EP0534395A1 - Hochchloridhaltige Emulsionen hoher Tafelförmigkeit von aussergewöhnlicher Stabilität - Google Patents
Hochchloridhaltige Emulsionen hoher Tafelförmigkeit von aussergewöhnlicher Stabilität Download PDFInfo
- Publication number
- EP0534395A1 EP0534395A1 EP92116262A EP92116262A EP0534395A1 EP 0534395 A1 EP0534395 A1 EP 0534395A1 EP 92116262 A EP92116262 A EP 92116262A EP 92116262 A EP92116262 A EP 92116262A EP 0534395 A1 EP0534395 A1 EP 0534395A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- grain
- tabular grains
- silver
- tabular
- chloride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000839 emulsion Substances 0.000 title claims abstract description 209
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 title claims abstract description 59
- 230000006911 nucleation Effects 0.000 claims abstract description 72
- 238000010899 nucleation Methods 0.000 claims abstract description 72
- 229910052709 silver Inorganic materials 0.000 claims abstract description 71
- 239000004332 silver Substances 0.000 claims abstract description 71
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 claims abstract description 57
- -1 silver halide Chemical class 0.000 claims abstract description 55
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 46
- 150000004820 halides Chemical class 0.000 claims abstract description 24
- 230000005855 radiation Effects 0.000 claims abstract description 14
- 230000012010 growth Effects 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 31
- 230000008569 process Effects 0.000 claims description 22
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 claims description 20
- 229930182817 methionine Natural products 0.000 claims description 20
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims description 15
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 claims description 15
- 239000012266 salt solution Substances 0.000 claims description 10
- 229940006460 bromide ion Drugs 0.000 claims description 6
- 238000001016 Ostwald ripening Methods 0.000 claims 2
- 150000003842 bromide salts Chemical class 0.000 claims 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M sodium chloride Inorganic materials [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 75
- 239000000243 solution Substances 0.000 description 63
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 57
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 47
- 239000013078 crystal Substances 0.000 description 45
- 239000011780 sodium chloride Substances 0.000 description 38
- 229910021607 Silver chloride Inorganic materials 0.000 description 34
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 33
- 108010010803 Gelatin Proteins 0.000 description 31
- 229920000159 gelatin Polymers 0.000 description 31
- 239000008273 gelatin Substances 0.000 description 31
- 235000019322 gelatine Nutrition 0.000 description 31
- 235000011852 gelatine desserts Nutrition 0.000 description 31
- 238000001556 precipitation Methods 0.000 description 27
- 238000006243 chemical reaction Methods 0.000 description 25
- 230000015572 biosynthetic process Effects 0.000 description 21
- 239000003795 chemical substances by application Substances 0.000 description 20
- 229910001961 silver nitrate Inorganic materials 0.000 description 18
- 230000005070 ripening Effects 0.000 description 16
- HOLVRJRSWZOAJU-UHFFFAOYSA-N [Ag].ICl Chemical compound [Ag].ICl HOLVRJRSWZOAJU-UHFFFAOYSA-N 0.000 description 13
- 238000000576 coating method Methods 0.000 description 13
- 229940006461 iodide ion Drugs 0.000 description 13
- 239000000203 mixture Substances 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- 230000000452 restraining effect Effects 0.000 description 11
- 206010070834 Sensitisation Diseases 0.000 description 9
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 230000008313 sensitization Effects 0.000 description 9
- 230000003595 spectral effect Effects 0.000 description 9
- 125000003118 aryl group Chemical group 0.000 description 8
- 238000004581 coalescence Methods 0.000 description 8
- 125000004433 nitrogen atom Chemical group N* 0.000 description 8
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 7
- 238000007792 addition Methods 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 230000001747 exhibiting effect Effects 0.000 description 7
- 239000003607 modifier Substances 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 7
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 239000000975 dye Substances 0.000 description 6
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 210000000988 bone and bone Anatomy 0.000 description 5
- 230000001235 sensitizing effect Effects 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 125000001931 aliphatic group Chemical group 0.000 description 4
- 125000000623 heterocyclic group Chemical group 0.000 description 4
- 239000002667 nucleating agent Substances 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- ZUNKMNLKJXRCDM-UHFFFAOYSA-N silver bromoiodide Chemical compound [Ag].IBr ZUNKMNLKJXRCDM-UHFFFAOYSA-N 0.000 description 4
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 description 4
- KAESVJOAVNADME-UHFFFAOYSA-N 1H-pyrrole Natural products C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 3
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 3
- SJOOOZPMQAWAOP-UHFFFAOYSA-N [Ag].BrCl Chemical compound [Ag].BrCl SJOOOZPMQAWAOP-UHFFFAOYSA-N 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 150000004683 dihydrates Chemical class 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000001376 precipitating effect Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- PODWXQQNRWNDGD-UHFFFAOYSA-L sodium thiosulfate pentahydrate Chemical compound O.O.O.O.O.[Na+].[Na+].[O-]S([S-])(=O)=O PODWXQQNRWNDGD-UHFFFAOYSA-L 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- IHWDSEPNZDYMNF-UHFFFAOYSA-N 1H-indol-2-amine Chemical class C1=CC=C2NC(N)=CC2=C1 IHWDSEPNZDYMNF-UHFFFAOYSA-N 0.000 description 2
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical compound C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 description 2
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 2
- 229930024421 Adenine Natural products 0.000 description 2
- KLSJWNVTNUYHDU-UHFFFAOYSA-N Amitrole Chemical compound NC1=NC=NN1 KLSJWNVTNUYHDU-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 229960000643 adenine Drugs 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- PKWIYNIDEDLDCJ-UHFFFAOYSA-N guanazole Chemical compound NC1=NNC(N)=N1 PKWIYNIDEDLDCJ-UHFFFAOYSA-N 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- KAMCBFNNGGVPPW-UHFFFAOYSA-N 1-(ethenylsulfonylmethoxymethylsulfonyl)ethene Chemical compound C=CS(=O)(=O)COCS(=O)(=O)C=C KAMCBFNNGGVPPW-UHFFFAOYSA-N 0.000 description 1
- QWENRTYMTSOGBR-UHFFFAOYSA-N 1H-1,2,3-Triazole Chemical compound C=1C=NNN=1 QWENRTYMTSOGBR-UHFFFAOYSA-N 0.000 description 1
- JKFYKCYQEWQPTM-UHFFFAOYSA-N 2-azaniumyl-2-(4-fluorophenyl)acetate Chemical compound OC(=O)C(N)C1=CC=C(F)C=C1 JKFYKCYQEWQPTM-UHFFFAOYSA-N 0.000 description 1
- JZIBVTUXIVIFGC-UHFFFAOYSA-N 2H-pyrrole Chemical compound C1C=CC=N1 JZIBVTUXIVIFGC-UHFFFAOYSA-N 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 241001562081 Ikeda Species 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- 206010034960 Photophobia Diseases 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 229910021612 Silver iodide Inorganic materials 0.000 description 1
- XCFIVNQHHFZRNR-UHFFFAOYSA-N [Ag].Cl[IH]Br Chemical compound [Ag].Cl[IH]Br XCFIVNQHHFZRNR-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001260 acyclic compounds Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000000586 desensitisation Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 208000013469 light sensitivity Diseases 0.000 description 1
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Inorganic materials [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000006174 pH buffer Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005588 protonation Effects 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229940045105 silver iodide Drugs 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 150000003567 thiocyanates Chemical class 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- QYSXJUFSXHHAJI-YRZJJWOYSA-N vitamin D3 Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C\C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-YRZJJWOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/005—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
- G03C1/0051—Tabular grain emulsions
- G03C1/0053—Tabular grain emulsions with high content of silver chloride
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/005—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
- G03C1/04—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with macromolecular additives; with layer-forming substances
- G03C1/047—Proteins, e.g. gelatine derivatives; Hydrolysis or extraction products of proteins
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/005—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
- G03C1/06—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
- G03C1/07—Substances influencing grain growth during silver salt formation
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/005—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
- G03C1/06—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
- G03C1/08—Sensitivity-increasing substances
- G03C1/10—Organic substances
- G03C1/12—Methine and polymethine dyes
- G03C1/14—Methine and polymethine dyes with an odd number of CH groups
- G03C1/16—Methine and polymethine dyes with an odd number of CH groups with one CH group
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/005—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
- G03C1/06—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
- G03C1/08—Sensitivity-increasing substances
- G03C1/10—Organic substances
- G03C1/12—Methine and polymethine dyes
- G03C1/14—Methine and polymethine dyes with an odd number of CH groups
- G03C1/18—Methine and polymethine dyes with an odd number of CH groups with three CH groups
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/005—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
- G03C1/0051—Tabular grain emulsions
- G03C2001/0055—Aspect ratio of tabular grains in general; High aspect ratio; Intermediate aspect ratio; Low aspect ratio
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/005—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
- G03C1/015—Apparatus or processes for the preparation of emulsions
- G03C2001/0156—Apparatus or processes for the preparation of emulsions pAg value; pBr value; pCl value; pI value
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/005—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
- G03C1/035—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain
- G03C2001/03511—Bromide content
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/005—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
- G03C1/035—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain
- G03C2001/03558—Iodide content
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/005—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
- G03C1/035—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain
- G03C2001/03594—Size of the grains
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C2200/00—Details
- G03C2200/01—100 crystal face
Definitions
- the invention relates to silver halide photography. More specifically, the invention relates to radiation sensitive silver halide emulsions useful in photography.
- tabular grain emulsions To distinguish tabular grain emulsions from those that contain only incidental tabular grain inclusions it is also the recognized practice of the art to require that a significant percentage (e.g., greater than 30 percent and more typically greater than 50 percent) of total grain projected area be accounted for by tabular grains.
- An emulsion is generally understood to be a "high aspect ratio tabular grain emulsion" when tabular grains having a thickness of less than 0.3 ⁇ m have an average aspect ratio of greater than 8 and account for greater than 50 percent of total grain projected area.
- the difficulty in achieving high average aspect ratios in high chloride tabular grain emulsions has often led to accepting average aspect ratios of greater than 5 as the best available approximations of high average aspect ratios.
- the term "thin tabular grain” is generally understood to be a tabular grain having a thickness of less than 0.2 ⁇ m.
- the term “ultrathin tabular grain” is generally understood to be a tabular grain having a thickness of 0.06 ⁇ m or less. High chloride thin tabular grain emulsions have been difficult to prepare and ultrathin high chloride tabular grain emulsions have been completely unknown.
- tabular grain emulsions satisfying grain thickness ( t ), average aspect ratio ( ECD/t ), average tabularity ( ECD/t2 ) and projected area aims have been formed by introducing two or more parallel twin planes into octahedral grains during their preparation.
- Regular octahedral grains are bounded by ⁇ 111 ⁇ crystal faces.
- the predominant feature of tabular grains formed by twinning are opposed parallel ⁇ 111 ⁇ major crystal faces.
- the major crystal faces have a three fold symmetry, typically appearing triangular or hexagonal.
- tabular grain emulsions containing parallel twin planes is most easily accomplished in the preparation of silver bromide emulsions.
- the art has developed the capability of including photographically useful levels of iodide.
- the inclusion of high levels of chloride as opposed to bromide, alone or in combination with iodide, has been difficult.
- Silver chloride differs from silver bromide in exhibiting a much stronger propensity toward the formation of grains with faces lying in ⁇ 100 ⁇ crystographic planes. Unfortunately, twinning of grains bounded by ⁇ 100 ⁇ crystal faces does not produce grains having a tabular shape.
- Maskasky U.S. Patent 4,400,463 developed a strategy for preparing a high chloride emulsion containing tabular grains with parallel twin planes and ⁇ 111 ⁇ major crystal faces with the significant advantage of tolerating significant internal inclusions of the other halides.
- the strategy was to use a particularly selected synthetic polymeric peptizer in combination with a grain growth modifier having as its function to promote the formation of ⁇ 111 ⁇ crystal faces.
- Adsorbed aminoazaindenes, preferably adenine, and iodide ions were disclosed to be useful grain growth modifiers.
- Maskasky U.S. Patent 4,713,323 significantly advanced the state of the art by preparing high chloride emulsions containing tabular grains with parallel twin planes and ⁇ 111 ⁇ major crystal faces using an aminoazaindene growth modifier and a gelatino-peptizer containing up to 30 micromoles per gram of methionine. Since the methionine content of a gelatino-peptizer, if objectionably high, can be readily reduced by treatment with a strong oxidizing agent (or alkylating agent, King et al U.S. Patent 4,942,120), Maskasky II placed within reach of the art high chloride tabular grain emulsions with significant bromide and iodide ion inclusions prepared starting with conventional and universally available peptizers.
- a strong oxidizing agent or alkylating agent, King et al U.S. Patent 4,942,120
- the average aspect ratio of the emulsion was 2, with the highest aspect ratio grain (grain A in Figure 3) being only 4.
- Bogg stated that the emulsions can contain no more than 1 percent iodide and demonstrated only a 99.5% bromide 0.5% iodide emulsion.
- Mignot U.S. Patent 4,386,156 represents an improvement over Bogg in that the disadvantages of ammoniacal ripening were avoided in preparing a silver bromide emulsion containing tabular grains with square and rectangular major faces.
- Mignot specifically requires ripening in the absence of silver halide ripening agents other than bromide ion (e.g., thiocyanate, thioether or ammonia).
- Mignot relies on excess bromide ion for ripening. Since silver bromide exhibits a solubility approximately two orders of magnitude lower than that of silver chloride, reliance on excess bromide ion for ripening precludes the formation of high chloride tabular grains.
- this invention is directed to a radiation sensitive emulsion containing a silver halide grain population comprised of at least 50 mole percent chloride, based on total silver forming the grain population, in which greater than 30 percent of the grain population projected area is accounted for by tabular grains having a mean thickness of less than 0.3 ⁇ m.
- the emulsion is characterized in that the tabular grains have parallel major faces lying in ⁇ 100 ⁇ crystallographic planes.
- tabular grains bounded by ⁇ 100 ⁇ major faces a portion accounting for 50 percent of total grain projected area selected on the criteria of adjacent major face edge ratios of less than 10 and thicknesses of less than 0.3 ⁇ m and having higher aspect ratios than any remaining tabular grains satisfying these criteria have an average aspect ratio of greater than 8.
- this invention is directed to a process of preparing silver halide emulsions of the second preferred form containing tabular grains bounded by ⁇ 100 ⁇ major faces comprised of the steps of (1) introducing silver and halide salts into a dispersing medium and (2) maintaining conditions within the dispersing medium that promote the formation of tabular grains bounded by ⁇ 100 ⁇ major faces.
- the process is characterized in that of the tabular grains bounded by ⁇ 100 ⁇ major faces a portion accounting for 50 percent of total grain projected area selected on the criteria of adjacent major face edge ratios of less than 10 and thicknesses of less than 0.3 ⁇ m and having higher aspect ratios than any remaining tabular grains satisfying these criteria (1) have an average aspect ratio of greater than 8 and (2) internally at their nucleation site contain iodide and at least 50 mole percent chloride, at least the selected portion of the tabular grains being formed by nucleation in the presence of iodide with chloride accounting for at least 50 mole percent of the halide present in the dispersing medium and the pCl of the dispersing medium being maintained in the range of from 0.5 to 3.5.
- the invention in one preferred form is based on the discovery of a novel approach to forming tabular grains. Instead of introducing parallel twin planes in grains as they are being formed to induce tabularity and thereby produce tabular grains with ⁇ 111 ⁇ major faces, it has been discovered that the presence of iodide in the dispersing medium during a high chloride nucleation step coupled with maintaining the chloride ion in solution within a selected pCl range results in the formation of a high aspect ratio tabular grain emulsion in which the tabular grains are bounded by ⁇ 100 ⁇ crystal faces.
- the preferred form of the invention represent the discovery of a novel process for preparing tabular grain emulsions, the emulsions that are produced by the process are novel. Further, alternative processes of preparation are disclosed that do not require the presence of iodide during grain nucleation and hence render iodide incorporation within the high chloride tabular grains of the invention a matter of choice.
- the invention places within the reach of the art tabular grains bounded by ⁇ 100 ⁇ crystal faces with halide contents, halide distributions and grain thicknesses that have not been heretofore realized.
- the present invention provides the first ultrathin tabular grain emulsion in which the grains are bounded by ⁇ 100 ⁇ crystal faces.
- the invention provides high aspect ratio tabular grain high chloride emulsions exhibiting high levels of grain stability. Unlike high chloride tabular grain emulsions in which the tabular grains have ⁇ 111 ⁇ major faces, the emulsions of the invention do not require a morphological stabilizer adsorbed to the major faces of the grains to maintain their tabular form. Finally, while clearly applicable to high chloride emulsions, the present invention extends beyond high chloride emulsions to those containing a wide range of bromide, iodide and chloride concentrations.
- the invention is directed to a photographically useful, radiation sensitive emulsion containing a silver halide grain population comprised of at least 50 mole percent chloride, based on total silver forming the grain population, in which greater than 30 percent of the grain population projected area is accounted for by tabular grains tabular grains having a mean thickness of less than 0.3 ⁇ m.
- the tabular grains have parallel major faces lying in ⁇ 100 ⁇ crystallographic planes.
- tabular grains bounded by ⁇ 100 ⁇ major faces those accounting for 50 percent of the total grain projected area, selected on the criteria of (1) adjacent major face edge ratios of less than 10, (2) thicknesses of less than 0.3 ⁇ m and (3) higher aspect ratios than any remaining tabular grains satisfying criteria (1) and (2), have an average aspect ratio of greater than 8.
- Figure 1 is a shadowed photomicrograph of carbon grain replicas of a representative emulsion of the invention, described in detail in Example 1 below. It is immediately apparent that most of the grains have orthogonal tetragonal (square or rectangular) faces. The orthogonal tetragonal shape of the grain faces indicates that they are ⁇ 100 ⁇ crystal faces.
- rods acicular or rod-like grains
- These grains are more than 10 times longer in one dimension than in any other dimension and can be excluded from the desired tabular grain population based on their high ratio of edge lengths.
- the projected area accounted for by the rods is low, but, when rods are present, their projected area is noted for determining total grain projected area.
- the grains remaining all have square or rectangular major faces, indicative of ⁇ 100 ⁇ crystal faces.
- Some of these grains are regular cubic grains. That is, they are grains that have three mutually perpendicular edges of equal length. To distinguish cubic grains from tabular grains it is necessary to measure the grain shadow lengths. From a knowledge of the angle of illumination (the shadow angle) it is possible to calculate the thickness of a grain from a measurement of its shadow length. The projected areas of the cubic grains are included in determining total grain projected area.
- Each of the grains having a square or rectangular face and a thickness of less than 0.3 ⁇ m is examined.
- the projected area (the product of edge lengths) of the upper surface of each grain is noted. From the grain projected area the ECD of the grain is calculated.
- the thickness (t) of the grain and its aspect ratio (ECD/t) of the grain are next calculated.
- these grains are rank ordered according to aspect ratio.
- the grain with the highest aspect ratio is rank ordered first and the grain with the lowest aspect ratio is rank ordered last.
- the aspect ratios of the selected tabular grain population are then averaged.
- the average aspect ratio of the selected tabular grain population is greater than 8.
- average aspect ratios of the selected tabular grain population are greater than 12 and optimally at least 20.
- the average aspect ratio of the selected tabular grain population ranges up to 50, but higher aspect ratios of 100, 200 or more can be realized.
- the selected tabular grain population accounting for 50 percent of total grain projected area preferably exhibits major face edge length ratios of less than 5 and optimally less than 2.
- the tabular grain population is selected on the basis of tabular grain thicknesses of less than 0.2 ⁇ m instead of 0.3 ⁇ m.
- the emulsions are in this instance thin tabular grain emulsions.
- ultrathin tabular grain emulsions have been prepared satisfying the requirements of the invention.
- Ultrathin tabular grain emulsions are those in which the selected tabular grain population is made of up tabular grains having thicknesses of less than 0.06 ⁇ m.
- the only ultrathin tabular grain emulsions of a halide content exhibiting a cubic crystal lattice structure known in the art contained tabular grains bounded by ⁇ 111 ⁇ major faces. In other words, it was thought essential to form tabular grains by the mechanism of parallel twin plane incorporation to achieve ultrathin dimensions.
- Emulsions according to the invention can be prepared in which the selected tabular grain population has a mean thickness down to 0.02 ⁇ m and even 0.01 ⁇ m.
- Ultrathin tabular grains have extremely high surface to volume ratios. This permits ultrathin grains to be photographically processed at accelerated rates. Further, when spectrally sensitized, ultrathin tabular grains exhibit very high ratios of speed in the spectral region of sensitization as compared to the spectral region of native sensitivity. For example, ultrathin tabular grain emulsions according to the invention can have entirely negligible levels of blue sensitivity, and are therefore capable of providing a green or red record in a photographic product that exhibits minimal blue contamination even when located to receive blue light.
- the selected tabular grain population can exhibit an average ECD of any photographically useful magnitude compatible with a tabularity of greater than 25.
- ECD's for photographic utility average ECD's of less than 10 ⁇ m are contemplated, although average ECD's in most photographic applications rarely exceed 6 ⁇ m.
- a minimum ECD to satisfy minimum tabularity requirements with a minimum grain thickness of the selected tabular grain population is just greater than 0.25 ⁇ m.
- emulsions with selected tabular grain populations having higher ECD's are advantageous for achieving relatively high levels of photographic sensitivity while selected tabular grain populations with lower ECD's are advantageous in achieving low levels of granularity.
- the advantageous properties of the emulsions of the invention are increased as the proportion of tabular grains having thicknesses of less than 0.3 ⁇ m and ⁇ 100 ⁇ major faces is increased.
- the preferred emulsions according to the invention are those in which at least 50 percent, most preferably at least 70 percent and optimally at least 90 percent of total grain projected area is accounted for by tabular grains having ⁇ 100 ⁇ major faces. It is specifically contemplated to provide emulsions satisfying the grain descriptions above in which the selection of the rank ordered tabular grains extends to sufficient tabular grains to account for 70 percent or even 90 percent of total grain projected area.
- the emulsion does not satisfy the requirements of the invention and is, in general, a photographically inferior emulsion.
- emulsions are photographically inferior in which many or all of the tabular grains are relatively thick--e.g., emulsions containing high proportions of tabular grains with thicknesses in excess of 0.3 ⁇ m.
- inferior emulsions failing to satisfy the requirements of the invention have an excessive proportion of total grain projected area accounted for by cubes, twinned nontabular grains, and rods. Such an emulsion is shown in Figure 2. Most of the grain projected area is accounted for by cubic grains. Also the rod population is much more pronounced than in Figure 1. A few tabular grains are present, but they account for only a minor portion of total grain projected area.
- the tabular grain emulsion of Figure 1 satisfying the requirements of the invention and the predominantly cubic grain emulsion of Figure 2 were prepared under conditions that were identical, except for iodide management during nucleation.
- the Figure 2 emulsion is a silver chloride emulsion while the emulsion of Figure 1 additionally includes a small amount of iodide.
- emulsions satisfying the requirements of the invention has been achieved by the discovery of a novel precipitation process.
- grain nucleation occurs in a high chloride environment in the presence of iodide ion under conditions that favor the emergence of ⁇ 100 ⁇ crystal faces.
- iodide ion the inclusion of iodide into the cubic crystal lattice being formed by silver ions and the remaining halide ions is disruptive because of the much larger diameter of iodide ion as compared to chloride ion.
- the incorporated iodide ions introduce crystal irregularities that in the course of further grain growth result in tabular grains rather than regular (cubic) grains.
- cubic grain nuclei being formed having one or more screw dislocations in one or more of the cubic crystal faces.
- the cubic crystal faces that contain at least one screw dislocation thereafter accept silver halide at an accelerated rate as compared to the regular cubic crystal faces (i.e., those lacking a screw dislocation).
- the regular cubic crystal faces i.e., those lacking a screw dislocation.
- any two contiguous cubic crystal faces contain a screw dislocation
- continued growth accelerates growth on both faces and produces a tabular grain structure.
- the tabular grains of the emulsions of this invention are produced by those grain nuclei having two, three or four faces containing screw dislocations.
- a reaction vessel containing a dispersing medium and conventional silver and reference electrodes for monitoring halide ion concentrations within the dispersing medium.
- Halide ion is introduced into the dispersing medium that is at least 50 mole percent chloride--i.e., at least half by number of the halide ions in the dispersing medium are chloride ions.
- the pCl of the dispersing medium is adjusted to favor the formation of ⁇ 100 ⁇ grain faces on nucleation--that is, within the range of from 0.5 to 3.5, preferably within the range of from 1.0 to 3.0 and, optimally, within the range of from 1.5 to 2.5.
- the grain nucleation step is initiated when a silver jet is opened to introduce silver ion into the dispersing medium.
- Iodide ion is preferably introduced into the dispersing medium concurrently with or, optimally, before opening the silver jet.
- Effective tabular grain formation can occur over a wide range of iodide ion concentrations ranging up to the saturation limit of iodide in silver chloride.
- the saturation limit of iodide in silver chloride is reported by H. Hirsch, "Photographic Emulsion Grains with Cores: Part I. Evidence for the Presence of Cores", J. of Photog. Science, Vol. 10 (1962), pp. 129-134, to be 13 mole percent.
- iodide grains in which equal molar proportions of chloride and bromide ion are present up to 27 mole percent iodide, based on silver, can be incorporated in the grains. It is preferred to undertake grain nucleation and growth below the iodide saturation limit to avoid the precipitation of a separate silver iodide phase and thereby avoid creating an additional category of unwanted grains. It is generally preferred to maintain the iodide ion concentration in the dispersing medium at the outset of nucleation at less than 10 mole percent. In fact, only minute amounts of iodide at nucleation are required to achieve the desired tabular grain population. Initial iodide ion concentrations of down to 0.001 mole percent are contemplated. However, for convenience in replication of results, it is preferred to maintain initial iodide concentrations of at least 0.01 mole percent and, optimally, at least 0.05 mole percent.
- silver iodochloride grain nuclei are formed during the nucleation step. Minor amounts of bromide ion can be present in the dispersing medium during nucleation. Any amount of bromide ion can be present in the dispersing medium during nucleation that is compatible with at least 50 mole percent of the halide in the grain nuclei being chloride ions.
- the grain nuclei preferably contain at least 70 mole percent and optimally at least 90 mole percent chloride ion, based on silver.
- Grain nuclei formation occurs instantaneously upon introducing silver ion into the dispersing medium.
- silver ion introduction during the nucleation step is preferably extended for a convenient period, typically from 5 seconds to less than a minute. So long as the pCl remains within the ranges set forth above no additional chloride ion need be added to the dispersing medium during the nucleation step. It is, however, preferred to introduce both silver and halide salts concurrently during the nucleation step.
- the advantage of adding halide salts concurrently with silver salt throughout the nucleation step is that this permits assurance that any grain nuclei formed after the outset of silver ion addition are of essentially similar halide content as those grain nuclei initially formed.
- Iodide ion addition during the nucleation step is particularly preferred. Since the deposition rate of iodide ion far exceeds that of the other halides, iodide will be depleted from the dispersing medium unless replenished.
- Silver ion is preferably introduced as an aqueous silver salt solution, such as a silver nitrate solution.
- Halide ion is preferably introduced as alkali or alkaline earth halide, such as lithium, sodium and/or potassium chloride, bromide and/or iodide.
- the dispersing medium contained in the reaction vessel prior to the nucleation step is comprised of water, the dissolved halide ions discussed above and a peptizer.
- the dispersing medium can exhibit a pH within any convenient conventional range for silver halide precipitation, typically from 2 to 8. It is preferred, but not required, to maintain the pH of the dispersing medium on the acid side of neutrality, preferably in a pH range of from 5,0 to 7.0.
- Mineral acids such as nitric acid or hydrochloride acid
- bases such as alkali hydroxides
- the peptizer can take any convenient conventional form known to be useful in the precipitation of photographic silver halide emulsions and particularly tabular grain silver halide emulsions.
- a summary of conventional peptizers is provided in Research Disclosure , Vol. 308, December 1989, Item 308119, Section IX, the disclosure of which is here incorporated by reference. Research Disclosure is published by Kenneth Mason Publications, Ltd., Emsworth, Hampshire P010 7DD, England. While synthetic polymeric peptizers of the type disclosed by Maskasky I, cited above and here incorporated by reference, can be employed, it is preferred to employ gelatino peptizers (e.g., gelatin and gelatin derivatives).
- gelatino peptizers e.g., gelatin and gelatin derivatives.
- peptizers are low methionine gelatino peptizers (i.e., those containing less than 30 micromoles of methionine per gram of peptizer), optimally less than 12 micromoles of methionine per gram of peptizer, these peptizers and their preparation are described by Maskasky II and King et al, cited above, the disclosures of which are here incorporated by reference.
- the grain growth modifiers of the type taught for inclusion in the emulsions of Maskasky I and II are not appropriate for inclusion in the dispersing media of this invention, since these grain growth modifiers promote twinning and the formation of tabular grains having ⁇ 111 ⁇ major faces.
- adenine e.g., adenine
- the grain growth modifiers promote twinning and the formation of tabular grains having ⁇ 111 ⁇ major faces.
- at least about 10 percent and typically from 20 to 80 percent of the dispersing medium forming the completed emulsion is present in the reaction vessel at the outset of the nucleation step. It is conventional practice to maintain relatively low levels of peptizer, typically from 10 to 20 percent of the peptizer present in the completed emulsion, in the reaction vessel at the start of precipitation.
- the concentration of the peptizer in the dispersing medium be in the range of from 0.5 to 6 percent by weight of the total weight of the dispersing medium at the outset of the nucleation step. It is conventional practice to add gelatin, gelatin derivatives and other vehicles and vehicle extenders to prepare emulsions for coating after precipitation. Any naturally occurring level of methionine can be present in gelatin and gelatin derivatives added after precipitation is complete.
- the nucleation step can be performed at any convenient conventional temperature for the precipitation of silver halide emulsions. Temperatures ranging from near ambient--e.g., 30°C up to about 90°C are contemplated, with nucleation temperatures in the range of from 35 to 70°C being preferred.
- a grain growth step follows the nucleation step in which the grain nuclei are grown until tabular grains having ⁇ 100 ⁇ major faces of a desired average ECD are obtained.
- the objective of the nucleation step is to form a grain population having the desired incorporated crystal structure irregularities
- the objective of the growth step is to deposit additional silver halide onto (grow) the existing grain population while avoiding or minimizing the formation of additional grains. If additional grains are formed during the growth step, the polydispersity of the emulsion is increased and, unless conditions in the reaction vessel are maintained as described above for the nucleation step, the additional grain population formed in the growth step will not have the desired tabular grain properties described above.
- the process of preparing emulsions according to the invention can be performed as a single jet precipitation without interrupting silver ion introduction from start to finish.
- a spontaneous transition from grain formation to grain growth occurs even with an invariant rate of silver ion introduction, since the increasing size of the grain nuclei increases the rate at which they can accept silver and halide ion from the dispersing medium until a point is reached at which they are accepting silver and halide ions at a sufficiently rapid rate that no new grains can form.
- single jet precipitation limits halide content and profiles and generally results in more polydisperse grain populations.
- emulsions In the preparation of emulsions according to the invention it is preferred to interrupt silver and halide salt introductions at the conclusion of the nucleation step and before proceeding to the growth step that brings the emulsions to their desired final size and shape.
- the emulsions are held within the temperature ranges described above for nucleation for a period sufficient to allow reduction in grain dispersity.
- a holding period can range from a minute to several hours, with typical holding periods ranging from 5 minutes to an hour.
- relatively smaller grain nuclei are Ostwald ripened onto surviving, relatively larger grain nuclei, and the overall result is a reduction in grain dispersity.
- the rate of ripening can be increased by the presence of a ripening agent in the emulsion during the holding period.
- a conventional simple approach to accelerating ripening is to increase the halide ion concentration in the dispersing medium. This creates complexes of silver ions with plural halide ions that accelerate ripening. When this approach is employed, it is preferred to increase the chloride ion concentration in the dispersing medium. That is, it is preferred to lower the pCl of the dispersing medium into a range in which increased silver chloride solubility is observed.
- ripening can be accelerated by employing conventional ripening agents.
- Preferred ripening agents are sulfur containing ripening agents, such as thioethers and thiocyanates.
- Typical thiocyanate ripening agents are disclosed by Nietz et al U.S. Patent 2,222,264, Lowe et al U.S. Patent 2,448,534 and Illingsworth U.S. Patent 3,320,069, the disclosures of which are here incorporated by reference.
- Typical thiocyanate ripening agents are disclosed by McBride U.S. Patent 3,271,157, Jones U.S. Patent 3,574,628 and Rosencrantz et al U.S. Patent 3,737,313, the disclosures of which are here incorporated by reference. More recently crown thioethers have been suggested for use as ripening agents.
- grain growth to obtain the emulsions of the invention can proceed according to any convenient conventional precipitation technique for the precipitation of silver halide grains bounded by ⁇ 100 ⁇ grain faces.
- any halide or combination of halides known to form a cubic crystal lattice structure can be employed during the growth step.
- iodide nor chloride ions need be incorporated in the grains during the growth step, since the irregular grain nuclei faces that result in tabular grain growth, once introduced, persist during subsequent grain growth independently of the halide being precipitated, provided the halide or halide combination is one that forms a cubic crystal lattice.
- silver bromide or silver iodobromide When silver bromide or silver iodobromide is being deposited during the growth step, it is preferred to maintain a pBr within the dispersing medium in the range of from 1.0 to 4.2, preferably 1.6 to 3.4.
- a pBr When silver chloride, silver iodochloride, silver bromochloride or silver iodobromochloride is being deposited during the growth step, it is preferred to maintain the pCl within the dispersing medium within the ranges noted above in describing the nucleation step.
- both silver and halide salts are preferably introduced into the dispersing medium.
- double jet precipitation is contemplated, with added iodide salt, if any, being introduced with the remaining halide salt or through an independent jet.
- the rate at which silver and halide salts are introduced is controlled to avoid renucleation--that is, the formation of a new grain population. Addition rate control to avoid renucleation is generally well known in the art, as illustrated by Wilgus German OLS No. 2,107,118, Irie U.S. Patent 3,650,757, Kurz U.S. Patent 3,672,900, Saito U.S.
- peptizers that exhibit reduced adhesion to grain surfaces.
- low methionine gelatin of the type disclosed by Maskasky II is less tightly absorbed to grain surfaces than gelatin containing higher levels of methionine.
- Further moderated levels of grain adsorption can be achieved with so-called “synthetic peptizers"--that is, peptizers formed from synthetic polymers.
- the maximum quantity of peptizer compatible with limited coalescence of grain nuclei is, of course, related to the strength of adsorption to the grain surfaces.
- the emulsions of the invention include silver chloride, silver bromochloride, silver iodochloride, silver iodobromochloride and silver bromoiodochloride emulsions, where halides are named in order of increasing concentrations.
- the invention is particularly advantageous in providing high chloride (greater than 50 mole percent chloride) tabular grain emulsions, since conventional high chloride tabular grain emulsions having tabular grains bounded by ⁇ 111 ⁇ are inherently unstable and require the presence of a morphological stabilizer to prevent the grains from regressing to nontabular forms.
- Particularly preferred high chloride emulsions are according to the invention that are those that contain more than 70 mole percent (optimally more than 90 mole percent) chloride.
- a further procedure that can be employed to maximize the population of tabular grains having ⁇ 100 ⁇ major faces is to incorporate an agent capable of restraining the emergence of non- ⁇ 100 ⁇ grain crystal faces in the emulsion during its preparation.
- the restraining agent when employed, can be active during grain nucleation, during grain growth or throughout precipitation.
- Useful restraining agents under the contemplated conditions of precipitation are organic compounds containing a nitrogen atom with a resonance stabilized ⁇ electron pair. Resonance stabilization prevents protonation of the nitrogen atom under the relatively acid conditions of precipitation.
- Aromatic resonance can be relied upon for stabilization of the ⁇ electron pair of the nitrogen atom.
- the nitrogen atom can either be incorporated in an aromatic ring, such as an azole or azine ring, or the nitrogen atom can be a ring substituent of an aromatic ring.
- the restraining agent can satisfy the following formula: where Z represents the atoms necessary to complete a five or six membered aromatic ring structure, preferably formed by carbon and nitrogen ring atoms.
- Preferred aromatic rings are those that contain one, two or three nitrogen atoms.
- Specifically contemplated ring structures include 2H-pyrrole, pyrrole, imidazole, pyrazole, 1,2,3-triazole, 1,2,4-triazole, 1,3,5-triazole, pyridine, pyrazine, pyrimidine, and pyridazine.
- Ar is an aromatic ring structure containing from 5 to 14 carbon atoms and R1 and R2 are independently hydrogen, Ar, or any convenient aliphatic group or together complete a five or six membered ring.
- Ar is preferably a carbocyclic aromatic ring, such as phenyl or naphthyl.
- any of the nitrogen and carbon containing aromatic rings noted above can be attached to the nitrogen atom of formula II through a ring carbon atom. In this instance, the resulting compound satisfies both formulae I and II. Any of a wide variety of aliphatic groups can be selected.
- the simplest contemplated aliphatic groups are alkyl groups, preferably those containing from 1 to 10 carbon atoms and most preferably from 1 to 6 carbon atoms. Any functional substituent of the alkyl group known to be compatible with silver halide precipitation can be present. It is also contemplated to employ cyclic aliphatic substituents exhibiting 5 or 6 membered rings, such as cycloalkane, cycloalkene and aliphatic heterocyclic rings, such as those containing oxygen and/or nitrogen hetero atoms. Cyclopentyl, cyclohexyl, pyrrolidinyl, piperidinyl, furanyl and similar heterocyclic rings are specifically contemplated.
- Selection of preferred restraining agents and their useful concentrations can be accomplished by the following selection procedure:
- the compound being considered for use as a restraining agent is added to a silver chloride emulsion consisting essentially of cubic grains with a mean grain edge length of 0.3 ⁇ m.
- the emulsion is 0.2 M in sodium acetate, has a pCl of 2.1, and has a pH that is at least one unit greater than the pKa of the compound being considered.
- the emulsion is held at 75°C with the restraining agent present for 24 hours.
- the compound introduced is performing the function of a restraining agent.
- the significance of sharper edges of intersection of the ⁇ 100 ⁇ crystal faces lies in the fact that grain edges are the most active sites on the grains in terms of ions reentering the dispersing medium.
- the restraining agent is acting to restrain the emergence of non- ⁇ 100 ⁇ crystal faces, such as are present, for example, at rounded edges and corners.
- Optimum restraining agent activity occurs when the new grain population is a tabular grain population in which the tabular grains are bounded by ⁇ 100 ⁇ major crystal faces.
- This example demonstrates the preparation of an ultrathin tabular grain silver iodochloride emulsion satisfying the requirements of this invention.
- a 2030 mL solution containing 1.75% by weight low methionine gelatin, 0.011 M sodium chloride and 1.48 x 10 ⁇ 4 M potassium iodide was provided in a stirred reaction vessel.
- the contents of the reaction vessel were maintained at 40°C and the pCl was 1.95.
- the mixture was then held 10 minutes with the temperature remaining at 40°C. Following the hold, a 1.0 M silver nitrate solution and a 1.0 M NaCl solution were then added simultaneously at 2 mL/min for 40 minutes with the pCl being maintained at 1.95.
- the resulting emulsion was a tabular grain silver iodochloride emulsion containing 0.5 mole percent iodide, based on silver. Fifty percent of total grain projected area was provided by tabular grains having ⁇ 100 ⁇ major faces having an average ECD of 0.84 mm and an average thickness of 0.037 ⁇ m, selected on the basis of an aspect ratio rank ordering of all ⁇ 100 ⁇ tabular grains having a thickness of less than 0.3 ⁇ m and a major face edge length ratio of less than 10.
- the selected tabular grain population had an average aspect ratio (ECD/t) of 23 and an average tabularity (ECD/t2) of 657. The ratio of major face edge lengths of the selected tabular grains was 1.4.
- tabular grains having ⁇ 100 ⁇ major faces and aspect ratios of at least 7.5. These tabular grains had a mean ECD of 0.75 ⁇ m, a mean thickness of 0.045 ⁇ m, a mean aspect ratio of 18.6 and a mean tabularity of 488.
- This emulsion demonstrates the importance of iodide in the precipitation of the initial grain population (nucleation).
- This emulsion was precipitated identically to that of Example 1, except no iodide was intentionally added.
- the resulting emulsion consisted primarily of cubes and very low aspect ratio rectangular grains ranging in size from about 0.1 to 0.5 ⁇ m in edge length. A small number of large rods and high aspect ratio ⁇ 100 ⁇ tabular grains were present, but did not constitute a useful quantity of the grain population.
- This example demonstrates an emulsion according to the invention in which 90% of the total grain projected area is comprised of tabular grains with ⁇ 100 ⁇ major faces and aspect ratios of greater than 7.5.
- a 2030 mL solution containing 3.52% by weight low methionine gelatin, 0.0056 M sodium chloride and 1.48 x 10 ⁇ 4 M potassium iodide was provided in a stirred reaction vessel.
- the contents of the reaction vessel were maintained at 40°C and the pCl was 2.25.
- the mixture was then held 10 minutes with the temperature remaining at 40°C. Following the hold, a 0.5 M silver nitrate solution and a 0.5 M NaCl solution were then added simultaneously at 8 mL/min for 40 minutes with the pCl being maintained at 2.25. The 0.5 M AgNO3 solution and the 0.5 M NaCl solution were then added simultaneously with a ramped linearly increasing flow from 8 mL per minute to 16 mL per minute over 130 minutes with the pCl maintained at 2.25.
- the resulting emulsion was a tabular grain silver iodochloride emulsion containing 0.06 mole percent iodide, based on silver.
- Fifty percent of total grain projected area was provided by tabular grains having ⁇ 100 ⁇ major faces having an average ECD of 1.86 ⁇ m and an average thickness of 0.082 ⁇ m, selected on the basis of an aspect ratio rank ordering of all ⁇ 100 ⁇ tabular grains having a thickness of less than 0.3 ⁇ m and a major face edge length ratio of less than 10.
- the selected tabular grain population had an average aspect ratio (ECD/t) of 24 and an average tabularity (ECD/t2) of 314.
- the ratio of major face edge lengths of the selected tabular grains was 1.2.
- tabular grains having ⁇ 100 ⁇ major faces and aspect ratios of at least 7.5. These tabular grains had a mean ECD of 1.47 ⁇ m, a mean thickness of 0.086 ⁇ m, a mean aspect ratio of 17.5 and a mean tabularity of 222.
- This example demonstrates an emulsion prepared similarly as the emulsion of Example 3, but an initial 0.08 mole percent iodide and a final 0.04% iodide.
- a 2030 mL solution containing 3.52% by weight low methionine gelatin, 0.0056 M sodium chloride and 3.00 x 10 ⁇ 5 M potassium iodide was provided in a stirred reaction vessel.
- the contents of the reaction vessel were maintained at 40°C and the pCl was 2.25.
- the mixture was then held 10 minutes with the temperature remaining at 40°C. Following the hold, a 0.5 M silver nitrate solution and a 0.5 M sodium chloride solution were then added simultaneously at 8 mL/min for 40 minutes with the pCl being maintained at 2.25.
- the resulting emulsion was a tabular grain silver iodochloride emulsion containing 0.04 mole percent iodide, based on silver. Fifty percent of the total grain projected area was provided by tabular grains having ⁇ 100 ⁇ major faces having an average ECD of 0.67 ⁇ m and an average thickness of 0.035 ⁇ m, selected on the basis of an aspect ratio rank ordering of all ⁇ 100 ⁇ tabular grains having a thickness of less than 0.3 ⁇ m and a major face edge length ratio of less than 10.
- the selected tabular grain population had an average aspect ratio (ECD/t) of 20 and an average tabularity (ECD/t2) of 651. The ratio of major face edge lengths of the selected tabular grains was 1.9.
- tabular grains having ⁇ 100 ⁇ major faces and aspect ratios of at least 7.5. These tabular grains had a mean ECD of 0.63 ⁇ m, a mean thickness of 0.036 ⁇ m, a mean aspect ratio of 18.5 and a mean tabularity of 595.
- This example demonstrates an emulsion in which the initial grain population contained 6.0 mole percent iodide and the final emulsion contained 1.6% iodide.
- a 2030 mL solution containing 3.52% by weight low methionine gelatin, 0.0056 M sodium chloride and 3.00 x 10 ⁇ 5 M potassium iodide was provided in a stirred reaction vessel.
- the contents of the reaction vessel were maintained at 40°C and the pCl was 2.25.
- the mixture was then held 10 minutes with the temperature remaining at 40°C. Following the hold, a 1.00 M silver nitrate solution and a 1.00 M sodium chloride solution were then added simultaneously at 2 mL/min for 40 minutes with the pCl being maintained at 2.25.
- the resulting emulsion was a tabular grain silver iodochloride emulsion containing 1.6 mole percent iodide, based on silver.
- Fifty percent of total grain projected area was provided by tabular grains having ⁇ 100 ⁇ major faces having an average ECD of 0.57 ⁇ m and an average thickness of 0.036 ⁇ m, selected on the basis of an aspect ratio rank ordering of all ⁇ 100 ⁇ tabular grains having a thickness of less than 0.3 ⁇ m and a major face edge length ratio of less than 10.
- the selected tabular grain population had an average aspect ratio (ECD/t) of 16.2 and an average tabularity (ECD/t2) of 494.
- the ratio of major face edge lengths of the selected tabular grains was 1.9.
- tabular grains having ⁇ 100 ⁇ major faces and aspect ratios of at least 7.5. These tabular grains had a mean ECD of 0.55 ⁇ m, a mean thickness of 0.041 ⁇ m, a mean aspect ratio of 14.5 and a mean tabularity of 421.
- This example demonstrates an ultrathin high aspect ratio ⁇ 100 ⁇ tabular grain emulsion in which 2 mole percent iodide is present in the initial population and additional iodide is added during growth to make the final iodide level 5 mole percent.
- a 2030 mL solution containing 1.75% by weight low methionine gelatin, 0.0056 M sodium chloride and 1.48 x 10 ⁇ 4 M potassium iodide was provided in a stirred reaction vessel.
- the contents of the reaction vessel were maintained at 40°C and the pCl was 2.3.
- the mixture was then held 10 minutes with the temperature remaining at 40°C. Following the hold, a 1.00 M silver nitrate solution and a 1.00 M sodium chloride solution were then added simultaneously at 8 mL/min while a 3.75 x 10 ⁇ 3 M potassium iodide was simultaneously added at 14.6 mL/min for 10 minutes with the pCl being maintained at 1.95.
- the resulting emulsion was a tabular grain silver iodochloride emulsion containing 5 mole percent iodide, based on silver. Fifty percent of total grain projected area was provided by tabular grains having ⁇ 100 ⁇ major faces having an average ECD of 0.58 ⁇ m and an average thickness of 0.030 ⁇ m, selected on the basis of an aspect ratio rank ordering of all ⁇ 100 ⁇ tabular grains having a thickness of less than 0.3 ⁇ m and a major face edge length ratio less than 10.
- the selected tabular grain population had an average aspect ratio (ECD/t) of 20.6 and an average tabularity (ECD/t2) of 803. The ratio of major face edge lengths of the selected tabular grains was 2.
- This example demonstrates a high aspect ratio (100) tabular emulsion where 1 mole percent iodide is present in the initial grain population and 50 mole percent bromide is added during growth to make the final emulsion 0.3 mole percent iodide, 36 mole percent bromide and 63.7 mole percent chloride.
- a 2030 mL solution containing 3.52% by weight low methionine gelatin, 0.0056 M sodium chloride and 1.48 x 10 ⁇ 4 M potassium iodide was provided in a stirred reaction vessel.
- the contents of the reaction vessel were maintained at 40°C and the pCl was 2.25.
- the resulting emulsion was a tabular grain silver iodobromochloride emulsion containing 0.27 mole percent iodide and 36 mole percent bromide, based on silver, the remaining halide being chloride.
- Fifty percent of total grain projected area was provided by tabular grains having ⁇ 100 ⁇ major faces having an average ECD of 0.4 ⁇ m and an average thickness of 0.032 ⁇ m, selected on the basis of an aspect ratio rank ordering of all ⁇ 100 ⁇ tabular grains having a thickness of less than 0.3 ⁇ m and a major face edge length ratio of less than 10.
- the selected tabular grain population had an average aspect ratio (ECD/t) of 12.8 and an average tabularity (ECD/t2) of 432.
- the ratio of major face edge lengths of the selected tabular grains was 1.9. Seventy one percent of total grain projected area was made up of tabular grains having ⁇ 100 ⁇ major faces and aspect ratios of at least 7.5. These tabular grains had a mean ECD of 0.38 mm, a mean thickness of 0.034 ⁇ m, a mean aspect ratio of 11.3 and a mean tabularity of 363.
- This example demonstrates the preparation of an emulsion satisfying the requirements of the invention employing phthalated gelatin as a peptizer.
- the mixture was then held 10 minutes with the temperature remaining at 40°C. Following the hold, the silver and salt solutions were added simultaneously with a linearly accelerated flow from 3.0 mL/min to 9.0 mL/min over 15 minutes with the pCl of the mixture being maintained at 2.7.
- the resulting emulsion was a high aspect ratio tabular grain silver iodochloride emulsion.
- Fifty percent of total grain projected area was provided by tabular grains having ⁇ 100 ⁇ major faces having an average ECD of 0.37 ⁇ m and an average thickness of 0.037 ⁇ m, selected on the basis of an aspect ratio rank ordering of all ⁇ 100 ⁇ tabular grains having a thickness of less than 0.3 ⁇ m and a major face edge length ratio of less than 10.
- the selected tabular grain population had an average aspect ratio (ECD/t) of 10 and an average tabularity (ECD/t2) of 330.
- Seventy percent of total grain projected area was made up of tabular grains having ⁇ 100 ⁇ major faces and aspect ratios of at least 7.5. These tabular grains had a mean ECD of 0.3 ⁇ m, a mean thickness of 0.04 ⁇ m, and a mean tabularity of 210.
- Electron diffraction examination of the square and rectangular surfaces of the tabular grains confirmed major face ⁇ 100 ⁇ crystallographic orientation.
- This example demonstrates the preparation of an emulsion satisfying the requirements of the invention employing an unmodified bone gelatin as a peptizer.
- the mixture was then held for 5 minutes during which a 5000 mL solution that is 16.6 g/L of low methionine gelatin was added and the pH was adjusted to 6.5 and the pCl to 2.25. Following the hold, the silver and salt solutions were added simultaneously with a linearly accelerated flow from 10 mL/min to 25.8 mL/min over 63 minutes with the pCl of the mixture being maintained at 2.25.
- the resulting emulsion was a high aspect ratio tabular grain silver iodochloride emulsion containing 0.01 mole % iodide. About 65% of the total projected grain area was provided by tabular grains having an average diameter of 1.5 ⁇ m and an average thickness of 0.18 ⁇ m.
- This example compares the photographic performance of a ⁇ 100 ⁇ silver chloride tabular emulsion according to the invention to a silver chloride cubic grain emulsion of similar average grain volume.
- Emulsion A Silver chloride tabular emulsion with ⁇ 100 ⁇ major faces
- a 6090 ml solution containing 3.52% by weight of low methionine gelatin, 0.0056 M sodium chloride and 1.48 x 10 ⁇ 4 potassium iodide was provided in a stirred reaction vessel at 40°C. While the solution was vigorously stirred, 90 mL of 2.0 M silver nitrate and 90 mL of a 1.99 M sodium chloride and 0.01 M potassium iodide solution were added simultaneously at a rate of 180 mL/min each. The mixture was then held for 10 minutes with the temperature remaining at 40°C.
- a 0.5 M silver nitrate solution and a 0.5 M sodium chloride solution were added simultaneously at 24 mL/min for 40 minutes followed by a linear acceleration from 24 mL/min to 48 mL/min over 130 minutes, while maintaining the pCl at 2.25.
- the pCl was then adjusted to 1.30 with sodium chloride then washed using ultrafiltration to a pCl of 2.0 then adjusted to a pCl of 1.65 with sodium chloride.
- the resulting emulsion was a tabular grain silver chloride emulsion contained 0.06 mole percent iodide and had a mean equivalent circular grain diameter of 1.45 ⁇ m and a mean grain thickness of 0.13 ⁇ m.
- Emulsion A An optimum green light sensitization was found for Emulsion A by conducting numerous small scale finishing experiments where the level of sensitizing dye, sodium thiosulfate pentahydrate, aurous dithiosulfate dihydrate and the hold time at 65°C were varied.
- the optimum finish was as follows: to a 0.5 mole portion of Emulsion A melted at 40°C and well stirred, 0.800 mmol/mole of green light sensitizing dye A was added followed by a 20 minute hold. To this was added 0.10 mg/mole of sodium thiosulfate pentahydrate and 0.20 mg/mole of sodium aurous dithiosulfate dihydrate. The temperature was then increased to 65°C over 9 minutes and then held for 4 minutes at 65°C and rapidly cooled to 40°C.
- Emulsion B Silver chloride cubic grain emulsion (Control)
- a monodisperse silver chloride cube with a cubic edge length of 0.59 ⁇ m was prepared by simultaneous addition of 3.75 M silver nitrate and 3.75 M sodium chloride to a well stirred solution containing 8.2 g/l of sodium chloride, 28.2 g/l of bone gelatin and 0.212 g/liter of 1,8-dithiadioctanediol while maintaining the temperature at 68.3°C and the pCl at 1.0.
- the temperature was reduced to 40°C and the emulsion was washed by ultrafiltration to a pCl of 2.0, then adjusted to a pCl of 1.65 with sodium chloride.
- Emulsion A An optimum green light sensitization was found in the same manner as described for Emulsion A.
- the conditions for the optimum were as follows: to a 0.05 mole quantity of Emulsion B melted at 40°C and well stirred, 0.2 mmol/mole of sensitizing dye A was added followed by a 20 minute hold. To this was added 0.25 mg/mole of sodium thiosulfate pentahydrate and 0.50 mg/mole of sodium aurous dithiosulfate dihydrate. The temperature was then increased to 65°C over 9 minutes and held for 10 minutes followed by rapid cooling to 40°C.
- Each of the sensitized emulsions was coated on antihalation support at 0.85 g/m2 of silver along with 1.1 g/m2 of cyan dye-forming coupler C and 2.7 g/m2 of gelatin. This was overcoated with 1.6 g/m2 of gelatin and hardened with 1.7 weight percent, based on total gelatin, of bis(vinyl-sulfonylmethyl)ether.
- the coatings were evaluated for intrinsic sensitivity by exposing for 0.02 seconds in a step wedge sensitometer with the 365 nm line of a mercury vapor lamp as the light source.
- Sensitivity to green light was measured by exposing the coatings for 0.02 seconds using a step wedge sensitometer with a 3000°K tungsten lamp filtered to simulate a Daylight V light source and filtered to transmit only green and red light by a Kodak WrattenTM 9 filter (transmitting wavelengths longer than 450 nm).
- the coatings were processed using a standard C-41TM color negative process and the dye density was measured using status M red filtration.
- Table I shows that for intrinsic sensitivity as measured by the 365 line exposure, both Emulsions A and B are very similar as would be expected based on their similar grain volume. Comparing the green light sensitivity as measured by the Wratten 9 exposures shows that the tabular emulsion is 2.9 times more sensitive to green light than the cubic emulsion. This clearly shows the advantage of the tabular morphology.
- a stirred reaction vessel containing 400 mL of a solution which was 0.5% in bone gelatin, 6mM in 3-amino-1H-1,2,4-triazole, 0.040 M in NaCl, and 0.20 M in sodium acetate was adjusted to pH 6.1 at 55°C.
- To this solution at 55°C were added simultaneously 5.0 mL of 4 M AgNO3 and 5.0 mL of 4 M NaCl at a rate of 5 mL/min each. The temperature of the mixture was then increased to 75°C at a constant rate requiring 12 min and then held at this temperature for 5 min.
- the pH was adjusted to 6.2 and held to within ⁇ 0.1 of this value, and the flow of the AgNO3 solution was resumed at 5 mL/min until 0.8 mole of Ag had been added.
- the flow of the NaCl solution was also resumed at a rate needed to maintain a constant pAg of 6.64.
- the resulting AgCl emulsion consisted of tabular grains having ⁇ 100 ⁇ major faces which made up 65% of the projected area of the total grain population.
- This tabular grain population had a mean equivalent circular diameter of 1.95 ⁇ m and a mean thickness of 0.165 ⁇ m.
- the average aspect ratio and tabularity were 11.8 and 71.7, respectively.
- This emulsion is shown in Fig. 3.
- This emulsion was prepared similar to that of Example 11A except that the precipitation was stopped when 0.4 mole of Ag had been added.
- the resulting emulsion consisted of tabular grain having ⁇ 100 ⁇ major faces which made up 65% of the projected area of the total grain population.
- This tabular grain population had a mean equivalent circular diameter of 1.28 ⁇ m and a mean thickness of 0.130 ⁇ m.
- the average aspect ratio and tabularity were 9.8 and 75.7, respectively.
- This emulsion is shown in Figs. 2 and 3.
- This example was prepared similar to that of Example 11B except that the pH of the reaction vessel was adjusted to 3.6 for the last 95% of the AgNO3 addition.
- the resulting emulsion consisted of ⁇ 100 ⁇ tabular grains making up 60% of the projected area of the total grain population.
- This tabular grain population had a mean equivalent circular diameter of 1.39 ⁇ m, and a mean thickness of 0.180 ⁇ m.
- the average aspect ratio and tabularity were 7.7 and 43.0, respectively.
- This emulsion was prepared similar to that of Example 11B except that the salt solution was 3.6 M in NaCl and 0.4 M in NaBr.
- the resulting AgBrCl (10% Br) emulsion consisted of ⁇ 100 ⁇ tabular grain making up 52% of the projected area of the total grain population.
- This tabular grain population had a mean equivalent circular diameter of 1.28 ⁇ m, and a mean thickness of 0.115.
- the average aspect ratio and tabularity were 11.1 and 96.7, respectively.
- This emulsion was prepared similar to that of Example 11A, except that 3,5-diamino-1,2,4-triazole (2.4 mmole) was used as the ⁇ 100 ⁇ tabular grin nucleating agent.
- the resulting AgCl emulsion consisted of tabular grains having ⁇ 100 ⁇ major faces which made up 45% of the projected area of the total grain population.
- This tabular grain population had a mean equivalent circular diameter of 1.54 ⁇ m and a mean thickness of 0.20 ⁇ m.
- the average aspect ratio and tabularity were 7.7 and 38.5, respectively.
- This emulsion was prepared similar to that of Example 11A except that imidazole (9.6 mmole) was used as the ⁇ 100 ⁇ tabular grain nucleating agent.
- the resulting AgCl emulsion consisted of tabular grains having ⁇ 100 ⁇ major faces which made up 40% of the projected area of the total grain population.
- This tabular grain population had a mean equivalent circular diameter of 2.20 ⁇ m and a mean thickness of 0.23 ⁇ m.
- the average aspect ratio and tabularity were 9.6 an 41.6, respectively.
- the resulting AgCl emulsion consisted of tabular grains having ⁇ 100 ⁇ major faces which made up 40% of the projected area of the total gain population.
- This tabular grain population had a mean equivalent circular diameter of 2.18 ⁇ m and a mean thickness of 0.199 ⁇ m.
- the average aspect ratio and tabularity were 11.0 and 55.0, respectively.
- Example 11A An emulsion was prepared similar to that of Example 11A except that the precipitation was scaled-up five times so that 4.0 moles of AgCl were precipitated.
- the resulting ⁇ 100 ⁇ tabular grain emulsion was cooled to 40°C, poured into 4 L of distilled water and allowed to gravity settle for 24 hours at 2°C. The settled phase was discarded.
- To the supernatant was added 12 g of phthalated gelatin and the emulsion was washed by the coagulation method of U.S. Patent 2,614,929.
- the resulting 2.2 moles of emulsion consisted of tabular grains having ⁇ 100 ⁇ major faces which made up 80% of the projected area of the total grain population.
- This tabular grain population had a mean equivalent circular diameter of 1.81 ⁇ m and a mean thickness of 0.173 ⁇ m (measuring >106 grains).
- the average aspect ratio and tabularity were 10.5 and 60.5, respectively.
- the emulsion was diluted to 1 Kg emulsion/mole AgCl and adjusted to a pAg of 7.42 with NaCl solution and pH of 5.3 at 40°C. It was divided into portions for spectral and chemical sensitizations.
- portions C and D were then added 10 mg Au2S/mole AgCl.
- 2.0 mole% NaBr as a 1 M solution, was added to portions A, B, C and D.
- Portions C and D were heated for 20 minutes at 60°C. Scanning electron images show that all portions retained their ⁇ 100 ⁇ tabular grain content, and portion B had AgClBr epitaxial growths at the grains edges and corners.
- These portions were coated on polyester film support at 2.6 g silver/m2 and 3.4 g gelatin/m2 to make coatings A, B, C, and D, respectively.
- the coatings were exposed for 0.5 sec to a 600W 3,000 K tungsten light source through a 0-4.0 density step tablet and a Kodak WrattenTM filter.
- Coatings A and C were exposed through a Kodak WrattenTM 99 green filter while Coatings B an D were exposed through a Kodak WrattenTM 2B yellow filter. Another set of coatings were exposed on a variable wavelength, variable intensity wedge spectrograph.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Silver Salt Photography Or Processing Solution Therefor (AREA)
- Medicinal Preparation (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US76486891A | 1991-09-24 | 1991-09-24 | |
US764868 | 1991-09-24 | ||
US82633892A | 1992-01-27 | 1992-01-27 | |
US826338 | 1992-01-27 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0534395A1 true EP0534395A1 (de) | 1993-03-31 |
EP0534395B1 EP0534395B1 (de) | 1998-11-11 |
EP0534395B2 EP0534395B2 (de) | 2006-04-12 |
Family
ID=27117531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92116262A Expired - Lifetime EP0534395B2 (de) | 1991-09-24 | 1992-09-23 | Hochchloridhaltige Emulsionen hoher Tafelförmigkeit von aussergewöhnlicher Stabilität |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP0534395B2 (de) |
JP (1) | JP3243010B2 (de) |
AT (1) | ATE173341T1 (de) |
AU (1) | AU2599492A (de) |
DE (1) | DE69227567T3 (de) |
DK (1) | DK0534395T3 (de) |
ES (1) | ES2123532T3 (de) |
WO (1) | WO1993006521A1 (de) |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0584815A1 (de) * | 1992-08-27 | 1994-03-02 | Eastman Kodak Company | Emulsionen mit hoher Tafelförmigkeit und hohem Chloridgehalt von ungewöhnlicher Stabilität |
US5314798A (en) * | 1993-04-16 | 1994-05-24 | Eastman Kodak Company | Iodide banded tabular grain emulsion |
EP0616255A1 (de) * | 1993-03-18 | 1994-09-21 | Kodak Limited | Farbphotographisches Element mit niedrigem Silbergehalt und Verfahren zur Farbbildherstellung |
EP0617319A1 (de) * | 1993-03-22 | 1994-09-28 | Eastman Kodak Company | Film und Kamera |
EP0617325A1 (de) * | 1993-03-22 | 1994-09-28 | Eastman Kodak Company | Verarbeitungsverfahren für photographische Originalelemente, die tafelförmige Silberchloridkörner begrenzt mit (100) Kornoberfläche enthalten |
EP0617322A1 (de) * | 1993-03-22 | 1994-09-28 | Eastman Kodak Company | Verarbeitungsverfahren für photographische Originalelemente, die tafelförmige Silberchloridkörner begrenzt mit (100) Kornoberfläche enthalten |
EP0617318A2 (de) * | 1993-03-22 | 1994-09-28 | Eastman Kodak Company | Digitale Bildherstellung mit Emulsionen tafelförmiger Körner |
EP0617320A2 (de) * | 1993-03-22 | 1994-09-28 | Eastman Kodak Company | Emulsionen mit tafelförmigen Körnern, die Antischleiermittel und Stabilisatoren enthalten |
EP0617321A1 (de) * | 1993-03-22 | 1994-09-28 | Eastman Kodak Company | Emulsionen tafelförmiger Körner mit mässigem Aspekt-Verhältnis |
EP0618493A2 (de) * | 1993-04-02 | 1994-10-05 | Fuji Photo Film Co., Ltd. | Farbphotographisches photoempfindliches Silberhalogenidmaterial |
EP0618492A2 (de) * | 1993-04-02 | 1994-10-05 | Fuji Photo Film Co., Ltd. | Farbphotographisches Silberhalogenidmaterial |
EP0618482A1 (de) * | 1993-03-22 | 1994-10-05 | Eastman Kodak Company | Emulsionen tafelförmiger Körner mit hohem Chloridgehalt und mässigem Aspekt-Verhältnis mit stabilen Kornflächen |
US5385818A (en) * | 1994-02-25 | 1995-01-31 | Eastman Kodak Company | Process for the preparation of silver halide emulsions and photographic elements containing hollow silver halide grains |
US5395746A (en) * | 1994-02-25 | 1995-03-07 | Eastman Kodak Company | Inherently stable high chloride tabular grains with improved blue absorption |
US5399477A (en) * | 1994-02-25 | 1995-03-21 | Eastman Kodak Company | Silver halide photographic elements |
EP0645670A1 (de) * | 1993-09-29 | 1995-03-29 | Fuji Photo Film Co., Ltd. | Silberhalogenidemulsion |
EP0653669A1 (de) * | 1993-11-16 | 1995-05-17 | Agfa-Gevaert N.V. | Chloridreiche Tafelkornemulsion mit (100)-Hauptflächen |
US5434038A (en) * | 1994-03-31 | 1995-07-18 | Eastman Kodak Company | Photographic image display material |
EP0670514A2 (de) * | 1994-02-25 | 1995-09-06 | Eastman Kodak Company | Emulsionen, die chloridreiche, tafelförmige (100) Körner mit modifizierten Kantenstrukturen enthalten |
EP0672940A2 (de) * | 1994-03-18 | 1995-09-20 | Eastman Kodak Company | Emulsionen enthaltend (1,0,0) tafelförmige hochchloridhaltige Körner: verbesserte Emulsionen und verbesserte Fällungsprozesse |
US5457021A (en) * | 1994-05-16 | 1995-10-10 | Eastman Kodak Company | Internally doped high chloride {100} tabular grain emulsions |
EP0678772A1 (de) * | 1994-04-06 | 1995-10-25 | Agfa-Gevaert N.V. | Lichtempfindliches Silberchlorobromojodid- oder Silbuchlorojodid-Tafelkörner enthaltendes Material |
EP0686874A1 (de) | 1994-06-09 | 1995-12-13 | Eastman Kodak Company | Farbentwickler enthaltend ein Hydroxylamin-Antioxydationsmittel |
EP0695968A2 (de) | 1994-08-01 | 1996-02-07 | Eastman Kodak Company | Viskositätsverminderung in einer photographischen Schmelze |
US5498511A (en) * | 1993-10-25 | 1996-03-12 | Fuji Photo Film Co., Ltd. | Silver halide photographic material |
US5593820A (en) * | 1993-12-20 | 1997-01-14 | Fuji Photo Film Co., Ltd. | Silver halide emulsion and silver halide photographic material using the same |
US5650264A (en) * | 1993-04-02 | 1997-07-22 | Fuji Photo Film Co., Ltd. | Method for forming an image on a silver halide color photographic material |
US5665530A (en) * | 1994-08-30 | 1997-09-09 | Fuji Photo Film Co., Ltd. | Silver halide emulsion and photographic material using the same |
US5707793A (en) * | 1995-04-19 | 1998-01-13 | Fuji Photo Film Co., Ltd. | Silver halide emulsion and silver halide photographic material using the same |
US5756276A (en) * | 1994-02-04 | 1998-05-26 | Fuji Photo Film Co., Ltd. | Silver halide emulsion and silver halide photographic material using the same |
US5807665A (en) * | 1995-04-14 | 1998-09-15 | Fuji Photo Film Co., Ltd. | Silver halide emulsion |
US6074811A (en) * | 1998-01-20 | 2000-06-13 | Fuji Photo Film Co., Ltd. | Silver halide emulsion |
US6143483A (en) * | 1996-09-09 | 2000-11-07 | Fuji Photo Film Co. | Silver halide emulsion and silver halide color photographic light-sensitive material |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5298385A (en) * | 1992-06-15 | 1994-03-29 | Eastman Kodak Company | High chloride folded tabular grain emulsions |
WO1994022054A1 (en) * | 1993-03-22 | 1994-09-29 | Eastman Kodak Company | Dye image forming photographic elements |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4063951A (en) * | 1974-12-19 | 1977-12-20 | Ciba-Geigy Ag | Manufacture of tabular habit silver halide crystals for photographic emulsions |
US4386156A (en) * | 1981-11-12 | 1983-05-31 | Eastman Kodak Company | Silver bromide emulsions of narrow grain size distribution and processes for their preparation |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0789203B2 (ja) * | 1987-04-30 | 1995-09-27 | 富士写真フイルム株式会社 | ハロゲン化銀乳剤および写真感光材料 |
JPH0242A (ja) * | 1987-10-19 | 1990-01-05 | Fuji Photo Film Co Ltd | ハロゲン化銀写真感光材料 |
-
1992
- 1992-09-02 AU AU25994/92A patent/AU2599492A/en not_active Abandoned
- 1992-09-02 WO PCT/US1992/007549 patent/WO1993006521A1/en active Search and Examination
- 1992-09-22 JP JP27672692A patent/JP3243010B2/ja not_active Expired - Lifetime
- 1992-09-23 AT AT92116262T patent/ATE173341T1/de not_active IP Right Cessation
- 1992-09-23 DE DE69227567T patent/DE69227567T3/de not_active Expired - Lifetime
- 1992-09-23 ES ES92116262T patent/ES2123532T3/es not_active Expired - Lifetime
- 1992-09-23 DK DK92116262T patent/DK0534395T3/da active
- 1992-09-23 EP EP92116262A patent/EP0534395B2/de not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4063951A (en) * | 1974-12-19 | 1977-12-20 | Ciba-Geigy Ag | Manufacture of tabular habit silver halide crystals for photographic emulsions |
US4386156A (en) * | 1981-11-12 | 1983-05-31 | Eastman Kodak Company | Silver bromide emulsions of narrow grain size distribution and processes for their preparation |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 14, no. 169 (P-1032)(4112) 30 March 1990 & JP-A-02 024 643 ( FUJI PHOTO FILM COMPANY LTD. ) 26 January 1990 * |
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0584815A1 (de) * | 1992-08-27 | 1994-03-02 | Eastman Kodak Company | Emulsionen mit hoher Tafelförmigkeit und hohem Chloridgehalt von ungewöhnlicher Stabilität |
EP0616255A1 (de) * | 1993-03-18 | 1994-09-21 | Kodak Limited | Farbphotographisches Element mit niedrigem Silbergehalt und Verfahren zur Farbbildherstellung |
US5443943A (en) * | 1993-03-22 | 1995-08-22 | Eastman Kodak Company | Method of processing originating photographic elements containing tabular silver chloride grains bounded by {100} faces |
EP0617318A3 (de) * | 1993-03-22 | 1995-02-01 | Eastman Kodak Co | Digitale Bildherstellung mit Emulsionen tafelförmiger Körner. |
EP0617325A1 (de) * | 1993-03-22 | 1994-09-28 | Eastman Kodak Company | Verarbeitungsverfahren für photographische Originalelemente, die tafelförmige Silberchloridkörner begrenzt mit (100) Kornoberfläche enthalten |
US5618656A (en) * | 1993-03-22 | 1997-04-08 | Eastman Kodak Company | Method of processing originating and display photographic elements using common processing solutions |
EP0617318A2 (de) * | 1993-03-22 | 1994-09-28 | Eastman Kodak Company | Digitale Bildherstellung mit Emulsionen tafelförmiger Körner |
EP0617320A2 (de) * | 1993-03-22 | 1994-09-28 | Eastman Kodak Company | Emulsionen mit tafelförmigen Körnern, die Antischleiermittel und Stabilisatoren enthalten |
EP0617321A1 (de) * | 1993-03-22 | 1994-09-28 | Eastman Kodak Company | Emulsionen tafelförmiger Körner mit mässigem Aspekt-Verhältnis |
US5491050A (en) * | 1993-03-22 | 1996-02-13 | Eastman Kodak Company | Method of processing originating photographic elements containing tabular silver chloride grains bounded by (100) faces |
EP0617322A1 (de) * | 1993-03-22 | 1994-09-28 | Eastman Kodak Company | Verarbeitungsverfahren für photographische Originalelemente, die tafelförmige Silberchloridkörner begrenzt mit (100) Kornoberfläche enthalten |
EP0618482A1 (de) * | 1993-03-22 | 1994-10-05 | Eastman Kodak Company | Emulsionen tafelförmiger Körner mit hohem Chloridgehalt und mässigem Aspekt-Verhältnis mit stabilen Kornflächen |
EP0617320A3 (de) * | 1993-03-22 | 1995-02-01 | Eastman Kodak Co | Emulsionen mit tafelförmigen Körnern, die Antischleiermittel und Stabilisatoren enthalten. |
EP0617319A1 (de) * | 1993-03-22 | 1994-09-28 | Eastman Kodak Company | Film und Kamera |
EP0618493A2 (de) * | 1993-04-02 | 1994-10-05 | Fuji Photo Film Co., Ltd. | Farbphotographisches photoempfindliches Silberhalogenidmaterial |
US5814439A (en) * | 1993-04-02 | 1998-09-29 | Fuji Photo Film Co., Ltd. | Silver halide color photographic photo-sensitive material |
EP0618492A3 (de) * | 1993-04-02 | 1995-09-20 | Fuji Photo Film Co Ltd | Farbphotographisches Silberhalogenidmaterial. |
EP0618493A3 (de) * | 1993-04-02 | 1995-08-02 | Fuji Photo Film Co Ltd | Farbphotographisches photoempfindliches Silberhalogenidmaterial. |
US5650264A (en) * | 1993-04-02 | 1997-07-22 | Fuji Photo Film Co., Ltd. | Method for forming an image on a silver halide color photographic material |
EP0618492A2 (de) * | 1993-04-02 | 1994-10-05 | Fuji Photo Film Co., Ltd. | Farbphotographisches Silberhalogenidmaterial |
EP0620479A1 (de) * | 1993-04-16 | 1994-10-19 | Eastman Kodak Company | Emulsion mit Iodid-Streifen aufweisenden tafelförmigen Körnern |
US5314798A (en) * | 1993-04-16 | 1994-05-24 | Eastman Kodak Company | Iodide banded tabular grain emulsion |
EP0645670A1 (de) * | 1993-09-29 | 1995-03-29 | Fuji Photo Film Co., Ltd. | Silberhalogenidemulsion |
US5498511A (en) * | 1993-10-25 | 1996-03-12 | Fuji Photo Film Co., Ltd. | Silver halide photographic material |
EP0653669A1 (de) * | 1993-11-16 | 1995-05-17 | Agfa-Gevaert N.V. | Chloridreiche Tafelkornemulsion mit (100)-Hauptflächen |
US5593820A (en) * | 1993-12-20 | 1997-01-14 | Fuji Photo Film Co., Ltd. | Silver halide emulsion and silver halide photographic material using the same |
US5756276A (en) * | 1994-02-04 | 1998-05-26 | Fuji Photo Film Co., Ltd. | Silver halide emulsion and silver halide photographic material using the same |
US5385818A (en) * | 1994-02-25 | 1995-01-31 | Eastman Kodak Company | Process for the preparation of silver halide emulsions and photographic elements containing hollow silver halide grains |
EP0670514A3 (de) * | 1994-02-25 | 1996-01-17 | Eastman Kodak Co | Emulsionen, die chloridreiche, tafelförmige (100) Körner mit modifizierten Kantenstrukturen enthalten. |
EP0670514A2 (de) * | 1994-02-25 | 1995-09-06 | Eastman Kodak Company | Emulsionen, die chloridreiche, tafelförmige (100) Körner mit modifizierten Kantenstrukturen enthalten |
US5395746A (en) * | 1994-02-25 | 1995-03-07 | Eastman Kodak Company | Inherently stable high chloride tabular grains with improved blue absorption |
US5399477A (en) * | 1994-02-25 | 1995-03-21 | Eastman Kodak Company | Silver halide photographic elements |
EP0672940A2 (de) * | 1994-03-18 | 1995-09-20 | Eastman Kodak Company | Emulsionen enthaltend (1,0,0) tafelförmige hochchloridhaltige Körner: verbesserte Emulsionen und verbesserte Fällungsprozesse |
EP0672940A3 (de) * | 1994-03-18 | 1997-01-15 | Eastman Kodak Co | Emulsionen enthaltend (1,0,0) tafelförmige hochchloridhaltige Körner: verbesserte Emulsionen und verbesserte Fällungsprozesse. |
US5434038A (en) * | 1994-03-31 | 1995-07-18 | Eastman Kodak Company | Photographic image display material |
US5563024A (en) * | 1994-03-31 | 1996-10-08 | Eastman Kodak Company | Method of providing viewable images |
EP0678772A1 (de) * | 1994-04-06 | 1995-10-25 | Agfa-Gevaert N.V. | Lichtempfindliches Silberchlorobromojodid- oder Silbuchlorojodid-Tafelkörner enthaltendes Material |
US5457021A (en) * | 1994-05-16 | 1995-10-10 | Eastman Kodak Company | Internally doped high chloride {100} tabular grain emulsions |
EP0686874A1 (de) | 1994-06-09 | 1995-12-13 | Eastman Kodak Company | Farbentwickler enthaltend ein Hydroxylamin-Antioxydationsmittel |
EP0695968A2 (de) | 1994-08-01 | 1996-02-07 | Eastman Kodak Company | Viskositätsverminderung in einer photographischen Schmelze |
US5665530A (en) * | 1994-08-30 | 1997-09-09 | Fuji Photo Film Co., Ltd. | Silver halide emulsion and photographic material using the same |
US5807665A (en) * | 1995-04-14 | 1998-09-15 | Fuji Photo Film Co., Ltd. | Silver halide emulsion |
US5707793A (en) * | 1995-04-19 | 1998-01-13 | Fuji Photo Film Co., Ltd. | Silver halide emulsion and silver halide photographic material using the same |
US6143483A (en) * | 1996-09-09 | 2000-11-07 | Fuji Photo Film Co. | Silver halide emulsion and silver halide color photographic light-sensitive material |
US6074811A (en) * | 1998-01-20 | 2000-06-13 | Fuji Photo Film Co., Ltd. | Silver halide emulsion |
Also Published As
Publication number | Publication date |
---|---|
JP3243010B2 (ja) | 2002-01-07 |
AU2599492A (en) | 1993-04-27 |
JPH05204073A (ja) | 1993-08-13 |
ATE173341T1 (de) | 1998-11-15 |
WO1993006521A1 (en) | 1993-04-01 |
DE69227567T2 (de) | 1999-05-06 |
DK0534395T3 (da) | 1999-07-26 |
ES2123532T3 (es) | 1999-01-16 |
EP0534395B1 (de) | 1998-11-11 |
DE69227567T3 (de) | 2006-10-26 |
DE69227567D1 (de) | 1998-12-17 |
EP0534395B2 (de) | 2006-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0534395B2 (de) | Hochchloridhaltige Emulsionen hoher Tafelförmigkeit von aussergewöhnlicher Stabilität | |
EP0584815B1 (de) | Emulsionen mit hoher Tafelförmigkeit und hohem Chloridgehalt von ungewöhnlicher Stabilität | |
EP0672940B1 (de) | Emulsionen enthaltend (1,0,0) tafelförmige hochchloridhaltige Körner: verbesserte Emulsionen und verbesserte Fällungsprozesse | |
EP0620479B1 (de) | Emulsion mit Iodid-Streifen aufweisenden tafelförmigen Körnern | |
EP0288949B1 (de) | Verfahren zur Herstellung von Emulsionen mit tafelförmigen Silberchloridkörnern | |
US4914014A (en) | Nucleation of tabular grain emulsions at high pBr | |
EP0534325B1 (de) | Emulsionen mit ultradünnen tafelförmigen Körnern eines hohen Chloridgehaltes | |
US5389509A (en) | Ultrathin high chloride tabular grain emulsions | |
EP0535467B1 (de) | Verfahren zur Herstellung von Emulsionen mit tafelförmigen Körnern von hohem Chloridgehalt (III) | |
US5183732A (en) | Process for the preparation of high chloride tabular grain emulsions (V) | |
EP0430196B1 (de) | Verfahren zur Stabilisierung von chloridreichen Kristallen mit modifiziertem Kristallhabitus durch Anwendung von Bromidhüllen | |
JP3025585B2 (ja) | ハロゲン化銀乳剤 | |
EP0617318B1 (de) | Digitale Bildherstellung mit Emulsionen tafelförmiger Körner | |
EP0617319B1 (de) | Film und Kamera | |
EP0616255B1 (de) | Farbphotographisches Element mit niedrigem Silbergehalt und Verfahren zur Farbbildherstellung | |
JP3270614B2 (ja) | 中位アスペクト比平板状粒子乳剤 | |
EP0617322A1 (de) | Verarbeitungsverfahren für photographische Originalelemente, die tafelförmige Silberchloridkörner begrenzt mit (100) Kornoberfläche enthalten | |
EP0577173B1 (de) | Emulsionen mit chloridreichen gefalteten Tafelkörnern und Verfahren zu ihrer Herstellung | |
EP0617317A1 (de) | Mit Oligomeren modifizierte Emulsionen tafelförmiger Körner | |
EP0645022A1 (de) | Verfahren zur herstellung von tafelkornemulsionen | |
EP0871063B1 (de) | Verfahren zur Herstellung einer Silberhalogenidemulsion | |
EP0670514A2 (de) | Emulsionen, die chloridreiche, tafelförmige (100) Körner mit modifizierten Kantenstrukturen enthalten |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
17P | Request for examination filed |
Effective date: 19930908 |
|
17Q | First examination report despatched |
Effective date: 19931028 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19981111 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19981111 Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19981111 |
|
REF | Corresponds to: |
Ref document number: 173341 Country of ref document: AT Date of ref document: 19981115 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69227567 Country of ref document: DE Date of ref document: 19981217 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2123532 Country of ref document: ES Kind code of ref document: T3 |
|
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: KIRKER & CIE SA |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 19981112 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: FUJI PHOTO FILM CO., LTD. Effective date: 19990811 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: FUJI PHOTO FILM CO., LTD. |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
RDAH | Patent revoked |
Free format text: ORIGINAL CODE: EPIDOS REVO |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: MC Payment date: 20010914 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010923 |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
APAE | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOS REFNO |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20050622 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20050630 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20050701 Year of fee payment: 14 Ref country code: LU Payment date: 20050701 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20050726 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20050808 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20050905 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20050916 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20050927 Year of fee payment: 14 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20051006 Year of fee payment: 14 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20060412 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: AEN Free format text: MAINTIEN DU BREVET DONT L'ETENDUE A ETE MODIFIEE |
|
NLR2 | Nl: decision of opposition |
Effective date: 20060412 |
|
NLR3 | Nl: receipt of modified translations in the netherlands language after an opposition procedure | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060723 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060925 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20060930 Year of fee payment: 15 |
|
ET3 | Fr: translation filed ** decision concerning opposition | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070323 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: LAPSE DUE TO NON-PAYMENT OF FEES Effective date: 20070323 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060713 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060923 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060924 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19981111 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070923 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20100930 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20110901 Year of fee payment: 20 Ref country code: GB Payment date: 20110826 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20110912 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69227567 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69227567 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V4 Effective date: 20120923 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20120922 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20120922 Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20120925 |