EP0530072B1 - Verfahren und Vorrichtung zur Steuerung und Regelung - Google Patents
Verfahren und Vorrichtung zur Steuerung und Regelung Download PDFInfo
- Publication number
- EP0530072B1 EP0530072B1 EP92402262A EP92402262A EP0530072B1 EP 0530072 B1 EP0530072 B1 EP 0530072B1 EP 92402262 A EP92402262 A EP 92402262A EP 92402262 A EP92402262 A EP 92402262A EP 0530072 B1 EP0530072 B1 EP 0530072B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- value
- magnitude
- input
- output
- parameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 22
- 230000033228 biological regulation Effects 0.000 title description 5
- 230000006870 function Effects 0.000 claims description 72
- 238000012937 correction Methods 0.000 claims description 21
- 230000015654 memory Effects 0.000 claims description 21
- 230000009466 transformation Effects 0.000 claims description 8
- 230000009471 action Effects 0.000 claims description 4
- 238000012886 linear function Methods 0.000 claims description 4
- 238000000844 transformation Methods 0.000 claims 1
- 230000006978 adaptation Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000017105 transposition Effects 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
- G05F1/565—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
- G05F1/567—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for temperature compensation
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/462—Regulating voltage or current wherein the variable actually regulated by the final control device is dc as a function of the requirements of the load, e.g. delay, temperature, specific voltage/current characteristic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S323/00—Electricity: power supply or regulation systems
- Y10S323/907—Temperature compensation of semiconductor
Definitions
- the invention relates to methods and devices intended to control using a first quantity y a second quantity x, this second quantity being itself for each of the values of the quantity x a known function of a parameter h that we don't control.
- the method and the device according to the invention are applicable whenever a point of abscissa h of the curve representing a second value y 2 (h) can be deduced from the point of the same abscissa h of the curve representing a first value y 1 (h) by adding a value which is a linear function of h.
- the invention can be extended to an initial control quantity Y one-to-one function of the quantity y, controlling a value X one-to-one function of the variable x.
- the functions Y (y) , X (x) and Y (X) are not necessarily linear.
- the invention relates in particular, but not exclusively, to a voltage control intended to bias a diode with an intrinsic zone in current.
- the first quantity y is a control voltage U
- the controlled value x is the bias current I of the intrinsic zone diode
- the parameter h influencing the value of the current is the temperature T of the diode.
- the embodiments according to the known art do not make it possible to obtain commands for the bias current I of the intrinsically-zone diode that are well regulated in temperature and having switching times between two very short command values.
- the embodiments according to the prior art either the order is well temperature regulated but then the switching times are long, or the temperature regulation is ineffective.
- Another object of the invention is to be able to supply this command and this regulation over a wide range of values of the quantity x and over a wide range of variations of the parameter h.
- Another object of the invention is to allow this command between a minimum value x m and a maximum value x M with a large number of control steps.
- a zero value will be applied to the other input if the value of the parameter h is effectively equal to h i and which will otherwise be equal to a value which is a function of the difference between the real value of the parameter h r and the reference value h i .
- the value applied to the other input will be equal to H (hr-hi) , H (hr-hi) being the value of the correction to be applied to U i to obtain the value x i when h is not equal to h i but at h r .
- H (hr-hi) being the value of the correction to be applied to U i to obtain the value x i when h is not equal to h i but at h r .
- the method and the device according to the invention are particularly well suited when the change in the control voltage U i results in self-regulation as a function of the parameter h of a part of the means ensuring the correction H (hr-hi) .
- a particularly simple embodiment of the invention is obtained when the laws of variation of y as a function of the parameter h are linear.
- the sensor of the quantity h can be a linear sensor, the slope of the output quantity of the sensor as a function of h being of equal value and of sign opposite to one of the slopes of y p as a function of h.
- the invention is also well suited to the case where the different functions U p (h) are arbitrary but deducible from one another by linear transformation.
- h i designating a value of the interval h m h M a point of abscissa h of a second curve representative of y p , as a function of h is deduced from the point of the same abscissa h of a first curve representative of y p as a function of h by adding a constant term and a term proportional to the difference (hh i ).
- the coefficient of proportionality is, when the curves are straight lines, the ratio of the slopes of the second and the first line.
- the correction voltage can be applied by means of an operational amplifier, the gain of which is made proportional to the slope of the line representing the quantity y p as a function of the parameter h, when the controlled quantity x has the value x p .
- the gain variation is obtained by changing the value of a resistor placed in an amplifier feedback circuit.
- the correction voltage is the sum of two voltages, a so-called large step voltage obtained by dividing the total variation y M -y m by the number u of large steps and a so-called fine step voltage obtained by dividing the worth a big step either y M -y m u by the number v of fine steps be y M -y m uv
- This curve shows that R is a one-to-one function of I so that the control of I leads to the control of R.
- the control quantity "y" will be represented by the voltage U which should be applied to the input of an operational amplifier to obtain the value x represented here by the bias current of a diode connected to the output of the amplifier.
- the parameter h is represented by the temperature T of the diode. It is known that when the temperature T of a PIN diode increases the bias voltage to be applied to the diode to obtain a constant output current I decreases.
- D p represents the value of U as a function of T when the bias current is I p
- D i represents the value of U when the current polarization is I i (I i > I p ).
- D 3 be the line passing through the point A of the line D p , with coordinates T i and U i , and parallel to the line D i
- a point on the line D i is deduced from a point on the line D 3 thus constructed by addition to the value of U represented by the line D 3 for a value of T with a constant value equal to AA i ,
- a i being the point of the line D i with abscissa T i .
- the line D 3 thus constructed is deduced from the line D p by addition to the value U T given by the line D p for an abscissa T of a magnitude (U - U T ) proportional to the difference between T and T i , the coefficient of proportionality being in this case the ratio of the slopes of the lines D i and D p .
- a point of a second straight line representing U as a function of T for a constant value I is deduced well from a point of abscissa T of a first straight line by addition to the ordinate of the point of abscissa T on the first line of a constant term, here AA i and of a term proportional to the value of the abscissa difference (T - T i ), T i designating a value between the minimum temperature T m and the maximum temperature T M.
- FIG. 4 represents a set of three curves C 1 , C 2 , C 3 , each of the curves representing the value to be given to the quantity y to keep the quantity x constant when the parameter h varied.
- This figure represents a PIN diode 1 whose resistance R is to be controlled, therefore the current by means of a control voltage U.
- the command and control device is constituted by means 2. This means applies to the input of an operational amplifier of great internal resistance 10 having two inputs a first 11, a second 12 and an output 13, the control voltage U, in the following manner.
- the input 11 of this amplifier receives from a control circuit 200 a voltage U i which would be the voltage to be applied to obtain a value I i of the controlled current if the temperature of the diode had the reference value T i .
- the input 12 of this amplifier is supplied by the output of a temperature sensor 30, this output being corrected by means 40 which receives the value of the command from the control circuit 200.
- the sensor 30 is preferably located near the diode PIN 1 so that the temperature it senses is as close as possible to that of the diode.
- the curves representing U as a function of T for constant I are straight lines (see Figure 2).
- the corrections to be applied are shown in figure 6 in dotted lines.
- the reference value T i is equal to 20 °, central value of the range -40 ° + 80 °.
- FIG. 7 This figure is identical to Figure 5 but the device 40 has been detailed. It comprises an operational amplifier 41 comprising an output 12 and two inputs 43, 44. A feedback loop 47 brings the output voltage back to the input 43 by means of a variable resistor 46, the input 43 also receives the output voltage of the sensor 30, the variable resistor 46 is controlled by the command 200. The value of the resistor 46 is such that the gain of the operational amplifier 41 is proportional to the value of the slope of the correction line used for the value ordered.
- the output 12 of the operational amplifier 41 is the second input of the operational amplifier 10.
- the command 200 which controls the value of the voltage at the input of the amplifier 10 and the value of the resistor 46 placed in the counter loop reaction 47 has two parts 210 and 220 for performing each of these functions.
- control part 210 in connection with the input 11 will now be described with reference to FIG. 8.
- the arrival of the command is made in decibel, that is to say in logarithmic value, a first linearization would therefore be necessary to return to the value of linear attenuation.
- the desired loss is a linear function of the value of the resistance entered to achieve the loss.
- the resistance entered is the resistance of the PIN 1 diode, the variation curve of which as a function of I is shown in FIG. 1.
- the control part 210 200 is produced in the following manner.
- the input command 201 coded on 6 parallel bits 201a to 201 f is supplied with a clock signal. It therefore makes it possible to obtain 2 6, ie 64 attenuation steps distributed here between 0 and 64 decibels in steps of 1 decibel.
- These signals are set to TTL 0.5 V standards by a D 202 flip-flop controlled by the clock signal.
- the binary output word 203 of the flip-flop 202 which represents the input value according to TTL standards addresses two parallel circuits, one of these circuits whose reference numbers are simple represents the control of large pitch, the other whose Reference numbers are the same but with a prime sign represents the end pitch command.
- the operation of the large pitch control will now be described.
- the binary word 203 at the output of the flip-flop 202 addresses a programmable memory 204 whose boxes allow the storage of 8 bits.
- the values stored in the memories make it possible to carry out a transposition achieving the linearization mentioned above. We understand that because of the linearization the width of the steps at the output of the memory is variable and that one may need very fine steps which can only be achieved by coding on a larger number of bits.
- the output information of the addressed box of the memory 204 are resynchronized by a flip-flop D 205 and sent to a digital analog converter (ADC) 206.
- ADC digital analog converter
- the latter behaves like a resistor whose value changes according to the input values received .
- the fine pitch command comprises the same elements having the same functions, namely a set of memory boxes 204 ′, a flip-flop 205 ′ and a digital analog converter 206 ′.
- the output 11 of this amplifier is the input of the adder amplifier 10 of FIG. 7.
- FIG. 9 represents a simplified diagram giving a synoptic view of the control and regulation assembly.
- This figure shows that the attenuation control word 203 coming from the flip-flop 202 is sent not only to the transformation device represented in FIG. 8 by memories 204, flip-flops 205 (not represented in FIG. 9) and converters 206 but also towards an analog device 220 having an identical function constituted by a group of memories 221, a flip-flop 222 and a digital analog converter 46 which plays the role of variable resistance as explained during the description of FIG. 7.
- the values displayed in the memories addressed by the control word 203 reproduce the image of a curve recorded during preliminary tests on a PIN 1 diode mounted, under the same conditions. They represent the values of resistors 206 respectively 46 to be displayed to obtain the controlled loss.
- T T i the decibel attenuations by decibel up to 64 and the corresponding word on each of the coding wheels. This information is then entered on the keyboard of a programmer for each of the memories.
- the programming of memories can also be computerized.
- the output voltage of the temperature sensor 30 constitutes the reference voltage supplying the converter 46 and the input 43 of the operational amplifier 41. It is produced from a bare sensor and adapted for example by means of an amplifier operational so that its output voltage is equal to the supply voltage of the input 44 of the operational amplifier 41 when the temperature is equal to the reference temperature T i .
- the adaptation is particularly simple since the curves U as a function of T are straight lines and there are sensors on the market giving a linear voltage as a function of temperature. This is why it is possible to be satisfied in this case with an adaptation by operational amplifier.
- the adaptation may include a memory converter association to establish a corrected sensor output having the form of one of the functions y p (h).
- the input quantity Y which is here a decibel loss
- a value y which is here the value of the voltage U applied to the input of the operational amplifier 10 which, in turn, -same, conditions the value of a quantity x which is here the value of the output current I of the amplifier 10 which itself conditions a quantity X which is the value of the resistance of the diode PIN 1.
- the attenuation obtained is almost constant when the temperature T varies from -20 ° to + 80 °.
- the values obtained for a 16 dB and 37 dB command are shown in Figure 10.
- the switching times between two commands are of the order of 200 nanoseconds.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Amplifiers (AREA)
- Control Of Amplification And Gain Control (AREA)
- Feedback Control In General (AREA)
Claims (15)
- Steuerverfahren für eine Größe x zwischen zwei Werten xm und xM durch Einwirkung auf eine Steuergröße y, mit der die Größe x eineindeutig verknüpft ist, wenn der Wert eines Parameters h, auf den die Größe x anspricht, konstant bleibt, wobei die Größe y zwischen zwei Werten ym und yM variieren muß, um die Größe x von xm bis xM variieren zu lassen, wenn der Parameter h einen Bezugswert hi besitzt, wobei die Größe x ihrerseits für jeden der gesteuerten Werte xp eine eineindeutige Funktion des Parameters h ist und der Parameter h in einem bestimmten Bereich von hm bis hM variieren kann, der den Bezugswert hi einschließt, so daß man für jeden der Werte xp(h) der Variablen x eine Funktion yp = gp(h) definieren kann, die den der Größe y zu gebenden Wert bildet, um den Wert xp zu erhalten, wenn der Parameter den Wert h besitzt, wobei die verschiedenen Funktionen gp(h) die Eigenschaft besitzen, daß der Wert einer zweiten Funktion gp(h) für jeden Wert von h im Intervall von hm bis hM aus dem Wert einer ersten Funktion gp(h) für den gleichen Wert des Parameters h abgeleitet werden kann, indem ein abhängig von der Differenz zwischen dem realen gemessenen Wert hr des Parameters h und dem Bezugswert hi bekannter Wert hinzuaddiert wird, dadurch gekennzeichnet, daß die Größe x durch die Ausgangsgröße eines Operationsverstärkers (10) mit zwei Eingängen (11, 12) repräsentiert wird und daß an den ersten Eingang (11) eine für die anzulegende Steuergröße yi repräsentative Spannung Ui angelegt wird, um die Ausgangsgröße des Werts xi zu erhalten, wenn h den Bezugswert besitzt, wobei die Spannung Ui von Um bis UM variiert, wenn xi von xm bis xM variiert, und daß man an den zweiten Eingang (12) eine korrigierte Spannung Vc anlegt, die für die korrigierte Ausgangsgröße einer Meßsonde (30) für den Parameter h repräsentativ ist, wobei der Ausgang der Sonde (30) so korrigiert wird, daß die korrigierte Spannung Vc Null ist, wenn h dem Wert hi gleicht, und ansonsten der Funktion H(hr-hi) gleicht, die den Wert der an die Steuergröße Ui anzulegenden Korrektur repräsentiert, um den gesteuerten Wert xi zu erhalten, wenn der Parameter h vom Bezugswert hi zum Meßwert hr übergeht.
- Verfahren nach Anspruch 1 in Anwendung auf den Fall, daß die Funktionen yp = gp(h) lineare Funktionen von h sind, die durch ihre Steigung ap definiert sind, und daß die verwendete Meßsonde (30) eine Spannung liefert, die linear von h abhängt, dadurch gekennzeichnet, daß die Korrekturspannung, die an den zweiten Eingang (12) des Operationsverstärkers (10) anzulegen ist, die Ausgangsspannung eines weiteren Operationsverstärkers (41) mit zwei Eingängen (44 und 43) und einem Ausgang (12) ist, der an seinem ersten Eingang (44) eine Bezugsspannung und an seinem zweiten Eingang (43) die Ausgangsspannung der Meßsonde (30) empfängt, wobei der Verstärkungsgrad dieses anderen Verstärkers (41) durch Einwirkung der Größe y auf einen in einer Rückkopplungsschleife zwischen dem Ausgang (12) und dem zweiten Eingang (43) des weiteren Operationsverstärkers (41) befindlichen Widerstands (46) proportional zu aP gemacht wird.
- Verfahren nach Anspruch 1 in Anwendung auf den Fall, daß die Funktionen yp = gp(h) beliebige Funktionen sind, die voneinander durch lineare Transformationen abgeleitet werden können, dadurch gekennzeichnet, daß die verwendete Meßsonde (30) in der Lage ist, eine der Kurven yp = gp(h) zu reproduzieren.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Bezugswert des Parameters hi sich im Zentrum des Variationsbereichs des Parameters h befindet.
- Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Bezugsfunktion ypr = gpr(h), von der aus die Funktionen gp(h) erzeugt werden, diejenige ist, die den Mittelwert (xm+xM)/2 der Größe x liefert.
- Verfahren nach Anspruch 2 in Anwendung auf den Fall, daß die Größe y ihrerseits eine eineindeutige Funktion einer anderen Steuergröße Y ist und daß die Variable x unmittelbar auf den Wert einer anderen Variablen X einwirkt, die man durch Y steuern will, wobei Y und X unter diesen Bedingungen zueinander in einer eineindeutigen Beziehungen stehen, dadurch gekennzeichnet, daß man die Größe Y so transformiert, daß jedem Wert der Größe Y der Wert y entspricht, der schließlich die Größe X mit dem gewünschten Wert ergibt.
- Steuervorrichtung für eine Größe x zwischen zwei Werten xm und xM durch Einwirkung auf eine Steuergröße y, mit der die Größe x eineindeutig verknüpft ist, wenn der Wert eines Parameters h, auf den die Größe x anspricht, konstant bleibt, wobei die Größe y zwischen zwei Werten ym und yM variieren muß, um die Größe x von xm bis xM variieren zu lassen, wenn der Parameter h einen Bezugswert hi besitzt, wobei die Größe x ihrerseits für jeden der gesteuerten Werte xp eine eineindeutige Funktion des Parameters h ist und der Parameter h in einem bestimmten Bereich von hm bis hM variieren kann, der den Bezugswert hi einschließt, so daß man für jeden der Werte xp eine Funktion yp = gp(h) definieren kann, die den der Größe y zu gebenden Wert bildet, um den Wert xp zu erhalten, wenn der Parameter den Wert h besitzt, wobei die verschiedenen Funktionen gp(h) die Eigenschaft besitzen, daß der Wert einer zweiten Funktion gp(h) für jeden Wert von h im Intervall von hm bis hM aus dem Wert einer ersten Funktion gp(h) für den gleichen Wert des Parameters h abgeleitet werden kann, indem ein abhängig von der Differenz zwischen dem realen gemessenen Wert hr des Parameters h und dem Bezugswert hi bekannter Wert hinzuaddiert wird, dadurch gekennzeichnet, daß die Größe x durch die Ausgangsgröße eines Operationsverstärkers (10) mit zwei Eingängen (11, 12) repräsentiert wird und daß an den ersten Eingang (11) über eine Steuerung (200) eine für die anzulegende Steuergröße yi repräsentative Spannung Ui angelegt wird, um die Ausgangsgröße des Werts xi zu erhalten, wenn h den Bezugswert hi besitzt, wobei die Spannung Ui von Um bis UM variiert, wenn xi von xm bis xM variiert, und daß man an den zweiten Eingang (12) eine Spannung Vc anlegt, die die von einer Korrekturvorrichtung (40) korrigierte Ausgangsgröße einer Meßsonde (30) für den Parameter h ist, wobei der Ausgang der Sonde (30) durch die Vorrichtung (40) so korrigiert wird, daß die korrigierte Spannung Vc Null ist, wenn h dem Wert hi gleicht, und ansonsten der Funktion H(hr-hi) gleicht, die den Wert der an die Steuergröße Ui anzulegenden Korrektur repräsentiert, um den gesteuerten Wert xi zu erhalten, wenn der Parameter h vom Bezugswert hi zum Meßwert hr übergeht.
- Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die Steuerung (200) einen ersten Teil (210), der die an den Eingang (11) des Operationsverstärkers (10) angelegte Spannung Ui steuert, und einen zweiten Teil (220) aufweist, der die Korrekturvorrichtung (40) steuert.
- Vorrichtung nach Anspruch 8 in Anwendung auf den Fall, daß die Funktionen yp = gp(h) lineare Funktionen von h sind, die durch ihre Steigung ap definiert sind, dadurch gekennzeichnet, daß die Meßsonde (30) eine lineare Meßsonde ist und daß die Korrekturvorrichtung (40) von einem weiteren Operationsverstärker (41) mit zwei Eingängen (44, 43) und einem Ausgang (12) gebildet wird, wobei der erste Eingang (44) eine Bezugsspannung und der zweite (43) die Ausgangsspannung der Meßsonde (30) empfängt, wobei der Verstärkungsgrad des weiteren Verstärkers (41) durch einen in einer Rückkopplungsschleife (47) zwischen dem Ausgang (12) und dem zweiten Eingang (43) des weiteren Verstärkers (41) liegenden Widerstand (46) zu ap proportional gemacht wird und der Wert des Widerstands (46) von dem Teil (220) der Steuerung (200) gesteuert wird.
- Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß der Teil der Steuerung (210) von Kippstufen (202) vom Typ D gebildet wird, die einen Eingang (201) und einen Ausgang (203) besitzen, wobei die Eingänge (201) das Steuerwort empfangen und die Ausgänge (202) einen Speicher (204) adressieren und der Ausgang des Speichers (204) einen Analog-Digital-Wandler (206) steuert, der einen an einen der Eingänge (207) eines dritten Operationsverstärkers (208) angeschlossenen variablen Widerstands bildet, wobei der Ausgang (11) dieses Operationsverstärkers einen der Eingänge des Operationsverstärkers (10) bildet.
- Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß Kippstufen (205) vom Typ D zwischen den Speicher (204) und den Wandler (206) eingefügt sind.
- Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß der Steuerteil (210) von Kippstufen (202) vom Typ D mit einem Eingang (201) und einem Ausgang (203) gebildet werden, wobei die Eingänge (201) das Steuerwort empfangen und die Ausgänge (203) zwei parallele Leitungen adressieren, von denen die erste eine Steuerleitung für den Grobschritt und die zweite eine Steuerleitung für den Feinschritt bildet, dadurch gekennzeichnet, daß jede der parallelen Leitungen einen Speicher (204, 204') besitzt, der vom Ausgangswort (203) der Kippstufen vom Typ D adressiert wird, welches einen Analog-Digital-Wandler (206, 206') steuert, der einen an einen der Eingänge des dritten Operationsverstärkers (208) angeschlossenen variablen Widerstand bildet, wobei der Ausgang (11) dieses Operationsverstärkers einen der Eingänge des Operationsverstärkers (10) bildet.
- Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß Kippstufen (205, 205') vom Typ D zwischen die Speicher (204, 204') und die Wandler (206, 206') eingefügt sind.
- Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß der Teil der Steuerung (220) einen Speicher (221) enthält, der vom Steuerwort (203) adressiert wird, wobei der im adressierten Speicher enthaltene Wert den von einem Analog-Digital-Wandler gebildeten Widerstand (46) adressiert.
- Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß Kippstufen (222) vom Typ D zwischen den Speicher (221) und den Wandler (46) eingefügt sind.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9110569A FR2680587B1 (fr) | 1991-08-23 | 1991-08-23 | Procede et dispositif de commande et regulation. |
FR9110569 | 1991-08-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0530072A1 EP0530072A1 (de) | 1993-03-03 |
EP0530072B1 true EP0530072B1 (de) | 1996-09-18 |
Family
ID=9416365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92402262A Expired - Lifetime EP0530072B1 (de) | 1991-08-23 | 1992-08-11 | Verfahren und Vorrichtung zur Steuerung und Regelung |
Country Status (6)
Country | Link |
---|---|
US (1) | US5341287A (de) |
EP (1) | EP0530072B1 (de) |
JP (1) | JPH06268459A (de) |
CA (1) | CA2076475A1 (de) |
DE (1) | DE69213869T2 (de) |
FR (1) | FR2680587B1 (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3329077B2 (ja) * | 1993-07-21 | 2002-09-30 | セイコーエプソン株式会社 | 電源供給装置、液晶表示装置及び電源供給方法 |
FR2801681B1 (fr) | 1999-11-30 | 2002-02-08 | Thomson Csf | Procede et dispositif de mesure de la temperature de composants hyperfrequence |
ITTO20040411A1 (it) * | 2004-06-21 | 2004-09-21 | Olivetti Jet S P A | Dispositivo di rilevamento di grandezze fisiche, particolarmente di umidita', e relativo metodo di rilevamento. |
CN112764448B (zh) * | 2019-11-05 | 2022-05-24 | 台达电子工业股份有限公司 | 过温度补偿控制电路 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3701004A (en) * | 1971-05-13 | 1972-10-24 | Us Army | Circuit for generating a repeatable voltage as a function of temperature |
JPS49119080A (de) * | 1973-03-21 | 1974-11-14 | ||
US4002964A (en) * | 1975-10-02 | 1977-01-11 | Gordon Engineering Company | Temperature compensation technique |
US4001554A (en) * | 1975-10-29 | 1977-01-04 | The United States Of America As Represented By The Secretary Of The Army | Mode control computer interface |
NL7907161A (nl) * | 1978-09-27 | 1980-03-31 | Analog Devices Inc | Geintegreerde temperatuurgecompenseerde spannings- referentie. |
DE3171674D1 (en) * | 1980-04-28 | 1985-09-12 | Fujitsu Ltd | Temperature compensating voltage generator circuit |
US4562400A (en) * | 1983-08-30 | 1985-12-31 | Analog Devices, Incorporated | Temperature-compensated zener voltage reference |
-
1991
- 1991-08-23 FR FR9110569A patent/FR2680587B1/fr not_active Expired - Fee Related
-
1992
- 1992-08-11 EP EP92402262A patent/EP0530072B1/de not_active Expired - Lifetime
- 1992-08-11 DE DE69213869T patent/DE69213869T2/de not_active Expired - Fee Related
- 1992-08-12 US US07/929,711 patent/US5341287A/en not_active Expired - Fee Related
- 1992-08-20 CA CA002076475A patent/CA2076475A1/fr not_active Abandoned
- 1992-08-21 JP JP4222825A patent/JPH06268459A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
JPH06268459A (ja) | 1994-09-22 |
DE69213869D1 (de) | 1996-10-24 |
DE69213869T2 (de) | 1997-01-30 |
EP0530072A1 (de) | 1993-03-03 |
FR2680587A1 (fr) | 1993-02-26 |
CA2076475A1 (fr) | 1993-02-24 |
US5341287A (en) | 1994-08-23 |
FR2680587B1 (fr) | 1993-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2630275A1 (fr) | Amplificateur de courant alternatif et procede de neutralisation de la capacite d'entree d'un circuit amplificateur de tension | |
EP1890122A1 (de) | Temperatursensor, der ein Temperatursignal in digitaler Form liefert | |
EP0530072B1 (de) | Verfahren und Vorrichtung zur Steuerung und Regelung | |
EP1231529A1 (de) | Referenzpannungsgeneratoreinrichtung mit hoher Genauigkeit | |
EP0065901A1 (de) | Potentiometermesswertumformersystem | |
EP0524294B1 (de) | Verstärkerschaltung mit exponentieller verstärkungssteuerung | |
EP1211888B1 (de) | Infrarotstrahlungsdetektionseinrichtung | |
EP0200255B1 (de) | Schaltstufe einer Darlington-Type insbesondere für Speicher-Wortzeile-Dekodierer | |
EP2978127B1 (de) | Verfahren zur digitalen kompensation von variationen, abhängig von der temperatur, einer elektrischen grösse einer integrierten weltraum-funktelekommunikationsausrüstung | |
EP0829796B1 (de) | Spannungssteuerung mit gedämpfter Temperaturempfindlichkeit | |
FR2581812A1 (fr) | Convertisseur numerique-analogique a circuits de decalage de niveau d'entree numerique | |
EP0308293B1 (de) | Steuerung der Ausgangsleistung eines Klasse-C-Verstärkers | |
FR2639119A1 (fr) | Appareil de mesure de differentes grandeurs electriques ou multimetre perfectionne | |
FR2562244A1 (fr) | Procede et dispositif de controle de niveau de liquide dans un reservoir | |
EP1394939B1 (de) | Mit geschlossener Schleife gesteuertes analogues System zur Generierung eines Ausgangssignals aus einem Steuersignal | |
EP0203645A1 (de) | Integrierte Digital/Analog-Wandlerschaltung mit Gerät zur Glitchreduzierung | |
EP1315061A1 (de) | Leistungssteuerung für elektronische Schaltung, Bauelement und Gerät hierfür | |
FR2755325A1 (fr) | Dispositif de conversion analogique/numerique a caracteristique de transfert programmable | |
FR2699020A1 (fr) | Générateur d'ondes radiofréquences à puissance de sortie variable et régulée. | |
FR2670017A1 (fr) | Dispositif de circuits pour l'etalonnage de signaux en instrumentation industrielle. | |
FR2508177A1 (fr) | Montage pour la representation d'une resistance de precision variable | |
FR2745130A1 (fr) | Circuit d'amplification et procede permettant de determiner et de programmer les niveaux de commande de puissance dans ce circuit | |
EP0838901B1 (de) | Analog-Digital-Wandlungsgerät mit geregelter Eingangsdynamik | |
FR2815196A1 (fr) | Amplificateur d'erreur integre | |
FR2563347A1 (fr) | Perfectionnement aux comparateurs avec circuit de verrouillage et convertisseur analogique numerique utilisant de tels comparateurs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
17P | Request for examination filed |
Effective date: 19930705 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: THOMSON-CSF |
|
17Q | First examination report despatched |
Effective date: 19951117 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REF | Corresponds to: |
Ref document number: 69213869 Country of ref document: DE Date of ref document: 19961024 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19961122 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20040810 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20040811 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20040819 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050811 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050811 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CL Ref country code: FR Ref legal event code: AU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060301 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20050811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060428 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20060428 |