EP0519603A1 - Phosphatfreies, gelähnliches Maschinengeschirrspülmittel - Google Patents

Phosphatfreies, gelähnliches Maschinengeschirrspülmittel Download PDF

Info

Publication number
EP0519603A1
EP0519603A1 EP92304513A EP92304513A EP0519603A1 EP 0519603 A1 EP0519603 A1 EP 0519603A1 EP 92304513 A EP92304513 A EP 92304513A EP 92304513 A EP92304513 A EP 92304513A EP 0519603 A1 EP0519603 A1 EP 0519603A1
Authority
EP
European Patent Office
Prior art keywords
composition
water
sodium
phosphate
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP92304513A
Other languages
English (en)
French (fr)
Inventor
Brigitte Albert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Colgate Palmolive Co
Original Assignee
Colgate Palmolive Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Colgate Palmolive Co filed Critical Colgate Palmolive Co
Publication of EP0519603A1 publication Critical patent/EP0519603A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/003Colloidal solutions, e.g. gels; Thixotropic solutions or pastes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
    • C11D3/3765(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/395Bleaching agents
    • C11D3/3956Liquid compositions

Definitions

  • the present invention relates to gel-like aqueous liquid automatic dishwasher detergent compositions which are phosphate-free with equivalent cleaning performance and physical stability with improved characteristics as compared to phosphate containing compositions. More specifically, the invention relates to the use of phosphate-free compositions which exhibit excellent cleaning performance and rheological properties.
  • the present invention specifically relates to phosphate-free automatic dishwashing detergent compositions having thixotropic gel-like properties, excellent chemical and physical stability, and which are readily dispersible in the washing medium to provide excellent cleaning performance on dishware, glassware, china and the like.
  • thixotropic cleaning compositions should be highly viscous in a quiescent state, Bingham plastic in nature, and have relatively high yield values. When subjected to shear stresses, however, such as being shaken in a container or squeezed through an orifice, they should quickly fluidize and, upon cessation of the applied shear stress, quickly revert to the high viscosity or Bingham plastic state. Stability is likewise of primary importance, i.e. there should be no significant evidence of phase separation or leaking after long standing.
  • the automatic dishwashing detergent hereinafter also designated ADD, contain (1) sodium tripolyphosphate (NaTPP) to soften or tie up hard water minerals and to emulsify and/or peptide soil; (2) sodium silicate to supply the alkalinity necessary for effective detergency and to provide protection for fine china glaze and pattern; (3) sodium carbonate, generally considered to be optional, to enhance alkalinity; (4) a chlorine-releasing agent to aid in the elimination of soil specks which lead to water spotting and filming; and (5) defoamer/surfactant to reduce foam, thereby enhancing machine efficiency and supplying requisite detergency.
  • NaTPP sodium tripolyphosphate
  • sodium silicate to supply the alkalinity necessary for effective detergency and to provide protection for fine china glaze and pattern
  • sodium carbonate generally considered to be optional, to enhance alkalinity
  • a chlorine-releasing agent to aid in the elimination of soil specks which lead to water spotting and filming
  • CMC carboxy methyl cellulose
  • inorganic salts including silicates, phosphates and polyphosphates
  • surfactant and a suds depressor.
  • Bleach is not disclosed.
  • U.S. Patent 4,147,650 is somewhat similar, optionally including C1-(hypochlorite) bleach but no organic surfactant or foam depressant. The product is described, moreover, as a detergent slurry with no apparent thixotropic properties.
  • U.S. Patent 3,985,668 describes abrasive scouring cleaners of gel-like consistency containing (1) suspending agent, preferably the smectite and attapulgite types of clay; (2) abrasive, e.g. silica sand or perlite; and (3) filler comprising light density powdered polymers, expanded perlite and the like, which has a buoyancy and thus stabilizing effect on the composition in addition to serving as a bulking agent, thereby replacing water otherwise available for undesired supernatant layer formation due to leaking and phase destabilization.
  • suspending agent preferably the smectite and attapulgite types of clay
  • abrasive e.g. silica sand or perlite
  • filler comprising light density powdered polymers, expanded perlite and the like, which has a buoyancy and thus stabilizing effect on the composition in addition to serving as a bulking agent, thereby replacing water otherwise available for undesired supernatant
  • Optional ingredients include hypochlorite bleach, bleach stable surfactant and buffer, e.g. silicates, carbonates, and monophosphates.
  • Builders such as NaTPP, can be included as further optional ingredients to supply or supplement building function not provided by the buffer, the amount of such builder not exceeding 5% of the total composition, according to the patent. Maintenance of the desired (greater than) pH 10 levels is achieved by the buffer/builder components. High pH is said to minimize decomposition of chlorine bleach and undesired interaction between surfactant and bleach. When present, NaTPP is limited to 5%, as stated. Foam killer is not disclosed.
  • liquid ADD compositions which have properties desirably characterizing thixotropic, gel-type structure and which include each of the various ingredients necessary for effective detergency within an automatic dishwasher.
  • the normally gel-like aqueous automatic dishwasher detergent composition having thixotropic properties includes the following ingredients, on a weight basis:
  • compositions so formulated are low-foaming; are readily soluble in the washing medium and most effective at pH values best conducive to improved cleaning performance, viz, pH 10.5-14.
  • the compositions are normally of gel consistency, i.e. a highly viscous, opaque jelly-like material having Bingham plastic character and thus relatively high yield values. Accordingly, a definite shear force is necessary to initiate or increase flow. Under such conditions, the composition is quickly fluidized and easily dispersed. When the shear force is discontinued, the fluid composition quickly reverts to a high viscosity, Bingham plastic state closely approximating its prior consistency.
  • the patented thixotropic cleaning agent has a viscosity of at least 30 Pa.s at 20°C as determined with rotational viscometer at a spindle speed of 5 revolutions per minute.
  • the composition is based on a mixture of finely divided hydrated sodium metasilicate, an active chlorine compound and a thickening agent which is a foliated silicate of the hectorite type. Small amounts of nonionic tensides and alkali metal carbonates and/or hydroxides may be used.
  • compositions of the instant invention overcome many of the aforementioned deficiencies, while providing compositions which are phosphate-free and consequently environmentally safe.
  • compositions which are environmentally safe also provide the desired cleaning performance. They also provided remarkable stabilization against change with time of the rheological properties.
  • liquid ADD compositions having excellent cleaning performance, improved physical stability and improved rheological properties and having a density of 1.20 to 1.44 grams/liter while being phosphate-free and environmentally safe.
  • a phosphate-free built aqueous liquid automatic dishwasher detergent composition containing a stabilization system such that when the composition is added to an aqueous wash bath, at a concentration of 10 grams per liter, the wash bath has a pH of at least 11.2.
  • the present invention provides a gel-like viscoelastic aqueous automatic dishwasher detergent composition which has a three-dimensional structure and includes, on a weight basis:
  • the invention also provides a method for cleaning dishware in an automatic dishwashing machine with an aqueous wash bath containing an effective amount of the liquid automatic dishwasher detergent (LADD) composition as described above.
  • the LADD composition can be readily poured into the dispensing cup of the automatic dishwashing machine and will be sufficiently viscous to remain securely within the dispensing cup until shear forces are again applied thereto, such as by the water spray from the dishwashing machine.
  • LADD effectiveness is directly related to (a) available chlorine levels; (b) alkalinity; (c) solubility in washing medium; and (d) foam inhibition.
  • the types and amounts of the alkaline components which are phosphate-free are chosen so that when the composition is added to an aqueous wash bath to provide a concentration of 10 grams of composition per liter of wash bath the pH of the wash bath becomes at least 11.2, preferably at least 11.5, such as from 11.5 to 13.5, preferably 11.5 to 12.5.
  • the viscoelastic gel compositions of the instant invention which have a three dimensional structure can be generally described as follows in Table I : wherein the water of the composition is bound by hydration to the polymeric thickener so that the composition has substantially no free water.
  • the high alkalinity is achieved in a phosphate-free, fatty acid salt stabilized, chlorine-bleach containing liquid automatic dishwasher detergent composition
  • the alkaline compounds include, on an active basis, based on the total composition, from about 0 to 20 weight alkali metal silicate, from 0 to about 8 wt % alkali metal hydroxide, from 1 to 20 wt % phosphate-free builder salt, from about 1 to 8% of at least low molecular weight noncrosslinked polyacrylate, from 0.1 to 5 weight percent polymeric thickener and optionally a metal hypochlorite, a foam depressant, and a detergent active material, wherein the pH of 1 liter of aqueous wash bath containing 10 grams of the composition is at least 11.2.
  • the alkali metal silicate such as sodium silicate, which provides alkalinity and protection of hard surfaces, such as fine china glaze and pattern, is employed in an amount ranging from 1.0 to 20.0 weight percent, preferably 2.5 to 20 weight percent, in the composition.
  • the sodium silicate is generally added in the form of an aqueous solution, preferably having Na2O:SiO2 ratio of 1:1.3 to 1:2.8, especially preferably 1:2.0 to 1:2.6.
  • ingredients, especially NaOH and sodium hypochlorite are also often added in the form of a preliminary prepared aqueous dispersion or solution.
  • the liquid automatic dishwashing detergent composition contains 1 to 20% by weight of an alkali metal phosphate free detergency builder salt, more preferably 2 to 20% by weight, and most preferably 3 to 20% by weight, wherein the detergency builder is usually an alkali metal carbonate such as sodium carbonate or potassium carbonate.
  • builder salts which can be mixed with the sodium carbonate are gluconates and nitriloacetic eg nitrilotriacetic acid salts.
  • low molecular weight noncrosslinked polyacrylates having a molecular weight of 1,000 to 100,000, more preferably 2,000 to 80,000.
  • a preferred low molecular weight polyacrylate is Sokalan (Trade Mark) PA30CL manufactured by BASF and having a molecular weight of 8,000.
  • Another preferred low molecular weight sodium salt of a polyacrylate is Norasol LMW45ND which is also know as Acusol 445N manufactured by Norsoshaas and having a molecular weight of 4,500.
  • Norasol A-1 has a molecular weight of 60,000.
  • Sokalan PA30CL from BASF is the most preferred because of its extremely high bleach stability of at least six months as compared to the other listed low molecular polymers which all have bleach stabilities or less than six months.
  • sokalan PA30CL is a polyacrylate of a chemical structure similar to Norasol LMW45 which has been modified to have increased bleach stability it is believed by the elimination of heavy metals used in the synthesis of the Sokalan PA30CL.
  • Acusol 445N is an excellent dispersant for calcium carbonate which is formed during the washing process, wherein the Acusol 445N controls crystal growth of the calcium carbonate and helps suspends the calcium carbonate in the wash bath.
  • Another especially useful low molecular weight polyacrylate polymer is Good-Rite (Registered Trade Mark) K-7058N which is a 90 - 100% neutralized sodium salt of a polyacrylate polymer having a molecular weight of 5,800.
  • K-7058N is a good dispersant for calcium carbonate and excellent builder or sequestering agent for heavy metal ions such as calcium or magnesium.
  • a combination of Acusol 445N and K-7058N provides maximum enhancement for the alkali metal non phosphate builder salt such as sodium carbonate.
  • aluminosilicates both of the crystalline and amorphous type.
  • Various crystalline zeolites i.e. alumino-silicates
  • U.S. Patent No. 4,409,136 Canadian Patent Nos. 1,072,835 and 1,087,477.
  • An example of amorphous zeolites useful herein can be found in Belgian Patent No. 835,351.
  • the zeolites generally have the formula: (M2O) x (Al2O3) y (SiO2) x wH2O wherein x is 1, y is from 0.8 to 1.2 and preferably 1, z is from 1.5 to 3.5 or higher and preferably 2 to 3 and w is from 0 to 9, preferably 2.5 to 6 and M is preferably sodium.
  • a typical zeolite is type A or similar structure, with type 4A particularly preferred.
  • the preferred aluminosilicates have calcium ion exchange capacities of 200 milliequivalents per gram or greater, e.g. 400 meq/g.
  • Foam inhinition is important to increase dishwasher machine efficiency and minimize destabilizing effects which might occur due to the presence of excess foam within the washer during use. Foam may be sufficiently reduced by suitable selection of the type and/or amount of detergent active material, the main foam-producing component.
  • the degree of foam is also somewhat dependent on the hardness of the wash water in the machine whereby suitable adjustment of the proportions of the inorganic or organic builder salt which has a water softening effect may aid in providing the desired degree of foam inhibition.
  • each type of ester may represent independently a C12-C20 alkyl or ethoxylated alkyl group.
  • the ethoxylated derivative of each type of ester for example, the condensation products of one mole of ester with from 1 to 10 moles, preferably 2 to 6 moles, more preferably 3 or 4 moles, ethylene oxide can also be used.
  • Some examples of the foregoing are commercially available, such as the products SAP from Hooker and LPKN-158 from Knapsack.
  • Mixtures of the two types, or any other chlorine bleach stable types, or mixtures of mono- and diesters of the same type, may be employed.
  • a mixture of mono- and di- C16-C18, alkyl acid or ethoxylated alkyl phosphate esters such as monostearyl/distearyl acid phosphate 1.2/1, and the 3 to 4 mole ethylene oxide condensates thereof.
  • proportions of 0 to 5 weight percent, preferably 0.1 to 1.5 weight percent, of foam depressant in the composition is typical.
  • Other defoamers which may be used include, for example, the known silicones, such as available from Dow Chemicals.
  • it is an advantageous feature of this invention that many of the stabilizing salts, such as the stearate salts, for example, sodium stearate, are also effective as foam killers.
  • any chlorine bleach compound may be employed in the composition of this invention, such as dichloroisocyanurate, dichloro-dimethyl hydantoin, or chlorinated trisodium polyphosphate (TSP), alkali metal or alkaline earth metal, e.g. potassium, lithium, magnesium and especially sodium, hypochlorite is preferred.
  • the composition should contain sufficient chlorine bleach compound to provide 1.5 to about 3.1% by weight of available chlorine, as determined, for example, by acidification of 100 parts of the composition with excess hydrochloric acid.
  • a solution containing 0.2 to 4.0% by weight of sodium hypochlorite (13% of available chlorine) contains or provides roughly the same percentage of available chlorine. 0.8 to 1.6% by weight of available chlorine is especially preferred.
  • Detergent active material which may be useful herein must be stable in the presence of chlorine bleach, especially hypochlorite bleach, and those of the organic anionic, amine oxide, phosphine oxide, sulphoxide or betaine water dispersible surfactant types are preferred; the first mentioned anionics being most preferred. They may be used in amounts ranging from 0 to 5%, preferably 0.1 to 5.0%.
  • Particularly preferred surfactants herein are the linear or branched alkali metal mono- and/or di-(C8-C14) alkyl diphenyl oxide mono- and/or disulphates, commercially available for example as DOWFAX (Trade Mark) 3B-2 and DOWFAX (Trade Mark) 2A-1.
  • Alkyl ether sulfates (C12-C14 3EO-SO3,-Na+) are suitable surfactants.
  • the surfactant should be compatible with the other ingredients of the composition.
  • Other suitable surfactants include the primary alkylsulphates, alkylsulphonates, alkylarylsulphonates and sec.-alkylsulphates. Examples include sodium C10-C18, alkylsulphates such as sodium dodecylsulphate and sodium tallow alcoholsulphate; sodium C10-C18 alkanesulphonates such as sodium hexadecyl-1-sulphonate and sodium C12-C18 alkylbenzenesulphonates such as sodium dodecylbenzenesulphonates.
  • the corresponding potassium salts may also be employed.
  • the amine oxide surfactants are typically of the structure R2R1N ⁇ O, in which each R represents a lower alkyl group, for instance, methyl, and R1 represents a long chain alkyl group having from 8 to 22 carbon atoms, for instance a lauryl, myristyl, palmityl or cetyl group.
  • R2R1N ⁇ O a corresponding surfactant phosphine oxide R2R1PO or sulphoxide RR1SO can be employed.
  • Betaine surfactants are typically of the structure R2R1N ⁇ R ⁇ COO-, in which each R represents a lower alkylene group having from 1 to 5 carbon atoms, R1 being as defined above in respect of the amine oxide surfactants.
  • Specific examples of these surfactants include lauryl-dimethylamine oxide, myristyl-dimethylamine oxide, the corresponding phosphine oxides and sulphoxides, and the corresponding betaines, including dodecyldimethylammonium acetate, tetradecyldiethylammonium pentanoate, hexadecyldimethylammonium hexanoate and the like.
  • the alkyl groups in these surfactants should be linear, and such compounds are preferred.
  • surfactants are Akypos from Chemy which is a nonionic. surfactant terminated by one functional carboxylate; C12 ⁇ 30 3EO ether sulfates; and C12 ⁇ 18 alcohol sulfates.
  • Thixotropic thickeners i.e. thickeners for suspending Agents which provide an aqueous medium with thixotropic properties
  • Thixotropic thickeners i.e. thickeners for suspending Agents which provide an aqueous medium with thixotropic properties
  • thickeners for suspending Agents which provide an aqueous medium with thixotropic properties
  • These materials are generally used in amounts of about 0.1 to 4.0 percent by weight, preferably 0.2 to 3.5 weight percent, more preferably 0.3 to 3 weight percent, to confer the desired thixotropic properties and Bingham plastic character.
  • the desired thixotropic properties and Bingham plastic character can be obtained in the presence of lesser amounts of the thixotropic thickeners.
  • Those especially preferred generally comprise the inorganic, colloid-forming clays of smectite and/or attapulgite types.
  • amounts of the inorganic colloid-forming clays of the smectite and/or attapulgite types in the range of from 0.1 to 3%, preferably 0.1 to 2.5%, especially 0.1 to 2%, are generally sufficient to achieve the desired thixotropic properties and Bingham plastic character when used in combination with the physical stabilizer.
  • Smectite clays include montmorillonite (bentonite), hectorite, attapulgite, smectite, saponite and the like. Montmorillonite clays are preferred and are available under the tradenames such as Thixogel (registered trademark) No. 1 and Gelwhite (resistered trademark) GP, H, etc., from Georgia Kaolin Company; and ECCAGUM (registered trademark) GP, H, etc., from Luthern Clay Products.
  • Attapulgite clays include the materials commercially available under the tradename Attagel (registered trademark), i.e. Attagel 40, Attagel 50 and Attagel 150 from Engelhard Minerals and Chemicals Corporation.
  • the polymeric thixotropic thickeners are usually polyacrylate resins such as Carbopol 614 or Carbopol 940 or 624.
  • the polycarboxylate type thickening agents are cross-linked polyacrylic acid type thickening agents sold by B.F. Goodrich under their Carbopol trademark, including both the 900 series resins, especially Carbopol 941, which is the most ion-insensitive of this class of polymers, and Carbopol 940 and Carbopol 934, and the 600 series resins, especially Carbopol 614.
  • the Carbopol 600 and 900 series resins are hydrophilic high molecular weight, cross-linked linear acrylic acid polymers having an average equivalent weight of 76, and the general structure illustrated by the following formulas: wherein R can be hydrogen or an alkyl chain.
  • Carbopol 941 has a molecular weight of 1,250,000; Carbopol 940 has a molecular weight of approximately 3,000,000.
  • the Carbopol 900 series resins are highly branched chained and highly cross-linked with polyalkenyl polyether, e.g. 1% of a polyalkyl ether of sucrose having an average of 5.8 allyl groups for each molecule of sucrose. The preparation of this class of cross-linked carboxylic polymers is described in U.S. Patent 2,798,053. Further detailed information on the Carbopol 900 series resins is available from B.F. Goodrich, see, for example, the B.F. Goodrich catalog GC-67, CarbopolR Water Soluble Resins.
  • these thickening resins are preferably water dispersible copolymers of an alpha-beta monoethylenically unsaturated lower aliphatic carboxylic acid cross-linked with a polyether of a polyol selected from oligo saccharides, reduced derivatives thereof in which the carbonyl group is converted to an alcohol group and pentaerythritol, the hydroxyl groups of the polyol which are modified being etherified with allyl groups, there being preferably at least two such allyl groups per molecule.
  • Carbopol 614 and Carbopol 624 are the most chlorine bleach stable of this class of thickening resins.
  • Carbopol 614 and 624 are also highly stable in the high alkalinity environment of the preferred liquid automatic dishwasher detergent compositions and are also highly stable to any anticipated storage temperature conditions from below freezing to elevated temperatures as high as 120°F (49°C), preferably 140°F (60°C), and especially 160°F (71°C), for periods of as long as several days to several weeks or months or longer.
  • polycarboxylate-type refers to water-soluble carboxyvinyl polymers of alpha, beta monoethylenically unsaturated lower aliphatic carboxylic acids, which may be linear or non-linear, and are exemplified by homopolymers of acrylic acid or methacrylic acid or water-dispersible or water-soluble salts, esters or amides thereof, or water-soluble copolymers of these acids or their salts, esters or amides with each other or with one or more other ethylenically unsaturated monomers, such as, for examPle, styrene, maleic acid, maleic anhydride, 2-hydroxethylacrylate, acrylonitrile, vinyl acetate, ethylene, prop
  • homopolymers or copolymers are characterized by their high molecular weight, in the range of from 500,000 especially from 1,000,000 to 4,000,000, and by their water solubility, generally at least to an extent of up to 5% by weight, or more, in water at 25°C.
  • the thickening agents are used in their cross-linked form, wherein the cross-linking may be accomplished by means known in the polymer arts, as by irradiation, or, preferably, by the incorporation into the monomer mixture to be polymerized of known chemical cross-linking monomeric agents, typically polyunsaturated (e.g. diethylenically unsaturated) monomers, such as, for example, divinylbenzene, divinylether of diethylene glycol, N,N′-methylenebisacrylamide, polyalkenylpolyethers (such as described above), and the like.
  • polyunsaturated (e.g. diethylenically unsaturated) monomers such as, for example, divinylbenzene, divinylether of diethylene glycol, N,N′-methylenebisacrylamide, polyalkenylpolyethers (such as described above), and the like.
  • amounts of cross-linking agent to be incorporated in the final polymer may range from 0.01 to 5 percent, preferably from 0.05 to 2 percent, and especially, preferably from 0.1 to 1.5 percent, by weight of cross-linking agent to weight of total polymer.
  • degrees of cross-linking should be sufficient to impart some coiling of the otherwise generally linear or non-linear polymeric compound while maintaining the cross-linked polymer at least water dispersible and highly water-swellable in an ionic aqueous medium.
  • the amount of the high molecular weight, branched chained cross-linked polymeric acid or other high molecular weight, hydrophilic cross-linked polycarboxylate thickening agent to impart the desired rheological property of linear viscoelasticity to the instant compositions will generally be in the range of from 0.1 to 4.0%, based on the weight of the composition, although the amount will depend on the particular cross-linking agent, ionic strength of the composition, hydroxyl donors and the like, wherein mixtures of two or more polymeric thickening agents can be employed.
  • the bleach stability of the compositions can be improved by employing in the composition a cross-linked linear polyacrylate homopolymer type thickening agent which is substantially formed in non aromatic solvents in place of the Carbopol polymer which are branched chained, crosslinked polyacrylic acid type thickening agents.
  • crosslinked linear polyacrylate homopolymer type thickening agents are sold by 3-V Chemical corporation under the names Polygel DB (Registered Trade Mark), Polygel DK (Registered Trade Mark) and are manufactured by polymerization in a trichloroethan non aromatic solvent such that they are free of aromatic solvents.
  • the Polygel DB® and Polygel DK® have an Mw of 2,000,000 to 4,000,000.
  • the amount of the high molecular weight, cross-linked polyacrylic acid or other high molecular weight, hydrophilic cfross-linked polyacrylic acid-type thickening agent to impart the desired rheological property of linear viscoelasticity will generally be in the range of from 0.1 to 2%, preferably from 0.2 to 1.4% by weight, based on the weight of the composition, although the amount will depend on the particular cross-linking agent, ionic strength of the composition, hydroxyl donors and the like.
  • Another class of polymers useful in the instant composition are based on methyl vinyl either/maleic anhydride copolymers and terpolymers.
  • useful polymers are: methyl vinyl ether, maleic anhydride, acrylic acid, crosslinked; methyl vinyl ether, maleic anhydride, vinyl pyrrolidone, cross-linked; and methyl vinyl ether, maleic anhydride, isobutene, cross-linked.
  • the cross-linking agent is essential to establish the kind of polymer network useful in this invention.
  • the cross-linking agent can be any hydrocarbon with a chain length of four or more carbon atoms containing at least two carbon-carbon double bonds.
  • the cross-linking agent is mainly a hydrocarbon with optional halogen and oxygen-containing substituents and linkages such as ester, ether and OH groups. These cross-linking agents can vary in amount from 0.01 to 30% by weight of the total quantity of polymer used.
  • examples of cross-linking agents are 1,7-Octadiene, 1,9 Decadiene, non-terminal dienes, Divinyl Glycol, Butane Divinylether, polyallyl pentaerythritol and polyally sucrose.
  • Cross-linking can also be achieved through the maleic anhydride after the polymer is formed, via ester or amide formation using polyols and polyamines such as 1,4 butane diol and polyethylene glycols.
  • the most useful polymers of these inventions are the Gantrez AN cross-linked with aliphatic dienes such as 1,7 octadiene and 1,9 decadiene.
  • Gantrez AN polymers cross-linked with from .01 to 10% by weight of 1,7 octadiene were shaken overnight in order to hydrolyse the maleic anhydride ring.
  • the polymer solutions were neutralized to pH 7 to fully ionize the carboxyl groups. The results show that 5% by weight of cross-linking agent is necessary before a gel is formed. If Gantrez AN is cross-linked with 1,9 decadiene then a gel is formed at 3-4% cross-linking.
  • cross-linking causes the formation of a polymer that disperses in water to form a gel with a yield point.
  • Table II gives typical yield points for the polymer cross-linked with 1,9 decadiene.
  • copolymer of methyl vinyl ether/maleic anhydride is illustrated by the following formula: wherein x is about 50 mole%.
  • the copolymer is cross-linked with about 0.5 to about 20.0 wt% of a diene monomer having about 6 to about 20 carbon atoms, more preferably about 7 to 16 and most preferably about 8 to 12, wherein preferred diene monomers are 1,7 Octadiene and 1,9 decadiene.
  • diene monomers 1,7 Octadiene and 1,9 decadiene.
  • the amount of the cross-linked polymeric thickening agent or other high molecular weight, hydrophilic cross-linked polycarboxylate thickening agent to impart the desired rheological property of linear viscoelasticity will generally be in the range of from about 1.5 to 5%, preferably from about .5 to 2.5, by weight, based on the weight of the composition, although the amount will depend on the particular crosslinking agent, ionic strength of the composition, hydroxyl donors and the like.
  • the preferred long chain fatty acids are the higher aliphatic fatty acids having from about 8 to 22 carbon atoms, more preferably from about 10 to 20 carbon atoms, and especially preferably from about 12 to 18 carbon atoms, inclusive of the carbon atom of the carboxyl group of the fatty acid.
  • the aliphatic radical may be saturated or unsaturated and may be straight or branched. Straight chain saturated fatty acids are preferred.
  • Mixtures of fatty acids may be used, such as those derived from natural sources such as tallow fatty acid, coco fatty acid, soya fatty acid, etc., or from synthetic sources available from industrial manufacturing processes.
  • examples of the fatty acids from which the polyvalent metal salt stabilizers can be formed include, for example, decanoic acid, dodecanoic acid, palmitic acid, myristic acid, stearic acid, oleic acid, eicosanoic acid, tallow acid, coco fatty acid, soya fatty acid, mixtures of these acids, etc.
  • Stearic acid and mixed fatty acids are preferred.
  • the metals of Groups IA, IIA, IIB, and IIIB, and Groups IIIA, IVA, VA, IB, IIB, IVB, VB, VIIB and VIII of the Periodic Table of the Elements can also be used.
  • a key requirement is that the metal salt of the fatty acid must be dispersible in the aqueous medium containing the Carbopol within the composition.
  • the most preferred metal cations are selected from Group IA.
  • the metal salt should be selected by taking into consideration the toxicity of the metal.
  • the calcium and magnesium and sodium salts are especially highly preferred as generally safe food additives.
  • Sodium stearate is the most preferred species of the instant invention.
  • the amount of the fatty acid salt stabilizer to achieve the desired enhancement of physical stability and viscosity enhancement will depend on such factors as the nature of the fatty acid salt, the nature and amount of the thixotropic agent, detergent active compound, inorganic salts, other LADD ingredients, as well as the anticipated storage and shipping conditions.
  • amounts of the metal fatty acid salt or fatty acid stabilizing agents in the range of from 0 to 0.4 wt.%, preferably from 0.005 to 0.6 wt.%, especially preferably from 0.04 to 0.50 wt.%, and most preferably 0.02 to 0.4 wt.%, provide a long-term stability and absence of phase separation upon standing or during transport at both low and elevated temperatures as are required for a commercially acceptable product.
  • amounts of the metal fatty acid salt or fatty acid stabilizing agents in the range of from 0 to 0.4 wt.% preferably from 0.005 to 0.6 wt.%, especially preferably from 0.04 to 0.50 wt.%, and most preferably 0.02 to 0.4 wt.%, provide a long-term stability and absence of phase separation upon standing or during transport at both low and elevated temperatures as are required for a commercially acceptable product.
  • fatty acid salt or fatty acid not only increases physical stability, but also provides a simultaneous increase in apparent viscosity.
  • Ratios of fatty acid salt or fatty acid to thixotropic agent in the range of from 0.02-0.4 weight percent fatty acid salt and from 0.1 - 2.5 weight percent thixotropic agent are usually sufficient to provide these simultaneous benefits and, therefore, the use of these ingredients in these ratios is most preferred.
  • compositions may be included in small amounts, generally less than 3 weight percent, such as perfume, preservatives, dyestuffs and pigments and the like, all of course being stable to chlorine bleach compound and high alkalinity (properties of all components).
  • perfume preservatives, dyestuffs and pigments and the like
  • Especially preferred for coloring are the chlorinated phthalocyanines and polysulphides of aluminosilicate which provide, respectively, pleasing green and blue tints.
  • TiO2 may be employed for whitening or neutralizing off-shades.
  • liquid ADD compositions of this invention are readily employed in known manner for washing dishes, other kitchen utensils and the like in an automatic dishwasher, provided with a suitable detergent dispenser, in an aqueous wash bath containing an effective amount of the composition, generally sufficient to fill or partially fill the automatic dispenser cup of the particular machine being used.
  • the procedure for forming the formulations of Examples 1A to 10 comprises forming a first aqueous solution A′ by adding at room temperature under mixing conditions first the dispersion of the Norasol LMW-45NX into the water, secondly, the Carbopol 614 and thirdly, a sufficient amount of caustic soda to just neutralize the polycarboxylate polymer.
  • a second aqueous solution (B′) is formed by adding at room temperature under conditions of mixing to the water, first the builder salt, secondly, the sodium sulfate, thirdly, the sodium disilicate and lastly, the balance of the caustic soda.
  • a third aqueous solution (C′) which is entitled the premix is formed at 60-70°C by adding to water (3 parts) first the dodecyldiphenyl ether disulfonate (0.46 parts) and secondly, the stearic acid (0.15 parts).
  • Solution B′ is added under conditions of mixing at room temperature to Solution A′.
  • the mixed solutions of A′ & B′ at room temperature under conditions of mixing is added the third solution (C′).
  • the combined solutions of A′, B′ and C′ the 13% hypochlorite solution to form the final formulations of Examples 1A to 10.
  • Formulations 1A-10 were tested for soil removal on dishes in a standard multi-soil test using a Bosch SMS521 (dishwasher) at 65°C wherein 3 ml. of Galaxy rinse aid sold by Colgate Palmolive Co. was used. A rating system of 1-10 was used with 10 representing maximum soil removal and the results are given in Table 2 below.
  • This method allows one to evaluate the removal of critical soils on several representative items of dishes as well the performance on soiled glasses.
  • J The appearance of J is translucent.
  • This apparatus is equipped to operate in oscillating mode in order to fully assess the viscoelastic behavior of Carbopol-based No P gels.
  • This method is attractive for its "in depth” characterization of gel structures because several experiments can be carried out to test completely one sample.
  • the Carbopol NOP Gels are observed to be rheologically stabilized within 2 weeks - 1 month period.
  • This apparatus observes the rotational viscometer principle operating in steady mode to determine the apparent viscosities on a large range of shear rates (30-32 values).
  • the concentric measuring cell is based on a measuring head and measuring tube rigidly coupled together, the measuring bob being driven by a DC motor.
  • the braking torque exerted by the sample results in a change in the motor's armature current.
  • Viscosity
  • G o initial shear stress. (Type of cell: Setting B) Measurement Temp.: 25°C).
  • Viscosity measurement is done after perturbation 30 sec.
  • the samples are stored in small glasswares (brown to avoid UV influence) and the physical stability is visually determined on aging at 3 temperatures of storage 4°C, 35°C, RT.
  • the sample is considered as physically stable when no presence of syneresis is observed on ageing (syneresis: liquid separation from gel in bottom of glassware.)
  • Formulas 3A-3J were formulated according to the following procedure.
  • A-E are given in Tables 4A and F-J in Table 4B.
  • Formulas 3F-3J were formulated according to the following procedure.
  • the above formulas were made by first making an aqueous solution of the cross-linked polymer such as Carbopol 614 at room temperature and subsequently neutralizing the polymer under mild agitation at room temperature first with the sodium silicate and then the sodium hydroxide. The 7058 polymer was then added with stirring followed by the 44 SN polymer. To the resultant solution was added with stirring the sodium carbonate then an aqueous solution of the NaF (if present), then an emulsion of the Dowfax 3B2 and the fatty acid or sodium stearate, then the bleach was added with stirring and finally the fragrance was added with stirring if A/203 or sodium benzoate were added, they were post added to the composition with stirring.
  • the cross-linked polymer such as Carbopol 614
  • the 7058 polymer was then added with stirring followed by the 44 SN polymer.
  • To the resultant solution was added with stirring the sodium carbonate then an aqueous solution of the NaF (if present), then an emulsion of the Dowfax 3B2 and
  • the emulsion of the Dowfax 3B2 and fatty acid or sodium stearate was formed by first heating the Dowfax 3B2 to a temperature of 70-80°C and the powdered fatty acid or sodium stearate was added to the heated Dowfax 3B2 with stirring. The formed heated emulsion was then added to the batch.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Detergent Compositions (AREA)
EP92304513A 1991-05-20 1992-05-19 Phosphatfreies, gelähnliches Maschinengeschirrspülmittel Withdrawn EP0519603A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US70247491A 1991-05-20 1991-05-20
US702474 1991-05-20
US78293791A 1991-10-25 1991-10-25
US782937 1991-10-25

Publications (1)

Publication Number Publication Date
EP0519603A1 true EP0519603A1 (de) 1992-12-23

Family

ID=27106972

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92304513A Withdrawn EP0519603A1 (de) 1991-05-20 1992-05-19 Phosphatfreies, gelähnliches Maschinengeschirrspülmittel

Country Status (2)

Country Link
EP (1) EP0519603A1 (de)
IE (1) IE921600A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994025557A1 (en) * 1993-04-27 1994-11-10 The Procter & Gamble Company Liquid or granular automatic dishwashing detergent compositions
US5597789A (en) * 1993-04-27 1997-01-28 The Procter & Gamble Company Liquid or granular automatic dishwashing detergent compositions containing silicate and low molecular weight modified polyacrylate coploymers
WO2009011676A1 (en) 2007-07-17 2009-01-22 Ecolab, Inc. Stabilized concentrated cleaning solutions and methods of preparing the same
WO2010079487A3 (en) * 2009-01-07 2010-09-10 Israel Institute For Biological Research Compositions for decontamination
US7951886B2 (en) 2005-08-31 2011-05-31 Nippon Shokubai Co., Ltd. Continuous production method of water-soluble polymer and water-soluble polymer
US8093200B2 (en) 2007-02-15 2012-01-10 Ecolab Usa Inc. Fast dissolving solid detergent
WO2015000969A3 (de) * 2013-07-03 2015-05-07 Basf Se Verwendung einer gelförmigen polymerzusammensetzung, erhältlich durch polymerisation eines säuregruppenhaltigen monomers in gegenwart einer polyetherverbindung in formulierungen für die maschinelle geschirrreinigung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2620727A1 (fr) * 1987-09-23 1989-03-24 Colgate Palmolive Co Composition detergente aqueuse epaissie contenant peu ou pas de phosphate et methode de lavage de vaisselle l'utilisant
US4878951A (en) * 1989-01-17 1989-11-07 A & L Laboratories, Inc. Low-foaming alkaline, hypochlorite cleaner
EP0373864A2 (de) * 1988-12-15 1990-06-20 The Procter & Gamble Company Stabile, verdickte wässrige Bleichmittelzusammensetzungen
EP0407187A2 (de) * 1989-07-07 1991-01-09 Unilever Plc Wässerige thixotrope Reinigungsmittelzusammensetzung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2620727A1 (fr) * 1987-09-23 1989-03-24 Colgate Palmolive Co Composition detergente aqueuse epaissie contenant peu ou pas de phosphate et methode de lavage de vaisselle l'utilisant
EP0373864A2 (de) * 1988-12-15 1990-06-20 The Procter & Gamble Company Stabile, verdickte wässrige Bleichmittelzusammensetzungen
US4878951A (en) * 1989-01-17 1989-11-07 A & L Laboratories, Inc. Low-foaming alkaline, hypochlorite cleaner
EP0407187A2 (de) * 1989-07-07 1991-01-09 Unilever Plc Wässerige thixotrope Reinigungsmittelzusammensetzung

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591703A (en) * 1993-04-27 1997-01-07 The Procter & Gamble Company Liquid or granular automatic diswashing detergent compositions containing builder, enzyme and low molecular weight, modified polyacrylate copolymers
US5597789A (en) * 1993-04-27 1997-01-28 The Procter & Gamble Company Liquid or granular automatic dishwashing detergent compositions containing silicate and low molecular weight modified polyacrylate coploymers
WO1994025557A1 (en) * 1993-04-27 1994-11-10 The Procter & Gamble Company Liquid or granular automatic dishwashing detergent compositions
US7951886B2 (en) 2005-08-31 2011-05-31 Nippon Shokubai Co., Ltd. Continuous production method of water-soluble polymer and water-soluble polymer
US10005986B2 (en) 2007-02-15 2018-06-26 Ecolab Usa Inc. Fast dissolving solid detergent
US8697625B2 (en) 2007-02-15 2014-04-15 Ecolab Usa Inc. Fast dissolving solid detergent
US8093200B2 (en) 2007-02-15 2012-01-10 Ecolab Usa Inc. Fast dissolving solid detergent
US11261406B2 (en) 2007-02-15 2022-03-01 Ecolab Usa Inc. Fast dissolving solid detergent
US8309509B2 (en) 2007-02-15 2012-11-13 Ecolab Usa Inc. Fast dissolving solid detergent
US10577565B2 (en) 2007-02-15 2020-03-03 Ecolab Usa Inc. Fast dissolving solid detergent
US9267097B2 (en) 2007-02-15 2016-02-23 Ecolab Usa Inc. Fast dissolving solid detergent
AU2007356500B2 (en) * 2007-07-17 2013-01-17 Ecolab, Inc. Stabilized concentrated cleaning solutions and methods of preparing the same
CN101679921B (zh) * 2007-07-17 2013-05-01 埃科莱布有限公司 稳定化的浓缩清洗液及其制备方法
WO2009011676A1 (en) 2007-07-17 2009-01-22 Ecolab, Inc. Stabilized concentrated cleaning solutions and methods of preparing the same
WO2010079487A3 (en) * 2009-01-07 2010-09-10 Israel Institute For Biological Research Compositions for decontamination
US20120021068A1 (en) * 2009-01-07 2012-01-26 Israel Institute For Biological Research Compositions for decontamination
WO2015000969A3 (de) * 2013-07-03 2015-05-07 Basf Se Verwendung einer gelförmigen polymerzusammensetzung, erhältlich durch polymerisation eines säuregruppenhaltigen monomers in gegenwart einer polyetherverbindung in formulierungen für die maschinelle geschirrreinigung
CN105555817A (zh) * 2013-07-03 2016-05-04 巴斯夫欧洲公司 可通过在聚醚化合物的存在下聚合含有酸基团的单体而得到的凝胶状聚合物组合物在机洗餐具用配制剂中的用途
RU2678838C2 (ru) * 2013-07-03 2019-02-04 Басф Се Применение гелеобразной полимерной композиции, полученной с помощью полимеризации содержащего кислотные группы мономера в присутствии соединения простого полиэфира, в композициях для машинного мытья посуды
CN105555817B (zh) * 2013-07-03 2019-09-03 巴斯夫欧洲公司 可通过在聚醚化合物的存在下聚合含有酸基团的单体而得到的凝胶状聚合物组合物在机洗餐具用配制剂中的用途
US10647945B2 (en) 2013-07-03 2020-05-12 Basf Se Use of a gel-like polymer composition which can be obtained by polymerizing an acid group-containing monomer in the presence of a polyether compound in formulations for automatic dishwashing
US10655088B2 (en) 2013-07-03 2020-05-19 Basf Se Solid polymer composition obtained by polymerization of an acid group-containing monomer in the presence of a polyether compound

Also Published As

Publication number Publication date
IE921600A1 (en) 1992-12-02

Similar Documents

Publication Publication Date Title
US4857226A (en) Thixotropic clay aqueous suspensions containing polyacrylic acid polymer or copolymer stabilizers
AU612586B2 (en) Thixotropic clay aqueous suspensions containing long chain saturated fatty acid stabilizers
EP0446761A1 (de) Lineare viskoelastische wässerig-flüssige Detergenszusammensetzungen, insbesondere für Geschirrspülautomaten, oder mit verbesserter Stabilität bei erhöhter Temperatur
NO166091B (no) Vandig, tiksotrop vaskemiddelblanding for automatisk oppvaskmaskin, samt anvendelse av vaskemidlet.
CA2063527A1 (en) Aqueous liquid automatic dishwashing detergent composition comprising hypochlorite bleach and bleach stabilizer
GB2185037A (en) Dishwasher thioxtotropic detergent compositions
US4889653A (en) Thixotropic aqueous liquid automatic dishwashing detergent composition containing anti-spotting and anti-filming agents
AU616906B2 (en) Thickened aqueous no- or low- phosphate built cleaning composition
GB2210382A (en) Thixotropic aqueous liquid detergent composition
US4968446A (en) Thixotropic aqueous liquid automatic dishwashing detergent composition
EP0314061A2 (de) Thixotropes wässriges Reinigungsmitel für Geschirrspülmaschinen
EP0519603A1 (de) Phosphatfreies, gelähnliches Maschinengeschirrspülmittel
CA1306166C (en) Machine dishwashing compositions
EP0315024A2 (de) Thixotropes, wässriges Reinigungsmittel für Geschirrspülmaschinen
EP0345611A2 (de) Stark alkalische flüssige Spülmittelzusammensetzungen für Geschirrspülmaschinen
EP0541203A1 (de) Lineare viskoelastische wässrig flüssige Detergenzzusammensetzung für Geschirrspülautomaten
AU647912B2 (en) Linear viscoelastic aqueous liquid detergent composition, especially for automatic dishwashers
EP0574236A2 (de) Wässrige Zusammensetzung, die zur Viskositätssteigerung ein nichtvernetztes Polymer enthält
CA2069044A1 (en) Phosphate-free, gel-like automatic dishwasher detergent compositions
CA2069770A1 (en) Phosphate-free, gel-like automatic dishwasher detergent compositions
AU616206B2 (en) Thixotropic aqueous liquid automatic dishwashing detergent composition
EP0517309A1 (de) Lineares viscoelastisches wässriges flüssiges Waschmittel, insbesondere für Geschirrspülautomaten mit verbesserter Temperaturstabilität
EP0517310A1 (de) Wässriges flüssiges Waschmittel mit polymerem Verdichtungsmittel
EP0541204A1 (de) Lineares, viskoelastisches, wässriges flüssiges Waschmittel für Geschirrspülautomaten
EP0523826A1 (de) Viskoelastische wässrig-flüssige Detergenszusammensetzung, insbesondere für Geschirrspülautomaten, mit verbesserter Verteilbarkeit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920629

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19930405

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19940205