EP0529139A1 - Binary data transmission method in an alarm signalling system - Google Patents

Binary data transmission method in an alarm signalling system

Info

Publication number
EP0529139A1
EP0529139A1 EP91114662A EP91114662A EP0529139A1 EP 0529139 A1 EP0529139 A1 EP 0529139A1 EP 91114662 A EP91114662 A EP 91114662A EP 91114662 A EP91114662 A EP 91114662A EP 0529139 A1 EP0529139 A1 EP 0529139A1
Authority
EP
European Patent Office
Prior art keywords
voltage
detectors
comparator
double line
binary data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91114662A
Other languages
German (de)
French (fr)
Other versions
EP0529139B1 (en
Inventor
Peer Dr.-Ing. Thilo
Klaus Kaiser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to ES91114662T priority Critical patent/ES2085388T3/en
Priority to EP91114662A priority patent/EP0529139B1/en
Priority to DE59107738T priority patent/DE59107738D1/en
Priority to AT91114662T priority patent/ATE137351T1/en
Priority to DK91114662.9T priority patent/DK0529139T3/en
Publication of EP0529139A1 publication Critical patent/EP0529139A1/en
Application granted granted Critical
Publication of EP0529139B1 publication Critical patent/EP0529139B1/en
Priority to GR960400946T priority patent/GR3019763T3/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/04Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using a single signalling line, e.g. in a closed loop

Definitions

  • the present invention is therefore based on the problem of ensuring both the energy supply and the trouble-free and fast transmission of large amounts of data between the control center and the individual detectors.
  • the problem is solved by a method for the transmission of binary data in a danger detection system with a control center, from which at least one double line starts, by means of which a plurality of detectors are connected to the control center, with a comparator and in the control center and in the detectors Devices for transmitting and detecting binary data formed in a memory element are provided, the respective comparator switching thresholds being determined by the state of the respective memory elements and the state of the respective memory elements being determined by the control center by applying a reference voltage to the double line.
  • the energy supply to the detectors and the data transmission preferably take place in time.
  • the method is carried out with a device in which the memory elements of the individual detectors are formed by capacitors which are charged via the center tap of a voltage divider arranged between the wires of the double line and whose voltage is applied as a threshold voltage by means of a switch which can be controlled by a microcomputer arranged in the detector the comparator is placed.
  • the memory elements of the individual detectors are formed by semiconductor memories, each of which has an analog-to-digital converter with the center tap of one between the wires the double line arranged voltage divider and connected to the comparator via a digital-to-analog converter.
  • FIG. 1 shows a hazard detection system in which several hazard detectors Ml to Mn are connected to a central station Z via a double line a, b. Other lines starting from the control center are indicated schematically, on which detectors are also arranged.
  • FIG. 2 The voltage and current profile on the double line a, b in the event that the phases of the energy supply to the detectors and the data transmission take place successively in time is shown in FIG. 2; A high voltage is present during the energy supply and a high current flows in order to charge storage capacitors in the detectors Ml to Mn. During data transmission, there is a significantly lower voltage at the detectors and a much lower current flows, as can also be seen in FIG. 2.
  • the voltage and current values shown for the data transmission phase represent mean values. The data signals are superimposed on them during operation.
  • FIG. 3 shows a center Z from which a double line a, b starts.
  • the double line a, b is supplied with energy by a voltage source Ub.
  • the data transmission from the control center Z to the individual detectors Ml to Mn takes place via a modulation of the line voltage, the voltage source Ub being controlled in a known but not shown manner by a microcomputer MR.
  • the data transmission from the individual detectors Ml to Mn to the control center Z takes place via modulation of the line current.
  • To measure this line current there is a measuring resistor R in series with the voltage source Ub.
  • Two measuring lines L1 and L2 tap the voltage drop across the measuring resistor R due to the line current and feed them to an analog-digital converter ADC. This is connected to the microcomputer MR, to which the digital output values of the analog-digital converter ADW corresponding to the line current are fed and these values are processed or stored there.
  • FIG. 4 shows a further possibility of measuring the line current in a control center Z, from which a double line a, b fed by a voltage source Ub originates.
  • the voltage falling across the measuring resistor R arranged in series with the voltage source Ub is fed to a comparator K via a measuring line L.
  • the threshold value of the comparator K is supplied to it by means of a line vL from a digital-to-analog converter DAW, the digital-to-analog converter DAW being supplied with the digital values of the threshold value from the microcomputer MR via lines aL.
  • the output values of the comparator K which only indicate whether the line current is above or below the threshold value, are sent to the microcomputer MR fed via a line kL for evaluation.
  • Possible devices are shown in FIGS. 5 and 6 for measuring the line voltage and thus for detecting the data which are sent from the central station Z to the detectors M1 to Mn on the double line a, b.
  • part of the line voltage is fed via a measuring line L from the center tap of a voltage divider R1, R2 arranged between the double line a, b to a comparator K.
  • the output signal of the comparator K is transmitted to a microcomputer MR by means of a line kL.
  • the threshold value of the comparator K in FIG. 5 is set via a capacitor Cv.
  • This capacitor Cv is connected in parallel with the resistor R1 of the voltage divider R1, R2 via a switch S which can be controlled by the microcomputer MR of the detector via a line sL.
  • the threshold value is applied to the comparator by a digital-to-analog converter DAW via a line vL.
  • the digital-to-analog converter DAW is connected by means of lines aL to the microcomputer MR, in which the threshold value is stored as a digital value.
  • the control center Z applies a voltage Ue to the double line a, b by means of the voltage source Ub.
  • This voltage Ue is preferably in the middle between U1 and U0 and serves as a reference voltage for the threshold values of the comparators K and in the individual detectors Ml to Mn.
  • the reference voltage drop across the voltage divider R1, R2 is stored in the detectors Ml to Mn either in the capacitor Cv (FIG. 5) or in the microcomputer MR (FIG. 6).
  • the digital-analog converter DAW with the comparator K is operated in a known manner as an analog-digital converter in the arrangement according to FIG. 6, or an additional analog-digital converter (not shown) is used.
  • the charging of Cv can be accelerated by a current amplifier, not shown, which is arranged in the course of the measuring line L.
  • the stored voltage value Ue is used to set the threshold in the comparator K and thus to correctly differentiate the transmission signals U0 and U1.
  • the adjustment procedure described is carried out for each detector for optimum adaptation to the respective conditions before each transmission. In the case of conditions that are essentially constant over time, it is advantageous and saves transmission time, the setting only rarely, e.g. once a day or only once during commissioning using a special initialization program. Arrangements according to FIG. 6 are particularly suitable for this operating mode because of the digital storage of Ub.
  • Another advantage of all the arrangements described is that, because of the automatic tracking that takes place during operation, a highly constant design and an exact comparison in production can be dispensed with, which leads to lower costs.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Alarm Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Control Of Transmission Device (AREA)

Abstract

A method for transmitting binary data in an alarm signalling system comprising a central station (Z), from which at least one dual line (a, b) originates, by means of which a multiplicity of detectors (M1 to Mn) is connected to the central station (Z), devices in each case formed by means of a comparator (K) and a storage element (Cv; MR) for transmitting and detecting binary data being provided in the central station (Z) and in the detectors (M1 to Mn), the respective comparator switching thresholds being determined by the state of the respective storage elements (Cv; MR) and the state of the respective storage elements (Cv; MR) being determined by the central station (Z) by applying a reference voltage (Ue) to the dual line (a, b). <IMAGE>

Description

In Gefahrenmeldesystemen werden speziell bei Brandmeldesystemen eine größere Anzahl von Meldern über eine Doppelleitung mit der Zentrale verbunden. Über diese Doppelleitung wird sowohl die Energieversorgung der Melder durchgeführt, als auch der Datenverkehr mit der Zentrale abgewickelt. In modernen Systemen werden in zunehmendem Maße binär codierte Übertragungsverfahren verwendet, die potentiell unzulässig hohe Störspannungen erzeugen, wenn sie mit den in klassischen Systemen üblichen großen Spannungen arbeiten. Werden jedoch die zulässigen kleinen Spannungen zur Übertragung verwendet und der naturgemäß großen Versorgungsspannung überlagert, so verursachen bereits relativ kleine Schwankungen der Versorgungsspannung bzw. des Versorgungsstroms unzulässig große Störungen der Übertragung. Bei mehr konventionellen Systemen wird versucht, den Datenfluß auf einem so niedrigen Niveau zu halten, daß die Datenraten niedrig sind und damit der zugeordnete Datenpegel hoch sein darf, womit die Störungen weniger Einfluß haben. Als weitere Möglichkeit ist bekannt, sich über die Forderung nach zulässig niedriger aktiver Störung hinwegzusetzen und trotz hoher Datenrate mit eigentlich unzulässig hohem Datenpegel zu arbeiten. Es ist weiter bekannt, die Schwankungen der Versorgungsenergie auf ein unschädliches Maß zu reduzieren. Dazu ist zunächst eine gute Stabilisierung der Versorgungsspannung in der Zentrale erforderlich, was allerdings einen gewissen Mehraufwand erfordert. Wesentlich kritischer ist die ebenfalls unumgängliche Stabilisierung der Stromaufnahme in jedem einzelnen Melder, die den Aufwand und in der Regel auch den Energiebedarf dieser Melder beträchtlich erhöht. Eine weitere Möglichkeit ist die zeitliche Trennung von Energieversorgung und Übertragung, wie z.B. bei der Pulsmeldetechnik. Hier entstehen jedoch beim Übergang von der einen in die andere Betriebsart Störungen, die die Übertragung negativ beeinflussen können, besonders, wenn zur Auskopplung der Übertragungsspannung preiswerte R-C-Glieder verwendet werden.In fire alarm systems, a large number of detectors are connected to the control center via a double line, especially in the case of fire alarm systems. Via this double line, the energy supply of the detectors is carried out, as well as the data traffic with the control center. In modern systems, binary-coded transmission methods are increasingly used, which generate potentially inadmissibly high interference voltages when they work with the large voltages customary in classic systems. However, if the permissible small voltages are used for transmission and are superimposed on the naturally large supply voltage, even relatively small fluctuations in the supply voltage or the supply current cause impermissibly large disturbances in the transmission. In more conventional systems, attempts are made to keep the data flow at such a low level that the data rates are low and the associated data level may therefore be high, so that the disturbances have less influence. As a further possibility, it is known to ignore the requirement for an admissible low active disturbance and to work with an inadmissibly high data level despite the high data rate. It is also known to reduce the fluctuations in the supply energy to a harmless level. This requires a good stabilization of the supply voltage in the control center, which, however, requires a certain additional effort. The also essential stabilization of the current consumption in each individual detector is much more critical, which considerably increases the effort and generally also the energy requirement of these detectors. Another possibility is the temporal separation of energy supply and transmission, such as with pulse detection technology. Here, however, interference occurs during the transition from one operating mode to the other, which affects the transmission can have a negative influence, especially if inexpensive RC elements are used to decouple the transmission voltage.

Der vorliegenden Erfindung liegt sich somit das Problem zugrunde, sowohl die Energieversorgung als auch die störungsarme und schnelle Übertragung großer Datenmengen zwischen der Zentrale und den einzelnen Meldern sicherzustellen.The present invention is therefore based on the problem of ensuring both the energy supply and the trouble-free and fast transmission of large amounts of data between the control center and the individual detectors.

Das Problem wird gelöst durch ein Verfahren zur Übertragung binärer Daten in einem Gefahrenmeldesystem mit einer Zentrale, von der zumindest eine Doppelleitung ausgeht, mittels der eine Vielzahl von Meldern mit der Zentrale verbunden sind, wobei in der Zentrale und in den Meldern jeweils mit einem Komparator und einem Speicherelement gebildete Einrichtungen zur Übertragung und Detektion binärer Daten vorgesehen sind, wobei die jeweiligen Komparatorschaltschwellen durch den Zustand der jeweiligen Speicherelemente bestimmt werden und wobei von der Zentrale der Zustand der jeweiligen Speicherelemente durch Anlegen einer Referenzspannung an die Doppelleitung bestimmt wird.The problem is solved by a method for the transmission of binary data in a danger detection system with a control center, from which at least one double line starts, by means of which a plurality of detectors are connected to the control center, with a comparator and in the control center and in the detectors Devices for transmitting and detecting binary data formed in a memory element are provided, the respective comparator switching thresholds being determined by the state of the respective memory elements and the state of the respective memory elements being determined by the control center by applying a reference voltage to the double line.

Vorzugsweise erfolgen bei dem erfindungsgemäßen Verfahren die Energieversorgung der Melder und die Datenübertragung zeitlich aufeinander.In the method according to the invention, the energy supply to the detectors and the data transmission preferably take place in time.

Das Verfahren wird mit einer Vorrichtung durchgeführt, bei der die Speicherelemente der einzelnen Melder durch Kondensatoren gebildet sind, die über den Mittelabgriff eines zwischen den Adern der Doppelleitung angeordneten Spannungsteilers aufgeladen werden und deren Spannung mittels eines von einem im Melder angeordneten Mikrorechner ansteuerbaren Schalters als Schwellspannung an den Komparator gelegt wird.The method is carried out with a device in which the memory elements of the individual detectors are formed by capacitors which are charged via the center tap of a voltage divider arranged between the wires of the double line and whose voltage is applied as a threshold voltage by means of a switch which can be controlled by a microcomputer arranged in the detector the comparator is placed.

Es ist aber auch möglich, eine Vorrichtung zu verwenden, bei der die Speicherelemente der einzelnen Melder durch Halbleiterspeicher gebildet sind, die jeweils über einen Analog-Digital-Wandler mit dem Mittelabgriff eines zwischen den Adern der Doppelleitung angeordneten Spannungsteilers und über einen Digital-Analog-Wandler mit dem Komparator verbunden sind.However, it is also possible to use a device in which the memory elements of the individual detectors are formed by semiconductor memories, each of which has an analog-to-digital converter with the center tap of one between the wires the double line arranged voltage divider and connected to the comparator via a digital-to-analog converter.

Die Erfindung soll nun anhand eines Beispiels mit Hilfe von Figuren näher erläutert werden. Dabei zeigen

Fig. 1
den prinzipiellen Aufbau eines Gefahrenmeldesystems,
Fig. 2
einen möglichen Spannungs- und Stromverlauf bei einem Gefahrenmeldesystem,
Fig. 3 und 4
den prinzipiellen Aufbau einer Spannungsversorgung bei einer Gefahrenmeldeanlage und mögliche Strommeßeinrichtungen in der Zentrale,
Fig. 5 und 6
mögliche Ausführungen einer Spannungsmeßeinrichtung im Melder und
Fig. 7
einen typischen Spannungsverlauf über der Zeit vor und während einer Datenübertragung von der Zentrale zu einem Melder.
The invention will now be explained in more detail using an example with the aid of figures. Show
Fig. 1
the basic structure of a hazard detection system,
Fig. 2
a possible voltage and current curve in a hazard detection system,
3 and 4
the basic structure of a voltage supply for a hazard alarm system and possible current measuring devices in the control center,
5 and 6
possible versions of a voltage measuring device in the detector and
Fig. 7
a typical voltage curve over time before and during data transmission from the control center to a detector.

Fig. 1 zeigt ein Gefahrenmeldesystem, bei dem mehrere Gefahrenmelder Ml bis Mn über eine Doppelleitung a,b mit einer Zentrale Z verbunden sind. Schematisch sind weitere, von der Zentrale ausgehenden Leitungen angedeutet, auf denen ebenfalls Melder angeordnet sind.1 shows a hazard detection system in which several hazard detectors Ml to Mn are connected to a central station Z via a double line a, b. Other lines starting from the control center are indicated schematically, on which detectors are also arranged.

Der Spannungs- und Stromverlauf auf der Doppelleitung a,b für den Fall, daß die Phasen der Energieversorgung der Melder und der Datenübertragung zeitlich nacheinander erfolgen, ist in Fig. 2 dargestellt; während der Energieversorgung liegt eine hohe Spannung an und es fließt ein hoher Strom, um Speicherkondensatoren in den Meldern Ml bis Mn aufzuladen. Während einer Datenübertragung liegt eine deutlich niedrigere Spannung an den Meldern und es fließt auch ein wesentlich niedrigerer Strom, wie Fig. 2 ebenfalls zu entnehmen ist. Die für die Datenübertragungsphase dargestellten Spannungs- und Stromwerte stellen Mittelwerte dar. Im Betriebsfall sind ihnen die Datensignale überlagert. Wie zu erkennen ist, finden bei den Übergängen von der Energieversorgungsphase zur Datenübertragungsphase und umgekehrt erhebliche Spannungs- und Stromänderungen statt, so daß die Verwendung einfacher R-C-Glieder zum Auskoppeln der Datensignale aufgrund ihrer langen Einschwingzeit nicht ausreichen. Die Dauer der Datenübertragungsphase würde dadurch unzulässig verlängert werden.The voltage and current profile on the double line a, b in the event that the phases of the energy supply to the detectors and the data transmission take place successively in time is shown in FIG. 2; A high voltage is present during the energy supply and a high current flows in order to charge storage capacitors in the detectors Ml to Mn. During data transmission, there is a significantly lower voltage at the detectors and a much lower current flows, as can also be seen in FIG. 2. The voltage and current values shown for the data transmission phase represent mean values. The data signals are superimposed on them during operation. As can be seen, there are significant voltage and current changes in the transitions from the energy supply phase to the data transmission phase and vice versa, so that the use of simple RC elements for Decoupling the data signals is not sufficient due to their long settling time. The duration of the data transmission phase would be extended inadmissibly.

Die für das erfindungsgemäße Verfahren nötigen Vorrichtungen in der Zentrale Z und in dem Meldern Ml bis Mn sind in den Fig. 3 bis 6 dargestellt.The devices required for the method according to the invention in the control center Z and in the detector Ml to Mn are shown in FIGS. 3 to 6.

So zeigt Fig. 3 eine Zentrale Z, von der eine Doppelleitung a,b ausgeht. Die Doppelleitung a,b wird von einer Spannungsquelle Ub mit Energie versorgt. Die Datenübertragung von der Zentrale Z zu den einzelnen Meldern Ml bis Mn erfolgt über eine Modulation der Linienspannung, wobei die Spannungsquelle Ub in bekannter aber nicht dargestellter Weise von einem Mikrorechner MR angesteuert wird. Die Datenübertragung von den einzelnen Meldern Ml bis Mn zur Zentrale Z erfolgt über eine Modulation des Linienstroms. Zur Messung dieses Linienstroms liegt in Serie zur Spannungsquelle Ub ein Meßwiderstand R. Zwei Meßleitungen L1 und L2 greifen die aufgrund des Linienstroms am Meßwiderstand R abfallende Spannung ab und führen sie einem Analog-Digital-Wandler ADW zu. Dieser ist mit dem Mikrorechner MR verbunden, dem somit die dem Linienstrom entsprechenden digitalen Ausgangswerte des Analog-Digital-Wandlers ADW zugeführt werden und diese Werte dort verarbeitet oder gespeichert werden.3 shows a center Z from which a double line a, b starts. The double line a, b is supplied with energy by a voltage source Ub. The data transmission from the control center Z to the individual detectors Ml to Mn takes place via a modulation of the line voltage, the voltage source Ub being controlled in a known but not shown manner by a microcomputer MR. The data transmission from the individual detectors Ml to Mn to the control center Z takes place via modulation of the line current. To measure this line current, there is a measuring resistor R in series with the voltage source Ub. Two measuring lines L1 and L2 tap the voltage drop across the measuring resistor R due to the line current and feed them to an analog-digital converter ADC. This is connected to the microcomputer MR, to which the digital output values of the analog-digital converter ADW corresponding to the line current are fed and these values are processed or stored there.

Fig. 4 zeigt eine weitere Möglichkeit, den Linienstrom in einer Zentrale Z, von der eine von einer Spannungsquelle Ub gespeiste Doppelleitung a,b ausgeht, zu messen. Die am in Serie zur Spannungsquelle Ub angeordneten Meßwiderstand R abfallende Spannung wird über eine Meßleitung L einem Komparator K zugeführt. Der Schwellwert des Komparators K wird diesem mittels einer Leitung vL von einem Digital-Analog-Wandler DAW zugeführt, wobei der Digital-Analog-Wandler DAW die digitalen Werte des Schwellwertes von dem Mikrorechner MR über Leitungen aL zugeführt bekommt. Die Ausgangswerte des Komparators K, die nur anzeigen, ob der Linienstrom über- oder unterhalb des Schwellwertes liegt, werden dem Mikrorechner MR über eine Leitung kL zur Auswertung zugeführt. Mit dieser Anordnung wird eine gute Übertragungsqualität mit einfachen Auswerteprogrammen erreicht, während für hochwertige Signalanalyseverfahren eine Anordnung zur Strommessung nach Fig. 3 vorteilhaft ist.4 shows a further possibility of measuring the line current in a control center Z, from which a double line a, b fed by a voltage source Ub originates. The voltage falling across the measuring resistor R arranged in series with the voltage source Ub is fed to a comparator K via a measuring line L. The threshold value of the comparator K is supplied to it by means of a line vL from a digital-to-analog converter DAW, the digital-to-analog converter DAW being supplied with the digital values of the threshold value from the microcomputer MR via lines aL. The output values of the comparator K, which only indicate whether the line current is above or below the threshold value, are sent to the microcomputer MR fed via a line kL for evaluation. With this arrangement, good transmission quality is achieved with simple evaluation programs, while an arrangement for current measurement according to FIG. 3 is advantageous for high-quality signal analysis methods.

Zur Messung der Linienspannung und somit zur Detektion der Daten, die von der Zentrale Z zu den Meldern Ml bis Mn auf der Doppelleitung a,b gesendet werden, sind mögliche Vorrichtungen in den Fig. 5 und 6 dargestellt.Possible devices are shown in FIGS. 5 and 6 for measuring the line voltage and thus for detecting the data which are sent from the central station Z to the detectors M1 to Mn on the double line a, b.

In beiden Fällen wird ein Teil der Linienspannung über eine Meßleitung L vom Mittelabgriff eines zwischen der Doppelleitung a,b angeordneten Spannungsteilers R1,R2 einem Komparator K zugeführt. Das Ausgangssignal des Komparators K wird zu einem Mikrorechner MR mittels einer Leitung kL übertragen.In both cases, part of the line voltage is fed via a measuring line L from the center tap of a voltage divider R1, R2 arranged between the double line a, b to a comparator K. The output signal of the comparator K is transmitted to a microcomputer MR by means of a line kL.

Der Schwellwert des Komparators K in Fig. 5 wird über einen Kondensator Cv eingestellt. Dieser Kondensator Cv liegt über einen von dem Mikrorechner MR des Melders über eine Leitung sL ansteuerbaren Schalter S parallel zum Widerstand R1 des Spannungsteilers R1,R2.The threshold value of the comparator K in FIG. 5 is set via a capacitor Cv. This capacitor Cv is connected in parallel with the resistor R1 of the voltage divider R1, R2 via a switch S which can be controlled by the microcomputer MR of the detector via a line sL.

Bei der Vorrichtung nach Fig. 6 wird der Schwellwert von einem Digital-Analog-Wandler DAW über eine Leitung vL an den Komparator gelegt. Der Digital-Analog-Wandler DAW ist dabei mittels Leitungen aL mit dem Mikrorechner MR verbunden, in dem der Schwellwert als digitaler Wert gespeichert ist.In the device according to FIG. 6, the threshold value is applied to the comparator by a digital-to-analog converter DAW via a line vL. The digital-to-analog converter DAW is connected by means of lines aL to the microcomputer MR, in which the threshold value is stored as a digital value.

Alle Anordnungen nach Fig. 3 bis Fig. 6 arbeiten derart, daß vor Beginn der eigentlichen Datenübertragung ein Bezugswert des Leitungsstromes IL bzw. der Leitungsspannung UL ermittelt wird, der dann anschließend verwendet wird, um im binären Übertragungssignal 0 und 1 zu unterscheiden. Dieser Vorgang ist für einen Melder in Fig. 7 näher erläutert.3 to 6 work in such a way that a reference value of the line current IL or line voltage UL is determined before the actual data transmission begins, which is then used to distinguish 0 and 1 in the binary transmission signal. This process is explained in more detail for a detector in FIG. 7.

Vor dem eigentlichen Datensignal, das zum Zeitpunkt t1 beginnt und eine binäre "1" mittels einer Spannung U1 und eine binäre "0" mittels einer Spannung U0 darstellt, wird von der Zentrale Z mittels der Spannungsquelle Ub eine Spannung Ue an die Doppelleitung a,b gelegt. Diese Spannung Ue liegt vorzugsweise mittig zwischen U1 und U0 und dient als Referenzspannung für die Schwellwerte der Komparatoren K und in den einzelnen Meldern Ml bis Mn.Before the actual data signal, which begins at time t1 and a binary "1" by means of a voltage U1 and a binary Represents "0" by means of a voltage U0, the control center Z applies a voltage Ue to the double line a, b by means of the voltage source Ub. This voltage Ue is preferably in the middle between U1 and U0 and serves as a reference voltage for the threshold values of the comparators K and in the individual detectors Ml to Mn.

In den Meldern Ml bis Mn wird die an dem Spannungsteiler R1,R2 abfallende Referenzspannung entweder im Kondensator Cv (Fig. 5) oder im Mikrorechner MR (Fig. 6) bespeichert.The reference voltage drop across the voltage divider R1, R2 is stored in the detectors Ml to Mn either in the capacitor Cv (FIG. 5) or in the microcomputer MR (FIG. 6).

Dazu wird in der Anordnung nach Fig. 6 der Digital-Analog-Wandler DAW mit dem Komparator K in bekannter Weise als Analog-Digital-Wandler betrieben oder es wird ein zusätzlicher, nicht dargestellter, Analog-Digital-Wandler verwendet. In der Anordnung nach Fig. 5 kann die Aufladung von Cv durch einen nicht dargestellten Strom-Verstärker beschleunigt werden, der im Zuge der Meßleitung L angeordnet ist.For this purpose, the digital-analog converter DAW with the comparator K is operated in a known manner as an analog-digital converter in the arrangement according to FIG. 6, or an additional analog-digital converter (not shown) is used. 5, the charging of Cv can be accelerated by a current amplifier, not shown, which is arranged in the course of the measuring line L.

In allen Anordnungen dient der gespeicherte Spannungswert Ue zum Einstellen der Schwelle im Komparator K und damit zur korrekten Unterscheidung der Übertragungssignale U0 und U1. Der beschriebene Einstellvorgang wird zur optimalen Anpassung an die jeweiligen Verhältnisse vor jeder Übertragung bei jedem Melder ausgeführt. Bei im wesentlichen zeitlich konstanten Verhältnissen ist es vorteilhaft und spart Übertragungszeit, die Einstellung nur selten, z.B. einmal täglich oder nur einmal bei der Inbetriebnahme mittels eines speziellen Initialisierungsprogramms vorzunehmen. Für diese Betriebsart sind Anordnungen nach Fig. 6 wegen der digitalen Speicherung von Ub besonders geeignet.In all arrangements, the stored voltage value Ue is used to set the threshold in the comparator K and thus to correctly differentiate the transmission signals U0 and U1. The adjustment procedure described is carried out for each detector for optimum adaptation to the respective conditions before each transmission. In the case of conditions that are essentially constant over time, it is advantageous and saves transmission time, the setting only rarely, e.g. once a day or only once during commissioning using a special initialization program. Arrangements according to FIG. 6 are particularly suitable for this operating mode because of the digital storage of Ub.

Ein weiterer Vorteil aller beschriebenen Anordnungen ist, daß wegen der in Betrieb erfolgenden automatischen Nachführung auf eine hochkonstante Ausführung und einen genauen Abgleich in der Fertigung verzichtet werden kann, was zu niedrigeren Kosten führt.Another advantage of all the arrangements described is that, because of the automatic tracking that takes place during operation, a highly constant design and an exact comparison in production can be dispensed with, which leads to lower costs.

Claims (4)

Verfahren zur Übertragung binärer Daten in einem Gefahrenmeldesystem mit einer Zentrale (Z), von der zumindest eine Doppelleitung (a,b) ausgeht, mittels der eine Vielzahl von Meldern (Ml bis Mn) mit der Zentrale (Z) verbunden sind, wobei in der Zentrale (Z) und in den Meldern (Ml bis Mn) jeweils mit einem Komparator (K) und einem Speicherelement (Cv;MR) gebildete Einrichtungen zur Übertragung und Detektion binärer Daten vorgesehen sind, wobei die jeweiligen Komparatorschaltschwellen durch den Zustand der jeweiligen Speicherelemente (Cv;MR) bestimmt werden und wobei von der Zentrale (Z) der Zustand der jeweiligen Speicherelemente (Cv;MR) durch Anlegen einer Referenzspannung (Ue) an die Doppelleitung (a,b) bestimmt wird.Method for the transmission of binary data in a hazard detection system with a center (Z), from which at least one double line (a, b) starts, by means of which a plurality of detectors (Ml to Mn) are connected to the center (Z), in which Central (Z) and in the detectors (Ml to Mn) each with a comparator (K) and a memory element (Cv; MR) are provided for the transmission and detection of binary data, the respective comparator switching thresholds being determined by the state of the respective memory elements ( Cv; MR) are determined and the state (Z) determines the state of the respective memory elements (Cv; MR) by applying a reference voltage (Ue) to the double line (a, b). Verfahren nach Anspruch 1, bei dem die Energieversorgung der Melder (Ml bis Mn) und die Datenübertragung zeitlich aufeinander folgen.Method according to Claim 1, in which the energy supply to the detectors (Ml to Mn) and the data transmission follow one another in time. Vorrichtung für ein Verfahren nach einem der Ansprüche 1 oder 2, bei der die Speicherelemente der einzelnen Melder (Ml bis Mn) durch Kondensatoren (Cv) gebildet sind, die über den Mittelabgriff eines zwischen den Adern der Doppelleitung (a,b) angeordneten Spannungsteilers (R1,R2) aufgeladen werden und deren Spannung mittels eines von einem im Melder angeordneten Mikrorechner (MR) ansteuerbaren Schalters (S) als Schwellspannung an den Komparator (K) gelegt wird.Device for a method according to one of Claims 1 or 2, in which the storage elements of the individual detectors (Ml to Mn) are formed by capacitors (Cv) which are connected to the center tap of a voltage divider (a, b) arranged between the wires of the double line (a, b). R1, R2) are charged and their voltage is applied as a threshold voltage to the comparator (K) by means of a switch (S) which can be controlled by a microcomputer (MR) arranged in the detector. Vorrichtung für ein Verfahren nach einem der Ansprüche 1 oder 2, bei der die Speicherelemente der einzelnen Melder (Ml bis Mn) durch Halbleiterspeicher (MR) gebildet sind, die jeweils über einen Analog-Digital-Wandler (ADW) mit dem Mittelabgriff eines zwischen den Adern der Doppelleitung (a,b) angeordneten Spannungsteilers (R1,R2) und über einen Digital-Analogwandler (DAW) mit dem Komparator (K) verbunden sind.Device for a method according to one of claims 1 or 2, in which the memory elements of the individual detectors (Ml to Mn) are formed by semiconductor memories (MR), each of which has an analog-to-digital converter (ADC) with the center tap of one between the Cores of the double line (a, b) arranged voltage divider (R1, R2) and connected to the comparator (K) via a digital-to-analog converter (DAW).
EP91114662A 1991-08-30 1991-08-30 Binary data transmission method in an alarm signalling system Expired - Lifetime EP0529139B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES91114662T ES2085388T3 (en) 1991-08-30 1991-08-30 PROCEDURE FOR THE TRANSMISSION OF BINARY DATA IN A DANGER ALARM SYSTEM.
EP91114662A EP0529139B1 (en) 1991-08-30 1991-08-30 Binary data transmission method in an alarm signalling system
DE59107738T DE59107738D1 (en) 1991-08-30 1991-08-30 Process for the transmission of binary data in a hazard detection system
AT91114662T ATE137351T1 (en) 1991-08-30 1991-08-30 METHOD FOR TRANSMITTING BINARY DATA IN A HAZARD NOTIFICATION SYSTEM
DK91114662.9T DK0529139T3 (en) 1991-08-30 1991-08-30 Method for transmitting binary data in a hazard reporting system
GR960400946T GR3019763T3 (en) 1991-08-30 1996-04-25 Binary data transmission method in an alarm signalling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP91114662A EP0529139B1 (en) 1991-08-30 1991-08-30 Binary data transmission method in an alarm signalling system

Publications (2)

Publication Number Publication Date
EP0529139A1 true EP0529139A1 (en) 1993-03-03
EP0529139B1 EP0529139B1 (en) 1996-04-24

Family

ID=8207097

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91114662A Expired - Lifetime EP0529139B1 (en) 1991-08-30 1991-08-30 Binary data transmission method in an alarm signalling system

Country Status (6)

Country Link
EP (1) EP0529139B1 (en)
AT (1) ATE137351T1 (en)
DE (1) DE59107738D1 (en)
DK (1) DK0529139T3 (en)
ES (1) ES2085388T3 (en)
GR (1) GR3019763T3 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3588828A (en) * 1967-08-02 1971-06-28 Dutton Hayward H Signaling system responsive to pulses within an amplitude range
EP0052220A2 (en) * 1980-11-17 1982-05-26 Siemens Aktiengesellschaft Method and device for measuring the resistance in a signalling line
GB2150793A (en) * 1983-11-30 1985-07-03 Matsushita Electric Works Ltd Signal transmission system
EP0241574A2 (en) * 1986-03-31 1987-10-21 Matsushita Electric Works, Ltd. Fire alarm system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3588828A (en) * 1967-08-02 1971-06-28 Dutton Hayward H Signaling system responsive to pulses within an amplitude range
EP0052220A2 (en) * 1980-11-17 1982-05-26 Siemens Aktiengesellschaft Method and device for measuring the resistance in a signalling line
GB2150793A (en) * 1983-11-30 1985-07-03 Matsushita Electric Works Ltd Signal transmission system
EP0241574A2 (en) * 1986-03-31 1987-10-21 Matsushita Electric Works, Ltd. Fire alarm system

Also Published As

Publication number Publication date
DE59107738D1 (en) 1996-05-30
GR3019763T3 (en) 1996-07-31
DK0529139T3 (en) 1996-08-12
ATE137351T1 (en) 1996-05-15
EP0529139B1 (en) 1996-04-24
ES2085388T3 (en) 1996-06-01

Similar Documents

Publication Publication Date Title
DE3443925C1 (en) Circuit arrangement for distinguishing the two fields in a television signal
DE2323959C3 (en) Arrangement for remote reading of several meters
DE2727201A1 (en) TOUCH CONTROL BUTTONS
EP0137948B1 (en) Device for time distance control between rectangular signals
DE19961440A1 (en) Device for reading and / or writing optical recording media
EP0127163B1 (en) Fault recognition circuit for parallel-load feeding-power supply devices
DE10234181B3 (en) Adaptive voltage monitoring
DE3533467A1 (en) METHOD AND ARRANGEMENT FOR THE RUN-SAFE DETECTION OF DATA CONTAINED IN DATA SIGNALS
EP0362949A2 (en) Circuit arrangement for the demodulation of frequency-modulated signals
EP0529139B1 (en) Binary data transmission method in an alarm signalling system
DE3922286A1 (en) METHOD AND DEVICE FOR DETECTING A REDUCTION OF THE INPUT VOLTAGE FOR A POWER SUPPLY
EP0515438A1 (en) Process for converting an analog voltage to a digital value.
EP0529140B1 (en) Binary data transmission method in an alarm signalling system
DE19532677B4 (en) Monitoring circuit for at least one supply voltage
DE2621087A1 (en) METHOD AND CIRCUIT FOR CONVERTING ANALOGUE SIZE TO A DIGITAL SIZE
DE2150174A1 (en) Device for indicating the end of a chromatographic signal
DE3718305C1 (en) Circuit for monitoring the level of alternating-voltage signals
DE19653189C2 (en) Analog signal rectangular signal converter with offset compensation
DE3538948C1 (en) Method for digitally measuring the peak value of ultrasonic test pulses
DE3439115A1 (en) PRINTER
DE2247598C2 (en) AC current monitoring device
DE3401798A1 (en) Rangefinder
DE3915880A1 (en) Multi-wired cables monitor esp. for communications cables - measures charging time of capacitor in bridge measuring loop and/or insulation resistance of connected wires
DE2811127C3 (en) Device for checking the quality of printed coils
DE3616750A1 (en) Track circuit for railway systems

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL

17P Request for examination filed

Effective date: 19930819

17Q First examination report despatched

Effective date: 19950419

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL

REF Corresponds to:

Ref document number: 137351

Country of ref document: AT

Date of ref document: 19960515

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REF Corresponds to:

Ref document number: 59107738

Country of ref document: DE

Date of ref document: 19960530

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2085388

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3019763

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960702

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19970730

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19970826

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19970902

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980830

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980831

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011022

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20011112

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20020717

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020808

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020813

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020820

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020829

Year of fee payment: 12

Ref country code: ES

Payment date: 20020829

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030301

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030830

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030901

BERE Be: lapsed

Owner name: *SIEMENS A.G.

Effective date: 20030831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040301

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050830