EP0539268B1 - Verfahren zur Entfernung von Wasserstoff bei der kryogenen Destillation zwecks Erzeugung von hochreinem Stickstoff - Google Patents

Verfahren zur Entfernung von Wasserstoff bei der kryogenen Destillation zwecks Erzeugung von hochreinem Stickstoff Download PDF

Info

Publication number
EP0539268B1
EP0539268B1 EP92402799A EP92402799A EP0539268B1 EP 0539268 B1 EP0539268 B1 EP 0539268B1 EP 92402799 A EP92402799 A EP 92402799A EP 92402799 A EP92402799 A EP 92402799A EP 0539268 B1 EP0539268 B1 EP 0539268B1
Authority
EP
European Patent Office
Prior art keywords
distillation column
liquid
nitrogen
stream
fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92402799A
Other languages
English (en)
French (fr)
Other versions
EP0539268A1 (de
Inventor
Bao Ha
Wilfrid Petrie
François Venet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liquid Air Engineering Corp Canada
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Liquid Air Engineering Corp Canada
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25104639&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0539268(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Liquid Air Engineering Corp Canada, Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Liquid Air Engineering Corp Canada
Publication of EP0539268A1 publication Critical patent/EP0539268A1/de
Application granted granted Critical
Publication of EP0539268B1 publication Critical patent/EP0539268B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0219Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0261Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/0443A main column system not otherwise provided, e.g. a modified double column flowsheet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • F25J2200/06Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/52Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the high pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • F25J2215/44Ultra high purity nitrogen, i.e. generally less than 1 ppb impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/42Separating low boiling, i.e. more volatile components from nitrogen, e.g. He, H2, Ne
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/42Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen

Definitions

  • the present invention relates to a process for removing hydrogen by cryogenic distillation in the production of high purity nitrogen.
  • contaminant hydrogen in nitrogen is removed by passing compressed atmospheric feed air through a catalytic bed at a temperature of about 121 to 250°C (250 to 500°F), whereby the hydrogen reacts with oxygen to form water and carbon dioxide which are then removed in a subsequent step either by adsorption or by reversing exchangers. Removal of hydrogen by this method is undesirable, however, due to the expense of the catalyst and the possible poisoning of the catalyst by other impurities present in air, such as sulfur-containing compounds. Furthermore, the catalytic reactor and the equipment associated therewith are very expensive and represent a significant portion of the total required expense.
  • EP-A-0.485.612 citable under Article 54(3) EPC for designated states DE, FR, only, describes a process for producing high purity nitrogen in which liquid nitrogen produced in a main distillation column is distilled in a sub-rectifier. Both the main column and sub-rectifier have a top condenser cooled using liquid from the bottom of the main column.
  • U3-A-4.927.441 relates to a process for producing high purify nitrogen using a standard cycle with few trays added above a reboiler of a single column. No means are provided for removing hydrogen from the nitrogen.
  • a process for removing a light product, one or more heavier components and a trace of one or more lighter impurities which comprises :
  • an apparatus for removing lighter impurities including hydrogen according to the features of claim 6 for designated state GB.
  • a process for removing lighter impurities including hydrogen by cryogenic distillation in the production of high purity nitrogen which comprises :
  • a process for removing a light product from a mixture mainly comprising a light product, one or more heavier components and a trace of one or more lighter impurities which comprises :
  • apparatuses for removing lighter impurities including hydrogen by cryogenic distillation in the production of high purity nitrogen comprising the features of claim 10 and of claim 14 respectively for the designated states FR and DE.
  • Figure 1 represents a flow sheet for hydrogen removal by cryogenic distillation in the production of high purity nitrogen, where liquid product is extracted at the bottom of the second column as well as the gaseous product.
  • Figure 2 represents a flow sheet for hydrogen removal by cryogenic distillation in the production of high purity nitrogen, where nitrogen recovery is enhanced with a nitrogen cycle.
  • Oxygen-rich liquid in the bottom of the first column is vaporized by indirect heat exchange with a compressed nitrogen cycle which is condensed and expanded at the top of the first column to increase its reflux and reboil.
  • Figure 3 represents a flow sheet for hydrogen removal by cryogenic distillation in the production of high purity nitrogen, where the refrigeration requirement is achieved by expanding a fraction of compressed air in a turbine before being fed to the first distillation column.
  • the nitrogen recovery is enhanced by condensing an air stream in the bottom reboiler of the first distillation column.
  • a method for removing hydrogen by cryogenic distillation in the production of high purity nitrogen without using a catalytic reactor containing a catalyst.
  • compressed air or a feed mixture comprising oxygen and nitrogen which is substantially free of water and carbon dioxide and which has been cooled to about the dew point thereof is fed to the bottom of a first distillation column which is operated at a pressure such that heavy air components are separated from nitrogen.
  • nitrogen is produced at the top of the distillation column as a liquid, and a liquid stream rich in oxygen is produced at the bottom of the distillation column.
  • the first distillation column be operated at a pressure of about 4 to 12 bar in order to effectively separate the heavy air components, such as oxygen and argon, from nitrogen.
  • This air normally contains up to about 20 vpm of hydrogen.
  • the first distillation column produces at the top a liquid product rich in nitrogen.
  • the term “heavy air components” refers to all components of air which have a lower volatility than nitrogen, i.e. its vapor pressure is lower than the vapor pressure of nitrogen at the same temperature.
  • the term “light air components” as used in the present specification is intended to include all components of air which have a higher volatility than nitrogen, i.e. its vapor pressure is greater than the vapor pressure of nitrogen at the same temperature.
  • oxygen and argon are examples of heavy air components
  • hydrogen and helium are examples or light air components.
  • the liquid nitrogen is expanded at the top of the first distillation column into a second distillation column at an intermediate level, and the second distillation column is operated at a pressure sufficiently lower than the pressure of the first distillation column to provide a sufficient temperature difference in the condenser-reboiler located between the two columns.
  • the liquid stream rich in oxygen is vaporized in the overhead condenser of the second distillation column to form a condensate of a major fraction of the gas at the top of the second distillation column, and then the condensate is returned to the top of the second column as reflux.
  • the second distillation column may be operated at any pressure lower than the pressure of the first distillation column to provide a sufficient temperature difference in the condenser-reboiler separating the two columns. It is preferred, however, that the second distillation column be at a pressure at least about 0.4 bars lower than the pressure of the first distillation column. It is even more preferred, however, if the second distillation column is at a pressure about 0.6 bar lower than the pressure of the first distillation column.
  • the phrase containing "substantially all light air components” means that at least 99.99% of all light air components are contained therein. Also, as used in the present specification, the phrase containing “substantially no light air components” means that no more than 0.01% of all light air components are contained therein.
  • liquid product may also be extracted at the bottom of the second distillation column as well as the gaseous product. This is represented in Figures 2 and 3.
  • a subcooler can be added to subcool the bottom liquid of the first distillation column against the outgoing gaseous product and the residual stream rich in oxygen. This is represented in Figure 2.
  • the refrigeration requirement can be achieved by expanding the stream rich in oxygen, or expanding the gaseous nitrogen product or by adding liquid to the process in a liquid assist or by expanding a fraction of the feed air.
  • the present invention may be used in conjunction with other processes whenever the removal of a light product from a mixture containing heavier components is required.
  • the present invention may also be used advantageously in conjunction with any process where light products are to be removed from mixtures of heavier components.
  • the present process may be used to remove carbon monoxide from mixtures also containing heavier hydrocarbons, such as methane (CH 4 ).
  • the process is applicable to several hydrocarbon mixtures containing lighter impurities.
  • the present invention may be used with any of these to effect removal of the light component.
  • reaction mixtures which contain a lighter component and one or more heavy components.
  • the light component in the reaction mixture may be an unreacted raw material.
  • the lighter component in the reaction mixture may be one of the reaction products.
  • the present process may be used to advantage with any of these processes to remove light components.
  • the present process in conjunction with processes producing a light product from a mixture containing mainly the light product, one or more heavier components and with traces of a lighter impurity. It is more preferred if the lighter impurity is present in the mixture only in an amount of up to about 1% by volume, most preferably only up to about 0.5% by volume.
  • the lighter impurities are accumulated at the top of the first column. Some of the lighter impurities are soluble in the light-product liquid, and some of the lighter impurities remain in a vapor fraction called the non-condensible stream. This stream is removed from the column along with the lighter impurities contained therein.
  • the present invention provides an efficient means for separating a light product, one or more heavier components and one or more lighter impurities.
  • the one or more lighter impurities are present in an amount of up to about 1% by volume, preferably not more than about 0.5% by volume.
  • the term “light product” means the mixture component having the higher volatility.
  • the term “heavier components” means the mixture component or components having the lowest volatility.
  • the term “lighter impurities” means the impurity component or components having an intermediate volatility and which are present in amounts of only up to about 1% by volume.
  • the "trace" of lighter impurities is intended to mean a minor amount of generally less than 1% by volume. Also, the term “non-condensible” is intended to mean non-condensible under conditions prevailing outlet for the top condenser of both columns.
  • a cooled, compressed, cleaned and dried feed stream containing light product, one or more heavier components and a trace of one or more lighter impurities, such as atmospheric air, is fed via conduit (10) to heat exchange means (11), and then to the high pressure column (13) via conduit (12).
  • a nitrogen-rich liquid is fed from the high pressure column (13) to the low pressure column (14) via conduit (16) for feed.
  • liquid nitrogen (LIN) may be removed from the column as liquid product from the bottom of the low pressure column (14).
  • Non-condensible material is withdrawn from the column at condenser-reboiler (15), and from the overhead condenser (80) of the low pressure column.
  • Waste gas is removed from the overhead condenser (80) via conduits (21) and (22), optionally through subcooler (18), to heat exchange means (11), where it exits the process via conduit (28).
  • This waste originates from a bottom stream (17) withdrawn from the high pressure column, wherein after it is optionally passed through subcooler (18) and to the overhead condenser (80) via conduit (20).
  • a cooled, compressed, cleaned and dried feed stream containing light product, one or more heavier components and a trace of one or more lighter impurities, such as atmospheric air, and which is close to the dew point is fed to an intermediate location of a high pressure column (13), wherein an oxygen-rich stream separates at the bottom and a nitrogen-rich stream at the top.
  • a liquid nitrogen stream is extracted at the top of the high pressure column (13) and fed to the low pressure column (14) via conduit (16) at an intermediate location.
  • a minor gaseous fraction or non-condensible containing some lighter impurities is removed at the top of the high pressure columns (13) via conduit (30).
  • lighter impurities are removed via the non-condensible stream at the top of the low pressure column (14) with the bottom fraction being substantially free, i.e., less than about 0.5% by volume thereof, of lighter impurities.
  • Nitrogen product can be extracted from the bottom of the low pressure column as a liquid (LIN) via conduit (24). Gaseous nitrogen product is extracted from the column via conduit (19) and rewarmed in exchanger (11). A portion of this product is recovered via conduit (54) and the remaining portion is compressed in compressor (60). A fraction of this compressed stream may be recovered as product via conduit (57). The remaining fraction is sent to the high pressure column reboiler (52) via conduit (51) where it condenses to provide the reboil for the high pressure column.
  • LIN liquid
  • Nitrogen product can be extracted from the bottom of the low pressure column as a liquid (LIN) via conduit (24). Gaseous nitrogen product is extracted from the column via conduit (19) and rewarmed in exchanger (11). A portion of this product is recovered via conduit (54) and the remaining portion is compressed in compressor (60). A fraction of this compressed stream may be recovered as product via conduit (57). The remaining fraction is sent to the high pressure column reboiler (52) via conduit (51) where it condenses to provide the
  • the condensed recycle stream is fed via conduit (53) from the reboiler to the top of the high pressure column to provide extra reflux for the high pressure column.
  • An oxygen-rich stream is passed from the bottom of the high pressure column (13) via conduit (17) to the overhead condenser (80) of the low pressure column, whereby it vaporizes and passes to the exchanger (11), and is rewarmed.
  • the rewarmed stream is then fed to an expander and then to an exchanger where it is used to provide required refrigeration and then exits as waste.
  • fraction of a cooled, compressed, cleaned and dried feed stream is fed via conduit (73) to the bottom reboiler (52) of the distillation column (13) where it is liquified, the liquified feed stream is then fed to the high pressure column (13).
  • Another fraction of the cooled, compressed, cleaned and dried feed stream is expanded via expander (71) into the high pressure column (13), wherein in the top section thereof pure nitrogen and lighter impurities are extracted and in the bottom section oxygen-rich liquid is extracted. Some lighter impurities may be removed via conduit (30).
  • Liquid nitrogen fraction is extracted at the top of the high pressure column and fed via conduit (16) to an intermediate stage of the low pressure column.
  • the gaseous nitrogen fraction which forms at the top of the high pressure column is condensed in reboiler (15) to provide reboil for the low pressure column.
  • the low pressure column (14) further purifies liquid nitrogen feed and a liquid product may be recovered at the bottom of the low pressure column via conduit (24), which is free of lighter impurities.
  • Conduit (19) affords recovery of gaseous nitrogen which is free of lighter impurities.
  • the remaining lighter impurities are removed via conduit (31) and exit at the top of the low pressure column.
  • Oxygen-rich liquid from the bottom of the high pressure column is transferred via conduit (17) to the top condenser (80) of the low pressure column, where it is vaporized and leaves the process via conduit (21), (22) and (28), optionally passing through subcooler (18), and then passing through exchanger (11)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Claims (16)

  1. Verfahren zum Entfernen leichterer Verunreinigungen einschließlich Wasserstoff mittels kryogener Destillation bei der Produktion von hochreinem Stickstoff, umfassend
    a) Einleiten eines verdichteten, gereinigten und getrockneten, Sauerstoff, Stickstoff und leichtere Verunreinigungen umfassenden, fast bis zum Taupunkt abgekühlten Einsatzgemisches in eine erste Destillationssäule (13), wobei der Stickstoff im Kopf der Destillationssäule als Flüssigkeit abgeschieden wird und ein sauerstoffreicher Flüssigkeitsstrom im Sumpf der ersten Destillationssäule (13) abgeschieden wird;
    b) Abscheiden eines kleineren Teils (30) eines Gases im Kopf der ersten Destillationssäule, wobei der kleinere Teil einen Teil der leichteren Verunreinigungen enthält;
    c) Leiten des flüssigen Stickstoffs aus dem Kopf der ersten Destillationssäule (13) in eine zweite Destillationssäule (14) auf einem Zwischenniveau, wobei die zweite Destillationssäule unter einem Druck betrieben wird, der hinreichend niedriger als der Druck der ersten Destillationssäule ist, um einen ausreichenden Temperaturunterschied in einem zwischen der ersten und der zweiten Destillationssäule angeordneten Kondensator-Aufkocher (15) bereitzustellen;
    d) Verdampfen des sauerstoffreichen Flüssigkeitsstroms in einem Überkopfkondensator (80) der zweiten Destillationssäule (14) gegen den kondensierenden Dampf im Kopf der zweiten Destillationssäule, um ein Kondensat am Kopf der zweiten Destillationssäule zu bilden, und Rückführen des Kondensats als Rückfluß in den Kopf der zweiten Destillationssäule;
    e) Abscheiden eines kleineren Teils (31) des Gases im Kopf der zweiten Destillationssäule (14), der im wesentlichen alle verbleibenden leichteren Verunreinigungen umfaßt; und
    f) Verdampfen der Flüssigkeit im Sumpf der zweiten Destillationssäule (14) mittels Wärmeaustausch mit dem kondensierenden Gas im Kopf der ersten Destillationssäule (13) und Gewinnen als Stickstoffprodukt, der ein Teil der Flüssigkeit und/ oder ein Teil der verdampften Flüssigkeit ist, wobei das Stickstoffprodukt im wesentlichen keine leichteren Verunreinigungen enthält.
  2. Verfahren nach Anspruch 1, wobei die zweite Destillationssäule (14) bei einem Druck von mindestens 0,4 bar unterhalb des Drucks der ersten Destillationssäule (13) betrieben wird.
  3. Verfahren nach Anspruch 1 oder 2, wobei die erste Destillationssäule (13) bei einem Druck von ungefähr 4 bis 12 bar betrieben wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, wobei die zweite Destillationssäule bei einem Druck von ungefähr 0,6 bar unterhalb des Drucks der ersten Destillationssäule (13) betrieben wird.
  5. Verfahren zum Entfernen eines leichten Produkts, mindestens eines schwereren Bestandteils und einer Spur mindestens einer leichteren Verunreinigung, umfassend
    a) Einleiten eines Gemisches, das hauptsächlich das leichte Produkt, mindestens einen schwereren Bestandteil und die Spuren von mindestens einer leichteren Verunreinigung enthält, in eine erste Destillationssäule (13), so daß der mindestens eine schwerere Bestandteil von dem die leichteren Verunreinigungen enthaltenden leichteren Produkt getrennt wird, wobei das leichte Produkt im Kopf der ersten Destillationssäule (13) als eine Flüssigkeit abgeschieden wird und sich ein mit dem mindestens einen schweren Bestandteil angereicherter Flüssigkeitsstrom im Sumpf der ersten Destillationssäule sammelt; und wobei sich die leichteren Verunreingingen im Kopf der ersten Säule sammeln, wobei ein Teil der leichteren Verunreinigungen in der Flüssigkeit aus dem leichten Produkt löslich ist und ein Teil der leichteren Verunreinigungen in einem Strom (30) eines nichtkondensierbaren Dampfteils verbleiben, wobei der Strom aus dem nichtkondensierbaren Dampfanteil zusammen mit den darin enthaltenen leichteren Verunreinigungen aus der Säule entnommen wird;
    b) Entspannen des Produkts aus der leichten, einige leichtere Verunreinigungen enthaltenden Flüssigkeit aus der ersten Destillationssäule in eine zweite Destillationssäule (14) auf einem Zwischenniveau, um einen Strom aus einem leichten Produkt und einem kleineren Gasanteil, der einen größeren Teil der verbleibenden, leichteren Verunreinigungen enthält, zu erzeugen;
    c) Entspannen des mit dem mindestens einen, schwereren Bestandteil angereicherten Flüssigkeitsstroms, der aus dem Sumpf der ersten Säule in einem Überkopfkondensator (80) der zweiten Destillationssäule (14) abgeschieden wurde, wo der abgezogene Flüssigkeitsstrom gegen den kondensierenden Gasstrom im Kopf der zweiten Destillationssäule verdampft wird, wobei das Kondensat in den Kopf der zweiten Destillationssäule als Rückfluß zurückgeführt wird;
    d) Abscheiden eines kleineren Teils (31) des Gases im Kopf der zweiten Destillationssäule (14); und
    e) Verdampfen der Flüssigkeit im Sumpf der zweiten Destillationssäule (14) mittels Wärmeaustausch mit dem kondensierenden Gas im Kopf der zweiten Destillationssäule (13) und Gewinnen eines Teils der Flüssigkeit und/oder eines Teils der verdampften Flüssigkeit als leichtes Produkt, wobei das Produkt im wesentlichen keine leichteren Verunreinigungen enthält.
  6. Vorrichtung zum Entfernen leichterer Verunreinigungen einschließlich Wasserstoff mittels kryogener Destillation bei der Herstellung von hochreinem Stickstoff, umfassend ein Doppelzerlegungsmittel mit einem Hochdruckzerlegungsmittel (13) und einem Niederdruckzerlegungsmittel (14), Mittel zum Bereitstellen einer Fluidverbindung zwischen dem Hochdruckzerlegungsmittel und dem einem Niederdruckzerlegungsmittel, Mittel (16) zum Leiten eines Flüssigstickstoffstroms aus dem Hochdruckzerlegungsmittel in ein Zwischenniveau des Niederdruckzerlegungsmittels (16) zur weiteren Reinigung, Mittel (17, 20) zum Leiten von sauerstoffangereicherter Flüssigkeit aus dem Sumpf der Hochdruckzerlegungsmittel in einen Kondensator (80) im Kopf des Niederdruckzerlegungsmittels, Mittel (30, 31) zum Abscheiden kleinerer Gasanteile aus dem Kopf der leichtere Verunreinigungen enthaltenden Hochdruck- und Niederdruckzerlegungsmittel, Mittel (15) zum Verdampfen von Flüssigkeit im Sumpf der Niederdruckzerlegungsmittel mittels Wärmeaustausch mit Gas aus dem Kopf des Hochdruckzerlegungsmittels und Mittel zum Entfernen eines Produktionsstickstoffstroms aus dem Niederdruckzerlegungsmittel.
  7. Vorrichtung nach Anspruch 6, die außerdem einen Kreis für verdichteten Stickstoff umfaßt, der in Fluidverbindung mit einem Sumpfaufkocher (52) des Hochdruckzerlegungsmittels (13) steht, wobei im Sumpf des Hochdruckzerlegungsmittels sauerstoffreiche Flüssigkeit im Kontakt mit dem Aufkocher durch indirekten Wärmeaustausch verdampft wird und der Strom aus verdichtetem Stickstoff im Kopf des Hochdruckzerlegungsmittels kondensiert und entspannt wird, um seinen Rückfluß und sein Aufkochen zu verstärken.
  8. Vorrichtung nach Anspruch 6 oder 7, die außerdem eine Turbine (71) in Fluidverdindung mit dem Hochdruckverdichtungsmittel umfaßt, wobei die erforderliche Kühlung durch Entspannen eines Teils der verdichteten Luft in dieser Turbine vor der Zuführung in das Hochdruckzerlegungsmittel (13) erreicht wird.
  9. Vorrichtung nach Anspruch 8, wenn abhängig von Anspruch 6, die einen Sumpfaufkocher (52) des Hochdruckzerlegungsmittels (13), wobei der verdichtete Einsatzstrom gegen eine verdampfte, sauerstoffreiche Flüssigkeit mittels indirektem Wärmeaustausch kondensiert wird, und Mittel (74) zum Zuleiten des kondensierten Einsatzstroms in das Hochdruckzerlegungsmittels umfaßt.
  10. Vorrichtung nach Anspruch 6, umfassend Mittel zum Leiten von verdampfter Flüssigkeit aus dem Kondensator (80) in eine Entspannungsturbine (27).
EP92402799A 1991-10-15 1992-10-14 Verfahren zur Entfernung von Wasserstoff bei der kryogenen Destillation zwecks Erzeugung von hochreinem Stickstoff Expired - Lifetime EP0539268B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US77550391A 1991-10-15 1991-10-15
US775503 1991-10-15

Publications (2)

Publication Number Publication Date
EP0539268A1 EP0539268A1 (de) 1993-04-28
EP0539268B1 true EP0539268B1 (de) 1997-11-19

Family

ID=25104639

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92402799A Expired - Lifetime EP0539268B1 (de) 1991-10-15 1992-10-14 Verfahren zur Entfernung von Wasserstoff bei der kryogenen Destillation zwecks Erzeugung von hochreinem Stickstoff

Country Status (3)

Country Link
EP (1) EP0539268B1 (de)
JP (1) JP2983393B2 (de)
DE (1) DE69223217T2 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9726954D0 (en) * 1997-12-19 1998-02-18 Wickham Michael Air separation
US6173584B1 (en) * 1999-09-03 2001-01-16 Air Products And Chemicals, Inc. Multieffect distillation
US6263701B1 (en) * 1999-09-03 2001-07-24 Air Products And Chemicals, Inc. Process for the purification of a major component containing light and heavy impurities
EP1300640A1 (de) * 2001-10-04 2003-04-09 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von hoch reinem Stickstoff durch Tieftemperaturzerlegung von Luft
CN102506559A (zh) * 2011-09-28 2012-06-20 开封东京空分集团有限公司 多段精馏制取高纯氮气空分工艺
CN102589250A (zh) * 2012-02-14 2012-07-18 开封黄河空分集团有限公司 一种由空气分离制取氮气的工艺
CN107062800A (zh) * 2017-04-21 2017-08-18 上海启元特种气体发展有限公司 一种超纯氮除氢的方法及其装置
CN107560318A (zh) * 2017-09-22 2018-01-09 杭州杭氧股份有限公司 一种低温精馏法氮气提纯装置及提纯方法
JP7360909B2 (ja) * 2019-11-18 2023-10-13 東洋エンジニアリング株式会社 水素分離方法および水素分離装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902321A (en) * 1989-03-16 1990-02-20 Union Carbide Corporation Cryogenic rectification process for producing ultra high purity nitrogen
JPH0814335B2 (ja) * 1989-08-10 1996-02-14 マスコ コーポレーション 押下げ変換装置を有する2つの出口をもつ水栓
EP0485612B1 (de) * 1990-05-31 1995-10-18 Kabushiki Kaisha Kobe Seiko Sho Verfahren und vorrichtung zur herstellung hochreinen stickstoffes
US5123947A (en) * 1991-01-03 1992-06-23 Air Products And Chemicals, Inc. Cryogenic process for the separation of air to produce ultra high purity nitrogen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
H. Hausen et al., "Tieftemperaturtechnik", Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985 *

Also Published As

Publication number Publication date
JPH05302783A (ja) 1993-11-16
DE69223217D1 (de) 1998-01-02
DE69223217T2 (de) 1998-05-28
JP2983393B2 (ja) 1999-11-29
EP0539268A1 (de) 1993-04-28

Similar Documents

Publication Publication Date Title
EP0173168B1 (de) Verfahren zur Herstellung von ultrareinem Sauerstoff
JP2856985B2 (ja) 精製アルゴンを製造するための極低温精留方法
EP0096610B1 (de) Luftzerlegungsverfahren zur Gewinnung von Krypton und Xenon
KR910021340A (ko) 고순도 아르곤의 제조방법
US5167125A (en) Recovery of dissolved light gases from a liquid stream
US6073461A (en) Separation of carbon monoxide from nitrogen-contaminated gaseous mixtures also containing hydrogen and methane
KR930001593B1 (ko) 수소가 없는 고비등 합성 기체성분을 회수하는 방법
US4701200A (en) Process to produce helium gas
EP0573176B1 (de) Wärmeintegration zwischen Säulen für Mehrsäulendestillationssystem
EP0376465B1 (de) Verfahren und Vorrichtung zur Stickstoffreinigung
US4902321A (en) Cryogenic rectification process for producing ultra high purity nitrogen
EP0539268B1 (de) Verfahren zur Entfernung von Wasserstoff bei der kryogenen Destillation zwecks Erzeugung von hochreinem Stickstoff
CA2082291C (en) Inter-column heat integration for multi-column distillation system
US6578377B1 (en) Recovery of hydrogen and carbon monoxide from mixtures including methane and hydrocarbons heavier than methane
US5205127A (en) Cryogenic process for producing ultra high purity nitrogen
US5511380A (en) High purity nitrogen production and installation
JPS61122479A (ja) 窒素製造方法
US4762542A (en) Process for the recovery of argon
JPH04292777A (ja) 空気の極低温分離法
US6082134A (en) Process and apparatus for separating a gaseous mixture

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19921019

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19940325

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69223217

Country of ref document: DE

Date of ref document: 19980102

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010910

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010914

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010924

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20021014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST