EP0529139B1 - Binary data transmission method in an alarm signalling system - Google Patents
Binary data transmission method in an alarm signalling system Download PDFInfo
- Publication number
- EP0529139B1 EP0529139B1 EP91114662A EP91114662A EP0529139B1 EP 0529139 B1 EP0529139 B1 EP 0529139B1 EP 91114662 A EP91114662 A EP 91114662A EP 91114662 A EP91114662 A EP 91114662A EP 0529139 B1 EP0529139 B1 EP 0529139B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- voltage
- detectors
- line
- central control
- comparator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 13
- 230000005540 biological transmission Effects 0.000 title claims description 33
- 230000011664 signaling Effects 0.000 title abstract 2
- 238000001514 detection method Methods 0.000 claims description 10
- 239000003990 capacitor Substances 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims description 2
- 230000009977 dual effect Effects 0.000 abstract 2
- 230000015654 memory Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B25/00—Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
- G08B25/01—Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
- G08B25/04—Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using a single signalling line, e.g. in a closed loop
Definitions
- Document GB-A-2 150 793 describes a data transmission system with a control center to which a plurality of detectors are connected with a double line, which are supplied with energy by the control center.
- the data of the line voltage are modulated on for data transmission, the control center having comparators for detection.
- the present invention is based on the problem of ensuring both the energy supply and the trouble-free and fast transmission of large amounts of data between the control center and the individual detectors.
- the binary data are modulated upon transmission from the control center to the individual line voltage detectors, the data in the detectors being detected by comparing the line voltage with a reference voltage.
- the control center sends the reference voltage to the detectors, which store the reference voltage.
- the data is modulated onto the line stream.
- the voltage proportional to the line current is detected in a microcomputer.
- the energy supply of the detectors and the data transmission preferably take place in time.
- a measuring resistor is arranged in series with an energy source for the detection line in the control center.
- the voltage drop there is either fed to a comparator or directly to the microcomputer via an analog-digital converter.
- a voltage divider between the wires of the double line, a microcomputer and a comparator and a storage element for storing a reference voltage are arranged in each detector.
- the comparator is connected to the microcomputer, the reference voltage and the line voltage taken from the center tap of the voltage divider are fed to the comparator.
- the memory elements of the individual detectors can be formed by capacitors which are charged via the center tap of a voltage divider arranged between the wires of the double line and the voltage of which is applied to the comparator as a threshold voltage by means of a switch which can be controlled by a microcomputer arranged in the detector.
- the memory elements of the individual detectors are formed by semiconductor memories, each of which has an analog-to-digital converter with the center tap of one between the wires the double line arranged voltage divider and connected to the comparator via a digital-to-analog converter.
- FIG. 1 shows a hazard detection system in which several hazard detectors M1 to Mn are connected to a control center Z via a double line a, b. Schematically, further lines starting from the control center are indicated, on which detectors are also arranged.
- the voltage and current curve on the double line a, b in the event that the phases of the energy supply to the detectors and the data transmission take place successively in time is shown in FIG. 2; there is a high voltage during the power supply and a high current flows to charge storage capacitors in the detectors M1 to Mn.
- a significantly lower voltage is present at the detectors and a much lower current flows, as can also be seen in FIG. 2.
- the voltage and current values shown for the data transmission phase represent mean values. The data signals are superimposed on them during operation.
- FIGS. 3 to 6 The devices necessary for the inventive method in the center Z and in the detector M1 to Mn are shown in FIGS. 3 to 6.
- FIG. 3 shows a control center Z from which a double line a, b starts.
- the double line a, b is supplied with energy by a voltage source Ub.
- the data transmission from the control center Z to the individual detectors M1 to Mn takes place via a modulation of the line voltage, the voltage source Ub being controlled in a known but not shown manner by a microcomputer MR.
- the data transmission from the individual detectors M1 to Mn to the control center Z takes place via modulation of the line current.
- To measure this line current there is a measuring resistor R in series with the voltage source Ub.
- Two measuring lines L1 and L2 tap the voltage drop due to the line current at the measuring resistor R and feed them to an analog-digital converter ADW. This is connected to the microcomputer MR, to which the digital output values of the analog-digital converter ADW corresponding to the line current are fed and these values are processed or stored there.
- FIG. 4 shows a further possibility of measuring the line current in a center Z, from which a double line a, b fed by a voltage source Ub originates.
- the voltage drop across the measuring resistor R arranged in series with the voltage source Ub is fed to a comparator K via a measuring line L.
- the threshold value of the comparator K is fed to it by means of a line vL from a digital-to-analog converter DAW, the digital-to-analog converter DAW being supplied with the digital values of the threshold value from the microcomputer MR via lines aL.
- the output values of the comparator K which only indicate whether the line current is above or below the threshold value, are sent to the microcomputer MR supplied via a line kL for evaluation.
- Possible devices are shown in FIGS. 5 and 6 for measuring the line voltage and thus for detecting the data which are sent from the central station Z to the detectors M1 to Mn on the double line a, b.
- part of the line voltage is fed to a comparator K via a measuring line L from the center tap of a voltage divider R1, R2 arranged between the double line a, b.
- the output signal of the comparator K is transmitted to a microcomputer MR by means of a line kL.
- the threshold value of the comparator K in FIG. 5 is set via a capacitor Cv.
- This capacitor Cv is connected in parallel with the resistor R1 of the voltage divider R1, R2 via a switch S which can be controlled by the microcomputer MR of the detector via a line sL.
- the threshold value is applied to the comparator by a digital-to-analog converter DAW via a line vL.
- the digital-to-analog converter DAW is connected via lines aL to the microcomputer MR, in which the threshold value is stored as a digital value.
- the control center Z applies a voltage Ue to the double line a, b by means of the voltage source Ub.
- This voltage Ue is preferably in the middle between U1 and U0 and serves as a reference voltage for the threshold values of the comparators K and in the individual detectors M1 to Mn.
- the reference voltage drop across the voltage divider R1, R2 is stored in the detectors M1 to Mn either in the capacitor Cv (FIG. 5) or in the microcomputer MR (FIG. 6).
- the digital-analog converter DAW with the comparator K is operated in a known manner as an analog-digital converter in the arrangement according to FIG. 6, or an additional analog-digital converter (not shown) is used.
- the charging of Cv can be accelerated by a current amplifier, not shown, which is arranged in the course of the measuring line L.
- the stored voltage value Ue is used to set the threshold in the comparator K and thus to correctly differentiate the transmission signals U0 and U1.
- the adjustment procedure described is carried out for each detector for optimum adaptation to the respective conditions before each transmission. In the case of conditions that are essentially constant over time, it is advantageous and saves transmission time, the setting only rarely, e.g. once a day or only once during commissioning using a special initialization program. Arrangements according to FIG. 6 are particularly suitable for this operating mode because of the digital storage of Ub.
- a further advantage of all the arrangements described is that, because of the automatic tracking that takes place during operation, a highly constant design and an exact comparison in production can be dispensed with, which leads to lower costs.
Landscapes
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Alarm Systems (AREA)
- Radar Systems Or Details Thereof (AREA)
- Control Of Transmission Device (AREA)
- Monitoring And Testing Of Transmission In General (AREA)
Abstract
Description
In Gefahrenmeldesystemen werden speziell bei Brandmeldesystemen eine größere Anzahl von Meldern über eine Doppelleitung mit der Zentrale verbunden. Über diese Doppelleitung wird sowohl die Energieversorgung der Melder durchgeführt, als auch der Datenverkehr mit der Zentrale abgewickelt. In modernen Systemen werden in zunehmendem Maße binär codierte Übertragungsverfahren verwendet, die potentiell unzulässig hohe Störspannungen erzeugen, wenn sie mit den in klassischen Systemen üblichen großen Spannungen arbeiten. Werden jedoch die zulässigen kleinen Spannungen zur Übertragung verwendet und der naturgemäß großen Versorgungsspannung überlagert, so verursachen bereits relativ kleine Schwankungen der Versorgungsspannung bzw. des Versorgungsstroms unzulässig große Störungen der Übertragung. Bei mehr konventionellen Systemen wird versucht, den Datenfluß auf einem so niedrigen Niveau zu halten, daß die Datenraten niedrig sind und damit der zugeordnete Datenpegel hoch sein darf, womit die Störungen weniger Einfluß haben. Als weitere Möglichkeit ist bekannt, sich über die Forderung nach zulässig niedriger aktiver Störung hinwegzusetzen und trotz hoher Datenrate mit eigentlich unzulässig hohem Datenpegel zu arbeiten. Es ist weiter bekannt, die Schwankungen der Versorgungsenergie auf ein unschädliches Maß zu reduzieren. Dazu ist zunächst eine gute Stabilisierung der Versorgungsspannung in der Zentrale erforderlich, was allerdings einen gewissen Mehraufwand erfordert. Wesentlich kritischer ist die ebenfalls unumgängliche Stabilisierung der Stromaufnahme in jedem einzelnen Melder, die den Aufwand und in der Regel auch den Energiebedarf dieser Melder beträchtlich erhöht. Eine weitere Möglichkeit ist die zeitliche Trennung von Energieversorgung und Übertragung, wie z.B. bei der Pulsmeldetechnik. Hier entstehen jedoch beim Übergang von der einen in die andere Betriebsart Störungen, die die Übertragung negativ beeinflussen können, besonders, wenn zur Auskopplung der Übertragungsspannung preiswerte R-C-Glieder verwendet werden.In fire alarm systems, a large number of detectors are connected to the control center via a double line, especially in fire alarm systems. Via this double line, the energy supply of the detectors is carried out, as well as the data traffic with the control center. In modern systems, binary-coded transmission methods are increasingly used, which generate potentially inadmissibly high interference voltages when they work with the large voltages customary in classic systems. However, if the permissible low voltages are used for transmission and are superimposed on the naturally large supply voltage, even relatively small fluctuations in the supply voltage or the supply current cause impermissibly large disturbances in the transmission. In more conventional systems, attempts are made to keep the data flow at such a low level that the data rates are low and the associated data level may therefore be high, so that the disturbances have less influence. As a further possibility, it is known to ignore the demand for a permissible, low, active fault and to work with an inadmissibly high data level despite the high data rate. It is also known to reduce the fluctuations in the supply energy to a harmless level. This requires a good stabilization of the supply voltage in the control center, which, however, requires a certain additional effort. What is much more critical is the likewise unavoidable stabilization of the current consumption in each individual detector, which considerably increases the effort and, as a rule, the energy requirement of these detectors. Another option is the temporal separation of energy supply and transmission, such as with pulse detection technology. Here, however, interference occurs during the transition from one operating mode to the other, which affects the transmission can have a negative influence, especially if inexpensive RC elements are used to decouple the transmission voltage.
In dem Dokument GB-A-2 150 793 ist ein Datenübertragungssystem mit einer Zentrale beschrieben, an die mit einer Doppelleitung eine Vielzahl von Meldern angeschlossen sind, welche von der Zentrale mit Energie versorgt werden. Zur Datenübertragung werden die Daten der Linienspannung aufmoduliert, wobei die Zentrale zu Detektion Komparatoren aufweist.Document GB-A-2 150 793 describes a data transmission system with a control center to which a plurality of detectors are connected with a double line, which are supplied with energy by the control center. The data of the line voltage are modulated on for data transmission, the control center having comparators for detection.
Der vorliegenden Erfindung liegt das Problem zugrunde, sowohl die Energieversorgung als auch die störungsarme und schnelle Übertragung großer Datenmengen zwischen der Zentrale und den einzelnen Meldern sicherzustellen.The present invention is based on the problem of ensuring both the energy supply and the trouble-free and fast transmission of large amounts of data between the control center and the individual detectors.
Das Problem wird gelöst durch ein Verfahren zur Übertragung binärer Daten in einem Gefahrenmeldesystem gemäß dem Anspruch 1 und mit einer Vorrichtung hierfür gemäß dem Anspruch 3. Ausgestaltungen der Erfindung sind in den Unteransprüchen beschrieben.The problem is solved by a method for transmitting binary data in a hazard detection system according to
Bei dem eingangs beschriebenen Verfahren werden die Binär-Daten bei der Übertragung von der Zentrale zu den einzelnen Meldern der Linienspannung aufmoduliert, wobei in den Meldern die Daten durch Vergleich der Linienspannung mit einer Referenzspannung detektiert werden. Die Referenzspannung wird von der Zentrale an die Melder gegeben, welche die Referenzspannung abspeichern.
Für die Übertragung der Daten von den einzelnen Meldern zur Zentrale werden die Daten dem Linienstrom aufmoduliert. In der Zentrale wird die dem Linienstrom proportionale Spannung in einem Mikrorechner detektiert.In the method described in the introduction, the binary data are modulated upon transmission from the control center to the individual line voltage detectors, the data in the detectors being detected by comparing the line voltage with a reference voltage. The control center sends the reference voltage to the detectors, which store the reference voltage.
For the transmission of data from the individual detectors to the control center, the data is modulated onto the line stream. In the control center, the voltage proportional to the line current is detected in a microcomputer.
Vorzugsweise erfolgen bei dem erfindungsgemäßen Verfahren die Energieversorung der Melder und die Datenübertragung zeitlich aufeinander.In the method according to the invention, the energy supply of the detectors and the data transmission preferably take place in time.
Zur Durchführung des erfindungsgemäßen Verfahrens ist in der Zentrale ein in Serie zu einer Energiequelle für die Meldelinie ein Meßwiderstand angeordnet. Die dort abfallende Spannung wird entweder einem Komparator oder direkt über einen Analog-Digital-Wandler dem Mikrorechner zugeführt. Ferner ist in jedem Melder ein Spannungsteiler zwischen den Adern der Doppelleitung, ein Mikrorechner und ein Komparator sowie ein Speicherelement zum Abspeichern einer Referenzspannung angeordnet. Der Komparator ist mit dem Mikrorechner verbunden, die Referenzspannung und die am Mittelabgriff des Spannungsteilers abgenommene Linienspannung ist dem Komparator zugeführt.To carry out the method according to the invention, a measuring resistor is arranged in series with an energy source for the detection line in the control center. The voltage drop there is either fed to a comparator or directly to the microcomputer via an analog-digital converter. Furthermore, a voltage divider between the wires of the double line, a microcomputer and a comparator and a storage element for storing a reference voltage are arranged in each detector. The comparator is connected to the microcomputer, the reference voltage and the line voltage taken from the center tap of the voltage divider are fed to the comparator.
Dabei können die Speicherelemente der einzelnen Melder durch Kondensatoren gebildet sein, die über den Mittelabgriff eines zwischen den Adern der Doppelleitung angeordneten Spannungsteilers aufgeladen werden und deren Spannung mittels eines von einem im Melder angeordneten Mikrorechner ansteuerbaren Schalters als Schwellenspannung an den Komparator gelegt wird.The memory elements of the individual detectors can be formed by capacitors which are charged via the center tap of a voltage divider arranged between the wires of the double line and the voltage of which is applied to the comparator as a threshold voltage by means of a switch which can be controlled by a microcomputer arranged in the detector.
Es ist aber auch möglich, eine Vorrichtung zu verwenden, bei der die Speicherelemente der einzelnen Melder durch Halbleiterspeicher gebildet sind, die jeweils über einen Analog-Digital-Wandler mit dem Mittelabgriff eines zwischen den Adern der Doppelleitung angeordneten Spannungsteilers und über einen Digital-Analog-Wandler mit dem Komparator verbunden sind.However, it is also possible to use a device in which the memory elements of the individual detectors are formed by semiconductor memories, each of which has an analog-to-digital converter with the center tap of one between the wires the double line arranged voltage divider and connected to the comparator via a digital-to-analog converter.
Die Erfindung soll nun anhand eines Beispiels mit Hilfe von Figuren näher erläutert werden. Dabei zeigen
- Fig. 1
- den prinzipiellen Aufbau eines Gefahrenmeldesystems,
- Fig. 2
- einen möglichen Spannungs- und Stromverlauf bei einem Gefahrenmeldesystem,
- Fig. 3 und 4
- den prinzipiellen Aufbau einer Spannungsversorgung bei einer Gefahrenmeldeanlage und mögliche Strommeßeinrichtungen in der Zentrale,
- Fig. 5 und 6
- mögliche Ausführungen einer Spannungsmeßeinrichtung im Melder und
- Fig. 7
- einen typischen Spannungsverlauf über der Zeit vor und während einer Datenübertragung von der Zentrale zu einem Melder.
- Fig. 1
- the basic structure of a hazard detection system,
- Fig. 2
- a possible voltage and current curve in a hazard detection system,
- 3 and 4
- the basic structure of a voltage supply for a hazard alarm system and possible current measuring devices in the control center,
- 5 and 6
- possible versions of a voltage measuring device in the detector and
- Fig. 7
- a typical voltage curve over time before and during data transmission from the control center to a detector.
Fig. 1 zeigt ein Gefahrenmeldesystem, bei dem mehrere Gefahrenmelder M1 bis Mn über eine Doppelleitung a,b mit einer Zentrale Z verbunden sind. Schematisch sind weitere, von der Zentrale ausgehenden Leitungen angedeutet, auf denen ebenfalls Melder angeordnet sind.1 shows a hazard detection system in which several hazard detectors M1 to Mn are connected to a control center Z via a double line a, b. Schematically, further lines starting from the control center are indicated, on which detectors are also arranged.
Der Spannungs- und Stromverlauf auf der Doppelleitung a,b für den Fall, daß die Phasen der Energieversorgung der Melder und der Datenübertragung zeitlich nacheinander erfolgen, ist in Fig. 2 dargestellt; während der Energieversorgung liegt eine hohe Spannung an und es fließt ein hoher Strom, um Speicherkondensatoren in den Meldern M1 bis Mn aufzuladen. Während einer Datenübertragung liegt eine deutlich niedrigere Spannung an den Meldern und es fließt auch ein wesentlich niedrigerer Strom, wie Fig. 2 ebenfalls zu entnehmen ist. Die für die Datenübertragungsphase dargestellten Spannungs- und Stromwerte stellen Mittelwerte dar. Im Betriebsfall sind ihnen die Datensignale überlagert. Wie zu erkennen ist, finden bei den Übergängen von der Energieversorgungsphase zur Datenübertragungsphase und umgekehrt erhebliche Spannungs- und Stromänderungen statt, so daß die Verwendung einfacher R-C-Glieder zum Auskoppeln der Datensignale aufgrund ihrer langen Einschwingzeit nicht ausreichen. Die Dauer der Datenübertragungsphase würde dadurch unzulässig verlängert werden.The voltage and current curve on the double line a, b in the event that the phases of the energy supply to the detectors and the data transmission take place successively in time is shown in FIG. 2; there is a high voltage during the power supply and a high current flows to charge storage capacitors in the detectors M1 to Mn. During a data transmission, a significantly lower voltage is present at the detectors and a much lower current flows, as can also be seen in FIG. 2. The voltage and current values shown for the data transmission phase represent mean values. The data signals are superimposed on them during operation. As can be seen, during the transitions from the energy supply phase to the data transmission phase and vice versa, considerable voltage and current changes take place, so that the use of simple RC elements for Decoupling the data signals is not sufficient due to their long settling time. The duration of the data transmission phase would be extended inadmissibly.
Die für das erfindungsgemäße Verfahren nötigen Vorrichtungen in
der Zentrale Z und in dem Meldern M1 bis Mn sind in den Fig. 3 bis 6 dargestellt.The devices necessary for the inventive method in
the center Z and in the detector M1 to Mn are shown in FIGS. 3 to 6.
So zeigt Fig. 3 eine Zentrale Z, von der eine Doppelleitung a,b ausgeht. Die Doppelleitung a,b wird von einer Spannungsquelle Ub mit Energie versorgt. Die Datenübertragung von der Zentrale Z zu den einzelnen Meldern M1 bis Mn erfolgt über eine Modulation der Linienspannung, wobei die Spannungsquelle Ub in bekannter aber nicht dargestellter Weise von einem Mikrorechner MR angesteuert wird. Die Datenübertragung von den einzelnen Meldern M1 bis Mn zur Zentrale Z erfolgt über eine Modulation des Linienstroms. Zur Messung dieses Linienstroms liegt in Serie zur Spannungsquelle Ub ein Meßwiderstand R. Zwei Meßleitungen L1 und L2 greifen die aufgrund des Linienstroms am Meßwiderstand R abfallende Spannung ab und führen sie einem Analog-Digital-Wandler ADW zu. Dieser ist mit dem Mikrorechner MR verbunden, dem somit die dem Linienstrom entsprechenden digitalen Ausgangswerte des Analog-Digital-Wandlers ADW zugeführt werden und diese Werte dort verarbeitet oder gespeichert werden.3 shows a control center Z from which a double line a, b starts. The double line a, b is supplied with energy by a voltage source Ub. The data transmission from the control center Z to the individual detectors M1 to Mn takes place via a modulation of the line voltage, the voltage source Ub being controlled in a known but not shown manner by a microcomputer MR. The data transmission from the individual detectors M1 to Mn to the control center Z takes place via modulation of the line current. To measure this line current, there is a measuring resistor R in series with the voltage source Ub. Two measuring lines L1 and L2 tap the voltage drop due to the line current at the measuring resistor R and feed them to an analog-digital converter ADW. This is connected to the microcomputer MR, to which the digital output values of the analog-digital converter ADW corresponding to the line current are fed and these values are processed or stored there.
Fig. 4 zeigt eine weitere Möglichkeit, den Linienstrom in einer Zentrale Z, von der eine von einer Spannungsquelle Ub gespeiste Doppelleitung a,b ausgeht, zu messen. Die am in Serie zur Spannungsquelle Ub angeordneten Meßwiderstand R abfallende Spannung wird über eine Meßleitung L einem Komparator K zugeführt. Der Schwellwert des Komparators K wird diesem mittels einer Leitung vL von einem Digital-Analog-Wandler DAW zugeführt, wobei der Digital-Analog-Wandler DAW die digitalen Werte des Schwellwertes von dem Mikrorechner MR über Leitungen aL zugeführt bekommt. Die Ausgangswerte des Komparators K, die nur anzeigen, ob der Linienstrom über- oder unterhalb des Schwellwertes liegt, werden dem Mikrorechner MR über eine Leitung kL zur Auswertung zugeführt. Mit dieser Anordnung wird eine gute Übertragungsqualität mit einfachen Auswerteprogrammen erreicht, während für hochwertige Signalanalyseverfahren eine Anordnung zur Strommessung nach Fig. 3 vorteilhaft ist.FIG. 4 shows a further possibility of measuring the line current in a center Z, from which a double line a, b fed by a voltage source Ub originates. The voltage drop across the measuring resistor R arranged in series with the voltage source Ub is fed to a comparator K via a measuring line L. The threshold value of the comparator K is fed to it by means of a line vL from a digital-to-analog converter DAW, the digital-to-analog converter DAW being supplied with the digital values of the threshold value from the microcomputer MR via lines aL. The output values of the comparator K, which only indicate whether the line current is above or below the threshold value, are sent to the microcomputer MR supplied via a line kL for evaluation. With this arrangement, good transmission quality is achieved with simple evaluation programs, while an arrangement for current measurement according to FIG. 3 is advantageous for high-quality signal analysis methods.
Zur Messung der Linienspannung und somit zur Detektion der Daten, die von der Zentrale Z zu den Meldern M1 bis Mn auf der Doppelleitung a,b gesendet werden, sind mögliche Vorrichtungen in den Fig. 5 und 6 dargestellt.Possible devices are shown in FIGS. 5 and 6 for measuring the line voltage and thus for detecting the data which are sent from the central station Z to the detectors M1 to Mn on the double line a, b.
In beiden Fällen wird ein Teil der Linienspannung über eine Meßleitung L vom Mittelabgriff eines zwischen der Doppelleitung a,b angeordneten Spannungsteilers R1,R2 einem Komparator K zugeführt. Das Ausgangssignal des Komparators K wird zu einem Mikrorechner MR mittels einer Leitung kL übertragen.In both cases, part of the line voltage is fed to a comparator K via a measuring line L from the center tap of a voltage divider R1, R2 arranged between the double line a, b. The output signal of the comparator K is transmitted to a microcomputer MR by means of a line kL.
Der Schwellwert des Komparators K in Fig. 5 wird über einen Kondensator Cv eingestellt. Dieser Kondensator Cv liegt über einen von dem Mikrorechner MR des Melders über eine Leitung sL ansteuerbaren Schalter S parallel zum Widerstand R1 des Spannungsteilers R1,R2.The threshold value of the comparator K in FIG. 5 is set via a capacitor Cv. This capacitor Cv is connected in parallel with the resistor R1 of the voltage divider R1, R2 via a switch S which can be controlled by the microcomputer MR of the detector via a line sL.
Bei der Vorrichtung nach Fig. 6 wird der Schwellwert von einem Digital-Analog-Wandler DAW über eine Leitung vL an den Komparator gelegt. Der Digital-Analog-Wandler DAW ist dabei mittels Leitungen aL mit dem Mikrorechner MR verbunden, in dem der Schwellwert als digitaler Wert gespeichert ist.In the device according to FIG. 6, the threshold value is applied to the comparator by a digital-to-analog converter DAW via a line vL. The digital-to-analog converter DAW is connected via lines aL to the microcomputer MR, in which the threshold value is stored as a digital value.
Alle Anordnungen nach Fig. 3 bis Fig. 6 arbeiten derart, daß vor Beginn der eigentlichen Datenübertragung ein Bezugswert des Leitungsstromes IL bzw. der Leitungsspannung UL ermittelt wird, der dann anschließend verwendet wird, um im binären Übertragungssignal 0 und 1 zu unterscheiden. Dieser Vorgang ist für einen Melder in Fig. 7 näher erläutert.All arrangements according to FIGS. 3 to 6 work in such a way that a reference value of the line current IL or line voltage UL is determined before the actual data transmission begins, which is then used to differentiate between 0 and 1 in the binary transmission signal. This process is explained in more detail for a detector in FIG. 7.
Vor dem eigentlichen Datensignal, das zum Zeitpunkt t1 beginnt und eine binäre "1" mittels einer Spannung U1 und eine binäre "0" mittels einer Spannung U0 darstellt, wird von der Zentrale Z mittels der Spannungsquelle Ub eine Spannung Ue an die Doppelleitung a,b gelegt. Diese Spannung Ue liegt vorzugsweise mittig zwischen U1 und U0 und dient als Referenzspannung für die Schwellwerte der Komparatoren K und in den einzelnen Meldern M1 bis Mn.Before the actual data signal, which begins at time t1 and a binary "1" by means of a voltage U1 and a binary Represents "0" by means of a voltage U0, the control center Z applies a voltage Ue to the double line a, b by means of the voltage source Ub. This voltage Ue is preferably in the middle between U1 and U0 and serves as a reference voltage for the threshold values of the comparators K and in the individual detectors M1 to Mn.
In den Meldern M1 bis Mn wird die an dem Spannungsteiler R1,R2 abfallende Referenzspannung entweder im Kondensator Cv (Fig. 5) oder im Mikrorechner MR (Fig. 6) gespeichert.The reference voltage drop across the voltage divider R1, R2 is stored in the detectors M1 to Mn either in the capacitor Cv (FIG. 5) or in the microcomputer MR (FIG. 6).
Dazu wird in der Anordnung nach Fig. 6 der Digital-Analog-Wandler DAW mit dem Komparator K in bekannter Weise als Analog-Digital-Wandler betrieben oder es wird ein zusätzlicher, nicht dargestellter, Analog-Digital-Wandler verwendet. In der Anordnung nach Fig. 5 kann die Aufladung von Cv durch einen nicht dargestellten Strom-Verstärker beschleunigt werden, der im Zuge der Meßleitung L angeordnet ist.For this purpose, the digital-analog converter DAW with the comparator K is operated in a known manner as an analog-digital converter in the arrangement according to FIG. 6, or an additional analog-digital converter (not shown) is used. 5, the charging of Cv can be accelerated by a current amplifier, not shown, which is arranged in the course of the measuring line L.
In allen Anordnungen dient der gespeicherte Spannungswert Ue zum Einstellen der Schwelle im Komparator K und damit zur korrekten Unterscheidung der Übertragungssignale U0 und U1. Der beschriebene Einstellvorgang wird zur optimalen Anpassung an die jeweiligen Verhältnisse vor jeder Übertragung bei jedem Melder ausgeführt. Bei im wesentlichen zeitlich konstanten Verhältnissen ist es vorteilhaft und spart Übertragungszeit, die Einstellung nur selten, z.B. einmal täglich oder nur einmal bei der Inbetriebnahme mittels eines speziellen Initialisierungsprogramms vorzunehmen. Für diese Betriebsart sind Anordnungen nach Fig. 6 wegen der digitalen Speicherung von Ub besonders geeignet.In all arrangements, the stored voltage value Ue is used to set the threshold in the comparator K and thus to correctly differentiate the transmission signals U0 and U1. The adjustment procedure described is carried out for each detector for optimum adaptation to the respective conditions before each transmission. In the case of conditions that are essentially constant over time, it is advantageous and saves transmission time, the setting only rarely, e.g. once a day or only once during commissioning using a special initialization program. Arrangements according to FIG. 6 are particularly suitable for this operating mode because of the digital storage of Ub.
Ein weiterer Vorteil aller beschriebenen Anordnungen ist, daß wegen der in Betrieb erfolgenden automatischen Nachführung auf eine hochkonstante Ausführung und einen genauen Abgleich in der Fertigung verzichtet werden kann, was zu niedrigeren Kosten führt.A further advantage of all the arrangements described is that, because of the automatic tracking that takes place during operation, a highly constant design and an exact comparison in production can be dispensed with, which leads to lower costs.
Claims (5)
- Method for the transmission of binary data in a hazard detection system having a central control station (Z), to which at least one two-wire line (a, b) with a multiplicity of detectors (M1-Mn) is connected, both the power supply to the detectors and the data traffic with the central control station being handled via the two-wire line, characterized in that the data are modulated onto the line voltage for data transmission from the central control station (Z) to the detectors (M1-Mn), in that these data are detected in the individual detectors by comparison of the line voltage with a reference voltage by means of a comparator, the central control station applying the reference voltage to the two-wire line before the actual data transmission begins, and the detectors storing the reference voltage, and in that the detector data are modulated onto the line current, for data transmission from the individual detectors to the central control station, and are detected in the central control station, the voltage which is proportional to the line current being processed in a microcomputer and the detection data being detected.
- Method according to Claim 1, characterized in that power supply of the detectors and the data transmission chronologically succeed one another.
- Device for carrying out the method according to Claim 1 or 2, having a central control station (Z), to which at least one two-wire line (a, b) with a multiplicity of detectors (M1-Mn) is connected, both the power supply to the detectors and the data traffic of the central control station being handled via the two-wire line, characterized in that a measuring resistor (R) is arranged in the central control station (Z), in series with a power source (Ub) for the detection line (a, b), and the voltage drop across this resistor is fed either to a comparator (K) or directly via an analog/digital convertor (ADW) to a microcomputer (MR), and in that a voltage divider (R1, R2) between the cores (a, b) of the two-wire line, a microcomputer (MR) and a comparator (K) as well as a storage element for storing a reference voltage are arranged in each detector (M), the comparator (K) being connected (kL) to the microcomputer (MR), and both the reference voltage and the line voltage picked off at the centre tap of the voltage divider being fed to the comparator, and in that the central control station applies the reference voltage to the two-wire line before the actual data transmission begins.
- Device according to Claim 3, characterized in that the storage element is formed by a capacitor (Cv) which is charged via the centre tap of the voltage divider (R1, R2) and the reference voltage of which is fed to the comparator (K) by means of a switch (S) which can be driven (sL) by the microcomputer (MR).
- Device according to Claim 3, characterized in that the storage element is formed by a semiconductor memory which can be arranged in the microcomputer (MR), the reference voltage being fed to the comparator (K) via a digital/analog converter (DAW).
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK91114662.9T DK0529139T3 (en) | 1991-08-30 | 1991-08-30 | Method for transmitting binary data in a hazard reporting system |
ES91114662T ES2085388T3 (en) | 1991-08-30 | 1991-08-30 | PROCEDURE FOR THE TRANSMISSION OF BINARY DATA IN A DANGER ALARM SYSTEM. |
DE59107738T DE59107738D1 (en) | 1991-08-30 | 1991-08-30 | Process for the transmission of binary data in a hazard detection system |
AT91114662T ATE137351T1 (en) | 1991-08-30 | 1991-08-30 | METHOD FOR TRANSMITTING BINARY DATA IN A HAZARD NOTIFICATION SYSTEM |
EP91114662A EP0529139B1 (en) | 1991-08-30 | 1991-08-30 | Binary data transmission method in an alarm signalling system |
GR960400946T GR3019763T3 (en) | 1991-08-30 | 1996-04-25 | Binary data transmission method in an alarm signalling system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP91114662A EP0529139B1 (en) | 1991-08-30 | 1991-08-30 | Binary data transmission method in an alarm signalling system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0529139A1 EP0529139A1 (en) | 1993-03-03 |
EP0529139B1 true EP0529139B1 (en) | 1996-04-24 |
Family
ID=8207097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP91114662A Expired - Lifetime EP0529139B1 (en) | 1991-08-30 | 1991-08-30 | Binary data transmission method in an alarm signalling system |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0529139B1 (en) |
AT (1) | ATE137351T1 (en) |
DE (1) | DE59107738D1 (en) |
DK (1) | DK0529139T3 (en) |
ES (1) | ES2085388T3 (en) |
GR (1) | GR3019763T3 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3588828A (en) * | 1967-08-02 | 1971-06-28 | Dutton Hayward H | Signaling system responsive to pulses within an amplitude range |
DE3043357C2 (en) * | 1980-11-17 | 1985-01-17 | Siemens AG, 1000 Berlin und 8000 München | Method and device for measuring resistance on a signal line |
JPS60117939A (en) * | 1983-11-30 | 1985-06-25 | Matsushita Electric Works Ltd | Information transmission system |
EP0241574B1 (en) * | 1986-03-31 | 1997-10-29 | Matsushita Electric Works, Ltd. | Fire alarm system |
-
1991
- 1991-08-30 ES ES91114662T patent/ES2085388T3/en not_active Expired - Lifetime
- 1991-08-30 EP EP91114662A patent/EP0529139B1/en not_active Expired - Lifetime
- 1991-08-30 AT AT91114662T patent/ATE137351T1/en not_active IP Right Cessation
- 1991-08-30 DK DK91114662.9T patent/DK0529139T3/en active
- 1991-08-30 DE DE59107738T patent/DE59107738D1/en not_active Expired - Fee Related
-
1996
- 1996-04-25 GR GR960400946T patent/GR3019763T3/en unknown
Also Published As
Publication number | Publication date |
---|---|
DE59107738D1 (en) | 1996-05-30 |
ATE137351T1 (en) | 1996-05-15 |
EP0529139A1 (en) | 1993-03-03 |
GR3019763T3 (en) | 1996-07-31 |
ES2085388T3 (en) | 1996-06-01 |
DK0529139T3 (en) | 1996-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2751973A1 (en) | CIRCUIT ARRANGEMENT FOR THE MONITORING OF POWER SUPPLY NETWORKS FOR FAULTS | |
EP0130428A1 (en) | Disturbances detecting and recording system | |
DE3222692A1 (en) | ELECTRICAL POWER SUPPLY SYSTEM | |
DE2323959C3 (en) | Arrangement for remote reading of several meters | |
DE2727201A1 (en) | TOUCH CONTROL BUTTONS | |
EP0127163B1 (en) | Fault recognition circuit for parallel-load feeding-power supply devices | |
DE19961440A1 (en) | Device for reading and / or writing optical recording media | |
DE2903809A1 (en) | MONITORING AND DISPLAY CIRCUIT | |
CH660926A5 (en) | MONITORING SYSTEM. | |
EP0529139B1 (en) | Binary data transmission method in an alarm signalling system | |
EP0362949A2 (en) | Circuit arrangement for the demodulation of frequency-modulated signals | |
DE3922286A1 (en) | METHOD AND DEVICE FOR DETECTING A REDUCTION OF THE INPUT VOLTAGE FOR A POWER SUPPLY | |
EP0529140B1 (en) | Binary data transmission method in an alarm signalling system | |
DE3031974C2 (en) | Storage circuit for relay protection | |
DE19532677B4 (en) | Monitoring circuit for at least one supply voltage | |
EP0898714B1 (en) | Bus system and method of diagnosing subscribers interconnected via said bus-system | |
DE3812628C1 (en) | Device for supplying power in a contactless fashion to, and interrogating, an electric component or triggering means in a motor vehicle | |
DE2451940C2 (en) | Short-circuit protection device for a direct current transmission system | |
DE2549037B2 (en) | Method and test device for detecting faulty motor vehicle three-phase generators with a downstream rectifier | |
DE3439115A1 (en) | PRINTER | |
DE3616750C2 (en) | ||
DE1797314C3 (en) | Electrical circuit arrangement for determining formants in speech signals' | |
DE3542068C2 (en) | ||
DE3915880A1 (en) | Multi-wired cables monitor esp. for communications cables - measures charging time of capacitor in bridge measuring loop and/or insulation resistance of connected wires | |
DE2247598C2 (en) | AC current monitoring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL |
|
17P | Request for examination filed |
Effective date: 19930819 |
|
17Q | First examination report despatched |
Effective date: 19950419 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL |
|
REF | Corresponds to: |
Ref document number: 137351 Country of ref document: AT Date of ref document: 19960515 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG |
|
REF | Corresponds to: |
Ref document number: 59107738 Country of ref document: DE Date of ref document: 19960530 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2085388 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: GR Ref legal event code: FG4A Free format text: 3019763 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19960702 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 19970730 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 19970826 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19970902 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980830 Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980831 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20011022 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20011112 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20020717 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20020808 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20020813 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20020820 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020829 Year of fee payment: 12 Ref country code: ES Payment date: 20020829 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030301 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030830 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030901 |
|
BERE | Be: lapsed |
Owner name: *SIEMENS A.G. Effective date: 20030831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040301 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040430 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20040301 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20030901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050830 |