivante par une paroi en matériau réfractaire.
9 - Procédé selon l'une des revendications 1 à 7 dans lequel les moyens de chauffage électrique comportent des résistances en bisiliciure de molybdène.
10 - Procédé selon l'une des revendications 1 à 9 dans lequel le mélange gazeux renferme en outre de la vapeur d'eau.
11 - Procédé selon l'une des revendications 1 à 9 dans lequel le mélange gazeux renferme de l'éthane et de l'hydrogène.
12 - Procédé selon l'une des revendications 1 à 9 dans lequel le mélange gazeux renferme une coupe C4 avec de préférence de l'hydrogène.
EP92402951A 1991-11-08 1992-10-30 Procédé de pyrolyse thermique d'hydrocarbures utilisant un four électrique Expired - Lifetime EP0542597B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9113976A FR2683543B1 (fr) 1991-11-08 1991-11-08 Procede de pyrolyse thermique d'hydrocarbures utilisant un four electrique.
FR9113976 1991-11-08

Publications (2)

Publication Number Publication Date
EP0542597A1 true EP0542597A1 (fr) 1993-05-19
EP0542597B1 EP0542597B1 (fr) 1996-02-28

Family

ID=9418878

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92402951A Expired - Lifetime EP0542597B1 (fr) 1991-11-08 1992-10-30 Procédé de pyrolyse thermique d'hydrocarbures utilisant un four électrique

Country Status (6)

Country Link
US (1) US5321191A (fr)
EP (1) EP0542597B1 (fr)
JP (1) JP3151641B2 (fr)
CA (1) CA2082290A1 (fr)
DE (1) DE69208595T2 (fr)
FR (1) FR2683543B1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0733609A1 (fr) * 1995-03-23 1996-09-25 Institut Francais Du Petrole Procédé de conversion thermique d'hydrocarbures aliphatiques saturés ou insaturés en hydrocarbures acétyléniques
EP0781828A1 (fr) 1995-12-27 1997-07-02 Institut Francais Du Petrole Procédé de pyrolyse et de décokage en continu applicable notamment à la production d'acétylène
FR2748273A1 (fr) * 1996-05-06 1997-11-07 Inst Francais Du Petrole Procede et dispositif de conversion thermique d'hydrocarbures en hydrocarbures aliphatiques plus insatures que les produits de depart, combinant une etape de vapocraquage et une etape de pyrolyse
WO2020046638A1 (fr) * 2018-08-31 2020-03-05 Dow Global Technologies Llc Systèmes et procédés permettant d'améliorer la valorisation des hydrocarbures
WO2020047091A1 (fr) * 2018-08-31 2020-03-05 Dow Global Technologies Llc Systèmes et procédés permettant d'améliorer la valorisation des hydrocarbures
EP3725865A1 (fr) * 2019-04-17 2020-10-21 SABIC Global Technologies B.V. Utilisation d'énergie renouvelable dans la synthèse d'oléfine
EP3730592A1 (fr) * 2019-04-24 2020-10-28 SABIC Global Technologies B.V. Utilisation d'énergie renouvelable dans la synthèse d'oléfine
WO2023016968A1 (fr) * 2021-08-12 2023-02-16 Sabic Global Technologies B.V. Four comprenant des éléments chauffants électriques agencés pour un chauffage uniforme et procédés associés

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2750140B1 (fr) * 1996-06-25 1998-08-07 Inst Francais Du Petrole Installation de vapocraquage avec moyens de protection contre l'erosion
WO1999018392A1 (fr) * 1997-10-08 1999-04-15 Shell Internationale Research Maatschappij B.V. Dispositif de chauffage comprenant une chambre de combustion sans flamme
DE19746040A1 (de) * 1997-10-17 1999-04-22 Basf Ag Verfahren zur Herstellung von Propen
FR2791665B1 (fr) * 1999-03-31 2001-05-18 Inst Francais Du Petrole Procede de production de methylacetylene et de propadiene
FR2830205B1 (fr) * 2001-09-28 2003-12-12 Inst Francais Du Petrole Enceinte reactionnelle comprenant une enveloppe contenant au moins un module relie par des moyens souples a l'enveloppe et contenant des moyens d'echange de chaleur
BRPI0608336B1 (pt) * 2005-03-10 2018-09-11 Shell Int Research sistema de processamento, sistema de aquecimento direto de quatro tubos para queima de um combustível e aquecimento direto de um fluido de processamento e método
MX2007010988A (es) * 2005-03-10 2007-09-25 Shell Int Research Sistema de transferencia de calor para la combustion de un combustible y el calentamiento de un fluido de proceso y proceso que utiliza el mismo.
WO2006099033A1 (fr) * 2005-03-10 2006-09-21 Shell Internationale Research Maatschappij B.V. Procede de demarrage d'un systeme de chauffage direct pour combustion de combustible sans flamme et chauffage direct d'un fluide de processus
CN101443759B (zh) * 2006-05-12 2010-08-11 北京乐图在线科技有限公司 多语言信息检索的方法和系统
JP2010534311A (ja) * 2007-07-20 2010-11-04 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー 無炎燃焼加熱器
RU2461775C2 (ru) * 2007-07-20 2012-09-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Беспламенный бензиновый отопитель
US10428197B2 (en) 2017-03-16 2019-10-01 Lyten, Inc. Carbon and elastomer integration
US10920035B2 (en) 2017-03-16 2021-02-16 Lyten, Inc. Tuning deformation hysteresis in tires using graphene
US9862606B1 (en) 2017-03-27 2018-01-09 Lyten, Inc. Carbon allotropes
US9862602B1 (en) * 2017-03-27 2018-01-09 Lyten, Inc. Cracking of a process gas
EP3676223A4 (fr) 2017-09-06 2021-05-26 BioForceTech Corporation Procédure et système efficaces pour traiter des déchets organiques solides
US10465128B2 (en) 2017-09-20 2019-11-05 Lyten, Inc. Cracking of a process gas
EP3810344A4 (fr) * 2018-06-24 2022-03-16 Bioforce Tech Corporation Système et procédé de pyrolyse hybride
CA3211951A1 (fr) * 2021-03-25 2022-09-29 Jeffrey CROWE Reacteur a chauffage interne pour conversion d'hydrocarbures
WO2023163503A1 (fr) * 2022-02-23 2023-08-31 주식회사 엘지화학 Appareil de chauffage de fluide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1407339A (en) * 1918-04-20 1922-02-21 Burhans Van Steenbergh Apparatus for cracking mineral oil to produce gasoline
FR1305287A (fr) * 1961-11-20 1962-09-28 Union Rheinische Braunkohlen Procédé pour la fabrication de mélanges gazeux à forte teneur en oléfines, notamment en éthylène, à partir d'hydrocarbures gazeux ou vaporisés
EP0323287A1 (fr) * 1987-12-31 1989-07-05 Institut Français du Pétrole Procédé de conversion thermique du méthane en hydrocarbures de poids moléculaires plus élevés et réacteur pour la mise en oeuvre du procédé
EP0457643A1 (fr) * 1990-05-17 1991-11-21 Institut Français du Pétrole Procédé de conversion thermique du méthane et réacteur pour la mise en oeuvre du procédé

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1407339A (en) * 1918-04-20 1922-02-21 Burhans Van Steenbergh Apparatus for cracking mineral oil to produce gasoline
FR1305287A (fr) * 1961-11-20 1962-09-28 Union Rheinische Braunkohlen Procédé pour la fabrication de mélanges gazeux à forte teneur en oléfines, notamment en éthylène, à partir d'hydrocarbures gazeux ou vaporisés
EP0323287A1 (fr) * 1987-12-31 1989-07-05 Institut Français du Pétrole Procédé de conversion thermique du méthane en hydrocarbures de poids moléculaires plus élevés et réacteur pour la mise en oeuvre du procédé
EP0457643A1 (fr) * 1990-05-17 1991-11-21 Institut Français du Pétrole Procédé de conversion thermique du méthane et réacteur pour la mise en oeuvre du procédé

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2732014A1 (fr) * 1995-03-23 1996-09-27 Inst Francais Du Petrole Procede de conversion thermique d'hydrocarbures aliphatiques satures ou insatures en hydrocarbures acetyleniques
EP0733609A1 (fr) * 1995-03-23 1996-09-25 Institut Francais Du Petrole Procédé de conversion thermique d'hydrocarbures aliphatiques saturés ou insaturés en hydrocarbures acétyléniques
US6027635A (en) * 1995-12-27 2000-02-22 Institute Francais Du Petrole Continuous pyrolysis and decoking process for use in the production of acetylene
EP0781828A1 (fr) 1995-12-27 1997-07-02 Institut Francais Du Petrole Procédé de pyrolyse et de décokage en continu applicable notamment à la production d'acétylène
FR2743007A1 (fr) * 1995-12-27 1997-07-04 Inst Francais Du Petrole Procede de pyrolyse et de decokage en continu applicable notamment a la production d'acetylene
US6322760B1 (en) 1996-05-06 2001-11-27 Institut Francais Du Petrole Process and apparatus for thermal conversion of hydrocarbons to aliphatic hydrocarbons which are more unsaturated than the starting products, combining a steam cracking step and a pyrolysis step
US5976352A (en) * 1996-05-06 1999-11-02 Institut Francais Du Petrole Process for thermal conversion of hydrocarbons to aliphatic hydrocarbons which are more unsaturated than the starting products, combining a steam cracking step and a pyrolysis step
EP0806467A1 (fr) * 1996-05-06 1997-11-12 Institut Français du Pétrole Procédé et dispositif de conversion thermique d'hydrocarbures en hydrocarbures aliphatiques plus insaturés que les produits de départ, combinant une étape de vapocraquage et une étape de pyrolyse
FR2748273A1 (fr) * 1996-05-06 1997-11-07 Inst Francais Du Petrole Procede et dispositif de conversion thermique d'hydrocarbures en hydrocarbures aliphatiques plus insatures que les produits de depart, combinant une etape de vapocraquage et une etape de pyrolyse
WO2020046638A1 (fr) * 2018-08-31 2020-03-05 Dow Global Technologies Llc Systèmes et procédés permettant d'améliorer la valorisation des hydrocarbures
WO2020047091A1 (fr) * 2018-08-31 2020-03-05 Dow Global Technologies Llc Systèmes et procédés permettant d'améliorer la valorisation des hydrocarbures
US11505751B2 (en) 2018-08-31 2022-11-22 Dow Global Technologies Llc Systems and processes for improving hydrocarbon upgrading
US11679367B2 (en) 2018-08-31 2023-06-20 Dow Global Technologies Llc Systems and processes for improving hydrocarbon upgrading
EP3725865A1 (fr) * 2019-04-17 2020-10-21 SABIC Global Technologies B.V. Utilisation d'énergie renouvelable dans la synthèse d'oléfine
EP3730592A1 (fr) * 2019-04-24 2020-10-28 SABIC Global Technologies B.V. Utilisation d'énergie renouvelable dans la synthèse d'oléfine
WO2023016968A1 (fr) * 2021-08-12 2023-02-16 Sabic Global Technologies B.V. Four comprenant des éléments chauffants électriques agencés pour un chauffage uniforme et procédés associés

Also Published As

Publication number Publication date
US5321191A (en) 1994-06-14
FR2683543B1 (fr) 1994-02-11
JPH05222379A (ja) 1993-08-31
EP0542597B1 (fr) 1996-02-28
FR2683543A1 (fr) 1993-05-14
JP3151641B2 (ja) 2001-04-03
DE69208595D1 (de) 1996-04-04
CA2082290A1 (fr) 1993-05-09
DE69208595T2 (de) 1996-08-22

Similar Documents

Publication Publication Date Title
EP0542597B1 (fr) Procédé de pyrolyse thermique d&#39;hydrocarbures utilisant un four électrique
EP0666104B1 (fr) Dispositif pour la mise en oeuvre de réactions chimiques nécessitant au moins au démarrage un apport de calories
EP0229093B1 (fr) Procede de vapocraquage d&#39;hydrocarbures
EP0226487B1 (fr) Procédé de conversion thermique du méthane en hydrocarbures de poids moléculaires plus élevés
CA2204541C (fr) Procede et dispositif de conversion thermique d&#39;hydrocarbures en hydrocarbures aliphatiques plus insatures que les produits de depart, combinant une etape de vapocraquage et une etape de pyrolyse
EP0272986B1 (fr) Procédé et dispositif opérant par voie de flamme pour la fabrication de gaz de synthèse
EP0476027B1 (fr) Utilisation d&#39;alliages a base de nickel dans un procede de craquage thermique d&#39;une charge petroliere et reacteur pour la mise en uvre du procede.
EP0539270B1 (fr) Procédé de conversion thermique du méthane et réacteur pour la mise en oeuvre du procédé
EP0781828B1 (fr) Procédé de pyrolyse et de décokage en continu applicable notamment à la production d&#39;acétylène
EP0512912B1 (fr) Procédé de production d&#39;hydrocarbures aromatiques dans une enceinte chauffée par des moyens de chauffage radiants à flux thermique variable
EP0457643B1 (fr) Procédé de conversion thermique du méthane et réacteur pour la mise en oeuvre du procédé
EP0733609B1 (fr) Procédé de conversion thermique d&#39;hydrocarbures aliphatiques saturés ou insaturés en hydrocarbures acétyléniques
EP0323287B1 (fr) Procédé de conversion thermique du méthane en hydrocarbures de poids moléculaires plus élevés et réacteur pour la mise en oeuvre du procédé
FR2641543A1 (fr) Procede et dispositif de vapocraquage d&#39;un hydrocarbure a deux atomes de carbone au moins dans une zone reactionnelle tubulaire chauffee par convection
EP0289391B1 (fr) Procédé de conversion/thermique du méthane en hydrocarbures de poids moléculaires plus élevés, réacteur pour la mise en oeuvre du procédé et procédé de réalisation du réacteur
FR2703141A1 (fr) Dispositif pour la réalisation de réactions endothermiques et ses applications.
WO2002006290A2 (fr) Procede et dispositif de production d&#39;un melange gazeux contenant de l&#39;hydrogene et du monoxyde de carbone

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE GB IT NL

17P Request for examination filed

Effective date: 19930603

17Q First examination report despatched

Effective date: 19940916

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE GB IT NL

REF Corresponds to:

Ref document number: 69208595

Country of ref document: DE

Date of ref document: 19960404

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960325

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000926

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20001020

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20001031

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011116

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

BERE Be: lapsed

Owner name: INSTITUT FRANCAIS DU PETROLE

Effective date: 20011031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20011030

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051030