EP0531951B1 - Compresseur à pistons avec tiroir rotatif - Google Patents

Compresseur à pistons avec tiroir rotatif Download PDF

Info

Publication number
EP0531951B1
EP0531951B1 EP92115362A EP92115362A EP0531951B1 EP 0531951 B1 EP0531951 B1 EP 0531951B1 EP 92115362 A EP92115362 A EP 92115362A EP 92115362 A EP92115362 A EP 92115362A EP 0531951 B1 EP0531951 B1 EP 0531951B1
Authority
EP
European Patent Office
Prior art keywords
bore
rotary valve
cylinder
cylindrical
cylinder block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92115362A
Other languages
German (de)
English (en)
Other versions
EP0531951A1 (fr
Inventor
Kazuya C/O Kabushiki Kaisha Toyoda Kimura
Hiroaki C/O Kabushiki Kaisha Toyoda Kayukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Jidoshokki Seisakusho KK
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP3231856A external-priority patent/JPH0571468A/ja
Priority claimed from JP3235026A external-priority patent/JP2995944B2/ja
Application filed by Toyoda Jidoshokki Seisakusho KK, Toyoda Automatic Loom Works Ltd filed Critical Toyoda Jidoshokki Seisakusho KK
Publication of EP0531951A1 publication Critical patent/EP0531951A1/fr
Application granted granted Critical
Publication of EP0531951B1 publication Critical patent/EP0531951B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1009Distribution members

Definitions

  • the present invention relates to a reciprocatory piston type multi-cylinder refrigerant compressor for a refrigeration system, and more particularly, it relates to a reciprocatory piston type compressor provided with a rotary valve element for controlling the suction of a refrigerant gas before compression from a suction chamber into respective cylinder bores; the rotary valve may also control discharge of the refrigerant gas after compression from respective cylinder bores toward a discharge chamber.
  • Reciprocatory piston type refrigerant compressors such as a wobble plate operated reciprocatory piston type variable displacement compressor, and a swash plate operated reciprocatory piston type fixed displacement compressor are conventionally used for compressing a refrigerant circulating through a refrigeration system of e.g., an automobile air conditioner.
  • the reciprocatory piston type compressor is provided with an axial cylinder block having a plurality of cylinder bores arranged parallel with a drive shaft of the compressor and a plurality of single headed or double headed pistons reciprocated in the respective cylinder bores to compress the refrigerant in the form of a gas.
  • the compressor having single headed pistons is also provided with a housing attached to one of the axial ends of the cylinder block via a valve plate to define a suction chamber therein from which the refrigerant gas is supplied into respective cylinder bores so as to be compressed, and a discharge chamber therein toward which the compressed refrigerant gas is discharged from the respective cylinder bores.
  • the gas passes through suction ports formed in the valve plate and closably opened by suction valves arranged so as to be in contact with one end face of the valve plate on the side thereof confronting respective cylinder bores.
  • the suction valves are opened when a pressure level in each cylinder bore is lower than a given low pressure level.
  • the compressed refrigerant gas passes through discharge ports formed in the valve plate and closably opened by discharge valves arranged so as to be in contact with the other end face of the valve plate on the side thereof confronting the discharge chamber.
  • the discharge valves are opened when the pressure level in each cylinder bore is higher than a given high pressure level.
  • each of the suction and discharge valves in the flapper form is made of a thin elastic plate material so that the valve is constantly elastically urged toward the closing position thereof. Therefore, the flapper valve must always be moved from the closing to opening position thereof against the elastic force exerted by the valve per se, and accordingly during the opening of the suction or discharge valve in the flapper form, a considerable amount of refrigerant pressure loss occurs thereby lowering the volumetric efficiency of the compressor.
  • suction or discharge valve in the flapper form when the suction or discharge valve in the flapper form returns to the closing position thereof, it strikes against the end face of the valve plate and produces a loud noise, and may additionally be apt to be damaged or broken.
  • U.S. Patents Nos. 4,749,340, 4,764,091, and 4,781,540 disclose several constructional improvements of the flapper valve that enhance the volumetric efficiency of the reciprocatory piston type compressor and solve the noise problem. Nevertheless, a further innovative improvement of the function and performance of the suction and discharge valves of the reciprocatory piston type compressor has been requested.
  • US-A-4 749 340 discloses a piston type compressor using reed valves which are different from rotary valve means of the present invention.
  • US-A-1 364 508 relates to a piston operating mechanism for compressors comprising rotative valve means rotatable together with a drive shaft.
  • the rotative valve means do not comprise a portion capable of holding suction gas before the same is distributed to the respective cylinder bores.
  • a further axial piston type compressor is described in DD-A-269 881 comprising a rotor driven by a drive shaft and including a plurality of cylinder bores. Whereas the cylinder bores and the respective pistons rotate together with the rotor and the drive shaft and the swash plate is a non-rotating element remaining stationary during rotation of the shaft.
  • an object of the present invention is to provide a reciprocatory piston type refrigerant compressor provided with a novel valve element accommodated therein capable of eliminating the above-mentioned problems encountered by the conventional flatter form valve.
  • Another object of the present invention is to provide a reciprocatory piston type multi-cylinder refrigerant compressor provided with a noise free rotary valve element smoothly rotated together with a drive shaft of the compressor so as to control an appropriate supply of a refrigerant from a suction chamber to respective cylinder bores and thereby prevent the loss of pressure during compression of the refrigerant.
  • a further object of the present invention is to provide a reciprocatory piston type multi-cylinder refrigerant compressor provided with a noise free rotary valve element smoothly rotated together with a drive shaft of the compressor to control not only an appropriate supply of the refrigerant from a suction chamber into respective cylinder bores but also an appropriate discharge of the compressed refrigerant from respective cylinder bores toward a discharge chamber and thereby maintain a high volumetric compressor efficiency.
  • a reciprocatory piston type refrigerant compressor for compressing a refrigerant of a refrigeration system comprising:
  • a reciprocatory piston type compressor for compressing a refrigerant of a refrigeration system that comprises:
  • a reciprocatory piston type refrigerant compressor includes a cylinder block 1 having a central axis.
  • the cylinder block 1 is provided with axially opposite ends, a central bore la extended coaxially with the central axis and formed as a valve chamber for receiving a later-described rotary valve element, and a plurality of ( e.g., five in the embodiment ) cylinder bores 1b arranged equiangularly around and in parallel with the central axis.
  • One of the axial ends, i.e., a front end of the cylinder block 1 is air-tightly closed by a front housing 2, and the other end, i.e., a rear end of the cylinder block 1 is air-tightly closed by a rear housing 4 via a partition wall plate 3.
  • the front housing 2 defines a crank chamber 5 axially extending in front of the front end of the cylinder block 1.
  • the rear housing 4 defines therein a centrally arranged cylindrical suction chamber 17 for a refrigerant before compression, and an annularly extending discharge chamber 18 for a refrigerant after compression arranged so as to surround and be isolated from the suction chamber 17.
  • a drive shaft 6 axially extending through the crank chamber 5 is rotatably supported by bearings 6a and 6b seated in a central bore of the front housing 2 and the central bore la of the cylinder block 1.
  • the drive shaft 6 has a rotor 7 fixedly mounted thereon to be rotated together and axially supported by a thrust bearing 6c arranged between an inner end of the front housing 2 and the frontmost end of the rotor 7.
  • the rotor 7 has a support arm 8 extending from a rear part thereof to provide an extension in which an elongated through-bore 8a is formed for receiving a lateral pin 8b slidably movable in the through-bore 8a.
  • the lateral pin 8b is connected to a swash plate 9 arranged around the drive shaft and is capable of changing an angle of inclination thereof with respect to a plane perpendicular to the rotating axis of the drive shaft 6.
  • a sleeve element 10 axially and slidably mounted on the drive shaft 6 is arranged adjacent to the rearmost end of the rotor 7, and is constantly urged toward the rearmost end of the rotor 7 by a coil spring 11 arranged around the drive shaft 6 at a rear portion thereof.
  • the sleeve element 10 has a pair of laterally extending trunnion pins 10a on which the swash plate 9 is pivoted so as to be inclined thereabout.
  • the swash plate 9 has an annular rear face and a cylindrical flange to support thereon a non-rotatable wobble plate 12 via a thrust bearing 9a.
  • the non-rotatable wobble plate 12 has an outer periphery provided with a guide portion 12a in which a long bolt 16 is fitted to prevent any rotational play of the wobble plate 12 on the swash plate 9, and the wobble plate 12 is operatively connected to pistons 15 axially and slidably fitted in the cylinder bores 1b, via connecting rods 14.
  • the wobble plate 12 on the swash plate 9 is non-rotatably wobbled to cause reciprocation of respective pistons 15 in the cylinder bores 1b.
  • the refrigerant is drawn from the suction chamber 17 into respective cylinder bores 1b and compressed therein.
  • the compressed refrigerant is discharged from respective cylinder bores 1b toward the discharge chamber 18 from which the refrigerant after compression is delivered to the condenser of a refrigeration system.
  • the afore-mentioned central suction chamber 17 of the rear housing 4 has an opening formed in an end wall of the rear housing 4 so that the suction chamber 17 is able to receive a refrigerant therein when the refrigerant returns from the exterior of the compressor.
  • the suction chamber 17 is communicated with the central bore la of the cylinder block 1 via a central bore 3a of the partition wall plate 3 arranged so as to be coaxial with and having a bore diameter equal to the central bore la of the cylinder block.
  • the partition wall plate 3 is provided with a plurality of ( five in this embodiment ) radial passageways 21 formed to extend radially from the central bore 3a thereof, as best shown in Fig. 2. An end of each radial passageway 21 is located to open toward the rearmost end of one of the axial cylinder bores 1b of the cylinder block 1.
  • a cylindrical rotary valve element 22 is smoothly and rotatably accommodated in the central bore 1a of the cylinder block 1 and the central bore 3a of the partition wall plate 3, and an axially inner end of the rotary valve element 22 is fixedly attached by a key 23 to an end of the drive shaft 6 extending into the central bore 1a of the cylinder block.
  • the rotary valve element 22 is rotated together with the drive shaft 6.
  • the drive shaft 6 and the rotary valve element 22 of the compressor according to the present embodiment may be rotated in either the CW direction or CCW direction.
  • a rear end of the rotary valve element 22, i.e., an end opposite to the above-mentioned inner end is supported by a thrust bearing 24 seated in an annular step of the suction chamber formed in the inner wall of the rear housing 4.
  • the cylindrical rotary valve element 22 is provided with a fluid passageway 25 including an axial blind bore 25a centrally formed therein, a groove 25b formed in the cylindrical surface thereof to circumferentially extend over approximately a half of the circumference thereof, and a radial bore 25c formed to provide a fluid communication between the central bore 25a and the circumferential groove 25b.
  • the fluid passageway 25 of the rotary valve element 22 is provided to control the suction of the refrigerant from the suction chamber 17 of the rear housing 4 into respective cylinder bores 1b.
  • the discharge chamber 18 of the rear housing 4 arranged radially outside the suction chamber 17 can be communicated with respective cylinder bores 1b via discharge ports 18a formed in the partition wall plate 3 and discharge valves 19 in the flapper form disposed in the discharge chamber 18 to close the discharge ports 18a.
  • the movement of the discharge valves 19 are restricted by valve retainers 19a.
  • the above-described reciprocatory piston type compressor is incorporated in a refrigeration system of an air-conditioner such as an automobile air-conditioner to compress the refrigerant and deliver the compressed gas into the refrigeration system.
  • the swash plate 9 When the drive shaft 6 of the compressor is rotated about the rotating axis thereof by an external drive power, the swash plate 9 is rotated together and wobbled around the drive shaft 6 due to an inclination of the swash plate 9 with respect to a plane perpendicular to the rotating axis of the drive shaft 6.
  • the wobbling motion of the rotating swash plate 9 causes a synchronous wobbling of the non-rotatable wobble plate 12, so that the respective pistons 15 connected to the wobble plate 12 via the connecting rods 14 are reciprocated in the respective cylinder bores 1b.
  • the rotary valve element 22 rotating together with the drive shaft 6 controls the supply of the refrigerant from the suction chamber 17 of the rear housing 4 toward the respective cylinder bores 1b to thereby achieve an appropriate compression of the refrigerant gas and a discharge of the compressed refrigerant gas.
  • the rotary valve element 22 is constructed as a rotary suction control valve rotating together with the drive shaft 6 of the compressor, it is possible to obtain a wide opening area of the suction control valve compared with the conventional flapper-form suction control valve. Therefore, the volumetric efficiency of the compressor per se can be raised due to a lowering of pressure loss of the refrigerant in each of the plurality of cylinder bores 1b of the compressor.
  • the rotary suction valve element 22 can significantly reduce noise during the operation thereof compared with the conventional flapper-form suction control valve.
  • the rotary suction valve element 22 performs the suction control operation thereof by smooth rotation in the valve chamber, damage or breakage and abrasion of the rotary suction control valve do not easily occur for a long operation time thereof.
  • an improvement of the suction valve mechanism of the reciprocatory piston type compressor over the conventional flapper-form suction control valve can be achieved.
  • Figure 5 illustrates a modification of the reciprocatory piston type compressor of Fig. 1.
  • the rotary valve element 22 is incorporated in the compressor as a suction control valve
  • the conventional flapper-form suction control valves are arranged so as to be in contact with the partition wall plate 3. Therefore, the discharge ports 18a of the partition wall plate 3 through which the compressed refrigerant is discharged from the respective cylinder bores 1b toward the discharge chamber 18 may be provided in a position such that the center of each discharge port 18a is in correct alignment with the central axis of the corresponding cylinder bore 1b.
  • each reciprocatory piston 15 may have a projection 15a at the head thereof so as to be engageable with the corresponding discharge port 18a in response to the movement of the piston 15 toward top dead center ( T.D.C ) thereof, and accordingly the piston 15 can always be moved in the cylinder bore 1b to a position permitting a minimal gap between the piston head thereof and the inner end face of the partition wall plate 3. Therefore, the amount of compressed refrigerant gas remaining in the cylinder bore 1b without being discharged therefrom is minimal so that the volumetric efficiency of the compressor can be increased.
  • Figure 6 illustrates another modification of the reciprocatory piston type compressor of Fig. 1.
  • the radial passageways 21 are arranged in the cylinder block 1 instead of the afore-described partition wall plate 3.
  • the length of each radial passageway 21 can be made shorter, and accordingly, any compressed refrigerant gas remaining in the radial passageway 21 at the time the piston 15 comes to the end of the discharge stroke thereof can be reduced to the minimal amount. Consequently, the volumetric efficiency of the compressor can be raised.
  • Figure 7 illustrates a further modification of the reciprocatory piston type compressor of Fig. 1.
  • the drive shaft 6 is provided with a flange portion 61 to support one end of a coil spring 26 the other end of which is in contact with the rotary valve element 22 to thereby always urge the rotary valve element 22 toward the thrust bearing 24 seated in the rear housing 4.
  • any axial play of the rotary valve element 22 can be cancelled to ensure a smooth rotation of the rotary valve element 22, and accordingly, abrasion and seizure of the rotary valve element 22 can be prevented. Further. difficulty in controlling the dimension and size of the rotary valve element 22 during the production and assembly stages thereof can be mitigated.
  • the coil spring 26 of Fig. 7 may be arranged between the rotary valve element 22 and a radial bearing 63 shown in Fig. 8, which is arranged so as to rotatably support the drive shaft 6 instead of the bearing 6b of Fig. 1 or Fig. 7.
  • the bearing 63 is provided with a flanged inner race against which the end of the coil spring 26 is bore, and therefore the drive shaft 6 can be made of a straight member having no flange. Namely, the assembly of the rotary valve element 22 can be simplified compared with the compressor of Fig. 7.
  • Figure 9 illustrates another modification in which the spring 26 urging the rotary valve element 22 is supported by a thrust bearing 65 seated on a step lc of the cylinder block 1.
  • assembly of the rotary valve element 22 can be simple similarly to the embodiment of Fig. 8.
  • the reciprocatory piston type compressor is different from the compressor of the first embodiment shown in Fig. 1 through 4 in that a cylindrical hollow sleeve element 44 is fixedly accommodated in the central bore 1a of the cylinder block 1 and the central bore 3a of the partition wall plate 3 to rotatably receive the rotary valve element 22 therein, and therefore, the thrust bearing 24 used with the compressor of the first embodiment is eliminated.
  • the same or like elements as those of the compressor of the first embodiment are designated by the same reference numerals as those of Fig. 1 through 4.
  • the cylindrical hollow sleeve element 44 is provided with a plurality of open windows 44a radially formed in the cylindrical wall thereof and an annular extension 44b formed at an end thereof seated in a shoulder portion of the rear housing 4.
  • the open windows 44a of the cylindrical hollow sleeve element 44 are arranged in such a manner that when the sleeve element 44 is assembled in the cylinder block 1 and the rear housing 4, the plurality of open windows 44a are in correct registration with the respective radial passageways 21 of the partition wall plate 3. Therefore, the fluid passageway 25 of the rotary valve element 22 can be sequentially communicated with the radial passageways 21 and the corresponding cylinder bores 1b of the cylinder block 1 in response to the rotation of the rotary valve element 22 within the cylindrical sleeve element 44.
  • annular extension 44b of the cylindrical hollow sleeve element 44 is provided for axially supporting the rotary valve element 22.
  • cylindrical hollow sleeve element 44 is effective for allowing the rotary valve element 22 to smoothly rotate therein together with the drive shaft 6, because when the hollow sleeve element 44 is made of a metallic bearing material, this hollow sleeve element 44 is able to function as a cylindrical slide bearing for the rotary valve element 22 during the rotation of the rotary valve element 22. Consequently, any loss of power for driving the drive shaft 6 of the compressor from an external drive source such as an automobile engine can be prevented.
  • the cylindrical hollow sleeve element 44 is assembled in a cylindrical bore-like valve chamber portion of the compressor formed by the combination of the cylinder block 1, the partition wall plate 3 and the rear housing 4, and therefore, it is often difficult for the rotary valve element 22 to obtain a complete air-tight sealing characteristics. Nevertheless, because of provision of the cylindrical hollow sleeve element 44 in which the rotary valve element 22 is rotatably housed, the sealing characteristics of the rotary valve element 22 can be improved over the embodiment of the afore-described first embodiment of Figs. 1 through 4 and thus, good suction control of the rotary valve element 22 can be obtained.
  • Figures 12 through 18 illustrate a third embodiment of the present invention, and the same and like elements and portions as those of the first embodiment of Figs. 1 through 4 are designated by the same reference numerals.
  • the rotary valve element 22 is arranged in the valve chamber defined by the central bore 1a of the cylinder block 1, the central bore 3a of the partition wall plate 3, and the a portion of an internal cylindrical wall 43 ( Fig. 15 ) of the rear housing 4. It is to be noted that in the present third embodiment the rotary valve element 22 is provided as a rotating valve having the ability to control both suction and discharge of the refrigerant with respect to the plurality of cylinder bores 1b of the cylinder block 1. Therefore, the compressor has no flapper-form valve.
  • suction, compression, and discharge operations are conducted by reciprocation of the pistons 15 in the cylinder bores 1b caused by the swash and wobble plates 8 and 9 when driven by the drive shaft 6 in the same manner as the compressor of the first embodiment.
  • the rotary valve element 22 attached to an end of the drive shaft 6 is provided with a fluid passageway 25 including an axial blind bore 25a centrally formed therein, a circumferential groove 25b formed in the cylindrical outer surface thereof, and a radial passageway 25c providing a connection between the bore 25a and the groove 25b for controlling the supply of the refrigerant before compression from the suction chamber 17 to the respective cylinder bores 1b while the respective cylinder bores 1b are in the suction stage.
  • the rotary valve element 22 is also provided with an axially extending groove-like passageway 27 formed in the cylindrical outer surface thereof.
  • the passageway 27 is located adjacent to but spaced from one end, i.e., a leading end of the circumferential groove 25b of the fluid passageway 25 when considering a predetermined rotating direction of the rotary valve element 22, shown by an arrow " A " in Fig. 17.
  • the spacing between the passageway 27 and the leading end of the circumferential groove 25b is selected and designed in the manner described later.
  • one end of the axial groove-like passageway 27 is disposed adjacent to the rearmost end of the rotary valve element 22, and the other end thereof is disposed at a position whereat the passageway 27 is capable of communicating with the respective radial passageways 21 of the partition wall plate 3 ( Fig. 14 ) during the rotation of the rotary valve element 22.
  • the cylindrical wall 43 of the rear housing 4 is provided with an internal annular groove 41 at a position capable of being constantly exposed to the above-mentioned axial groove 27 of the rotary valve element 22, and an appropriate number of radial bores 42 connecting between the discharge chamber 18 and the internal annular groove 41 of the cylindrical wall 43 of the rear housing 4.
  • the cylinder bore 1b is fluidly communicated with the discharge chamber 18 of the rear housing 4 via the radial passageway 21 and the axial passageway 27 of the rotary valve element 22.
  • the fluid communication of the axial passageway 27 of the rotary valve element 22 with respective cylinder bores 1b sequentially occurs thereby permitting the compressed refrigerant to be discharged from the cylinder bores 1b toward the discharge chamber 18 in response to the rotation of the rotary valve element 22.
  • the rotary control valve element 22 has a function of controlling the discharge of the compressed refrigerant gas from the respective cylinder bores 1b toward the discharge chamber 18 during rotation thereof together with the drive shaft 6 in addition to the afore-mentioned suction control function.
  • the circumferential groove 25b of the fluid passageway 25 is formed in the outer circumference of the rotary valve element 22 in such a manner that in response to the rotation of the element 22 together with the drive shaft 6 in the direction shown by an arrow " A ", the leading end of the circumferential groove 25b is brought into fluid communication with one of the cylinder bores 1b via the associated radial passageway 21 when the piston 15 in the cylinder bore 1b is moved away from the top dead center ( T.D.C ) thereof by an angular amount " ⁇ " thereby causing a delay of a commencement of the suction stroke with respect to the cylinder bore 1b.
  • the circumferential passageway 25b of the rotary valve element 22 is extended so that the tail end thereof passes another cylinder bore 1b wherein the piston 15 reaches the bottom dead center ( B.D.C ) thereof when the piston 15 is moved away from the B.D.C by a predetermined amount corresponding to an angular amount " ⁇ " of the rotation of the rotary valve element 22.
  • commencement of the compression stroke within the cylinder bore 1b is delayed as clearly shown in Fig. 18.
  • Figure 18 illustrates that the delay of the commencement of the compression stroke with respect to the cylinder bore 1b can compensate for pressure loss in the suction of the refrigerant caused by the above-mentioned delay in the commencement of the suction stroke with respect to the cylinder bore 1b.
  • each of the cylinder bores 1b does not simultaneously communicate with both suction and discharge chambers 17 and 18 of the rear housing 4 via the rotary valve element 22, and accordingly, the compressed refrigerant does not directly leak from the cylinder bore 1b toward the suction chamber 17.
  • the single rotary valve element 22 controls the suction and discharge of the refrigerant with respect to the plurality of cylinder bores 1b, it is possible to reduce the number of elements for constructing one reciprocatory piston type compressor while simplifying the construction of the compressor. Thus, the manufacturing cost of the reciprocatory piston type compressor can be lowered.
  • the reciprocatory piston type compressor is provided with a plurality of cylinder bores in which a plurality of single-headed pistons are reciprocated to conduct the suction, compression, and discharge operation under the control of the rotary valve element.
  • the rotary valve element formed as a rotary suction control valve or a rotary suction and discharge control valve can equally be applicable to the other reciprocatory piston type compressor provided with a plurality of double-headed reciprocatory pistons reciprocated by a swash plate mechanism having a fixed inclination angle.
  • two rotary valve elements are attached to opposite ends of a drive shaft that is rotated to thereby causing rotating and wobbling motions of the swash plate in the swash plate chamber provided in the center of the cylinder block.
  • a reciprocatory piston type refrigerant compressor having high volumetric efficiency and capable of exhibiting a noise free and a damage free operation with a long operation life can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)

Claims (12)

  1. Compresseur de réfrigération de type à pistons alternatifs destiné à comprimer un réfrigérant d'un système de réfrigération comprenant :
    un bloc de culasse (1) ayant un axe central, un alésage central cylindrique (1a) formé de façon à être coaxial par rapport audit axe central, et une pluralité d'alésages axiaux (1b) disposés autour dudit et parallèlement audit axe central, chaque alésage axial (1b) ayant au moins une extrémité d'alésage par laquelle le réfrigérant pénètre l'intérieur et de l'alésage en est évacué ;
    un moyen formant boîtier comportant une paire de boîtiers (2,4) connectée, de façon à être étanche à l'air, aux extrémités axiales opposées du bloc de culasse (1), l'un des boîtiers étant connecté à l'une des extrémités axiales dudit bloc de culasse (1), par l'intermédiaire d'un moyen (3) formant plaque à paroi de séparation, et y définissant une chambre d'aspiration (17) pour le réfrigérant à comprimer, en communication de fluide avec ledit alésage central cylindrique (la) dudit bloc de culasse (1), et une chambre d'évacuation (18) pour le réfrigérant comprimé, située autour et de façon à être isolée de ladite chambre d'aspiration (17) ;
    un arbre moteur tournant (6) comportant des extrémités axiales supportées, de façon à pouvoir tourner, par des paliers fixés dans ledit moyen formant boîtier et ledit bloc de culasse (1) ;
    une pluralité de pistons alternatifs (15) logés dans ladite pluralité d'alésages axiaux (1b) dudit bloc de culasse (1), chaque piston allant et venant alternativement dans un alésage de ladite pluralité d'alésages (1b) afin d'aspirer, comprimer et évacuer le réfrigérant ;
    un mécanisme d'entraînement à pistons activé par un disque en nutation disposé autour dudit arbre moteur tournant (6) pour entraîner le va-et-vient de ladite pluralité de pistons alternatifs (15) dans ladite pluralité d'alésages (1b) en coopération avec ledit arbre moteur (6) ; et
    un moyen formant valve rotative placé dans ledit alésage central (1a) dudit bloc de culasse et fixé audit arbre moteur (6) de façon à tourner avec ledit arbre moteur (6) ;
    ledit compresseur comprenant en outre un moyen de passage du fluide comportant une pluralité de passages de fluide radiaux de façon à ménager une communication fluide constante entre chaque alésage de ladite pluralité d'alésages (1b) et ledit alésage central (1a) dudit bloc de culasse (1), ledit moyen formant valve rotative comprenant au moins un élément cylindrique (22) verrouillé dans l'une desdites extrémités axiales dudit arbre moteur (6) et doté d'une surface externe cylindrique solidarisée, de façon qu'elle puisse coulisser, dans ledit alésage central cylindrique (1a) dudit bloc de culasse (1), caractérisé en ce que ledit moyen formant valve rotative est doté d'un passage de fluide comportant un alésage borgne axial (25a) formé au centre dudit élément cylindrique (22) de façon à communiquer avec ladite chambre d'aspiration (17) dudit moyen formant boîtier, une encoche circonférentielle (25b) formée dans ladite surface externe cylindrique de façon à communiquer avec ladite pluralité d'alésages (1b) par le biais desdits passages de fluide radiaux dudit moyen de passage de fluide, et un alésage radial (25c) formé dans ledit élément cylindrique (22) de manière à connecter de façon fluide ledit alésage borgne axial (25a) à ladite encoche circonférentielle (25b), ledit passage de fluide dudit élément cylindrique (22) commandant un approvisionnement de réfrigérant comprimé de ladite chambre d'aspiration (17) dudit boîtier à au moins un alésage de ladite pluralité d'alésages (1b) par l'intermédiaire dudit moyen de passage de fluide, tandis que ledit au moins un alésage (1b) se trouve dans la phase d'aspiration pour y attirer le réfrigérant à comprimer en coopération avec lesdits pistons alternatifs (15), en réponse à la rotation dudit arbre moteur (6) et dudit moyen formant valve rotative.
  2. Compresseur de réfrigération de type à pistons alternatifs selon la revendication 1, dans lequel ladite pluralité de passages radiaux dudit moyen de passage est formée dans ledit moyen (3) de plaque à paroi de séparation ;
    chacun desdits passages ayant une première et une seconde extrémités radialement opposées ; ladite première extrémité communiquant constamment avec ledit alésage central (la) dudit bloc de culasse (1), et ladite seconde extrémité communiquant constamment avec ladite extrémité d'alésage de l'un des alésages de ladite pluralité d'alésages (1b).
  3. Compresseur de réfrigération de type à pistons alternatifs selon la revendication 1, dans lequel ladite pluralité de passages radiaux dudit moyen de passage est formée dans ledit bloc de culasse (1) ; chacun desdits alésages radiaux (25c) ayant une première et une seconde extrémités radialement opposées ; ladite première extrémité communiquant constamment avec ledit alésage central (1a) dudit bloc de culasse (1), et ladite seconde extrémité communiquant constamment avec ladite extrémité d'alésage de l'un des alésages de ladite pluralité d'alésages (1b).
  4. Compresseur de réfrigération de type à pistons alternatifs selon la revendication 1, dans lequel ledit élément cylindrique (22) dudit moyen formant valve rotative est supporté axialement par un palier de butée maintenu dans un siège d'appui formée dans ladite chambre d'aspiration (17) dudit moyen formant boîtier.
  5. Compresseur de réfrigération de type à pistons alternatifs selon la revendication 4, dans lequel ledit élément cylindrique (22) dudit moyen formant valve rotative est constamment sollicité axialement vers ledit moyen formant palier de butée par un moyen élastique, de sorte que tout jeu axial dudit élément cylindrique (22) est empêché pendant sa rotation avec ledit arbre moteur (6).
  6. Compresseur de réfrigération de type à pistons alternatifs selon la revendication 1, dans lequel ladite encoche circonférentielle (25b) dudit moyen formant valve rotative a une longueur circonférentielle prédéterminée telle que chacun desdits alésages (1b) et desdits blocs de culasse (1) est mis en communication avec ladite chambre d'aspiration (17) après une courte période de temps choisie pendant laquelle le gaz réfrigérant restant dans ladite extrémité d'alésage dudit alésage (1b) après compression, peut se détendre.
  7. Compresseur de réfrigération de type à pistons alternatifs selon la revendication 6, dans lequel ladite longueur circonférentielle prédéterminée de ladite encoche circonférentielle (25b) dudit moyen formant valve rotative est en outre déterminée de façon que chaque alésage (1b) dudit bloc de culasse (1) soit déconnecté de ladite chambre d'aspiration (17) après une autre courte période de temps choisie pendant laquelle le réfrigérant fourni dans l'alésage (1b) avant compression commence à être comprimé.
  8. Compresseur de réfrigération de type à pistons alternatifs selon la revendication 1, dans lequel ledit moyen formant valve rotative comprend en outre : un élément de manchon creux cylindrique logé de façon fixe dans ledit alésage central cylindrique (1a) dudit bloc de culasse (1) ; ledit élément de manchon creux cylindrique étant doté d'une paroi cylindrique définissant un alésage axial prévu pour le montage à rotation de l'élément cylindrique (22), et une pluralité d'ouvertures formées dans ladite paroi cylindrique de façon à communiquer constamment avec ledit moyen de passage, et dans lequel ladite encoche circonférentielle (25b) dudit passage dudit moyen formant valve rotative peut communiquer avec ladite pluralité d'alésages (1b) par l'intermédiaire de ladite pluralité d'ouvertures dudit élément de manchon creux cylindrique et ledit moyen de passage de fluide, ladite encoche circonférentielle (25b) ayant une longueur circonférentielle prédéterminée, ladite encoche circonférentielle (25b) étant connectée de façon fluide audit alésage borgne axial (25a) par l'intermédiaire dudit alésage radial (25c) formé dans ledit élément cylindrique (22).
  9. Compresseur de réfrigération de type à pistons alternatifs selon la revendication 8, dans lequel ledit élément de manchon creux cylindrique est fixé contre une marche annulaire formée dans ledit un desdits boîtiers (2 ; 4) du moyen formant boîtier de façon à entourer ladite chambre d'aspiration (17), ledit alésage axial dudit élément de manchon creux cylindrique communiquant ainsi constamment avec ladite chambre d'aspiration (17).
  10. Compresseur de réfrigération de type à pistons alternatifs selon la revendication 1, dans lequel ledit boîtier connecté à l'une des extrémités axiales dudit bloc de culasse (1) par le biais dudit moyen (3) formant plaque à paroi de séparation, est pourvu d'une paroi de séparation cylindrique incorporée pour qu'une surface de paroi cylindrique enferme ladite chambre d'aspiration (17) afin de séparer ainsi ladite chambre d'aspiration (17) de ladite chambre d'évacuation (18), et dans lequel ledit moyen formant valve rotative est pourvu en outre d'une partie engagée, de façon qu'elle puisse tourner, dans ladite surface de paroi cylindrique de ladite paroi de séparation cylindrique dudit moyen formant boîtier, et d'un passage de fluide supplémentaire formé dans celui-ci pour commander une évacuation du réfrigérant après compression d'au moins un alésage de ladite pluralité d'alésages (1b) jusqu'à ladite chambre d'évacuation (18) dudit moyen formant boîtier par le biais dudit moyen destiné à assurer une communication fluide constante entre chacun des alésages de ladite pluralité d'alésages (1b) et ledit alésage central (1a) dudit bloc de culasse (1) et une pluralité d'alésages d'évacuation formée dans ladite paroi de séparation cylindrique dudit moyen formant boîtier pour ouvrir ladite chambre d'évacuation (18) tandis qu'au moins un alésage (1b) effectue une course d'évacuation évacuant le réfrigérant après compression en coopération avec lesdits pistons alternatifs (15), en réponse à la rotation dudit arbre moteur et dudit moyen formant valve rotative.
  11. Compresseur de réfrigération de type à pistons alternatifs selon la revendication 10, dans lequel ledit passage de fluide supplémentaire dudit moyen formant valve rotative comprend une encoche axiale formée de façon à pouvoir communiquer avec ledit moyen de passage afin d'assurer une communication fluide constante entre chacun des alésages de ladite pluralité d'alésages (1b) et ledit alésage central (1a) dudit bloc de culasse (1) avec un des alésages d'évacuation de ladite pluralité d'alésages d'évacuation dudit moyen formant boîtier en séquence, en réponse à la rotation dudit moyen formant valve rotative.
  12. Compresseur de réfrigération de type à pistons alternatifs selon la revendication 10, dans lequel ledit moyen de passage destiné à assurer une communication fluide constante entre chacun des alésages de ladite pluralité d'alésages (1b) et ledit alésage central (1a) dudit bloc de culasse (1) comprend une pluralité de passages radiaux formée dans ledit moyen (3) formant plaque à paroi de séparation et dans lequel ledit passage de fluide supplémentaire dudit moyen formant valve rotative comprend une encoche axiale formée de façon à pouvoir faire communiquer chaque passage radial de ladite pluralité de passages radiaux dudit moyen (3) formant plaque à paroi de séparation avec un alésage d'évacuation de ladite pluralité d'alésages d'évacuation dudit moyen formant boîtier en séquence, en réponse à la rotation dudit moyen formant valve rotative.
EP92115362A 1991-09-11 1992-09-09 Compresseur à pistons avec tiroir rotatif Expired - Lifetime EP0531951B1 (fr)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP231853/91 1991-09-11
JP23185391 1991-09-11
JP231856/91 1991-09-11
JP3231856A JPH0571468A (ja) 1991-09-11 1991-09-11 ピストン往復動型圧縮機
JP235026/91 1991-09-13
JP3235026A JP2995944B2 (ja) 1991-09-13 1991-09-13 ピストン往復動型圧縮機

Publications (2)

Publication Number Publication Date
EP0531951A1 EP0531951A1 (fr) 1993-03-17
EP0531951B1 true EP0531951B1 (fr) 1996-01-10

Family

ID=27331820

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92115362A Expired - Lifetime EP0531951B1 (fr) 1991-09-11 1992-09-09 Compresseur à pistons avec tiroir rotatif

Country Status (4)

Country Link
EP (1) EP0531951B1 (fr)
KR (2) KR930006325A (fr)
CA (1) CA2077979C (fr)
DE (1) DE69207523T2 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930016656A (ko) * 1992-01-31 1993-08-26 도요다 가오루도시 왕복구동형 압축기
IT1298459B1 (it) * 1997-03-03 2000-01-10 Luk Fahrzeug Hydraulik Compressore, in particolare per l'impianto di climatizzazione di un autoveicolo
GB2358891B (en) * 1997-03-03 2001-12-05 Luk Fahrzeug Hydraulik A compressor for an air conditioning system in a motor vehicle
US6250204B1 (en) * 1997-03-03 2001-06-26 Luk Fahrzeug-Hydraulik Gmbh & Co., Kg Compressor, in particular for a vehicle air conditioning system
CN104595150B (zh) * 2013-10-30 2017-12-08 华域三电汽车空调有限公司 变排量斜盘式压缩机

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749340A (en) * 1985-10-21 1988-06-07 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Piston type compressor with improved suction reed valve stopper

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1364508A (en) * 1919-03-10 1921-01-04 Axel W Moody Piston-operating mechanism for engines, pumps, and compressors
CH103728A (fr) * 1921-04-29 1924-03-17 Maldon Michell Anthony George Moteur à fluide.
CH111613A (fr) * 1923-07-04 1925-09-01 Limited Crankless Engines Mécanisme pour convertir un mouvement rotatif en mouvement rectiligne alternatif et réciproquement.
DE923985C (de) * 1951-08-08 1955-02-24 Ricardo & Co Engineers Kolbenkompressor fuer Luft und andere gasfoermige Medien
DD258446A1 (de) * 1987-03-16 1988-07-20 Orsta Hydraulik Veb K Axialkolbenmaschine
DD269881A1 (de) * 1987-12-31 1989-07-12 Starkstrom Anlagenbau Veb K Kolbenverdichter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749340A (en) * 1985-10-21 1988-06-07 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Piston type compressor with improved suction reed valve stopper

Also Published As

Publication number Publication date
CA2077979A1 (fr) 1993-03-12
KR0116936Y1 (ko) 1998-06-15
DE69207523D1 (de) 1996-02-22
DE69207523T2 (de) 1996-07-25
KR930006325A (ko) 1993-04-21
CA2077979C (fr) 1998-08-18
EP0531951A1 (fr) 1993-03-17

Similar Documents

Publication Publication Date Title
US5267839A (en) Reciprocatory piston type compressor with a rotary valve
US5174728A (en) Variable capacity swash plate type compressor
US5232349A (en) Axial multi-piston compressor having rotary valve for allowing residual part of compressed fluid to escape
AU661772B2 (en) Swash plate type compressor with variable displacement mechanism
EP0908623B1 (fr) Pistons pour compresseur à piston
US5259736A (en) Swash plate type compressor with swash plate hinge coupling mechanism
US5207078A (en) Reciprocatory piston type compressor for a refrigeration system
US5316446A (en) Variable capacity wobbling swash plate type compressing apparatus
EP0869281B1 (fr) Appareil de déplacement de fluide avec mécanisme à déplacement variable
US5501579A (en) Axial multi-piston compressor having rotary valve for allowing residual part of compressed fluid to escape
US4880360A (en) Variable displacement compressor with biased inclined member
EP0280479B1 (fr) Compresseur à plateau oscillant
US5380165A (en) Reciprocating-piston type refrigerant compressor with an improved rotary-type suction-valve mechanism
US5380168A (en) Axial multi-piston compressor having rotary valve for allowing residual part of compressed fluid to escape
US5429482A (en) Reciprocatory piston type compressor
EP0531951B1 (fr) Compresseur à pistons avec tiroir rotatif
US5401144A (en) Swash plate type refrigerant compressor
EP2354548A1 (fr) Compresseur alternatif de type à déplacement variable
EP0499343B1 (fr) Compresseur à plateau oscillant
US6012905A (en) Suction and discharge valve mechanism for fluid displacement apparatus
US6209444B1 (en) Piston-operated refrigerant compressor and a method of assembling the same
JP2707896B2 (ja) ピストン型圧縮機における冷媒ガス吸入案内機構
US6212995B1 (en) Variable-displacement inclined plate compressor
US20020040638A1 (en) Swash plate compressor having variable capacity
JP3102175B2 (ja) 往復動型圧縮機

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920916

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19940614

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69207523

Country of ref document: DE

Date of ref document: 19960222

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110907

Year of fee payment: 20

Ref country code: FR

Payment date: 20110922

Year of fee payment: 20

Ref country code: GB

Payment date: 20110907

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69207523

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69207523

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20120908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120911

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120908