EP0523474A1 - Farbakzeptorelement für das Thermosublimationsdruckverfahren - Google Patents

Farbakzeptorelement für das Thermosublimationsdruckverfahren Download PDF

Info

Publication number
EP0523474A1
EP0523474A1 EP19920111298 EP92111298A EP0523474A1 EP 0523474 A1 EP0523474 A1 EP 0523474A1 EP 19920111298 EP19920111298 EP 19920111298 EP 92111298 A EP92111298 A EP 92111298A EP 0523474 A1 EP0523474 A1 EP 0523474A1
Authority
EP
European Patent Office
Prior art keywords
hydroxyphenyl
bis
color acceptor
formula
polycarbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19920111298
Other languages
English (en)
French (fr)
Other versions
EP0523474B1 (de
Inventor
Rolf Wehrmann
Robert Bloodworth
Geert Defieuw
Herman Uytterhoeven
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert AG
Original Assignee
Agfa Gevaert AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert AG filed Critical Agfa Gevaert AG
Publication of EP0523474A1 publication Critical patent/EP0523474A1/de
Application granted granted Critical
Publication of EP0523474B1 publication Critical patent/EP0523474B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5263Macromolecular coatings characterised by the use of polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B41M5/5272Polyesters; Polycarbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/913Material designed to be responsive to temperature, light, moisture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/914Transfer or decalcomania
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31507Of polycarbonate

Definitions

  • the present invention relates to a color acceptor element for the thermal sublimation printing process.
  • thermo sublimation printing process There are a number of methods for printing out video or computer-stored images, of which the thermal sublimation printing process has proven to be superior in certain requirements due to its advantages over other processes.
  • a sheet-like or ribbon-shaped donor material which contains a dye capable of sublimation is brought into contact with a dye (dye) acceptor layer and heated imagewise to transfer the dye.
  • the thermal head is controlled and the dye is transferred from the donor material to the acceptor element in accordance with the stored template.
  • a detailed description of the process can be found, for example, in "High Quality Image Recording by Sublimation Transfer Recording Material", Electronic Photography Association Documents 27 (2), 1988, and the literature cited therein.
  • a particular advantage of this printing process is the ability to fine-tune color intensities.
  • Color acceptor elements for thermal sublimation printing usually include a backing, e.g. Paper or transparent films that are coated with the actual color acceptor layer.
  • An adhesive layer can be applied between the base and the acceptor layer.
  • US-A-4 705 522 specifies polycarbonate, polyurethane, polyester, polyvinyl chloride, poly (styrene-co-acrylonitrile), polycaprolactone and mixtures thereof for the color acceptor layer.
  • EP-A-O 228 066 describes a color acceptor layer with improved light stability, which contains a mixture of polycaprolactone or a linear aliphatic polyester with poly (styrene-co-acrylonitrile) and / or bisphenol-A polycarbonate.
  • EP-A-0 227 094 describes a color acceptor element based on bisphenol A polycarbonate which can be processed to form layers with a particularly low surface roughness at a molecular weight of the polycarbonate of greater than 25,000. From US-A-4 927 803 a polycarbonate receiving layer is known in which the polycarbonate is built up from bisphenol-A and non-aromatic diols.
  • the color acceptor layers currently available do not yet sufficiently meet the requirements for high color density, sufficient image stability and good resolution. It is particularly difficult to achieve high color density and sufficient image stability with minimal lateral diffusion.
  • the object of the invention was to provide a color acceptor element for the thermal sublimation printing process which does not have the disadvantages mentioned above.
  • the object is achieved by using a special polymer in the color acceptor element.
  • the preferred alkyl radical is methyl; the X atoms in the ⁇ -position to the di-phenyl-substituted C atom (C-1) are preferably not dialkyl-substituted, whereas the alkyl disubstitution in the ⁇ -position to C-1 is preferred.
  • the bis (hydroxyphenyl) cycloalkanes of the formula I can be prepared in a manner known per se by condensation of phenols of the formula V. and ketones of formula VI are prepared, wherein in the formulas V and VI X, R1, R2, R3, R4 and m have the meaning given for formula I.
  • the phenols of the formula V are either known from the literature or can be obtained by processes known from the literature (see, for example, for cresols and xylenols, Ullmanns Encyklopadie der Technochemische Chemie 4th revised and extended edition volume 15, pages 61-77, Verlag Chemie-Weinheim-New York 1978; for chlorophenols Ullmann's Encyclopedia of Industrial Chemistry, 4th edition, Verlag Chemie, 1975, Volume 9, pages 573-582; and for alkylphenols Ullmann's Encyclopedia of Industrial Chemistry, 4th edition, Verlag Chemie 1979, Volume 18, pages 191-214).
  • Suitable phenols of the formula V are: Phenol, o-cresol, m-cresol, 2,6-dimethylphenol, 2-chlorophenol, 3-chlorophenol, 2,6-dichlorophenol, 2-cyclohexylphenol, diphenylphenol and o- or p-benzylphenols.
  • ketones of the formula VI are known from the literature, see for example Beilsteins Handbuch der Organischen Chemie, 7th volume, 4th edition, Springer-Verlag, Berlin, 1925 and the corresponding supplementary volumes 1 to 4, and J. Am. Chem. Soc. Vol 79 (1957), pages 1488, 1490 and 1491; U.S. Patent 2,692,289; Allen et al., J. Chem. Soc., (1954), 2186, 2191 and J Org. Chem, Vol. 38, No. 26, (1973), pages 4431 ff; J. Am. Chem. Soc. 87 , (1965), page 1353 ff, in particular page 1355.
  • a general process for the preparation of ketones of the formula VI is described, for example, in "Organikum, 15th edition, 1977, VEB-Deutscher Verlag dermaschineen, Berlin, for example page 698.” .
  • ketones of the formula VI are: 3,3-dimethylcyclopentanone, 2,2-dimethylcyclohexanone, 3,3-dimethylcyclohexanone, 4,4-dimethylcyclohexanone, 3-ethyl-3-methylcyclopentanone, 2,3,3-trimethylcyclopentanone, 2,4,4-trimethylcyclopentanone, 3, 3,4-trimethylcyclopentanone, 3,3-dimethylcycloheptanone, 4,4-dimethylcycloheptanone, 3-ethyl-3-methylcyclohexanone, 4-ethyl-4-methylcyclohexanone, 2,3,3-trimethylcyclohexanone, 2,4,4-trimethylcyclohexanone, 3,3,4-trimethylcyclohexanone, 2,5,5-trimethylcyclohexanone, 3,3,5-trimethylcyclohexanone, 3,4,4-trimethylcyclohexanone, 2,3,3,4-tetramethylcycl
  • diphenols (I) The preparation of suitable diphenols (I) is e.g. in DE-A-3 832 396.
  • the diphenols are used for the production of high molecular weight thermoplastic aromatic polycarbonates (polycarbonates according to the invention).
  • diphenols (I) can also be used in a mixture with other diphenols, for example those of the formula HO-Z-OH (VII), for the production of high-molecular, thermoplastic, aromatic polycarbonates.
  • Suitable other diphenols of the formula HO-Z-OH (VII) are those in which Z is an aromatic radical having 6 to 30 carbon atoms, which may contain one or more aromatic nuclei, may be substituted and aliphatic radicals or other cycloaliphatic radicals than that of formula I or heteroatoms as bridge members.
  • diphenols (VII) Hydroquinone, Resorcinol, Dihydroxydiphenyls, Bis (hydroxyphenyl) alkanes, Bis (hydroxyphenyl) cycloalkanes, Bis (hydroxyphenyl) sulfides, Bis (hydroxyphenyl) ether, Bis (hydroxyphenyl) ketones, Bis (hydroxyphenyl) sulfones, Bis (hydroxyphenyl) sulfoxides, ⁇ , ⁇ '-bis (hydroxyphenyl) diisopropylbenzenes and their nuclear alkylated and nuclear halogenated compounds.
  • Preferred other diphenols are, for example: 4,4'-dihydroxydiphenyl, 2,2-bis (4-hydroxyphenyl) propane, 2,4-bis (4-hydroxyphenyl) -2-methylbutane, 1,1-bis (4-hydroxyphenyl) cyclohexane, ⁇ , ⁇ '-bis (4-hydroxyphenyl) -p-diisopropylbenzene, 2,2-bis (3-methyl-4-hydroxyphenyl) propane, 2,2-bis (3-chloro-4-hydroxyphenyl) propane, Bis (3,5-dimethyl-4-hydroxyphenyl) methane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, Bis (3,5-dimethyl-4-hydroxyphenyl) sulfone, 2,4-bis (3,5-dimethyl-4-hydroxyphenyl) -2-methylbutane, 1,1-bis (3,5-dimethyl-4-hydroxyphenyl) cyclohexane, ⁇ , ⁇ '-bis
  • Particularly preferred diphenols (VII) are, for example: 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl) propane, 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane and 1,1-bis (4-hydroxyphenyl) cyclohexane.
  • the other diphenols can be used both individually and in a mixture.
  • the amount of the diphenol of the formula I in the diphenol mixture is at least 2 mol%, preferably at least 5 mol% and in particular at least 10 mol%.
  • the high molecular weight polycarbonates according to the invention can be produced by the known polycarbonate production processes.
  • the various diphenols can be linked to one another both statistically and in blocks.
  • small amounts preferably amounts between 0.05 and 2.0 mol% (based on diphenols used) of three- or more than three-functional compounds, in particular those with three or more than three, serve as branching agents, if known phenolic hydroxyl groups to obtain branched polycarbonates.
  • Some of the compounds that can be used have three or more than three phenolic hydroxyl groups Phloroglucin, 4,6-dimethyl-2,4,6-tri- (4-hydroxyphenyl) -hepten-2, 4,6-dimethyl-2,4,6-tri- (4-hydroxyphenyl) heptane, 1,3,5-tri- (4-hydroxyphenyl) benzene, 1,1,1-tri- (4-hydroxyphenyl) ethane, Tri- (4-hydroxyphenyl) phenylmethane, 2,2-bis (4,4-bis (4-hydroxyphenyl) cyclohexyl) propane, 2,4-bis (4-hydroxyphenyl-isopropyl) phenol, 2,6-bis (2-hydroxy-5'-methylbenzyl) -4-methylphenol, 2- (4-hydroxyphenyl) -2- (2,4-dihydroxyphenyl) propane, Hexa- (4- (4-hydroxyphenyl-isopropyl) phenyl) orthoterephthalic acid
  • Some of the other three-functional compounds are 2,4-dihydroxybenzoic acid, trimesic acid, cyanuric chloride and 3,3-bis (3-methyl-4-hydroxyphenyl) -2-oxo-2,3-dihydroindole.
  • monofunctional compounds in conventional concentrations serve as chain terminators for regulating the molecular weight.
  • Suitable compounds are, for example, phenol, tert-butylphenols or other alkyl-C1-C7-substituted phenols.
  • Small amounts of phenols of the formula VIII are particularly suitable for regulating the molecular weight wherein R represents a branched C8 and / or C9 alkyl radical.
  • R represents a branched C8 and / or C9 alkyl radical.
  • the proportion of CH3 protons in the alkyl radical R between 47 and 89% and the proportion of CH and CH2 protons between 53 and 11%; R is also preferably in the o- and / or p-position to the OH group, and particularly preferably the upper limit of the ortho fraction 20%.
  • the chain terminators are generally used in amounts of 0.5 to 10, preferably 1.5 to 8 mol%, based on the diphenols used.
  • the polycarbonates used according to the invention can preferably be prepared in a manner known per se by the phase boundary process (cf. H. Schnell, "Chemistry and Physics of Polycarbonates", Polymer Reviews, Vol. IX, page 33 ff., Interscience Publ., 1964).
  • the diphenols are dissolved in an aqueous alkaline phase. Mixtures of diphenols of the formula I and the other diphenols are used to produce copolycarbonates with other diphenols.
  • Chain terminators can be added to regulate the molecular weight.
  • reaction with phosgene is carried out according to the phase interface condensation method.
  • the reaction temperature is between 0 ° C and 40 ° C.
  • the optionally used 0.05 to 2 mol% of branching agents can either be introduced with the diphenols in the aqueous alkaline phase or added dissolved in the organic solvent before the phosgenation.
  • diphenols to be used their mono- and / or bis-chlorocarbonic acid esters can also be used, these being added in solution in organic solvents.
  • the amount of chain terminators and branching agents then depends on the molar amount of diphenolate structural units; Likewise, the amount of phosgene can be reduced accordingly in a known manner when using chlorocarbonic acid esters.
  • Suitable organic solvents for the solution of the chain terminators and optionally for the branching agents and the chlorocarbonic acid esters are, for example, methylene chloride, chlorobenzene, acetone, acetonitrile and mixtures of these solvents, in particular mixtures of methylene chloride and chlorobenzene. If necessary, the chain terminators and branches used can be solved in the same solvent.
  • the organic phase for the interfacial polycondensation is, for example, methylene chloride, chlorobenzene and mixtures of methylene chloride and chlorobenzene.
  • Aqueous NaOH solution for example, serves as the aqueous alkaline phase.
  • the production of the polycarbonates by the phase interface process can be carried out in the usual way by catalysts such as tertiary amines, especially tertiary ones aliphatic amines such as tributylamine or triethylamine are catalyzed; the catalysts can be used in amounts of 0.05 to 10 mol%, based on the molar amount of diphenol.
  • the catalysts can be added before the start of phosgenation or during or after the phosgenation.
  • polycarbonates according to the invention are isolated in a known manner.
  • the polycarbonates used according to the invention can also be prepared by the known process in homogeneous phase, the so-called “pyridine process” and by the known melt transesterification process using, for example, diphenyl carbonate instead of phosgene.
  • the polycarbonates according to the invention are isolated in a known manner.
  • the polycarbonates preferably have molecular weights M ⁇ w (weight average, determined by gel chromatography after prior calibration) of at least 5,000, particularly preferably from 8,000 to 200,000 and in particular from 10,000 to 80,000.
  • Polycarbonates based on cycloaliphatic bisphenols are known in principle and are described, for example, in EP-A-0 164 476, DE-A-33 45 945, DE-A-20 63 052, FR-A-14 27 998, WP 80 00 348 , BE 785 189.
  • the polycarbonates used according to the invention have higher glass transition temperatures than pure BPA. High glass transition temperatures have a positive effect on the undesired lateral diffusion (bleeding). Because of their higher glass transition temperature, color acceptor elements with the polycarbonates according to the invention are suitable, for example, for the production of color filters by the thermal sublimation printing process, as described in EP-AO 391 303. Due to the higher proportion of Alkyl groups continue to achieve an improved solubility of the polycarbonates. Thus, the polycarbonates listed in Examples 1 to 4 are soluble in the ecologically harmless solvents MEK or butyl acetate, which is a clear advantage over pure BPA polycarbonate.
  • the proportion of the other resins is between 0 and 98% by weight of the total mixture.
  • High-boiling solvents or plasticizers can also be added to the color acceptor layer. You can e.g. ensure a more homogeneous diffusion or distribution of the transferred dyes.
  • plasticizers which can be used are dimethyl phthalate / isophthalate, diethyl phthalate / isophthalate, dipropyl phthalate / isophthalate, dibutyl phthalate / isophthalate, dihexyl phthalate / isophthalate, diethyl hexyl phthalate / isopthalate, diphenyl phthalate / isophthalate, dioctyl phthalate / isophthalate / isophthalate and isecylate, didecyl and didecyl .
  • esters such as benzyl butyl phthalate / isophthalate, benzyl octyl adipate, diphenyl cresyl phosphate, diphenyl octyl phosphate and alkyl sulfonic acid esters are also suitable as plasticizers in addition to adipic acid polyesters and other aliphatic polyesters.
  • fatty alcohols, amines and acids as well as their derivatives such as stearic acid, stearyl alcohol, stearylamine, myristic acid, myristyl alcohol, cetyl alcohol, glycerol monostearate, pentaerythritol partial esters, pentaerythritol tetrastearate may be mentioned.
  • the color acceptor layer can e.g. pigments or mixtures of several pigments, such as e.g. Titanium dioxide, zinc oxide, kaolin, clay, calcium carbonate or Aerosil can be added.
  • pigments or mixtures of several pigments such as e.g. Titanium dioxide, zinc oxide, kaolin, clay, calcium carbonate or Aerosil can be added.
  • additives such as e.g. UV absorbers, light stabilizers or antioxidants can be added.
  • the color acceptor layers of the present invention can contain a lubricant to improve the sliding properties, primarily between the donor and acceptor elements.
  • a lubricant to improve the sliding properties, primarily between the donor and acceptor elements.
  • solid waxes such as polyethylene wax, amidic waxes or Teflon powder can be used, but also fluorine-containing surfactants, paraffin, silicone or fluorine-containing oils or silicone-containing copolymers such as polysiloxane-polyether copolymers. Reactive, modified silicones can also be used.
  • Products of this type can contain carboxyl, amino and / or epoxy groups and, with a suitable combination of, for example, amino and epoxy silicone, can lead to crosslinked sliding layers.
  • the lubricant mentioned can also be applied as a separate coating, as a dispersion or, if appropriate, from a suitable solvent as a "top coat".
  • the thickness of such a layer is then preferably 0.01 to 5 ⁇ m, particularly preferably between 0.05 and 2 ⁇ m.
  • Various materials can be used as carriers for the color acceptor layers. It is possible to use transparent films such as Use polyethylene terephthalate, polycarbonate, polyether sulfone, polyolefin, polyvinyl chloride, polystyrene, cellulose or polyvinyl alcohol copolymer films. Of course, there are also reflective documents such as the most varied types of paper such as Polyolefin coated paper or pigmented papers are used. Laminates made from the above materials can also be used. Typical combinations are laminates of cellulose paper and synthetic paper or cellulose paper and polymer films or polymer films and synthetic paper or other combinations.
  • the carriers ensure the necessary mechanical stability of the color acceptor element. If the color acceptor layer has sufficient mechanical stability, an additional support can be dispensed with.
  • the color acceptor layers of the present invention preferably have total layer thicknesses of 0.3 to 50 ⁇ m, particularly preferably from 0.5 to 10 ⁇ m, if a carrier of the type described above is used or if this is dispensed with, from 3 to 120 ⁇ m.
  • the color acceptor layer can consist of a single layer, but two or more layers can also be applied to the support. When using transparent supports, a coating on both sides to increase the color intensity can be carried out, as described, for example, in European patent application 90 200 930.7.
  • the color acceptor element of the present invention may also include various intermediate layers between the backing and the dye-receiving layer.
  • the intermediate layer can act as a resilient element (elastic layer), as a barrier layer for the transferred dye or as an adhesive layer, depending on the specific application.
  • suitable materials are urethane, acrylate or olefin resins, but also butadiene rubbers or epoxies.
  • An intermediate layer can also contain, for example, a polymer with an inorganic polymer structure consisting of silicon, titanium or zirconium oxide, as described, for example, in US Pat. No. 4,965,238, US Pat. No. 4,965,239, US Pat. No. 4,965,241.
  • This intermediate layer is usually between about 1 to 2 and 20 microns.
  • Diffusion barrier layers have the task of preventing the transferred dyes from diffusing into the support. Materials that fulfill this task can be soluble in water or in organic solvents or in mixtures, but preferably in water. Suitable materials include gelatin, polyacrylic acid, maleic anhydride copolymers, Polyvinyl alcohol or cellulose acetate.
  • the optional additional layers such as elastic layer, diffusion barrier layer, adhesive layer etc. as well as the actual color acceptor layer can e.g. Contain silicate, clay, aluminum silicate, calcium carbonate, calcium sulfate, barium sulfate, titanium dioxide, aluminum oxide powder.
  • the image acceptor element of the present invention can also be antistatically treated in the usual manner on the front or back. It can also be provided with markings, preferably on the back of the carrier, in order to achieve precise positioning during the printing process.
  • the color acceptor element according to the invention can be combined with the color donor elements customary in the field of thermal sublimation printing.
  • the color images obtained in a thermal sublimation printer are characterized by high resolution, high color densities, high brilliance and good long-term stability.
  • the color acceptor layers containing the polycarbonate according to the invention are usually produced from solution.
  • Suitable solvents are, for example, methyl ethyl ketone (MEK), butyl acetate, methylene chloride, chlorobenzene, tetrahydrofuran (THF) or dioxolane.
  • MEK methyl ethyl ketone
  • THF tetrahydrofuran
  • dioxolane dioxolane
  • polycarbonates corresponding to the parts by weight of bisphenol A (BPA) and diphenol given in Table 1 were prepared from 3,3,5-trimethylcyclohexanone (TMC-diphenol).
  • BPA TMC diphenol 1 65 35 2nd 55 45 3rd 45 55 4th - 100
  • Test images were produced on the dye-receiving elements obtained using a Mitsubishi CP-100 E video printer using the Mitsubishi dye cassette CK-100 S.
  • the color acceptor layer of Examples 5 to 19 are distinguished by increased color density, reduced tendency to stick and good stability in relation to tempering conditions.
  • PC-1 PC-2 Vinylite VAGD Desmodur VL Tegomer H SI 2110 20th 17th - 67 13 3rd 21 34 - 50 13 3rd 22 50 - 34 13 3rd 23 - 17th 67 13 3rd 24th - 34 50 13 3rd 25th - 50 34 13 3rd
  • PC-2 polycarbonate (PC) from Example 1
  • Vinylite VAGD is an OH group-containing PVC copolymer from Union Carbide, OH content 2.3% by weight.
  • Desmodur VL is an aromatic polyisocyanate based on diphenylmethane diisocyanate from Bayer AG, NCO content approx. 31.5% by weight.
  • Tegomer H SI 2110 is a hydroxy-functional silicone from Goldschmidt.
  • the color acceptor layers of Examples 20 to 25 are distinguished by high color densities, low tendency to stick and very good stability after tempering.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

Bei Verwendung eines Farbakzeptorelementes für das Thermosublimationsdruckverfahren mit einer Farbakzeptorschicht, die ein aus einem Diphenol der Formel I gebildetes Polycarbonat und im übrigen gegebenenfalls ein anderes Polymerharz enthält.
Figure imga0001

in Formel I bedeuten
R¹ und R²
unabhängig voneinander Wasserstoff, Halogen, C₁-C₈-Alkyl, C₅-C₆-Cycloalkyl, C₆-C₁₀-Aryl und C₇-C₁₂-Aralkyl,
X
ein Kohlenstoffatom,
m
eine ganze Zahl von 4 bis 7,
R³ und R⁴
für jedes X individuell wählbar, unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, mit der Maßgabe, daß an mindestens einem Atom X R³ und R⁴ gleichzeitig Alkyl bedeuten.

Description

  • Die vorliegende Erfindung betrifft ein Farbakzeptorelement für das Thermosublimationsdruckverfahren.
  • Um von video- oder computergespeicherten Bildern Ausdrucke zu machen, existiert eine Reihe von Methoden, von denen das Thermosublimationsdruckverfahren sich auf Grund seiner Vorteile gegenüber anderen Verfahren bei bestimmten Anforderungen als überlegen erwiesen hat. Bei dieser Aufzeichnungsmethode wird ein blatt- oder bandförmiges Donormaterial, welches einen sublimationsfähigen Farbstoff enthält, mit einer Farb(stoff)akzeptorschicht in Kontakt gebracht und zur Übertragung des Farbstoffes bildmäßig erwärmt.
  • Entsprechend der gespeicherten Vorlage erfolgt die Ansteuerung des Thermokopfes und die Übertragung des Farbstoffs aus dem Donormaterial auf das Akzeptorelement. Eine ausführliche Beschreibung des Verfahrens ist z.B. in "High Quality Image Recording by Sublimation Transfer Recording Material", Electronic Photography Association Documents 27 (2), 1988, und der dort zitierten Literatur gegeben. Ein besonderer Vorteil dieses Druckverfahrens liegt in der Möglichkeit der Feinabstufung von Farbintensitäten.
  • Farbakzeptorelemente für den Thermosublimationsdruck umfassen gewöhnlich eine Unterlage, z.B. Papier oder transparente Folien, die mit der eigentlichen Farbakzeptorschicht beschichtet ist. Eine Haftschicht kann zwischen Unterlage und Akzeptorschicht angebracht sein.
  • Als Material für die Farbakzeptorschicht können Polymere aus unterschiedlichen Substanzklassen eingesetzt werden.
    So sind in EP-A-O 234 563 folgende Beispiele von geeigneten Materialien für die Akzeptorschicht genannt:
    • 1. Synthetische Harze mit Esterverbindungen, wie Polyester, Polyacrylate, Polyvinylacetat, Styrol-Acrylat-Harze und Vinyltoluol-Acrylat-Harze
    • 2. Polyurethane
    • 3. Polyamide
    • 4. Harnstoff-Harze
    • 5. Synthetische Harze mit anderen hochpolaren Bindungen, wie Polycaprolactam, Styrol-Harze, Polyvinylchlorid, Vinylchlorid-Vinylacetat-Copolymere und Polyacrylnitril.
  • In US-A-4 705 522 werden Polycarbonat, Polyurethan, Polyester, Polyvinylchlorid, Poly(Styrol-co-Acrylnitril), Polycaprolacton und deren Mischungen für die Farbakzeptorschicht angegeben.
  • In EP-A-O 228 066 ist eine Farbakzeptorschicht mit verbesserter Lichtstabilität beschrieben, die eine Mischung aus Polycaprolacton oder einem linearen aliphatischen Polyester mit Poly(Styrol-co-Acrylnitril) und/oder Bisphenol-A-Polycarbonat enthält.
  • In EP-A-O 227 094 wird ein Farbakzeptorelement auf Basis von Bisphenol-A-Polycarbonat beschrieben, das sich bei einem Molekulargewicht des Polycarbonats von größer 25.000 zu Schichten mit besonders geringer Oberflächenrauhigkeit verarbeiten läßt. Aus US-A-4 927 803 ist eine Polycarbonatempfangsschicht bekannt, bei der das Polycarbonat aus Bisphenol-A und nicht aromatischen Diolen aufgebaut wird.
  • Die zur Zeit verfügbaren Farbakzeptorschichten erfüllen die Anforderungen nach großer Farbdichte, ausreichender Bildstabilität und guter Auflösung noch nicht in ausreichendem Maße. Dabei ist es besonders schwierig, große Farbdichte und ausreichende Bildstabilität bei minimaler Lateraldiffusion zu erreichen.
  • Aufgabe der Erfindung war die Bereitstellung eines Farbakzeptorelements für das Thermosublimationsdruckverfahren, das die vorstehend genannten Nachteile nicht aufweist. Die Aufgabe wird durch die Verwendung eines speziellen Polymers im Farbakzeptorelement gelöst.
  • Gegenstand der Erfindung ist ein Farbakzeptorelement für das Thermosublimationsdruckverfahren mit einem Träger und einer darauf befindlichen ein aromatisches Polycarbonat enthaltenden Farbakzeptorschicht, dadurch gekennzeichnet, daß das Polycarbonat mindestens 10 wiederkehrende aus einem Bis-(hydroxyphenyl)-cycloalkan (Diphenol) der Formel I gebildete Struktureinheiten enthält:
    Figure imgb0001

    worin bedeuten
  • R¹ und R²
    unabhängig voneinander Wasserstoff, Halogen, C₁-C₈-Alkyl, C₅-C₆-Cycloalkyl, C₆-C₁₀-Aryl und C₇-C₁₂-Aralkyl,
    X
    ein Kohlenstoffatom,
    m
    eine ganze Zahl von 4 bis 7,
    R³ und R⁴
    für jedes X individuell wählbar, unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, mit der Maßgabe, daß an mindestens einem Atom X R³ und R⁴ gleichzeitig Alkyl bedeuten.
  • Bevorzugt sind an 1 - 2 Atomen X, insbesondere nur an einem Atom X, R³ und R⁴ gleichzeitig Alkyl. Bevorzugter Alkylrest ist Methyl; die X-Atome in α-Stellung zu dem di-phenyl-substituierten C-Atom (C-1) sind bevorzugt nicht dialkylsubstituiert, dagegen ist die Alkyldisubstitution in β-Stellung zu C-1 bevorzugt.
  • Bevorzugte Beispiele für verwendete Diphenole sind solche mit 5 und 6 Ring-C-Atomen im cycloaliphatischen Rest (m = 4 oder 5 in Formel I wie beispielsweise die Diphenole der Formeln
    Figure imgb0002

    wobei das 1,1-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan (II) besonders bevorzugt ist.
  • Die Bis-(hydroxyphenyl)-cycloalkane der Formel I können in an sich bekannter Weise durch Kondensation von Phenolen der Formel V
    Figure imgb0003

    und Ketonen der Formel VI
    Figure imgb0004

    hergestellt werden, wobei in den Formeln V und VI X, R¹, R², R³, R⁴ und m die für Formel I angegebene Bedeutung haben.
  • Die Phenole der Formel V sind entweder literaturbekannt oder nach literaturbekannten Verfahren erhältlich (siehe beispielsweise für Kresole und Xylenole Ullmanns Encyklopädie der technischen Chemie 4. neubearbeitete und erweiterte Auflage Band 15, Seiten 61 - 77, Verlag Chemie-Weinheim-New York 1978; für Chlorphenole Ullmanns Encyklopädie der technischen Chemie, 4. Auflage, Verlag Chemie, 1975, Band 9, Seiten 573-582; und für Alkylphenole Ullmanns Encyklopädie der technischen Chemie, 4. Auflage, Verlag Chemie 1979, Band 18, Seiten 191-214).
  • Beispiele für geeignete Phenole der Formel V sind:
    Phenol, o-Kresol, m-Kresol, 2,6-Dimethylphenol, 2-Chlorphenol, 3-Chlorphenol, 2,6-Dichlorphenol, 2-Cyclohexylphenol, Diphenylphenol und o- oder p-Benzylphenole.
  • Die Ketone der Formel VI sind literaturbekannt, siehe beispielsweise Beilsteins Handbuch der Organischen Chemie, 7. Band, 4. Auflage, Springer-Verlag, Berlin, 1925 und die entsprechenden Ergänzungsbände 1 bis 4, und J. Am. Chem. Soc. Vol 79 (1957), Seiten 1488, 1490 und 1491; US-PS 2 692 289; Allen et al., J. Chem, Soc., (1954), 2186, 2191 und J Org. Chem, Vol. 38, No. 26, (1973), Seiten 4431 ff; J. Am. Chem. Soc. 87, (1965), Seite 1353 ff, insbesondere Seite 1355. Ein allgemeines Verfahren zur Herstellung von Ketonen der Formel VI ist beispielsweise in "Organikum, 15. Auflage, 1977, VEB-Deutscher Verlag der Wissenschaften, Berlin, beispielsweise Seite 698. beschrieben.
  • Beispiele für bekannte Ketone der Formel VI sind:
    3,3-Dimethylcyclopentanon, 2,2-Dimethylcyclohexanon, 3,3-Dimethylcyclohexanon, 4,4-Dimethylcyclohexanon, 3-Ethyl-3-Methylcyclopentanon, 2,3,3-Trimethylcyclopentanon, 2,4,4-Trimethylcyclopentanon, 3,3,4-Trimethylcyclopentanon, 3,3-Dimethylcycloheptanon, 4,4-Dimethylcycloheptanon, 3-Ethyl-3-methylcyclohexanon, 4-Ethyl-4-methylcyclohexanon, 2,3,3-Trimethylcyclohexanon, 2,4,4-Trimethylcyclohexanon, 3,3,4-Trimethylcyclohexanon, 2,5,5-Trimethylcyclohexanon, 3,3,5-Trimethylcyclohexanon, 3,4,4-Trimethylcyclohexanon, 2,3,3,4-Tetramethylcyclopentanon, 2,3,4,4-Tetramethylcyclopentanon, 3,3,4,4-Tetramethylcyclopentanon, 2,2,5-Trimethylcycloheptanon, 2,2,6-Trimethylcycloheptanon, 2,6,6-Trimethylcycloheptanon, 3,3,5-Trimethylcycloheptanon, 3,5,5-Trimethylcycloheptanon, 5-Ethyl-2,5-dimethylcycloheptanon, 2,3,3,5-Tetramethylcycloheptanon, 2,3,5,5-Tetramethylcycloheptanon, 3,3,5,5-Tetramethylcycloheptanon, 4-Ethyl-2,3,4-trimethylcyclopentanon, 2-Isopropyl-4,4-dimethylcyclopentanon, 4-Isopropyl-2,4-dimethylcyclopentanon, 2-Ethyl-3,5,5-trimethylcyclohexanon, 3-Ethyl-3,5,5-trimethylcyclohexanon, 3-Ethyl-4-isopropyl-3-methyl-cyclopentanon, 4-s-Butyl-3,3-dimethylcyclopentanon, 2-Isopropyl-3,3,4-trimethylcyclopentanon, 3-Ethyl-4-isopropyl-3-methyl-cyclohexanon, 4-Ethyl-3-isopropyl-4-methyl-cyclohexanon, 3-s-Butyl-4,4-dimethylcyclohexanon, 3-Isopropyl-3,5,5-trimethylcyclohexanon, 4-Isopropyl-3,5,5-trimethylcyclohexanon, 3,3,5-Trimethyl-5-propylcyclohexanon, 3,5,5-Trimethyl-5-propylcyclohexanon, 2-Butyl-3,3,4-trimethylcyclopentanon, 2-Butyl-3,3,4-trimethylcyclohexanon, 4-Butyl-3,3,5-trimethylcyclohexanon, 3-Isohexyl-3-methylcyclohexanon, 5-Ethyl-2,4-diisopropyl-5-methylcyclohexanon, 2,2-Dimethylcyclooctanon, und 3,3,8-Trimethylcyclooctanon.
  • Beispiele für bevorzugte Ketone sind
    Figure imgb0005
  • Die Herstellung geeigneter Diphenole (I) ist z.B. in DE-A-3 832 396 beschrieben. Die Diphenole werden zur Herstellung von hochmolekularen thermoplastischen aromatischen Polycarbonaten (erfindungsgemäße Polycarbonate) verwendet.
  • Es können sowohl ein Diphenol der Formel I unter Bildung von Homopolycarbonaten als auch mehrere Diphenole der Formel I unter Bildung von Copolycarbonaten verwendet werden.
  • Außerdem können die Diphenole (I) auch im Gemisch mit anderen Diphenolen, beispielsweise mit denen der Formel HO-Z-OH (VII), zur Herstellung von hochmolekularen, thermoplastischen, aromatischen Polycarbonaten verwendet werden.
  • Geeignete andere Diphenole der Formel HO-Z-OH (VII) sind solche, in denen Z ein aromatischer Rest mit 6 bis 30 C-Atomen ist, der einen oder mehrere aromatische Kerne enthalten kann, substituiert sein kann und aliphatische Reste oder andere cycloaliphatische Reste als die der Formel I oder Heteroatome als Brückenglieder enthalten kann.
  • Beispiele für Diphenole (VII) sind
    Hydrochinon,
    Resorcin,
    Dihydroxydiphenyle,
    Bis-(hydroxyphenyl)-alkane,
    Bis-(hydroxyphenyl)-cycloalkane,
    Bis-(hydroxyphenyl)-sulfide,
    Bis-(hydroxyphenyl)-ether,
    Bis-(hydroxyphenyl)-ketone,
    Bis-(hydroxyphenyl)-sulfone,
    Bis-(hydroxyphenyl)-sulfoxide,
    α,α'-Bis(hydroxyphenyl)-diisopropylbenzole
    sowie deren kernalkylierte und kernhalogenierte Verbindungen.
  • Diese und weitere geeignete andere Diphenole sind z.B. in den US-PS 3 028 365, 2 999 835, 3 148 172, 3 275 601, 2 991 273, 3 271 367, 3 062 781, 2 970 131 und 2 999 846, in den deutschen Offenlegungsschriften (DE-OS) 1 570 703, 2 063 050, 2 063 052, 2 211 0956, der französischen Patentschrift 1 561 518 und in der Monographie "H. Schnell, Chemistry and Physics of Polycarbonates, Interscience Publishers, New York 1964", beschrieben.
  • Bevorzugte andere Diphenole sind beispielsweise:
    4,4'-Dihydroxydiphenyl,
    2,2-Bis-(4-hydroxyphenyl)-propan,
    2,4-Bis-(4-hydroxyphenyl)-2-methylbutan,
    1,1-Bis-(4-hydroxyphenyl)-cyclohexan,
    α,α'-Bis-(4-hydroxyphenyl)-p-diisopropylbenzol,
    2,2-Bis-(3-methyl-4-hydroxyphenyl)-propan,
    2,2-Bis-(3-chlor-4-hydroxyphenyl)-propan,
    Bis-(3,5-dimethyl-4-hydroxyphenyl)-methan,
    2,2-Bis-(3,5-dimethyl-4-hydroxyphenyl)-propan,
    Bis-(3,5-dimethyl-4-hydroxyphenyl)-sulfon,
    2,4-Bis-(3,5-dimethyl-4-hydroxyphenyl)-2-methylbutan,
    1,1-Bis-(3,5-dimethyl-4-hydroxyphenyl)-cyclohexan,
    α,α'-Bis-(3,5-dimethyl-4-hydroxyphenyl)-p-diisopropylbenzol,
    2,2-Bis-(3,5-dichlor-4-hydroxyphenyl)-propan und
    2,2-Bis-(3,5-dibrom-4-hydroxyphenyl)-propan.
  • Besonders bevorzugte Diphenole (VII) sind beispielsweise:
    2,2-Bis-(4-hydroxyphenyl)-propan,
    2,2-Bis-(3,5-dimethyl-4-hydroxyphenyl)-propan,
    2,2-Bis-(3,5-dichlor-4-hydroxyphenyl)-propan,
    2,2-Bis-(3,5-dibrom-4-hydroxyphenyl)-propan und
    1,1-Bis-(4-hydroxyphenyl)-cyclohexan.
  • Insbesondere ist 2,2-Bis-(4-hydroxyphenyl)-propan bevorzugt.
  • Die anderen Diphenole können sowohl einzeln als auch im Gemisch eingesetzt werden.
  • Sofern bei der Herstellung der erfindungsgemäß verwendeten Polycarbonate außer den Diphenolen der Formel I sonstige Diphenole eingesetzt werden, beträgt die Menge des Diphenols der Formel I im Diphenolgemisch mindestens 2 mol-%, vorzugsweise mindestens 5 mol-% und insbesondere mindestens 10 mol-%.
  • Die erfindungsgemäßen hochmolekularen Polycarbonate können nach den bekannten Polycarbonatherstellungsverfahren hergestellt werden. Dabei können die verschiedenen Diphenole sowohl statistisch als auch blockweise miteinander verknüpft sein.
  • Als Verzweiger dienen, falls benutzt, in bekannter Weise geringe Mengen, vorzugsweise Mengen zwischen 0,05 und 2,0 mol-% (bezogen auf eingesetzte Diphenole), an drei- oder mehr als dreifunktionellen Verbindungen, insbesondere solchen mit drei oder mehr als drei phenolischen Hydroxylgruppen, um verzweigte Polycarbonate zu erhalten. Einige der verwendbaren Verbindungen mit drei oder mehr als drei phenolischen Hydroxylgruppen sind
    Phloroglucin,
    4,6-Dimethyl-2,4,6-tri-(4-hydroxyphenyl)-hepten-2,
    4,6-Dimethyl-2,4,6-tri-(4-hydroxyphenyl)-heptan,
    1,3,5-Tri-(4-hydroxyphenyl)-benzol,
    1,1,1-Tri-(4-hydroxyphenyl)-ethan,
    Tri-(4-hydroxyphenyl)-phenylmethan,
    2,2-Bis-(4,4-bis-(4-hydroxyphenyl)-cyclohexyl)-propan,
    2,4-Bis-(4-hydroxyphenyl-isopropyl)-phenol,
    2,6-Bis-(2-hydroxy-5'-methyl-benzyl)-4-methylphenol,
    2-(4-Hydroxyphenyl)-2-(2,4-dihydroxyphenyl)-propan,
    Hexa-(4-(4-hydroxyphenyl-isopropyl)-phenyl)-ortho-terephthalsäureester,
    Tetra-(4-hydroxyphenyl)-methan,
    Tetra-(4-(4-hydroxyphenyl-isopropyl)-phenoxy)-methan und
    1,4-Bis-((4'-,4''-dihydroxytriphenyl)-methyl)-benzol.
  • Einige der sonstigen dreifunktionellen Verbindungen sind 2,4-Dihydroxybenzoesäure, Trimesinsäure, Cyanurchlorid und 3,3-Bis-(3-methyl-4-hydroxyphenyl)-2-oxo-2,3-dihydroindol.
  • Als Kettenabbrecher zur Regelung des Molekulargewichts dienen in bekannter Weise monofunktionelle Verbindungen in üblichen Konzentrationen. Geeignete Verbindungen sind z.B. Phenol, tert.-Butylphenole oder andere Alkyl-C₁-C₇-substituierte Phenole. Zur Regelung des Molekulargewichts sind insbesondere kleine Mengen Phenole der Formel VIII geeignet
    Figure imgb0006

    worin R einen verzweigten C₈- und/oder C₉-Alkylrest darstellt. Bevorzugt ist im Alkylrest R der Anteil an CH₃-Protonen zwischen 47 und 89 % und der Anteil der CH- und CH₂-Protonen zwischen 53 und 11 %; ebenfalls bevorzugt ist R in o- und/oder p-Stellung zur OH-Gruppe, und besonders bevorzugt die obere Grenze des ortho-Anteils 20 %. Die Kettenabbrecher werden im allgemeinen in Mengen von 0,5 bis 10, bevorzugt 1,5 bis 8 mol-%, bezogen auf eingesetzte Diphenole, eingesetzt.
  • Die erfindungsgemäß verwendeten Polycarbonate können vorzugsweise nach dem Phasengrenzflächenverfahren (vgl. H. Schnell, "Chemistry and Physics of Polycarbonates", Polymer Reviews, Vol. IX, Seite 33 ff., Interscience Publ., 1964) in an sich bekannter Weise hergestellt werden. Hierbei werden die Diphenole in wäßrig alkalischer Phase gelöst. Zur Herstellung von Co-Polycarbonaten mit anderen Diphenolen werden Gemische von Diphenolen der Formel I und den anderen Diphenolen eingesetzt. Zur
    Regulierung des Molekulargewichtes können Kettenabbrecher zugegeben werden. Dann wird in Gegenwart einer inerten, vorzugsweise Polycarbonat lösenden, organischen Phase mit Phosgen nach der Methode der Phasengrenzflächenkondensation umgesetzt. Die Reaktionstemperatur liegt zwischen 0°C und 40°C.
  • Die gegebenenfalls mitzuverwendenden 0,05 bis 2 mol-% an Verzweigern können entweder mit den Diphenolen in der wäßrig alkalischen Phase vorgelegt werden oder in dem organischen Lösungsmittel gelöst vor der Phosgenierung zugegeben werden.
  • Neben den einzusetzenden Diphenolen können auch deren Mono-und/oder Bis-chlorkohlensäureester mitverwendet werden, wobei diese in organischen Lösungsmitteln gelöst zugegeben werden. Die Menge an Kettenabbrechern sowie an Verzweigern richtet sich dann nach der Molmenge Diphenolat-Struktureinheiten; ebenso kann bei Einsatz von Chlorkohlensäureestern die Phosgenmenge in bekannter Weise entsprechend reduziert werden.
  • Geeignete organische Lösungsmittel für die Lösung der Kettenabbrecher sowie gegebenenfalls für die Verzweiger und die Chlorkohlensäureester sind beispielsweise Methylenchlorid, Chlorbenzol, Aceton, Acetonitril sowie Mischungen dieser Lösungsmittel, insbesondere Mischungen aus Methylenchlorid und Chlorbenzol. Gegebenenfalls können die verwendeten Kettenabbrecher und Verzweiger im gleichen Solvens gelöst werden.
  • Als organische Phase für die Phasengrenzflächenpolykondensation dient beispielsweise Methylenchlorid, Chlorbenzol sowie Mischungen aus Methylenchlorid und Chlorbenzol.
  • Als wäßrige alkalische Phase dient beispielsweise wäßrige NaOH-Lösung.
  • Die Herstellung der Polycarbonate nach dem Phasengrenzflächenverfahren kann in üblicher Weise durch Katalysatoren wie tertiäre Amine, insbesondere tertiäre aliphatische Amine wie Tributylamin oder Triethylamin katalysiert werden; die Katalysatoren können in Mengen von 0,05 bis 10 mol-%, bezogen auf die Molmenge an Diphenol eingesetzt werden. Die Katalysatoren können vor Beginn der Phosgenierung oder während oder auch nach der Phosgenierung zugesetzt werden.
  • Die Isolierung der erfindungsgemäßen Polycarbonate erfolgt in bekannter Weise.
  • Die erfindungsgemäß verwendeten Polycarbonate können auch nach dem bekannten Verfahren in homogener Phase, dem sogenannten "Pyridinverfahren" sowie nach dem bekannten Schmelzumesterungsverfahren unter Verwendung von beispielsweise Diphenylcarbonat anstelle von Phosgen hergestellt werden. Auch hier werden die erfindungsgemäßen Polycarbonate in bekannter Weise isoliert.
  • Die Polycarbonate haben bevorzugt Molekulargewichte M ¯
    Figure imgb0007
    w (Gewichtsmittel, ermittelt durch Gelchromatographie nach vorheriger Eichung) von mindestens 5 000, besonders bevorzugt von 8 000 bis 200 000 und insbesondere von 10 000 bis 80 000.
  • Polycarbonate auf Basis von cycloaliphatischen Bis-phenolen sind grundsätzlich bekannt und z.B. in EP-A-0 164 476, DE-A-33 45 945, DE-A-20 63 052, FR-A-14 27 998, WP 80 00 348, BE 785 189 beschrieben.
  • Die erfindungsgemäß verwendeten Polycarbonate haben höhere Glasübergangstemperaturen als reines BPA. Hohe Glasübergangstemperaturen wirken sich positiv auf die nicht erwünschte Lateraldiffusion (bleeding) aus, Aufgrund ihrer höheren Glasübergangstemperatur eignen sich Farbakzeptorelemente mit den erfindungsgemäßen Polycarbonaten beispielsweise für die Herstellung von Farbfiltern nach dem Thermosublimationsdruckverfahren, wie beschrieben in EP-A-O 391 303. Durch den höheren Anteil von Alkylgruppen wird weiterhin eine verbesserte Löslichkeit der Polycarbonate erreicht. So sind die in den Beispielen 1 bis 4 angeführten Polycarbonate in den ökologisch unbedenklichen Lösungsmitteln MEK oder Butylacetat löslich, was einen deutlichen Vorteil gegenüber reinem BPA-Polycarbonat darstellt.
  • Durch den höheren Anteil von cycloaliphatischen Gruppen - verglichen mit reinem BPA-PC - könnte eine bessere Kompatibilität mit anderen aliphatischen Produkten wie Blendpartnern oder niedermolekularen Weichmachern oder auch mit den im Druckprozeß übertragenen Farbstoffen erreicht werden.
  • Die Polycarbonate können auch in Mischungen mit anderen bekannten Harzen für Farbakzeptorschichten eingesetzt werden; z.B. können die nachstehenden Polymere a) bis e) alleine oder als Mischungen von mehreren in Kombination mit den erfindungsgemäßen Polycarbonaten als Farbempfangsmaterial verwendet werden.
    • a) Polymere, die Esterbindungen enthalten: z.B. Polyester, Polyacrylester, Polycarbonate, Polyvinylacetat, Polyvinylpropionat, Styrol-Acrylate, Methylstyrol-Acrylate.
    • b) Polymere, die Urethanbindungen enthalten: z.B. Polyurethane, Polyesterurethane.
    • c) Polymere, die Amidbindungen enthalten: z.B. Polyamide, Polyesteramide.
    • d) Polymere, die Harnstoffbindungen enthalten: z.B. Polyharnstoffe.
    • e) Polymere, die andere hochpolare Bindungen enthalten, wie z.B. Polycaprolacton, Polystyrole, Polyvinylalkohol, Polyvinylchlorid, Polyacrylnitril, Polyether, Polysulfone, Polyetherketone, Polyhydantoin, Polyimide, Styrol-MSA-Copolymere, Cellulosederivate.
    • f) Polymere, die funktionelle, gegebenenfalls zu Vernetzungsreaktionen befähigte Gruppen enthalten wie z.B. -OH, -NH₂, -NHR, -COOH, -SH, -NCO,
    Figure imgb0008

    sowie Polymere, die durch Vernetzungsreaktionen solcher funktioneller Gruppen erhaltn worden sind.
  • Beispiele für solche Harze sind z.B. beschrieben in EP-A-O 227 094, EP-A-O 228 066, EP-A-O 133 011, EP-A-O 133 012, EP-A-O 144 247 oder EP-A-O 368 320.
  • In den Fällen, in denen die erfindungsgemäß verwendeten Polycarbonate in Kombination mit anderen oben erwähnten Harzen in der Farbakzeptorschicht verwendet werden, beträgt der Anteil der anderen Harze zwischen 0 und 98 Gew.-% der gesamten Mischung.
  • Hochsiedende Lösungsmittel oder Weichmacher können ebenfalls der Farbakzeptorschicht zugesetzt werden. Sie können z.B. für eine homogenere Diffusion bzw. Verteilung der übertragenen Farbstoffe sorgen.
  • Als Weichmacher können beispielsweise Dimethylphthalat/isopthalat, Diethylphthalat/isophthalat, Dipropylphthalat/isophthalat, Dibutylphthalat/isophthalat, Dihexylphthalat/isophthalat, Diethylhexylphthalat/isopthalat, Diphenylphthalat/isophthalat, Dioctylphthalat/isophthalat, Didecylphthalat/isophthalat, Diisodecylphthalat/isophthalat bzw. die jeweiligen Terephthalate verwendet werden. Auch gemischte Ester wie Benzylbutylphthalat/isophthalat, Benzyloctyladipat, Diphenylkresylphosphat, Diphenyloctylphosphat sowie Alkylsulfonsäureester sind neben Adipinsäurepolyestern und anderen aliphatischen Polyestern als Weichmacher gut geeignet.
  • Desweiteren seien Fettalkohole, -amine und -säuren sowie deren Derivate wie z.B. Stearinsäure, Stearylalkohol, Stearylamin, Myristinsäure, Myristylalkohol, Cetylalkohol, Glycerinmonostearat, Pentaerythritpartialester, Pentaerythrittetrastearat genannt.
  • Brauchbare Vertreter dieser Verbindungen sind z.B. angeführt in JP 62/174 754, JP 62/245 253, JP 61/209 444, JP 61/200 538, JP 62/136 646, JP 62/30 274, US 4 871 715.
  • Der Farbakzeptorschicht können z.B. zur Erhöhung der Bildschärfe oder zur Verbesserung des Weißheitsgrades Pigmente oder Mischungen mehrerer Pigmente, wie z.B. Titandioxid, Zinkoxid, Kaolin, Ton, Calciumcarbonat oder Aerosil, zugegeben werden.
  • Zur weiteren Steigerung der Lichtstabilität des übertragenen Bildes können, falls notwendig, verschiedene Arten von Additiven, wie z.B. UV-Absorber, Lichtstabilisatoren oder Antioxidantien, zugesetzt werden.
  • Die Farbakzeptorschichten der vorliegenden Erfindung können ein Gleitmittel zur Verbesserung der Gleiteigenschaften, vornehmlich zwischen Donor- und Akzeptorelement, enthalten. Beispielsweise können feste Wachse wie Polyethylenwachs, amidische Wachse oder Teflonpulver eingesetzt werden, aber auch gegebenenfalls fluorhaltige Tenside, Paraffin-, Silicon- oder fluorhaltige Öle oder siliconhaltige Copolymere wie Polysiloxanpolyethercopolymere. Es können auch reaktive, modifizierte Silicone eingesetzt werden. Derartige Produkte können Carboxyl-, Amino- und/oder Epoxidgruppen enthalten und bei entsprechender Kombination von z.B. Amino- und Epoxysilicon zu vernetzten Gleitschichten führen.
  • Das genannte Gleitmittel kann auch als separate Beschichtung, als Dispersion oder aus einem geeigneten Lösemittel gegebenenfalls als "Topcoat" aufgebracht werden. Die Dicke einer solchen Schicht beträgt dann vorzugsweise 0,01 bis 5 µm, besonders bevorzugt zwischen 0,05 und 2 µm.
  • Als Träger für die Farbakzeptorschichten können verschiedene Materialien verwendet werden. Es ist möglich, transparente Filme wie z.B. Polyethylenterephthalat-, Polycarbonat-, Polyethersulfon-, Polyolefin-, Polyvinylchlorid-, Polystyrol-, Cellulose- oder Polyvinylalkoholcopolymer-Filme einzusetzen. Natürlich kommen auch reflektierende Unterlagen wie die verschiedensten Arten von Papieren wie z.B. Polyolefinbeschichtetes Papier oder pigmentierte Papiere zum Einsatz. Auch Laminate aus den obengenannten Materialien sind anwendbar. Typische Kombinationen stellen Laminate aus Cellulosepapier und synthetischem Papier oder Cellulosepapier und Polymerfilme oder Polymerfilme und synthetischem Papier oder auch weitere Kombinationen dar.
  • Die Träger sorgen für die notwendige mechanische Stabilität des Farbakzeptorelements. Wenn die Farbakzeptorschicht über eine ausreichende mechanische Stabilität verfügt, kann auf einen zusätzlichen Träger verzichtet werden.
  • Die Farbakzeptorschichten der vorliegenden Erfindung haben vorzugsweise Gesamtschichtdicken von 0,3 bis 50 µm, besonders bevorzugt von 0,5 bis 10 µm, wenn ein Träger der oben beschriebenen Art verwendet wird bzw. wenn auf diesen verzichtet wird, von 3 bis 120 µm. Die Farbakzeptorschicht kann aus einer Einzelschicht bestehen, es können aber auch zwei oder mehrere Lagen auf den Träger aufgebracht werden. Bei der Verwendung von transparenten Trägern kann eine beidseitige Beschichtung zur Erhöhung der Farbintensität vorgenommen wrden, wie z.B. in der europäischen Patentanmeldung 90 200 930.7 beschrieben.
  • Das Farbakzeptorelement der vorliegenden Erfindung kann auch verschiedene Zwischenschichten zwischen Unterlage und Farbstoffempfangsschicht enthalten. Abhängig von den spezifischen Eigenschaften des verwendeten Materials kann die Zwischenschicht als federndes Element (elastische Schicht), als Sperrschicht für den übertragenen Farbstoff oder auch als Haftschicht jeweils abhängig von der speziellen Anwendung wirken. Als Material kommen z.B. Urethan-, Acrylat- oder Olefinharze, aber auch Butadienkautschuke oder Epoxide in Frage. Eine Zwischenschicht kann beispielsweise auch ein Polymer mit einem anorganischen aus Silizium-, Titan- oder Zirkonoxid bestehenden Polymergerüst enthalten, wie beispielsweise beschrieben in US-A-4 965 238, US-A-4 965 239, US-A-4 965 241. Die Dicke dieser Zwischenschicht liegt üblicherweise zwischen etwa 1 bis 2 und 20 µm. Diffusionssperrschichten haben die Aufgabe, die Diffusion der übertragenen Farbstoffe in den Träger zu verhindern. Materialien, die diese Aufgabe erfüllen, können in Wasser oder in organischen Lösemitteln oder in Mischungen löslich sein, vorzugsweise jedoch in Wasser. Geeignete Materialien sind z.B. Gelatine, Polyacrylsäure, Maleinsäureanhydridcopolymere, Polyvinylalkohol oder Celluloseacetat.
  • Die gegebenenfalls vorhandenen zusätzlichen Schichten wie elastische Schicht, Diffusionssperrschicht, Haftschicht usw. sowie die eigentliche Farbakzeptorschicht können z.B. Silikat-, Ton-, Aluminiumsilicat-, Calciumcarbonat-, Calciumsulfat-, Bariumsulfat-, Titandioxid-, Aluminiumoxidpulver enthalten.
  • Das Bildakzeptorelement der vorliegenden Erfindung kann auch vorder- oder rückseitig auf die übliche Art und Weise antistatisch ausgerüstet sein. Es kann ferner mit Markierungen, vorzugsweise auf der Rückseite des Trägers, versehen sein, um eine genaue Positionierung während des Druckprozesses zu erreichen.
  • Das erfindungsgemäße Farbakzeptorelement kann mit den auf dem Thermosublimationsdruck-Gebiet üblichen Farbdonorelementen kombiniert werden.
  • Die in einem Thermosublimationsdrucker erhaltenen Farbbilder zeichnen sich durch hohe Auflösung, hohe Farbdichten, hohe Brillanz und gute Langzeitstabilität aus.
  • Die Herstellung der das erfindungsgemäße Polycarbonat enthaltenden Farbakzeptorschichten erfolgt üblicherweise aus Lösung. Geeignete Lösemittel sind beispielsweise Methylethylketon (MEK), Butylacetat, Methylenchlorid, Chlorbenzol, Tetrahydrofuran (THF) oder Dioxolan, Die Lösung kann durch Gießen oder Rakeln auf den Träger aufgebracht werden.
  • Beispiele
  • Gemäß dem Verfahren DE-A-3 832 396 wurden Polycarbonate entsprechend den in Tab. 1 angegebenen Gewichtsteilen Bisphenol A (BPA) und Diphenol aus 3,3,5-Trimethylcyclohexanon (TMC-Diphenol) hergestellt. Tabelle 1
    Beispiel BPA TMC-Diphenol
    1 65 35
    2 55 45
    3 45 55
    4 - 100
  • Beispiele für Farbempfangsschichten

  • a) Polycarbonat mit niedermolekularen Weichmachern Aus den erhaltenen Polycarbonaten wurden 10%ige Lösungen in MEK hergestellt. Die Lösungen wurden mit Hilfe einer Rakel in einer Naßfilmdicke von 20 µm auf ein Papier gegossen, das beidseitig mit Polyethylen beschichtet war und auf dessen eine Seite über das Polyethylen zusätzlich eine Gelatineschicht aufgebracht worden war. Auf diese Seite wurde eine Schicht aufgetragen. Die Beschichtungen wurden im Umlufttrockenschrank bei 70°C 30 min getrocknet. Anschließend wurde eine 0,5%ige Lösung in Ethanol von Tego Glide 410 (Firma Goldschmidt) mit einer Naßfilmdicke von 24 µm aufgebracht und im Umlufttrockenschrank bei 70°C getrocknet.
    Auf die erhaltenen Farbstoffempfangselemente wurden mit einem Mitsubishi CP-100 E Videoprinter unter Verwendung der Mitsubishi-Farbstoffkassette CK-100 S Testbilder erzeugt.
    Figure imgb0009

    b) Mischungen aus Polycarbonat und anderen Thermoplasten (Verarbeitung wie unter a) beschrieben)
    Figure imgb0010

    Die Farbakzeptorschicht der Beispiele 5 bis 19 zeichnen sich durch erhöhte Farbdichte, verringerte Klebeneigung und gute Stabilität gegenüber Temperungsbedingungen aus.
    c) Mischungen von Polycarbonat mit mehreren Komponenten (Verarbeitung wie unter a) beschrieben; Angaben in Gew.-%)
    Bsp. PC-1 PC-2 Vinylite VAGD Desmodur VL Tegomer H SI 2110
    20 17 - 67 13 3
    21 34 - 50 13 3
    22 50 - 34 13 3
    23 - 17 67 13 3
    24 - 34 50 13 3
    25 - 50 34 13 3
    PC-2 = Polycarbonat (PC) aus Beispiel 1

    Vinylite VAGD ist ein OH-gruppenhaltiges PVC-Mischpolymerisat der Union Carbide, OH-Gehalt 2,3 Gew.-%.
    Desmodur VL ist ein aromatisches Polyisocyanat auf Basis Diphenylmethandiisocyanat der Fa. Bayer AG, NCO-Gehalt ca. 31,5 Gew.-%.
    Tegomer H SI 2110 ist ein hydroxy-funktionelles Silicon der Fa. Goldschmidt.
    Die Farbakzeptorschichten der Beispiele 20 bis 25 zeichnen sich durch hohe Farbdichten, geringe Klebeneigung und sehr gute Stabilität nach Temperung aus.

Claims (5)

  1. Farbakzeptorelement für das Thermosublimationsdruckverfahren mit einem Träger und einer darauf befindlichen ein aromatisches Polycarbonat enthaltenden Farbakzeptorschicht, dadurch gekennzeichnet, daß das Polycarbonat mindestens 10 wiederkehrende aus einem Bis-(hydroxyphenyl)-cycloalkan der Formel I gebildete Struktureinheiten enthält:
    Figure imgb0011
    worin bedeuten
    R¹ und R²   unabhängig voneinander Wasserstoff, Halogen, C₁-C₈-Alkyl, C₅-C₆-Cycloalkyl, C₆-C₁₀-Aryl und C₇-C₁₂-Aralkyl,
    X   ein Kohlenstoffatom,
    m   eine ganze Zahl von 4 bis 7,
    R³ und R⁴   für jedes X individuell wählbar, unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, mit der Maßgabe, daß an mindestens einem Atom X R³ und R⁴ gleichzeitig Alkyl bedeuten.
  2. Farbakzeptorelement nach Anspruch 1, dadurch gekennzeichnet, daß das Polycarbonat aus einem Bis-(hydroxyphenyl)-cycloalkan der Formel I gebildet ist oder aus einem Diphenolgemisch, in dem das Bis-(hydroxyphenyl)-cycloalkan der Formel I in einer Menge von mindestens 2 mol-% enthalten ist.
  3. Farbakzeptorelement nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß die Farbakzeptorschicht außer dem aus einem Bis-(hydroxyphenyl)cycloalkan gebildeten Polycarbonat mindestens ein weiteres Polymer enthält, das Ester-, Ether-, Urethan-, Amid-, Harnstoff-, Carbonat- und/oder polymerisierte Vinylverbindungen und/oder funktionelle, gegebenenfalls zu Vernetzungsreaktionen befähigte Gruppen enthält.
  4. Farbakzeptorelement nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das aus dem Bis-(hydroxyphenyl)-cycloalkan der Formel I gebildete Polycarbonat in der Farbakzeptorschicht in einer Menge von mindestens 2 Gew.-% enthalten ist.
  5. Farbakzeptorelement nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Farbakzeptorschicht außerdem niedermolekulare als Weichmacher wirkende Verbindungen enthält.
EP19920111298 1991-07-16 1992-07-03 Farbakzeptorelement für das Thermosublimationsdruckverfahren Expired - Lifetime EP0523474B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4123546 1991-07-16
DE19914123546 DE4123546A1 (de) 1991-07-16 1991-07-16 Farbakzeptorelement fuer das thermosublimationsdruckverfahren

Publications (2)

Publication Number Publication Date
EP0523474A1 true EP0523474A1 (de) 1993-01-20
EP0523474B1 EP0523474B1 (de) 1995-09-20

Family

ID=6436271

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19920111298 Expired - Lifetime EP0523474B1 (de) 1991-07-16 1992-07-03 Farbakzeptorelement für das Thermosublimationsdruckverfahren

Country Status (4)

Country Link
US (1) US5298477A (de)
EP (1) EP0523474B1 (de)
JP (1) JPH05185749A (de)
DE (2) DE4123546A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4215209A1 (de) * 1992-05-08 1993-11-11 Bayer Ag Polycarbonat-Mischungen

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4431216A1 (de) * 1994-09-02 1996-05-15 Bayer Ag Herstellung kratzfest ausgerüsteter Polycarbonatformteile
US6071662A (en) * 1998-07-23 2000-06-06 Xerox Corporation Imaging member with improved anti-curl backing layer
TWI623575B (zh) * 2017-02-16 2018-05-11 謙華科技股份有限公司 染料著色層、染料著色體及其製備方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4927803A (en) * 1989-04-28 1990-05-22 Eastman Kodak Company Thermal dye transfer receiving layer of polycarbonate with nonaromatic diol

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4695286A (en) * 1985-12-24 1987-09-22 Eastman Kodak Company High molecular weight polycarbonate receiving layer used in thermal dye transfer
US4740497A (en) * 1985-12-24 1988-04-26 Eastman Kodak Company Polymeric mixture for dye-receiving element used in thermal dye transfer
US4705522A (en) * 1986-08-22 1987-11-10 Eastman Kodak Company Alkolxy derivative stabilizers for dye-receiving element used in thermal dye transfer
NO170326C (no) * 1988-08-12 1992-10-07 Bayer Ag Dihydroksydifenylcykloalkaner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4927803A (en) * 1989-04-28 1990-05-22 Eastman Kodak Company Thermal dye transfer receiving layer of polycarbonate with nonaromatic diol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4215209A1 (de) * 1992-05-08 1993-11-11 Bayer Ag Polycarbonat-Mischungen

Also Published As

Publication number Publication date
US5298477A (en) 1994-03-29
DE4123546A1 (de) 1993-01-21
DE59203728D1 (de) 1995-10-26
JPH05185749A (ja) 1993-07-27
EP0523474B1 (de) 1995-09-20

Similar Documents

Publication Publication Date Title
EP0688839B1 (de) Hochtemperaturbeständige flexible Siebdruckfarben
DE69633807T2 (de) Doppelbrechungsarme Polycarbonatformmassen
EP2205436B1 (de) Verfahren zur herstellung eines polycarbonat-schichtverbundes
DE69205261T2 (de) Empfangselement für die thermische Farbstoffübertragung mit Polyester-Farbbild-Empfangsschicht.
WO2001005867A1 (de) Polycarbonat und dessen formkörper
EP0338355B1 (de) Verschmutzungsbeständige Polycarbonat-Platten
DE69213578T2 (de) Transparentes Aufzeichnungsmaterial
DE69915962T2 (de) Wärmeempfindliches Aufzeichnungsmedium
EP0523474B1 (de) Farbakzeptorelement für das Thermosublimationsdruckverfahren
EP0398060B1 (de) Verwendung von Polyurethan-Mischungen als Klebstoffbindemittel zur Verklebung von SBS-Blockpolymerisaten.
DE69400589T2 (de) Schutzschichtenthalttendes thermisches Direktbildaufzeichnungsmaterial
EP0347682A2 (de) Polycarbonate mit mesogenen Verbindungen als Endgruppen, ihre Herstellung und Verwendung
DE19533893A1 (de) Reversibles wärmeempfindliches Aufzeichnungsmedium
EP0703263A1 (de) Verfahren zur Herstellung von UV-stabilen Polycarbonaten
EP0292785A2 (de) Vinylcopolymerisate mit aufgepfropften Polycarbonatketten, ihre Herstellung und Verwendung
EP0683192B1 (de) Durch ihre Endgruppen UV-stabilisierte aromatische Polycarbonate
DE4446333A1 (de) Verfahren zur kontinuierlichen Kratzfestausrüstung von Polycarbonaten
JPH05208566A (ja) 熱染料昇華転写により使用する染料供与体材料
EP0498245B1 (de) Farbakzeptorelement für das Thermosublimationsdruckverfahren
EP0414071A2 (de) Polyorganosiloxan-Polycarbonat-Blockcopolymere und ihre Verwendung zur Herstellung optischer Datenspeicher
DE602005003552T2 (de) Wärmeempfindliches aufzeichungsmedium für laseraufzeichnungen
EP0481200B1 (de) Farbakzeptorelement für das Thermosublimationsdruckverfahren
EP0423562A2 (de) Polycarbonate mit verbesserter Wärmeformbeständigkeit
DE69400043T2 (de) Hitzebeständige Schicht für farbstoffgebendes Element
DE69210178T2 (de) Polykarbonatharzlösung zur Herstellung von Empfängerschichten für Farbstoffe im Thermosublimationsverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB

17P Request for examination filed

Effective date: 19930503

17Q First examination report despatched

Effective date: 19950102

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB

REF Corresponds to:

Ref document number: 59203728

Country of ref document: DE

Date of ref document: 19951026

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951025

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970624

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970718

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970730

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980731

BERE Be: lapsed

Owner name: AGFA-GEVAERT A.G.

Effective date: 19980731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000720

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501