EP0518774B1 - Process for cleaning oxidized metallic surfaces in the fabrication of interconnection networks and boards for such networks - Google Patents

Process for cleaning oxidized metallic surfaces in the fabrication of interconnection networks and boards for such networks Download PDF

Info

Publication number
EP0518774B1
EP0518774B1 EP19920401628 EP92401628A EP0518774B1 EP 0518774 B1 EP0518774 B1 EP 0518774B1 EP 19920401628 EP19920401628 EP 19920401628 EP 92401628 A EP92401628 A EP 92401628A EP 0518774 B1 EP0518774 B1 EP 0518774B1
Authority
EP
European Patent Office
Prior art keywords
metallized
copper
treatment
layer
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19920401628
Other languages
German (de)
French (fr)
Other versions
EP0518774A1 (en
Inventor
François Templier
Joaquim Torres
Jean Palleau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange SA
Original Assignee
France Telecom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom SA filed Critical France Telecom SA
Publication of EP0518774A1 publication Critical patent/EP0518774A1/en
Application granted granted Critical
Publication of EP0518774B1 publication Critical patent/EP0518774B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4864Cleaning, e.g. removing of solder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material

Definitions

  • the present invention relates to a method for cleaning oxidized metal surfaces in the manufacture of wafers for interconnection networks as well as the wafers for such networks treated according to this method.
  • interconnection networks are implemented in the following manner.
  • a conductive material is deposited, for example copper, then a dielectric is deposited which produces a second level.
  • the dielectric material is then annealed around 400 ° C, then etched in oxygen plasma in the areas to be metallized to form contact holes.
  • the surface of the copper of the first level is degraded by the thermal and chemical treatments undergone, and the degradations appear particularly in the contact holes or zones of future contacts between the copper of the first level and the conductive material, for example copper which is deposited, for example by sputtering, in particular in the holes after the deposition, annealing and etching of the dielectric of the second level.
  • the conductive material for example copper which is deposited, for example by sputtering, in particular in the holes after the deposition, annealing and etching of the dielectric of the second level.
  • the degradation mainly results in the formation of CuO or Cu2O oxides on the surface of the first level copper, in the areas of future contact between the first level copper and the copper deposited subsequently. These oxides are insulators and their presence increases the contact resistance between the two copper levels. This results in a degradation of the propagation of the signal.
  • cleaning by physical method consists in spraying the surface to be cleaned by neutral plasma.
  • the plasma acts not only on the patterns, such as copper surfaces for conductive lines for example, but also on all the surfaces located between the metal surfaces, so that there is a repellence of the dielectric on metallic surfaces.
  • the spraying always results in redepositing on the copper surface part of the insulating material located on the adjacent parts of the hole of contact.
  • RIE reactive Ionic Etching
  • etching mask the etching being carried out only on selected parts of the surface.
  • the use of an etching mask makes this step expensive.
  • the mask can itself be etched and therefore organic residues can be added to the metal surface to be cleaned.
  • this etching process induces consumption of the metallic material, which makes this technique particularly delicate to use in the manufacture of thin interconnections, the consumption of the metallic material being in this case to be minimized.
  • the present invention overcomes the disadvantages described above.
  • the method according to the invention it is possible to remove the oxides from the surface to be metallized, and thus to clean it without consumption of the conductive material or use of an intermediate mask or repulverization of the dielectric on the surfaces to be metallized.
  • the cleaning of the metal surface to be metallized carried out by microwave multipolar plasma under hydrogen (PMM hydrogen), is thus operated selectively and without loss of the conductive material.
  • PMM hydrogen microwave multipolar plasma under hydrogen
  • the PMM type discharge gives the ions created very low energy, of the order of an electron-volt, and makes it possible to activate, by the formation of more active species such as ions or radicals, the reduction of metal oxides with hydrogen and regenerate the metallized layer.
  • copper can be used and other materials such as nickel and tungsten can be considered.
  • the process can however be carried out at other temperatures, in particular in the case of other metals where thermal activation may be desirable or necessary.
  • the temperatures activation can vary between 0 ° C and temperatures of the order of 400 ° C.
  • thermal activation at temperatures which can range from 300 to 400 ° C. is desirable to activate the reduction kinetics of this metal.
  • the method of the invention can also be implemented with materials where polarization of the substrate is necessary.
  • the voltage of this polarization in direct voltage or in high frequency voltage can vary between 0 and 1000 volts.
  • the process according to the invention can be carried out at pressures ranging from approximately 1.33310 ⁇ Pa to 13.33 Pa, preferably approximately 1.33310 ⁇ Pa.
  • dielectric it is possible to use conventional organic or non-organic dielectrics, which are chosen according to the structure of the network to be manufactured.
  • polymer dielectrics and preferably dielectrics of the polyimide type.
  • the cleaning step is carried out in the airlock for introducing the deposit enclosure of the second metallized layer.
  • the PMM plasma is created in this airlock, which makes it possible to carry out the cleaning in situ before the deposition of the second metallized layer. It is thus possible to provide a loading system making it possible to transfer the cleaned wafers from the airlock for introducing the deposition enclosure where the cleaning by hydrogen PMM takes place in the copper deposition enclosure by sputtering without breaking the vacuum. Any reconstitution of an oxide layer on the copper surface of the first metallized conductive layer can then be avoided.
  • the regeneration of the metal surfaces can be carried out, as provided above in the airlock for introducing the deposition machine, without risk of pollution of this machine by a reactive gas of critical use.
  • the treatment with multipolar microwave plasma allows the etching of organic residues which would be on the surface of the copper of the first layer and resulting from steps earlier.
  • the plates for interconnection networks comprising at least a first metallized conductive layer, a dielectric layer deposited on the metallized layer then etched to strip surfaces to be metallized or contact holes, and a second metallized layer deposited on the etched surface, in which the surfaces to be metallized have been treated by microwave multipolar plasma under hydrogen before the deposition of the second metallized layer according to the method of the invention, have contact resistances between the minimized metallized levels.
  • the copper layer After treatment of the oxide layers with microwave multipolar plasma under hydrogen, the copper layer is regenerated with conservation of the initial quantity of copper (100 nm).
  • the copper regeneration speed is around 6 nm / min.

Description

La présente invention concerne un procédé de nettoyage de surfaces métalliques oxydées dans la fabrication des plaquettes pour réseaux d'interconnexions ainsi que les plaquettes pour de tels réseaux traitées selon ce procédé.The present invention relates to a method for cleaning oxidized metal surfaces in the manufacture of wafers for interconnection networks as well as the wafers for such networks treated according to this method.

Dans le domaine de la fabrication des circuits intégrés, et plus particulièrement pour la fabrication de réseaux d'interconnexions multiniveaux Cu/Polyimide pour la microhybridation des circuits intégrés, on est amené à réaliser des dépôts successifs de matériaux métalliques et diélectriques.In the field of the manufacture of integrated circuits, and more particularly for the manufacture of multilevel Cu / Polyimide interconnection networks for the microhybridization of integrated circuits, it is necessary to make successive deposits of metallic and dielectric materials.

En effet, les réseaux d'interconnexions sont réalisés de la manière suivante.Indeed, the interconnection networks are implemented in the following manner.

Pour la réalisation d'un premier niveau d'interconnexion, on dépose un matériau conducteur, par exemple du cuivre, puis on dépose un diélectrique qui réalise un second niveau. Le matériau diélectrique est alors recuit autour de 400°C, puis gravé en plasma sous oxygène dans les zones à métalliser pour former des trous de contact.For the production of a first interconnection level, a conductive material is deposited, for example copper, then a dielectric is deposited which produces a second level. The dielectric material is then annealed around 400 ° C, then etched in oxygen plasma in the areas to be metallized to form contact holes.

Durant les étapes de recuit et de gravure notamment, la surface du cuivre du premier niveau est dégradée par les traitements thermiques et chimiques subis, et les dégradations apparaissent particulièrement dans les trous de contact ou zones de futurs contacts entre le cuivre du premier niveau et le matériau conducteur, par exemple du cuivre qui est déposé, par exemple par pulvérisation cathodique, notamment dans les trous après le dépôt, recuit et gravure du diélectrique du second niveau.During the annealing and etching steps in particular, the surface of the copper of the first level is degraded by the thermal and chemical treatments undergone, and the degradations appear particularly in the contact holes or zones of future contacts between the copper of the first level and the conductive material, for example copper which is deposited, for example by sputtering, in particular in the holes after the deposition, annealing and etching of the dielectric of the second level.

La dégradation se traduit essentiellement par la formation d'oxydes CuO ou Cu₂O à la surface du cuivre du premier niveau, dans les zones du futur contact entre le cuivre de premier niveau et le cuivre déposé ultérieurement. Ces oxydes sont des isolants et leur présence augmente la résistance de contact entre les deux niveaux de cuivre. Il s'ensuit une dégradation de la propagation du signal.The degradation mainly results in the formation of CuO or Cu₂O oxides on the surface of the first level copper, in the areas of future contact between the first level copper and the copper deposited subsequently. These oxides are insulators and their presence increases the contact resistance between the two copper levels. This results in a degradation of the propagation of the signal.

Il apparaît donc primordial de préparer les surfaces avant dépôt de la seconde couche conductrice. Les méthodes de nettoyage usuellement utilisées dans le domaine de la microélectronique pour la préparation des surfaces avant dépôt, présentent certains inconvénients.It therefore appears essential to prepare the surfaces before depositing the second conductive layer. The cleaning methods usually used in the field of microelectronics for the preparation of surfaces before deposition have certain drawbacks.

Ainsi, le nettoyage par méthode physique consiste à pulvériser la surface à nettoyer par plasma neutre. Cependant, pour des surfaces présentant des motifs, le plasma agit non seulement sur les motifs, comme des surfaces en cuivre pour des lignes conductrices par exemple, mais aussi sur toutes les surfaces situées entre les surfaces métalliques, si bien que l'on constate une repulvérisation du diélectrique sur les surfaces métalliques. Ainsi, dans le cas des surfaces de contact entre deux couches de cuivre séparées par une couche de diélectrique tel que décrit ci-dessus, la pulvérisation conduit toujours à redéposer sur la surface de cuivre une partie du matériau isolant situé sur les parties adjacentes du trou de contact.Thus, cleaning by physical method consists in spraying the surface to be cleaned by neutral plasma. However, for surfaces with patterns, the plasma acts not only on the patterns, such as copper surfaces for conductive lines for example, but also on all the surfaces located between the metal surfaces, so that there is a repellence of the dielectric on metallic surfaces. Thus, in the case of the contact surfaces between two layers of copper separated by a layer of dielectric as described above, the spraying always results in redepositing on the copper surface part of the insulating material located on the adjacent parts of the hole of contact.

Par ailleurs, la méthode de gravure dite RIE (Reactive Ionic Etching) nécessite l'utilisation d'un masque de gravure, la gravure n'étant réalisée que sur des parties choisies de la surface. L'utilisation d'un masque de gravure rend cette étape coûteuse. De plus, le masque peut être lui-même gravé et de ce fait, des résidus organiques peuvent être apportés sur la surface métallique à nettoyer. Enfin, ce procédé de gravure induit une consommation du matériau métallique, ce qui rend cette technique particulièrement délicate à utiliser dans la fabrication des interconnexions minces, la consommation du matériau métallique étant dans ce cas à minimiser.Furthermore, the so-called RIE (Reactive Ionic Etching) etching method requires the use of an etching mask, the etching being carried out only on selected parts of the surface. The use of an etching mask makes this step expensive. In addition, the mask can itself be etched and therefore organic residues can be added to the metal surface to be cleaned. Finally, this etching process induces consumption of the metallic material, which makes this technique particularly delicate to use in the manufacture of thin interconnections, the consumption of the metallic material being in this case to be minimized.

Enfin, le nettoyage par attaque chimique en phase liquide ou vapeur, c'est-à-dire la gravure chimique, activée dans le cas de la gravure assistée par ultraviolets, ou non activée, dans le cas de la gravure liquide, remédie à l'inconvénient de l'utilisation du masque intermédiaire car elle ne peut agir que sur les zones à traiter si l'on fait un choix adéquat de réactifs. Elle conduit néanmoins toujours à une consommation du matériel conducteur.Finally, cleaning by chemical attack in liquid or vapor phase, that is to say chemical etching, activated in the case of etching assisted by ultraviolet, or not activated, in the case of liquid etching, remedies the disadvantage of using the intermediate mask because it can only act on the areas to be treated if an adequate choice of reagents is made. However, it always leads to consumption of conductive material.

La présente invention remédie aux inconvénients décrits ci-dessus.The present invention overcomes the disadvantages described above.

Ainsi, la présente invention concerne un procédé de nettoyage des surfaces métalliques oxydées mis en oeuvre dans la fabrication des plaquettes pour réseaux d'interconnexions comportant au moins :

  • une première couche conductrice métallisée,
  • une couche diélectrique déposée sur la couche métallisée, puis gravée pour dénuder des surfaces à métalliser ou trous de contact, et
  • une seconde couche métallisée déposée sur la surface gravée,
       caractérisé en ce que les plaquettes gravées sont traitées par plasma multipolaire micro-onde sous hydrogène avant le dépôt de la seconde couche métallisée.
Thus, the present invention relates to a method for cleaning oxidized metal surfaces used in the manufacture of wafers for interconnection networks comprising at least:
  • a first metallized conductive layer,
  • a dielectric layer deposited on the metallized layer, then etched to strip surfaces to be metallized or contact holes, and
  • a second metallized layer deposited on the etched surface,
    characterized in that the etched wafers are treated by microwave multipolar plasma under hydrogen before the deposition of the second metallized layer.

Par le procédé selon l'invention, il est possible de supprimer les oxydes de la surface à métalliser, et ainsi de la nettoyer sans consommation du matériau conducteur ni utilisation de masque intermédiaire ni repulvérisation du diélectrique sur les surfaces à métalliser. Le nettoyage de la surface métallique à métalliser, réalisé par plasma multipolaire micro-onde sous hydrogène (PMM hydrogène), est ainsi opéré de manière sélective et sans perte du matériau conducteur.By the method according to the invention, it is possible to remove the oxides from the surface to be metallized, and thus to clean it without consumption of the conductive material or use of an intermediate mask or repulverization of the dielectric on the surfaces to be metallized. The cleaning of the metal surface to be metallized, carried out by microwave multipolar plasma under hydrogen (PMM hydrogen), is thus operated selectively and without loss of the conductive material.

Pour mettre en oeuvre le procédé de nettoyage de l'invention, on peut utiliser un dispositif usuel à plasma de décharge multipolaire micro-onde.In order to carry out the cleaning method of the invention, it is possible to use a usual microwave multipolar discharge plasma device.

De tels dispositifs ont notamment été décrits dans J. Phys. D 19, 795 (1986) et dans Rev. Sci. Instr. 59, 1072 (1988) ainsi que dans le brevet US 4 745 337.Such devices have in particular been described in J. Phys. D 19 , 795 (1986) and in Rev. Sci. Instr. 59 , 1072 (1988) as well as in US Patent 4,745,337.

La décharge de type PMM confère aux ions créés une énergie très faible, de l'ordre de l'électron-volt, et permet d'activer, par formation d'espèces plus actives comme des ions ou des radicaux, la réduction des oxydes métalliques par l'hydrogène et de régénérer la couche métallisée.The PMM type discharge gives the ions created very low energy, of the order of an electron-volt, and makes it possible to activate, by the formation of more active species such as ions or radicals, the reduction of metal oxides with hydrogen and regenerate the metallized layer.

Pour les couches conductrices métallisées, on peut utiliser le cuivre et on peut envisager d'autres matériaux comme le nickel et le tungstène.For metallized conductive layers, copper can be used and other materials such as nickel and tungsten can be considered.

Dans le cas du cuivre, par le procédé selon l'invention, on peut réduire l'oxyde de cuivre par l'hydrogène et régénérer le cuivre à température ambiante.In the case of copper, by the process according to the invention, it is possible to reduce the copper oxide by hydrogen and to regenerate the copper at ambient temperature.

Le procédé peut cependant être mis en oeuvre à d'autres températures, notamment dans le cas d'autres métaux où une activation thermique peut être souhaitable ou nécessaire. Les températures d'activation peuvent varier entre 0°C et des températures de l'ordre de 400°C. Ainsi, dans le cas du tungstène, une activation thermique à des températures pouvant aller de 300 à 400°C est souhaitable pour activer la cinétique de réduction de ce métal.The process can however be carried out at other temperatures, in particular in the case of other metals where thermal activation may be desirable or necessary. The temperatures activation can vary between 0 ° C and temperatures of the order of 400 ° C. Thus, in the case of tungsten, thermal activation at temperatures which can range from 300 to 400 ° C. is desirable to activate the reduction kinetics of this metal.

Le procédé de l'invention peut également être mis en oeuvre avec des matériaux où une polarisation du substrat est nécessaire. La tension de cette polarisation en tension continue ou en tension haute fréquence, peut varier entre 0 et 1000 volts.The method of the invention can also be implemented with materials where polarization of the substrate is necessary. The voltage of this polarization in direct voltage or in high frequency voltage, can vary between 0 and 1000 volts.

Le procédé selon l'invention peut être mis en oeuvre à des pressions allant d'environ 1,33310⁻ Pa à 13,33 Pa, de préférence environ 1,33310⁻ Pa.The process according to the invention can be carried out at pressures ranging from approximately 1.33310⁻ Pa to 13.33 Pa, preferably approximately 1.33310⁻ Pa.

Comme diélectrique, on peut utiliser des diélectriques organiques ou non-organiques usuels, que l'on choisis selon la structure du réseau à fabriquer.As dielectric, it is possible to use conventional organic or non-organic dielectrics, which are chosen according to the structure of the network to be manufactured.

Pour la mise en oeuvre de l'invention, on peut utiliser en particulier des diélectriques polymères, et de préférence des diélectriques de type polyimide.For the implementation of the invention, use may in particular be made of polymer dielectrics, and preferably dielectrics of the polyimide type.

Dans une variante du procédé selon l'invention, l'étape de nettoyage est réalisée dans le sas d'introduction de l'enceinte de dépôt de la seconde couche métalisée. Dans cette variante, le plasma PMM est créé dans ce sas, ce qui permet de réaliser le nettoyage in-situ avant le dépôt de la seconde couche métallisée. On peut ainsi prévoir un système de chargement permettant de transférer les plaquettes nettoyées du sas d'introduction de l'enceinte de dépôt où a lieu le nettoyage par PMM hydrogène dans l'enceinte de dépôt du cuivre par pulvérisation cathodique sans casser le vide. Toute reconstitution d'une couche d'oxyde à la surface du cuivre de la première couche conductrice métallisée peut être alors évitée. De plus, comme le gaz utilisé est non polluant, la régénération des surfaces métalliques peut être réalisée, comme prévu ci-dessus dans le sas d'introduction de la machine de dépôt, sans risque de pollution de cette machine par un gaz réactif d'utilisation critique.In a variant of the method according to the invention, the cleaning step is carried out in the airlock for introducing the deposit enclosure of the second metallized layer. In this variant, the PMM plasma is created in this airlock, which makes it possible to carry out the cleaning in situ before the deposition of the second metallized layer. It is thus possible to provide a loading system making it possible to transfer the cleaned wafers from the airlock for introducing the deposition enclosure where the cleaning by hydrogen PMM takes place in the copper deposition enclosure by sputtering without breaking the vacuum. Any reconstitution of an oxide layer on the copper surface of the first metallized conductive layer can then be avoided. In addition, as the gas used is non-polluting, the regeneration of the metal surfaces can be carried out, as provided above in the airlock for introducing the deposition machine, without risk of pollution of this machine by a reactive gas of critical use.

Par ailleurs, le traitement par plasma multipolaire micro-onde permet la gravure de résidus organiques qui se trouveraient à la surface du cuivre de la première couche et résultant d'étapes antérieures.Furthermore, the treatment with multipolar microwave plasma allows the etching of organic residues which would be on the surface of the copper of the first layer and resulting from steps earlier.

Dans une variante du procédé selon l'invention, on peut donc prévoir, avant le nettoyage de la surface métallique par réduction par PMM sous hydrogène, une étape de gravure par PMM sous oxygène des résidus organiques sur la surface métallisée; la surface métallisée oxydée est alors nettoyée et régénérée par PMM sous hydrogène. Le dépôt de la couche métallique supérieure peut alors être effectué et il résulte de la mise en oeuvre du procédé selon l'invention, une résistance métal/métal minimisée.In a variant of the method according to the invention, it is therefore possible to provide, before cleaning the metal surface by reduction by PMM under hydrogen, a step of etching by PMM under oxygen of the organic residues on the metallized surface; the oxidized metallized surface is then cleaned and regenerated by PMM under hydrogen. The deposition of the upper metal layer can then be carried out and it results from the implementation of the method according to the invention, a metal / metal resistance minimized.

Les plaquettes pour réseaux d'interconnexions comportant au moins une première couche conductrice métallisée, une couche de diélectrique déposée sur la couche métallisée puis gravée pour dénuder des surfaces à métalliser ou trous de contact, et une seconde couche métallisée déposée sur la surface gravée, dans lesquelles les surfaces à métalliser ont été traitées par plasma multipolaire micro-onde sous hydrogène avant le dépôt de la seconde couche métallisée selon le procédé de l'invention, présentent des résistances de contact entre les niveaux métallisés minimisées.The plates for interconnection networks comprising at least a first metallized conductive layer, a dielectric layer deposited on the metallized layer then etched to strip surfaces to be metallized or contact holes, and a second metallized layer deposited on the etched surface, in which the surfaces to be metallized have been treated by microwave multipolar plasma under hydrogen before the deposition of the second metallized layer according to the method of the invention, have contact resistances between the minimized metallized levels.

A titre d'exemple, on a réalisé la régénération de couches de cuivre.By way of example, the regeneration of copper layers has been carried out.

Des couches de cuivre de 100 nm ont été oxydées à 400°. Il en résulte des couches d'oxyde de 170 nm.100nm copper layers were oxidized at 400 °. This results in 170 nm oxide layers.

Après traitement des couches d'oxyde au plasma multipolaire micro-onde sous hydrogène, la couche de cuivre est régénérée avec conservation de la quantité initiale de cuivre (100 nm). La vitesse de régénération du cuivre est de l'ordre de 6 nm/mn.After treatment of the oxide layers with microwave multipolar plasma under hydrogen, the copper layer is regenerated with conservation of the initial quantity of copper (100 nm). The copper regeneration speed is around 6 nm / min.

Claims (8)

  1. A process for cleaning oxidized metallized surfaces, employed in the manufacture of wafers for interconnection networks, comprising at least:
    - a first metallized conducting layer,
    - a dielectric layer deposited on the metallized layer and then etched in order to bare the surfaces to be metallized or contact holes, and
    - a second metallized layer deposited on the etched surface,
    wherein the etched wafers are treated using microwave multipolar plasma under hydrogen before the deposition of the second metallized layer.
  2. The process as claimed in claim 1, wherein the first metallized conducting layer and/or the second metallized conducting layer essentially consists or consist of copper, nickel or tungsten.
  3. The process as claimed in claim 1 or 2, wherein the first metallized conducting layer and/or the second metallized conducting layer essentially consists or consist of copper.
  4. The process as claimed in one of claims 1 to 3, wherein the treatment using microwave multipolar plasma is carried out at a temperature lying between 0°C and 400°C.
  5. The process as claimed in one of claims 1 to 4, wherein the treatment using microwave multipolar plasma under hydrogen is carried out at ambient temperature.
  6. The process as claimed in one of claims 1 to 5, wherein the treatment using microwave multipolar plasma is assisted by bias of the substrate, the bias voltage varying from 0 to 1000 volts.
  7. The process as claimed in one of claims 1 to 6, wherein the treatment using microwave multipolar plasma under hydrogen is carried out in the same chamber as the deposition.
  8. The process as claimed in one of claims 1 to 7, wherein the treatment using microwave multipolar plasma under hydrogen is directly preceded by an etching treatment using microwave multipolar plasma under oxygen.
EP19920401628 1991-06-14 1992-06-12 Process for cleaning oxidized metallic surfaces in the fabrication of interconnection networks and boards for such networks Expired - Lifetime EP0518774B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9107325 1991-06-14
FR9107325A FR2677668B1 (en) 1991-06-14 1991-06-14 METHOD FOR CLEANING OXIDIZED METAL SURFACES IN THE MANUFACTURE OF INTERCONNECTION NETWORKS AND WAFERS FOR SUCH NETWORKS.

Publications (2)

Publication Number Publication Date
EP0518774A1 EP0518774A1 (en) 1992-12-16
EP0518774B1 true EP0518774B1 (en) 1996-03-06

Family

ID=9413876

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19920401628 Expired - Lifetime EP0518774B1 (en) 1991-06-14 1992-06-12 Process for cleaning oxidized metallic surfaces in the fabrication of interconnection networks and boards for such networks

Country Status (4)

Country Link
EP (1) EP0518774B1 (en)
JP (1) JPH05234973A (en)
DE (1) DE69208743T2 (en)
FR (1) FR2677668B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7670893B2 (en) 1992-04-08 2010-03-02 Taiwan Semiconductor Manufacturing Co., Ltd. Membrane IC fabrication
US7705466B2 (en) 1997-04-04 2010-04-27 Elm Technology Corporation Three dimensional multi layer memory and control logic integrated circuit structure
US8080442B2 (en) 2002-08-08 2011-12-20 Elm Technology Corporation Vertical system integration

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333987A (en) * 1993-05-18 1994-12-02 Hitachi Ltd Electric circuit junction device and electric circuit junction method
FR2697456B1 (en) * 1992-10-30 1994-12-23 Air Liquide Dry fluxing method and device.
DE19640528A1 (en) * 1996-10-01 1998-04-02 Roland Dr Gesche Method and apparatus for treatment of components by vacuum technology processes
US6107192A (en) * 1997-12-30 2000-08-22 Applied Materials, Inc. Reactive preclean prior to metallization for sub-quarter micron application
JP3137087B2 (en) 1998-08-31 2001-02-19 日本電気株式会社 Method for manufacturing semiconductor device
US6204192B1 (en) * 1999-03-29 2001-03-20 Lsi Logic Corporation Plasma cleaning process for openings formed in at least one low dielectric constant insulation layer over copper metallization in integrated circuit structures

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4534842A (en) * 1983-06-15 1985-08-13 Centre National De La Recherche Scientifique (Cnrs) Process and device for producing a homogeneous large-volume plasma of high density and of low electronic temperature
US4706870A (en) * 1984-12-18 1987-11-17 Motorola Inc. Controlled chemical reduction of surface film
EP0300414B1 (en) * 1987-07-20 1994-10-12 Nippon Telegraph And Telephone Corporation Method of connecting wirings through connection hole
US4985113A (en) * 1989-03-10 1991-01-15 Hitachi, Ltd. Sample treating method and apparatus

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7911012B2 (en) 1992-04-08 2011-03-22 Taiwan Semiconductor Manufacturing Co., Ltd. Flexible and elastic dielectric integrated circuit
US7670893B2 (en) 1992-04-08 2010-03-02 Taiwan Semiconductor Manufacturing Co., Ltd. Membrane IC fabrication
US7763948B2 (en) 1992-04-08 2010-07-27 Taiwan Semiconductor Manufacturing Co., Ltd. Flexible and elastic dielectric integrated circuit
US7820469B2 (en) 1992-04-08 2010-10-26 Taiwan Semiconductor Manufacturing Co., Ltd. Stress-controlled dielectric integrated circuit
US8410617B2 (en) 1997-04-04 2013-04-02 Elm Technology Three dimensional structure memory
US8824159B2 (en) 1997-04-04 2014-09-02 Glenn J. Leedy Three dimensional structure memory
US9401183B2 (en) 1997-04-04 2016-07-26 Glenn J. Leedy Stacked integrated memory device
US8933570B2 (en) 1997-04-04 2015-01-13 Elm Technology Corp. Three dimensional structure memory
US8288206B2 (en) 1997-04-04 2012-10-16 Elm Technology Corp Three dimensional structure memory
US8318538B2 (en) 1997-04-04 2012-11-27 Elm Technology Corp. Three dimensional structure memory
US7705466B2 (en) 1997-04-04 2010-04-27 Elm Technology Corporation Three dimensional multi layer memory and control logic integrated circuit structure
US8928119B2 (en) 1997-04-04 2015-01-06 Glenn J. Leedy Three dimensional structure memory
US8629542B2 (en) 1997-04-04 2014-01-14 Glenn J. Leedy Three dimensional structure memory
US8796862B2 (en) 1997-04-04 2014-08-05 Glenn J Leedy Three dimensional memory structure
US8035233B2 (en) 1997-04-04 2011-10-11 Elm Technology Corporation Adjacent substantially flexible substrates having integrated circuits that are bonded together by non-polymeric layer
US8841778B2 (en) 1997-04-04 2014-09-23 Glenn J Leedy Three dimensional memory structure
US8907499B2 (en) 1997-04-04 2014-12-09 Glenn J Leedy Three dimensional structure memory
US8587102B2 (en) 2002-08-08 2013-11-19 Glenn J Leedy Vertical system integration
US8269327B2 (en) 2002-08-08 2012-09-18 Glenn J Leedy Vertical system integration
US8080442B2 (en) 2002-08-08 2011-12-20 Elm Technology Corporation Vertical system integration

Also Published As

Publication number Publication date
DE69208743T2 (en) 1996-07-25
FR2677668B1 (en) 1993-10-15
JPH05234973A (en) 1993-09-10
EP0518774A1 (en) 1992-12-16
FR2677668A1 (en) 1992-12-18
DE69208743D1 (en) 1996-04-11

Similar Documents

Publication Publication Date Title
KR100475931B1 (en) Method for manufacturing a multi metal line in semiconductor device
EP1041614B1 (en) Plasma cleaning process for openings formed in one or more low dielectric constant insulation layers over copper metallization integrated circuit structures
US5766379A (en) Passivated copper conductive layers for microelectronic applications and methods of manufacturing same
US6949450B2 (en) Method for integrated in-situ cleaning and subsequent atomic layer deposition within a single processing chamber
US8115318B2 (en) Semiconductor device having silicon-diffused metal wiring layer and its manufacturing method
US20030209738A1 (en) Semiconductor device having silicon-including metal wiring layer and its manufacturing method
EP0518774B1 (en) Process for cleaning oxidized metallic surfaces in the fabrication of interconnection networks and boards for such networks
JP2004207281A (en) Multilayer interconnection structure, its manufacturing method, and semiconductor device
KR101333442B1 (en) Thermal methods for cleaning post-cmp wafers
US6872652B2 (en) Method of cleaning an inter-level dielectric interconnect
US6093635A (en) High integrity borderless vias with HSQ gap filled patterned conductive layers
JPH06181212A (en) Manufacture of semiconductor device
US20070218214A1 (en) Method of improving adhesion property of dielectric layer and interconnect process
FR2488045A1 (en) PROCESS FOR OBTAINING ELECTRICALLY CONDUCTIVE INCLUSIONS IN THIN FILMS
KR20030030268A (en) Method for Cleaning Contact Area of Metal Lines
JP2001176817A (en) Improved method for metallizing aluminum, and product
EP1320123A1 (en) Manufacturing process of an electronic device comprising an inductive micro component
KR20050050183A (en) Apparatus and method for cleaning a semiconductor device
EP3414775B1 (en) Method of fabricating vias on a chip
JP3592209B2 (en) Method for manufacturing semiconductor device
KR19990006222A (en) Manufacturing Method of Semiconductor Device
JPS63313836A (en) Manufacture of electric/electronic circuit device
JPH05291416A (en) Formation of multilayer interconnection
KR19990057859A (en) Metal wiring formation method of semiconductor device
KR19980038433A (en) Metal wiring formation method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

17P Request for examination filed

Effective date: 19930524

17Q First examination report despatched

Effective date: 19940819

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REF Corresponds to:

Ref document number: 69208743

Country of ref document: DE

Date of ref document: 19960411

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960327

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970606

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970623

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980612

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990401