EP0518742A1 - Method for detecting a noisy wanted signal - Google Patents

Method for detecting a noisy wanted signal Download PDF

Info

Publication number
EP0518742A1
EP0518742A1 EP92401553A EP92401553A EP0518742A1 EP 0518742 A1 EP0518742 A1 EP 0518742A1 EP 92401553 A EP92401553 A EP 92401553A EP 92401553 A EP92401553 A EP 92401553A EP 0518742 A1 EP0518742 A1 EP 0518742A1
Authority
EP
European Patent Office
Prior art keywords
signal
noise
threshold
ratio
noisy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92401553A
Other languages
German (de)
French (fr)
Other versions
EP0518742B1 (en
Inventor
Dominique Pastor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales Avionics SAS
Original Assignee
Thales Avionics SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales Avionics SAS filed Critical Thales Avionics SAS
Publication of EP0518742A1 publication Critical patent/EP0518742A1/en
Application granted granted Critical
Publication of EP0518742B1 publication Critical patent/EP0518742B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/78Detection of presence or absence of voice signals

Definitions

  • the present invention relates to a method for detecting a noisy useful signal.
  • the instantaneous amplitude of the signal received or processed can be used as a variable by reference to a threshold determined experimentally.
  • thresholds allow a first presumption on the presence or absence of the signal. They are also applicable to any signal. Also, they are supplemented by "confirmation” systems, defining “almost certain” criteria, specific to the type of useful signal, when the nature of this is known a priori.
  • Such a complementary system is widely used in speech processing and can consist, for example, in a pitch extraction or in the evaluation of the minimum energy of a vowel.
  • the subject of the present invention is a method for detecting a noisy useful signal, determining as rigorously as possible the detection threshold, and which can operate in a self-adaptive manner.
  • the expected signal / noise ratio of the signal to be processed there is the expected signal / noise ratio of the signal to be processed, and there is a measurement of the estimated noise alone, measurement digitized on M points, this noise being white or made white, the average energy is calculated.
  • noise on these M points we take a slice of N noisy signal points, we calculates the average energy of these N points, the theoretical detection threshold is calculated, the ratio of the two said average energies is calculated, and this ratio is compared with said threshold.
  • u (n) s (n) + x (n) n being an integer: 0 ⁇ n ⁇ N-1, s (n) being a useful signal and x (n) a noise.
  • y (n) is a measure of the noise x (n) over another time slot free of useful signal.
  • the theoretical threshold of 1 is replaced by a threshold ⁇ , calculated as explained below, which takes into account the fact that the signals available are not perfectly ergodic and that U and V are only estimates of the true values of the variances ⁇ u 2 and ⁇ x 2.
  • variable U (n) is measured on a time slice
  • variable y (n) is measured on another time slice where it is certain that there is no useful signal, but only noise (independent and decorrelated from s (n)).
  • the calculation of the density of Z was done by knowing ⁇ s 2 and ⁇ x 2, here the calculation will be done by knowing ⁇ s 2 and ⁇ x 2.
  • the density to be calculated will be noted by f z (z: ⁇ 2 s , ⁇ 2 x ).
  • U ⁇ s 2 + (1 / N) ⁇ 0 ⁇ n ⁇ N-1 x (n) 2 belongs to ( ⁇ s 2 + ⁇ x 2; (2 / N) ⁇ x 4).
  • V belongs to ( ⁇ x 2; (2 / M) ⁇ x 4).
  • the activity detection is implemented by using maximum likelihood.
  • the probability density of the variable Z is expressed by a function of the form: f k, M (z, r) where r denotes the signal to noise ratio. This probability therefore depends on the signal to noise ratio. Also, the decision rule can only be given with an expected signal-to-noise ratio. Let r o be this expected signal-to-noise ratio.
  • the signals s (n), x (n) and y (n) are assumed to be white, Gaussian, centered.
  • r o be the expected signal-to-noise ratio
  • k M / N. the probability of absence of s (n) is ⁇ o and the probability of presence of s (n) is ⁇ 1.
  • the threshold being determined for equality (instead of inequality) between the terms of these two expressions.
  • n additive noise
  • ⁇ o and ⁇ 1 The probabilities of appearance and absence ( ⁇ o and ⁇ 1) are equal to 0.5.
  • V the random variable
  • Z For each frame, we calculated Z.
  • Decision D 1 when: ln (r + 1) z + k z + k > (M / 4) [z- (r o +1)] 2 - (z-1) 2 z2 + k + ln ⁇ o ⁇ 1
  • Decision D 0 when: ln (r + 1) z + k z + k ⁇ (M / 4) [z- (r o +1)] 2 - (z-1) 2 z2 + k + ln ⁇ o ⁇ 1
  • a second white Gaussian noise of unit variance was generated, used to calculate V. For each frame, Z was calculated and the above decision rule was applied. We counted the number of errors.
  • detection threshold depends on the context.
  • a preliminary characterization of noise and speech using measurements based on the maximum likelihood estimation shows that the speech signal to be detected has a signal-to-noise ratio of at least minus 6 dB.
  • the processing system uses 128 point signal frames, the sampling frequency being 10 kHz.
  • a second threshold is therefore introduced, which makes it possible to decide whether the variable V will be renewed or not.
  • This second threshold is chosen at 1.25, which corresponds to noise additive to stationary noise having a signal to noise ratio of -2 dB.
  • the processed frame is composed of the same noise as that used as a reference.
  • the variable V is replaced by the value of the energy of the processed frame.
  • the frame is considered to contain non-stationarity of the noise, and free of speech.
  • the frame is considered to be speech.
  • the use of two thresholds is generally preferable.
  • micro alternation micro opening and closing
  • a first pass of the algorithm made it possible to specify the start of the speech.
  • a second pass consisted in reading the speech file "upside down", that is to say starting from the microphone closure towards the microphone opening. This then made it possible to specify the end of the speech.
  • the same type of application also makes it possible to segment the speech files on which a recognition is carried out.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Noise Elimination (AREA)

Abstract

In order to detect a noisy wanted signal, a measurement of the expected S/N ratio of this signal is taken over one time slice, a measurement of the estimated white noise alone is taken over another time slice without wanted signal, the mean energy of the noise and of the noisy signal are calculated, each in its time slice, the theoretical detection threshold and the ratio of these two energies are calculated, and the ratio is compared with the calculated threshold, this threshold being greater than 1 (ideal threshold).

Description

La présente invention se rapporte à un procédé de détection d'un signal utile bruité.The present invention relates to a method for detecting a noisy useful signal.

Un des problèmes importants en traitement du signal, simple quant à son énoncé, mais d'autant plus complexe quant à sa résolution, consiste à déterminer la présence ou l'absence d'un signal utile noyé dans un bruit additif.One of the important problems in signal processing, simple as for its statement, but all the more complex as for its resolution, consists in determining the presence or the absence of a useful signal drowned in an additive noise.

Diverses solutions sont envisageables. On peut utiliser comme variable l'amplitude instantanée du signal reçu ou traité par référence à un seuil déterminé expérimentalement.Various solutions are possible. The instantaneous amplitude of the signal received or processed can be used as a variable by reference to a threshold determined experimentally.

On peut aussi utiliser comme variable l'énergie du signal total sur une tranche temporelle de durée T, en seuillant, toujours expérimentalement, cette énergie.One can also use as variable the energy of the total signal on a time slice of duration T, by thresholding, always experimentally, this energy.

Ces seuillages permettent une première présomption sur la présence ou l'absence du signal. Ils sont de plus applicables à tout signal. Aussi, sont ils complétés par des systèmes de "confirmation", définissant des critères "quasi-certains", propres au type de signal utile, lorsque la nature de celui-ci est connue a priori.These thresholds allow a first presumption on the presence or absence of the signal. They are also applicable to any signal. Also, they are supplemented by "confirmation" systems, defining "almost certain" criteria, specific to the type of useful signal, when the nature of this is known a priori.

Un tel système complémentaire est largement utilisé en traitement de la parole et peut consister, par exemple, en une extraction de "pitch" ou en l'évaluation de l'énergie minimale d'une voyelle.Such a complementary system is widely used in speech processing and can consist, for example, in a pitch extraction or in the evaluation of the minimum energy of a vowel.

La présente invention a pour objet un procédé de détection d'un signal utile bruité, déterminant de façon la plus rigoureuse possible le seuil de détection, et pouvant fonctionner de façon autoadaptative.The subject of the present invention is a method for detecting a noisy useful signal, determining as rigorously as possible the detection threshold, and which can operate in a self-adaptive manner.

Selon l'invention, on dispose du rapport signal/bruit attendu du signal à traiter, et on dispose d'une mesure du bruit seul estimé, mesure numérisée sur M points, ce bruit étant blanc ou rendu blanc, on calcule l'énergie moyenne du bruit sur ces M points, on prend une tranche de N points de signal bruité, on calcule l'énergie moyenne de ces N points, on calcule le seuil de détection théorique, on calcule le rapport des deux dites énergies moyennes, et on compare ce rapport audit seuil.According to the invention, there is the expected signal / noise ratio of the signal to be processed, and there is a measurement of the estimated noise alone, measurement digitized on M points, this noise being white or made white, the average energy is calculated. noise on these M points, we take a slice of N noisy signal points, we calculates the average energy of these N points, the theoretical detection threshold is calculated, the ratio of the two said average energies is calculated, and this ratio is compared with said threshold.

La présente invention sera mieux comprise à la lecture de la description détaillée d'un mode de réalisation pris à titre d'exemple non limitatif.The present invention will be better understood on reading the detailed description of an embodiment taken by way of nonlimiting example.

On va d'abord expliquer comment doit se faire théoriquement, dans le cas idéal, la détection d'un signal bruité.We will first explain how to theoretically, in the ideal case, detect a noisy signal.

On dispose d'une première information u(n) pour une première tranche temporelle telle que : u(n) = s(n) + x(n)

Figure imgb0001

   n étant un nombre entier : 0 ≦ n ≦ N-1, s(n) étant un signal utile et x(n) un bruit. En outre, on dispose d'une autre information y(n), avec 0 ≦ n ≦ M-1, et M pouvant être égal à N ou différent de celui-ci. y(n) est une mesure du bruit x(n) sur une autre tranche temporelle exempte de signal utile.We have a first piece of information u (n) for a first time slot such as: u (n) = s (n) + x (n)
Figure imgb0001

n being an integer: 0 ≦ n ≦ N-1, s (n) being a useful signal and x (n) a noise. In addition, there is other information y (n), with 0 ≦ n ≦ M-1, and M can be equal to N or different from it. y (n) is a measure of the noise x (n) over another time slot free of useful signal.

On pose : U = (u(0)² + u(1)² + ... + u(N)²)/N

Figure imgb0002

   et V = (y(0)² + y(1)² + ... + y(M)²)/M
Figure imgb0003

   et Z = U/V
Figure imgb0004
We ask: U = (u (0) ² + u (1) ² + ... + u (N) ²) / N
Figure imgb0002

and V = (y (0) ² + y (1) ² + ... + y (M) ²) / M
Figure imgb0003

and Z = U / V
Figure imgb0004

Ainsi, dans un cas idéal et irréaliste, on aurait, en notant RSB = rapport signal à bruit : Z = 1 + RSB

Figure imgb0005

et le simple critère de détection serait : Z > 1 : présence de signal utile
Figure imgb0006
Z < 1 : absence de signal utile
Figure imgb0007
Thus, in an ideal and unrealistic case, we would have, by noting RSB = signal to noise ratio: Z = 1 + RSB
Figure imgb0005

and the simple detection criterion would be: Z> 1: presence of useful signal
Figure imgb0006
Z <1: absence of useful signal
Figure imgb0007

Selon la présente invention, on remplace le seuil théorique de 1 par un seuil µ, calculé de la façon expliquée ci-dessous, qui tient compte du fait que les signaux dont on dispose ne sont pas parfaitement ergodiques et que U et V ne sont que des estimées des valeurs vraies des variances σu2 et σx2.According to the present invention, the theoretical threshold of 1 is replaced by a threshold µ, calculated as explained below, which takes into account the fact that the signals available are not perfectly ergodic and that U and V are only estimates of the true values of the variances σ u 2 and σ x 2.

Pour effectuer ce calcul de µ, on procède de la façon suivante.To perform this calculation of µ, we proceed as follows.

On part du fait que les variables U et V sont de nature aléatoire, et que par conséquent Z l'est aussi. On calcule alors la densité de probabilité de Z (qui dépend du rapport signal sur bruit).We start from the fact that the variables U and V are random in nature, and therefore Z is too. We then calculate the probability density of Z (which depends on the signal-to-noise ratio).

Il s'agit ensuite, en faisant appel au principe du maximum de vraisemblance, de déterminer la meilleure estimation du rapport signal sur bruit après avoir calculé la variable Z.Next, using the maximum likelihood principle, determine the best estimate of the signal-to-noise ratio after calculating the variable Z.

A cet effet, on mesure sur une tranche temporelle la variable U(n) précitée, et on mesure la variable y(n) sur une autre tranche temporelle où l'on est sûr qu'il n'y a pas de signal utile, mais uniquement du bruit (indépendant et décorrélé de s(n)).To this end, the aforementioned variable U (n) is measured on a time slice, and the variable y (n) is measured on another time slice where it is certain that there is no useful signal, but only noise (independent and decorrelated from s (n)).

Pour déterminer la densité de la variable aléatoire Z (que l'on peut qualifier de variable observée), on procède de la façon suivante. Soient X₁ appartenant à N (m₁ ; σ₁²) et X₂ appartenant à N (m₂ ; σ₂²) deux variables aléatoires gaussiennes indépendantes pour lesquelles les probabilités Pr {X₁ < o} et Pr {X₂ < o} sont pratiquement nulles.
   On pose : m = m₁/m₂, σ² = σ₁²/σ₂², α = m₂/σ₂.

Figure imgb0008
To determine the density of the random variable Z (which can be called the observed variable), we proceed as follows. Let X₁ belonging to N (m₁; σ₁²) and X₂ belonging to N (m₂; σ₂²) two independent Gaussian random variables for which the probabilities P r {X₁ <o} and P r {X₂ <o} are practically zero.
We ask: m = m₁ / m₂, σ² = σ₁² / σ₂², α = m₂ / σ₂.
Figure imgb0008

La densité de probabilité fx (x) de X est alors :

Figure imgb0009

où U(x) = 1 si x ≧ o et U(x) = o si x < o.The probability density f x (x) of X is then:
Figure imgb0009

where U (x) = 1 if x ≧ o and U (x) = o if x <o.

Si h(x) = α . x - m (x² + σ²) 1/2

Figure imgb0010

on a : P(x) = Pr {X < x} = F [h(x)], expression dans laquelle F(x) désigne la fonction caractéristique de la variable gaussienne normalisée.Yes h (x) = α. x - m (x² + σ²) 1/2
Figure imgb0010

we have: P (x) = P r {X <x} = F [h (x)], expression in which F (x) denotes the characteristic function of the normalized Gaussian variable.

On suppose maintenant que les signaux s(n), x(n) et y(n) sont blancs, gaussiens et centrés.We now assume that the signals s (n), x (n) and y (n) are white, Gaussian and centered.

On pose

Figure imgb0011
Figure imgb0012
We pose
Figure imgb0011
Figure imgb0012

Ce dernier terme est donc, lui aussi, blanc, gaussien et centré ;
   et on pose

Figure imgb0013
This last term is therefore also white, Gaussian and centered;
and we ask
Figure imgb0013

Puisque l'on définit σs² et σx², on suppose implicitement que le calcul de la densité de probabilité se fait à σs² et σx² connus. On évalue donc la densité de Z en connaissant σs² et σx². Dans ce cas, U et V suivent des lois du chi-2, et, pour N et M suffisamment grands, U et V sont approximées par des lois gaussiennes pratiquement toujours positives :

Figure imgb0014

Z est donc le rapport de deux variables gaussiennes indépendantes. On peut facilement démontrer que U et V sont indépendantes.
Avec : m₁ = σ u ² , σ₁² = 2σ u ⁴/N , m₂ = σ x ² , σ₂² = 2σ x ⁴/M
Figure imgb0015

il vient : m = σ u ²/σ x ² , σ² = (M/N) (σ u ²/σ x ²)², α = (M/2) 1/2 .
Figure imgb0016

Or : σu²/σx²= 1+ r où r = σs²/σx² est le rapport signal à bruit. Soit k = M/N, il vient : m = r+1, σ²= k(r+1)².Since we define σ s ² and σ x ², we implicitly assume that the probability density is calculated at σ s ² and σ x ² known. We therefore evaluate the density of Z by knowing σ s ² and σ x ². In this case, U and V follow laws of chi-2, and, for N and M sufficiently large, U and V are approximated by Gaussian laws practically always positive:
Figure imgb0014

Z is therefore the ratio of two independent Gaussian variables. We can easily demonstrate that U and V are independent.
With: m₁ = σ u ², σ₁² = 2σ u ⁴ / N, m₂ = σ x ², σ₂² = 2σ x ⁴ / M
Figure imgb0015

he comes : m = σ u ² / σ x ², σ² = (M / N) (σ u ² / σ x ²) ², α = (M / 2) 1/2 .
Figure imgb0016

Now: σ u ² / σ x ² = 1+ r where r = σ s ² / σ x ² is the signal to noise ratio. Let k = M / N, it comes: m = r + 1, σ² = k (r + 1) ².

La densité de probabilité de Z, connaissant σs² et σx², s'exprime donc par :

  • 1°) x ≧ 0
    Figure imgb0017
  • 2°) x ≦ 0 d'où: fz(z : σs², σx²) = 0

On posera :
Figure imgb0018

de sorte que : fz(z:σs², σx²) = fk,M(z,σs²/σx²)The probability density of Z, knowing σ s ² and σ x ², is therefore expressed by:
  • 1 °) x ≧ 0
    Figure imgb0017
  • 2 °) x ≦ 0 where: f z (z: σ s ², σ x ²) = 0

We will ask:
Figure imgb0018

so that: f z (z: σ s ², σ x ²) = f k, M (z, σ s ² / σ x ²)

D'après les résultats ci-dessus relatifs à la densité de probabilité fx(x), on déduit la probabilité Pr { Z < z : σ s ², σ x ²}.

Figure imgb0019
From the above results relating to the probability density f x (x), we deduce the probability Pr {Z <z: σ s ², σ x ²}.
Figure imgb0019

Soit : h k.M (x,r) = (M/2) 1/2 x - (r+1) [x² + k(r+1)²] 1/2

Figure imgb0020

Il vient : Pr {Z < z : σ s ² ; σ x ²} = F{h k,M (x,r)}.
Figure imgb0021
Is : h kM (x, r) = (M / 2) 1/2 x - (r + 1) [x² + k (r + 1) ²] 1/2
Figure imgb0020

He comes : Pr {Z <z: σ s ²; σ x ²} = F {h k, M (x, r)}.
Figure imgb0021

On va maintenant examiner le cas d'un signal quelconque s(n) et d'un bruit blanc gaussien.We will now examine the case of any signal s (n) and a white Gaussian noise.

On suppose toujours que les bruits x(n) et y(n) sont blancs, gaussiens avec σx² = E[x(n)²] = E[y(n)²]. Le signal utile s(n) est supposé quelconque, indépendant du bruit.We always assume that the noises x (n) and y (n) are white, Gaussian with σ x ² = E [x (n) ²] = E [y (n) ²]. The useful signal s (n) is assumed to be arbitrary, independent of noise.

L'hypothèse nouvelle faite ici est de supposer que s(n) et x(n) sont non corrélés au sens temporel du terme, c'est-à-dire que : c = Σ 0 ≦ n ≦ N-1 s (n) x (n) (Σ 0 ≦ n ≦ N-1 s(n)²) 1/2 (Σ 0 ≦ n ≦ N-1 x(n)²) 1/2 = 0

Figure imgb0022
The new hypothesis made here is to suppose that s (n) and x (n) are uncorrelated in the temporal sense of the term, that is to say that: c = Σ 0 ≦ n ≦ N-1 s (n) x (n) (Σ 0 ≦ n ≦ N-1 s (n) ²) 1/2 (Σ 0 ≦ n ≦ N-1 x (n) ²) 1/2 = 0
Figure imgb0022

On montre alors que U peut être approximée par : U = µ ² s + (1/N) Σ 0 ≦ n ≦ N-1 x(n)² et Z par :

Figure imgb0023
Z = µ s ² + (1/N) Σ 0 ≦ n ≦ N-1 x(n)² (1/M) Σ 0 ≦ n ≦ M-1 y(n)²
Figure imgb0024
We then show that U can be approximated by: U = µ ² s + (1 / N) Σ 0 ≦ n ≦ N-1 x (n) ² and Z by:
Figure imgb0023
Z = µ s ² + (1 / N) Σ 0 ≦ n ≦ N-1 x (n) ² (1 / M) Σ 0 ≦ n ≦ M-1 y (n) ²
Figure imgb0024

De même que ci-dessous, le calcul de la densité de Z s'est fait en connaissant σs²et σx², ici le calcul se fera en connaissant µs² et σx². La densité à calculer sera notée par fz(z:µ 2 s

Figure imgb0025
, σ 2 x
Figure imgb0026
).As below, the calculation of the density of Z was done by knowing σ s ² and σ x ², here the calculation will be done by knowing µ s ² and σ x ². The density to be calculated will be noted by f z (z: µ 2 s
Figure imgb0025
, σ 2 x
Figure imgb0026
).

Connaissant µs², U = µs² + (1/N) Σ 0≦n ≦ N-1 x(n)² appartient à

Figure imgb0027
s² + σx²; (2/N) σx⁴). V appartient à
Figure imgb0028
x² ; (2/M) σx⁴).Knowing µ s ², U = µ s ² + (1 / N) Σ 0 ≦ n ≦ N-1 x (n) ² belongs to
Figure imgb0027
s ² + σ x ²; (2 / N) σ x ⁴). V belongs to
Figure imgb0028
x ²; (2 / M) σ x ⁴).

Z = U/V est donc approchée par le rapport de deux lois gaussiennes indépendantes. Comme U et V sont indépendantes, on applique donc le résultat concernant la densité de probabilité de X, avec : m₁ = µ s ² + σ x ², σ₁² = (2/N) σ x ⁴, m₂ = σ x ², σ₂² = (2/M)σ x

Figure imgb0029

Donc : m = r+1, σ² = k, α = (M/2)1/2, avec k = M/N et r = µs²/σx².Z = U / V is therefore approximated by the ratio of two independent Gaussian laws. As U and V are independent, we therefore apply the result concerning the probability density of X, with: m₁ = µ s ² + σ x ², σ₁² = (2 / N) σ x ⁴, m₂ = σ x ², σ₂² = (2 / M) σ x
Figure imgb0029

So: m = r + 1, σ² = k, α = (M / 2) 1/2 , with k = M / N and r = µ s ² / σ x ².

La densité de probabilité de Z, connaissant µs² et σx² vaut donc :

Figure imgb0030

On posera :
Figure imgb0031

de sorte que : fz(z:σs², σx²) = fk,M(z, σs²/σx²)The probability density of Z, knowing µ s ² and σ x ² is therefore worth:
Figure imgb0030

We will ask:
Figure imgb0031

so that: f z (z: σ s ², σ x ²) = f k, M (z, σ s ² / σ x ²)

D'après les résultats ci-dessus concernant la densité de probabilité de X, on en déduit la probabilité Pr { Z < z : µ s ², σ x ²}.

Figure imgb0032

Soit : h k,M (x,r) = (M/2) 1/2 x - (r+1) [x² + k] 1/2
Figure imgb0033

il vient : Pr { Z < z : µ s , σ x ² } = F (h k,M (x,r))
Figure imgb0034
From the above results concerning the probability density of X, we deduce the probability Pr {Z <z: µ s ², σ x ²}.
Figure imgb0032

Is : h k, M (x, r) = (M / 2) 1/2 x - (r + 1) [x² + k] 1/2
Figure imgb0033

he comes : Pr {Z <z: µ s , σ x ²} = F (h k, M (x, r))
Figure imgb0034

Selon la présente invention, on met en oeuvre la détection d'activité en faisant appel au maximum de vraisemblance.According to the present invention, the activity detection is implemented by using maximum likelihood.

Dans les cas de signaux traités, la densité de probabilité de la variable Z, connaissant les énergies du signal utile et du bruit, s'exprime par une fonction de la forme :
fk,M(z,r) où r désigne le rapport signal à bruit. Cette probabilité dépend donc du rapport signal sur bruit. Aussi, la règle de décision ne peut se donner qu'à rapport signal sur bruit attendu. Soit donc ro ce rapport signal à bruit attendu.
In the case of processed signals, the probability density of the variable Z, knowing the energies of the useful signal and of the noise, is expressed by a function of the form:
f k, M (z, r) where r denotes the signal to noise ratio. This probability therefore depends on the signal to noise ratio. Also, the decision rule can only be given with an expected signal-to-noise ratio. Let r o be this expected signal-to-noise ratio.

On suppose que la probabilité d'absence de s(n) est πo et que la probabilité de présence de s(n) est π₁.We suppose that the probability of absence of s (n) is π o and that the probability of presence of s (n) is π₁.

Puisqu'on connaît la densité de probabilité fk,M(z,r) la règle de décision optimale est fournie par la théorie générale de la détection et s'exprime par : π₁ f k,M (z,r o ) π o f k,M (z,0) > 1 ⇒ D = 1

Figure imgb0035
π₁ f k,M (z,r o ) π o f k,M (z,0) < 1 ⇒ D = 0
Figure imgb0036
Since we know the probability density f k, M (z, r) the optimal decision rule is provided by the general theory of detection and is expressed by: π₁ f k, M (z, r o ) π o f k, M (z, 0) > 1 ⇒ D = 1
Figure imgb0035
π₁ f k, M (z, r o ) π o f k, M (z, 0) <1 ⇒ D = 0
Figure imgb0036

On peut aussi exprimer cette régle de décision sous la forme : (Z < µ ⇒ D = 0) et (Z > µ ⇒ D = 1).

Figure imgb0037
We can also express this decision rule in the form: (Z <µ ⇒ D = 0) and (Z> µ ⇒ D = 1).
Figure imgb0037

Il faut alors déterminer µ et résoudre l'équation : ln[f k,M (z,r o )] - ln[f k,M (z, 0)] - ln(π o /π₁) = 0.

Figure imgb0038
We must then determine µ and solve the equation: ln [f k, M (z, r o )] - ln [f k, M (z, 0)] - ln (π o / π₁) = 0.
Figure imgb0038

On démontre alors que la probabilité d'errreur vaut : Pe = π o [1 - F(h k,M (µ,0))] + π₁ F(h k,M (µ,r o )).

Figure imgb0039
We then demonstrate that the probability of error is worth: Pe = π o [1 - F (h k, M (µ, 0))] + π₁ F (h k, M (µ, r o )).
Figure imgb0039

On va maintenant examiner le cas de la détection d'un signal blanc gaussien dans un bruit lui-même blanc gaussien.We will now examine the case of the detection of a white Gaussian signal in a white Gaussian noise itself.

Les signaux s(n), x(n) et y(n) sont supposés blancs, gaussiens, centrés. Soit ro le rapport signal à bruit attendu, et k = M/N. la probabilité d'absence de s(n) est πo et la probabilité de présence de s(n) est π₁.The signals s (n), x (n) and y (n) are assumed to be white, Gaussian, centered. Let r o be the expected signal-to-noise ratio, and k = M / N. the probability of absence of s (n) is π o and the probability of presence of s (n) is π₁.

La règle de décision est alors :
Décision D = 1 lorsque :

Figure imgb0040

Décision D = 0 lorsque :
Figure imgb0041
The decision rule is then:
Decision D = 1 when:
Figure imgb0040

Decision D = 0 when:
Figure imgb0041

Le seuil étant déterminé pour l'égalité (au lieu d'inégalité) entre les termes de ces deux expressions.The threshold being determined for equality (instead of inequality) between the terms of these two expressions.

On peut aussi exprimer cette règle de décision sous la forme : (Z < µ ⇒ D = 0) et (Z > µ ⇒ D = 1).

Figure imgb0042

On obtient par exemple pour µ, à M = N = 128, πo = π₁ = 1/2 : ro en dB µ -2 1,27 -1 1,34 0 1,41 1 1,50 2 1,68 We can also express this decision rule in the form: (Z <µ ⇒ D = 0) and (Z> µ ⇒ D = 1).
Figure imgb0042

We obtain for example for µ, at M = N = 128, π o = π₁ = 1/2: r o in dB µ -2 1.27 -1 1.34 0 1.41 1 1.50 2 1.68

La probabilité d'erreur est : Pe = π o [1-F(h k,M (µ,0))] + π₁ F(h k,M (µ,r o ))

Figure imgb0043

avec : h k,M (x,r) = (M/2) 1/2 x - (r+1) [x² + k(r+1)²] 1/2
Figure imgb0044
The probability of error is: Pe = π o [1-F (h k, M (µ, 0))] + π₁ F (h k, M (µ, r o ))
Figure imgb0043

with: h k, M (x, r) = (M / 2) 1/2 x - (r + 1) [x² + k (r + 1) ²] 1/2
Figure imgb0044

Nous donnons ci-après quelques valeurs de Pe fonction de ro . πo et π₁ sont prises égales à 0,5. ro en dB Pe -2 0,086 -1 0,052 0 0,028 1 0,013 2 0,005 We give below some values of Pe as a function of r o . π o and π₁ are taken equal to 0.5. r o in dB Pe -2 0.086 -1 0.052 0 0.028 1 0.013 2 0.005

Dans un exemple de simulation, on a généré un bruit blanc gaussien de variance unité. Pour chaque trame de 128 points (N = M = 128), on a décidé aléatoirement de générer un bruit s(n) additif, présentant un rapport signal sur bruit défini préalablement. Les probabilités d'apparition et d'absence (πo et π₁) sont égales à 0,5. On a généré un second bruit blanc gaussien de variance unité, qui a servi à calculer la variable aléatoire V. Pour chaque trame, on a calculé Z. On a appliqué alors la règle de décision et l'on a compté le nombre d'erreurs. ro en dB Nombre d'erreurs sur 1000 itérations -2 73 -1 43 0 18 1 10 2 2 In a simulation example, a white Gaussian noise with unit variance was generated. For each frame of 128 points (N = M = 128), it was randomly decided to generate an additive noise s (n), having a signal to noise ratio defined beforehand. The probabilities of appearance and absence (π o and π₁) are equal to 0.5. We generated a second Gaussian white noise with unit variance, which was used to calculate the random variable V. For each frame, we calculated Z. We then applied the decision rule and we counted the number of errors . r o in dB Number of errors in 1000 iterations -2 73 -1 43 0 18 1 10 2 2

Ces résultats corroborent ceux prévus par le calcul théorique.These results corroborate those predicted by the theoretical calculation.

On va maintenant examiner le cas d'un signal quelconque s(n) et d'un bruit blanc gaussien.We will now examine the case of any signal s (n) and a white Gaussian noise.

On suppose toujours que les bruits x(n) et y(n) sont blancs, gaussiens avec σx²= E[x(n)²]=E[y(n)²]. Le signal utile s(n) est supposé quelconque, indépendant du bruit. Soit ro le rapport signal à bruit attendu, k = M/N. La probabilité d'absence de s(n) est πo et celle de présence de s(n) est π₁.
La règle de décision est alors :
Décision D = 1 lorsque : ln (r+1) z+k z+k > (M/4) [z-(r o +1)]² - (z-1)² z²+k + ln π o π₁

Figure imgb0045

Décision D = 0 lorsque : ln (r+1) z+k z+k < (M/4) [z-(r o +1)]² - (z-1)² z²+k + ln π o π₁
Figure imgb0046
We always assume that the noises x (n) and y (n) are white, Gaussian with σ x ² = E [x (n) ²] = E [y (n) ²]. The useful signal s (n) is assumed to be arbitrary, independent of noise. Let r o be the expected signal-to-noise ratio, k = M / N. The probability of absence of s (n) is π o and that of presence of s (n) is π₁.
The decision rule is then:
Decision D = 1 when: ln (r + 1) z + k z + k > (M / 4) [z- (r o +1)] ² - (z-1) ² z² + k + ln π o π₁
Figure imgb0045

Decision D = 0 when: ln (r + 1) z + k z + k <(M / 4) [z- (r o +1)] ² - (z-1) ² z² + k + ln π o π₁
Figure imgb0046

On peut aussi exprimer cette règle de décision sous la forme : (Z < µ ⇒ D = 0) et (Z > µ ⇒ D = 1).

Figure imgb0047
We can also express this decision rule in the form: (Z <µ ⇒ D = 0) and (Z> µ ⇒ D = 1).
Figure imgb0047

On obtient pour µ les valeurs suivantes en fonction de ro, pour M = N = 128, πo = π₁ = 1/2. ro en dB µ -2 1,30 -1 1,38 0 1,48 1 1,60 2 1,76 The following values are obtained for µ as a function of r o , for M = N = 128, π o = π₁ = 1/2. r o in dB µ -2 1.30 -1 1.38 0 1.48 1 1.60 2 1.76

De plus, on obtient : Pe = π o [ 1-F (h k,M (µ,0)) ] + π₁ F (h k,M (µ, r o ))

Figure imgb0048

avec : h k,M (x,r) = (M/2) 1/2 x - (r+1) [x² + k ] 1/2
Figure imgb0049
In addition, we get: Pe = π o [1-F (h k, M (µ, 0))] + π₁ F (h k, M (µ, r o ))
Figure imgb0048

with: h k, M (x, r) = (M / 2) 1/2 x - (r + 1) [x² + k] 1/2
Figure imgb0049

Nous donnons ci-après quelques valeurs de Pe en fonction de ro. Les probabilités πo et πosont prises égales à 0,5. ro en dB Pe -2 0,062 -1 0,032 0 0,013 1 0,004 2 0,001 We give below some values of Pe as a function of r o . The probabilities π o and π o are taken equal to 0.5. r o in dB Pe -2 0.062 -1 0.032 0 0.013 1 0.004 2 0.001

Dans un exemple de simulation, pour chaque trame de 128 points de bruit blanc généré (N = M = 128), on a décidé aléatoirement d'y ajouter s(n), qui est ici, une sinusoïde, présentant un rapport signal sur bruit défini préalablement. π₁ et πo sont prises égales à 0,5.In a simulation example, for each frame of 128 points of white noise generated (N = M = 128), we decided randomly to add s (n), which is here, a sinusoid, presenting a signal to noise ratio defined beforehand. π₁ and π o are taken equal to 0.5.

On a généré un second bruit blanc gaussien de variance unité, servant à calculer V. Pour chaque trame, on a calculé Z et on a appliqué la règle de décision précitée. On a compté le nombre d'erreurs.A second white Gaussian noise of unit variance was generated, used to calculate V. For each frame, Z was calculated and the above decision rule was applied. We counted the number of errors.

On a obtenu les résultats suivants ro en dB Nombre d'erreurs sur 1000 itérations -2 70 -1 37 0 12 1 6 2 3 The following results were obtained r o in dB Number of errors in 1000 iterations -2 70 -1 37 0 12 1 6 2 3

Ces résultats corroborent ceux prévus par le calcul théorique.These results corroborate those predicted by the theoretical calculation.

Les résultats précédents, parce que très généraux, permettent la détection de signaux noyés dans du bruit additif, même lorsque le rapport signal sur bruit est faible, voisin de 0 dB.The previous results, because they are very general, allow the detection of signals embedded in additive noise, even when the signal to noise ratio is low, close to 0 dB.

On va décrire ci-dessous une application dans laquelle ce type de détection peut se révéler très utile.We will describe below an application in which this type of detection can be very useful.

Les algorithmes présentés s'appliquent au cas de la parole, comme pré-système de détection d'activité vocale.The algorithms presented apply to the case of speech, as a pre-system for detecting voice activity.

Le choix du seuil de détection dépend du contexte.The choice of detection threshold depends on the context.

En ce qui concerne les bandes audio utilisées, une caractérisation préalable du bruit et de la parole, à l'aide de mesures basées sur l'estimation par maximum de vraisemblance montre que le signal vocal à détecter présente un rapport signal sur bruit d'au moins 6 dB.With regard to the audio tapes used, a preliminary characterization of noise and speech, using measurements based on the maximum likelihood estimation shows that the speech signal to be detected has a signal-to-noise ratio of at least minus 6 dB.

D'autre part, le système de traitement utilise des trames de signal de 128 points, la fréquence d'échantillonnage étant de 10 kHz.On the other hand, the processing system uses 128 point signal frames, the sampling frequency being 10 kHz.

Les variables U et V sont toutes les deux évaluées sur 128 points de sorte que M = N = 128.The variables U and V are both evaluated on 128 points so that M = N = 128.

D'après ce qui précède, on déduit le seuil théorique de détection à 3.From the above, the theoretical detection threshold is deduced from 3.

Cependant, on ne peut pas se contenter de cet unique seuil. En effet, si le bruit est relativement stationnaire, il présente des instationnarités à prendre en compte pour renouveler la variable V, ce qui permet de rendre l'algorithme partiellement adaptatif.However, we cannot be satisfied with this single threshold. In fact, if the noise is relatively stationary, it has instabilities to be taken into account to renew the variable V, which makes the algorithm partially adaptive.

On introduit donc un second seuil, qui permet de décider si la variable V va être renouvelée ou non.A second threshold is therefore introduced, which makes it possible to decide whether the variable V will be renewed or not.

Ce second seuil est choisi à 1,25, ce qui correspond à un bruit additif au bruit stationnaire présentant un rapport signal à bruit de -2 dB.This second threshold is chosen at 1.25, which corresponds to noise additive to stationary noise having a signal to noise ratio of -2 dB.

La règle de décision est alors :The decision rule is then:

Si Z < 1,25 : If Z <1.25 :

Alors la trame traitée est composée du même bruit que celle utilisée comme référence. La variable V est remplacée par la valeur de l'énergie de la trame traitée.Then the processed frame is composed of the same noise as that used as a reference. The variable V is replaced by the value of the energy of the processed frame.

On notera que, puisque la décision est de considérer la trame traitée comme du bruit représentatif, on pourrait renouveler la variable V en faisant la moyenne de l'ancienne valeur de V et de l'énergie de la trame considérée. Ce qui amène à changer la valeur de M (nombre de points sur lequel est évalué V) mais cette opération peut induire un mauvais fonctionnement de l'algorithme.Note that since the decision is to consider the frame processed as representative noise, we could renew the variable V by averaging the old value of V and the energy of the frame considered. Which brings to change the value of M (number of points on which V is evaluated) but this operation can induce a malfunction of the algorithm.

Si 1,25 < z > 3 : If 1.25 <z> 3 :

La trame est considérée comme contenant une non-stationnarité du bruit, et exempte de parole.The frame is considered to contain non-stationarity of the noise, and free of speech.

Si 3 < Z : If 3 <Z :

La trame est considéré comme de la parole.The frame is considered to be speech.

Des essais effectués sur des échantillons de signaux bruités ont validé cette détection.Tests carried out on samples of noisy signals have validated this detection.

Cependant, rappelons que cette détection vocale peut être améliorée par l'utilisation de critères propres au signal de parole, tel que le calcul de "pitch".However, remember that this voice detection can be improved by the use of criteria specific to the speech signal, such as the calculation of "pitch".

L'algorithme proposé ici concerne l'étude de quelques exemples de signaux. Il est évident que pour d'autres signaux de parole présentant des rapports signal à bruit différents, un nouveau choix de seuils est nécessaire.The algorithm proposed here concerns the study of some examples of signals. It is obvious that for other speech signals having different signal to noise ratios, a new choice of thresholds is necessary.

L'utilisation de deux seuils est généralement préférable.The use of two thresholds is generally preferable.

Une application de cet algorithme permet de créer des fichiers de référence corrects pour le système de reconnaissance vocale étudié. Une segmentation précise des élocutions est alors nécessaire.An application of this algorithm makes it possible to create correct reference files for the voice recognition system studied. A precise segmentation of speech is then necessary.

Dans une application, on a utilisé un alternat micro (ouverture et fermeture micro) qui fournit une segmentation grossière des élocutions.In one application, a micro alternation (micro opening and closing) was used which provides rough segmentation of speech.

L'algorithme précédent a été utilisé pour affiner cet alternat. Une première passe de l'algorithme a permis de préciser le début de l'élocution. Une seconde passe a consisté à lire le fichier de parole "à l'envers", c'est-à-dire en partant de la fermeture micro vers l'ouverture micro. Ce qui a permis alors de préciser la fin de l'élocution.The previous algorithm was used to refine this alternation. A first pass of the algorithm made it possible to specify the start of the speech. A second pass consisted in reading the speech file "upside down", that is to say starting from the microphone closure towards the microphone opening. This then made it possible to specify the end of the speech.

Cette utilisation non causale de l'algorithme est nécessaire, car la détection d'activité est suffisamment précise pour détecter, à l'intérieur des mots, la présence de silences, ce qui est préjudiciable à une mise en place d'une segmentation pour les apprentissages.This non-causal use of the algorithm is necessary, since the activity detection is precise enough to detect, within words, the presence of rests, which is detrimental to the establishment of segmentation for the learning.

Le même type d'application permet aussi de segmenter les fichiers de parole sur lesquels on effectue une reconnaissance.The same type of application also makes it possible to segment the speech files on which a recognition is carried out.

Cependant, cet algorithme n'est évidemment pas causal, ce qui est préjudiciable à une utilisation temps réel. D'où la nécessité de compléter cet algorithme par un calcul propre au traitement de la parole.However, this algorithm is obviously not causal, which is detrimental to real-time use. Hence the need to complete this algorithm with a calculation specific to speech processing.

Nous avons démontré l'existence de seuils optimaux de détection, ce qui permet d'avoir une approche théorique du problème de l'estimation du rapport signal sur bruit et, surtout de la détection, dans le cas d'un bruit blanc et d'un signal connu seulement par son énergie sur N points lorsque celle-ci reste relativement stationnaire.We have demonstrated the existence of optimal detection thresholds, which provides a theoretical approach to the problem of estimating the signal-to-noise ratio and, especially of detection, in the case of white noise and a signal known only by its energy on N points when it remains relatively stationary.

Claims (5)

Procédé de détection d'un signal utile bruité, pour lequel on dispose du rapport signal/bruit attendu du signal à traiter, et d'une mesure du bruit seul estimé, mesure numérisée sur M points, caractérisé par le fait qu'on calcule l'énergie moyenne du bruit sur ces M points, on prend une tranche de N points de signal bruité, on calcule l'énergie moyenne de ces N points, on calcule le seuil de détection théorique, on calcule le rapport (Z) des deux dites énergies moyennes, et on compare ce rapport audit seuil.Method for detecting a noisy useful signal, for which there is the expected signal / noise ratio of the signal to be processed, and a measurement of the estimated noise alone, measurement digitized on M points, characterized by the fact that l average energy of the noise on these M points, we take a slice of N noisy signal points, we calculate the average energy of these N points, we calculate the theoretical detection threshold, we calculate the ratio (Z) of the two so-called average energies, and this ratio is compared to said threshold. Procédé selon la revendication 1, caractérisé par le fait que le bruit seul estimé est blanc ou rendu blanc.Method according to claim 1, characterized in that the only estimated noise is white or made white. Procédé selon l'une des revendications précédentes, caractérisé par le fait que le seuil de détection théorique est déterminé pour : ln (r+1)z+k z+k = (M/4) [z-(r o +1)]² - (z-1)² z²+k + ln π o π₁
Figure imgb0050
ro étant le rapport signal à bruit attendu, k = M/N, πo étant la probabilité d'absence du signal utile et π₁ sa probabilité de présence.
Method according to one of the preceding claims, characterized in that the theoretical detection threshold is determined for: ln (r + 1) z + k z + k = (M / 4) [z- (r o +1)] ² - (z-1) ² z² + k + ln π o π₁
Figure imgb0050
r o being the expected signal to noise ratio, k = M / N, π o being the probability of absence of the useful signal and π₁ its probability of presence.
Procédé selon l'une des revendications 1 ou 2 pour la détection d'un signal blanc gaussien, caractérisé par le fait que le seuil de détection théorique est déterminé pour :
Figure imgb0051
Method according to one of claims 1 or 2 for the detection of a white Gaussian signal, characterized in that the theoretical detection threshold is determined for:
Figure imgb0051
Procédé selon l'une des revendications 1 à 3, pour la détection de la parole, caractérisé par le fait qu'en plus du seuil de détection théorique on utilise un second seuil de décision de mise à jour de la tranche mesurée du bruit seul estimé, afin de tenir compte des instationnarités du bruit.Method according to one of claims 1 to 3, for the detection of speech, characterized in that, in addition to the theoretical detection threshold, a second decision threshold is used to update the measured portion of the estimated noise alone , in order to take account of the instarity of the noise.
EP92401553A 1991-06-14 1992-06-05 Method for detecting a noisy wanted signal Expired - Lifetime EP0518742B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9107323 1991-06-14
FR9107323A FR2677828B1 (en) 1991-06-14 1991-06-14 METHOD FOR DETECTION OF A NOISE USEFUL SIGNAL.

Publications (2)

Publication Number Publication Date
EP0518742A1 true EP0518742A1 (en) 1992-12-16
EP0518742B1 EP0518742B1 (en) 1998-04-15

Family

ID=9413874

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92401553A Expired - Lifetime EP0518742B1 (en) 1991-06-14 1992-06-05 Method for detecting a noisy wanted signal

Country Status (6)

Country Link
US (1) US5337251A (en)
EP (1) EP0518742B1 (en)
JP (1) JPH06503185A (en)
DE (1) DE69225090T2 (en)
FR (1) FR2677828B1 (en)
WO (1) WO1992022889A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994022131A2 (en) * 1993-03-25 1994-09-29 British Telecommunications Public Limited Company Speech recognition with pause detection
EP0620546A2 (en) * 1993-04-16 1994-10-19 Sextant Avionique Energy detection procedure for noisy signals
US5819222A (en) * 1993-03-31 1998-10-06 British Telecommunications Public Limited Company Task-constrained connected speech recognition of propagation of tokens only if valid propagation path is present
US6230128B1 (en) 1993-03-31 2001-05-08 British Telecommunications Public Limited Company Path link passing speech recognition with vocabulary node being capable of simultaneously processing plural path links
CN104316915A (en) * 2014-10-22 2015-01-28 中国船舶重工集团公司第七〇五研究所 Distortion resistance weak signal detection threshold processing method used in torpedo homing system

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5544250A (en) * 1994-07-18 1996-08-06 Motorola Noise suppression system and method therefor
US5488377A (en) * 1995-03-28 1996-01-30 Mcdonnell Douglas Corporation Method and apparatus for controlling the false alarm rate of a receiver
US6263307B1 (en) 1995-04-19 2001-07-17 Texas Instruments Incorporated Adaptive weiner filtering using line spectral frequencies
GB2303471B (en) * 1995-07-19 2000-03-22 Olympus Optical Co Voice activated recording apparatus
FR2744277B1 (en) * 1996-01-26 1998-03-06 Sextant Avionique VOICE RECOGNITION METHOD IN NOISE AMBIENCE, AND IMPLEMENTATION DEVICE
DE69735107T2 (en) 1996-11-14 2006-08-31 Auto-Sense, Ltd., Lakewood DETECTION SYSTEM WITH INCREASED NOISE TOLERANCE
DE69831991T2 (en) * 1997-03-25 2006-07-27 Koninklijke Philips Electronics N.V. Method and device for speech detection
FR2765715B1 (en) 1997-07-04 1999-09-17 Sextant Avionique METHOD FOR SEARCHING FOR A NOISE MODEL IN NOISE SOUND SIGNALS
US6178161B1 (en) * 1997-10-31 2001-01-23 Nortel Networks Corporation Communications methods and apparatus
US6327564B1 (en) * 1999-03-05 2001-12-04 Matsushita Electric Corporation Of America Speech detection using stochastic confidence measures on the frequency spectrum
US6611150B1 (en) 1999-03-31 2003-08-26 Sadelco, Inc. Leakage detector for use in combination with a signal level meter
DE19939102C1 (en) * 1999-08-18 2000-10-26 Siemens Ag Speech recognition method for dictating system or automatic telephone exchange
US6054927A (en) * 1999-09-13 2000-04-25 Eaton Corporation Apparatus and method for sensing an object within a monitored zone
FR2808917B1 (en) * 2000-05-09 2003-12-12 Thomson Csf METHOD AND DEVICE FOR VOICE RECOGNITION IN FLUATING NOISE LEVEL ENVIRONMENTS
AU2001292963A1 (en) * 2000-09-21 2002-04-02 The Regents Of The University Of California Visual display methods for use in computer-animated speech production models
US7136813B2 (en) * 2001-09-25 2006-11-14 Intel Corporation Probabalistic networks for detecting signal content
US6681194B2 (en) 2001-12-21 2004-01-20 General Electric Company Method of setting a trigger point for an alarm
US7197456B2 (en) * 2002-04-30 2007-03-27 Nokia Corporation On-line parametric histogram normalization for noise robust speech recognition
US7190741B1 (en) 2002-10-21 2007-03-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Real-time signal-to-noise ratio (SNR) estimation for BPSK and QPSK modulation using the active communications channel
US8032370B2 (en) 2006-05-09 2011-10-04 Nokia Corporation Method, apparatus, system and software product for adaptation of voice activity detection parameters based on the quality of the coding modes
US7876247B1 (en) * 2007-11-29 2011-01-25 Shawn David Hunt Signal dependent dither
US9241672B2 (en) * 2012-02-09 2016-01-26 Sharp Laboratories Of America, Inc. Determining usability of an acoustic signal for physiological monitoring using frequency analysis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4052568A (en) * 1976-04-23 1977-10-04 Communications Satellite Corporation Digital voice switch
US4410763A (en) * 1981-06-09 1983-10-18 Northern Telecom Limited Speech detector

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2466825A1 (en) * 1979-09-28 1981-04-10 Thomson Csf DEVICE FOR DETECTING VOICE SIGNALS AND ALTERNAT SYSTEM COMPRISING SUCH A DEVICE
JPS59139099A (en) * 1983-01-31 1984-08-09 株式会社東芝 Voice section detector
FR2583938A1 (en) * 1985-06-21 1986-12-26 Labo Electronique Physique DIGITAL QUADRATURE FILTER AND DIGITAL SIGNAL DEMODULATOR FREQUENCY MODULE COMPRISING SUCH A FILTER
US4630304A (en) * 1985-07-01 1986-12-16 Motorola, Inc. Automatic background noise estimator for a noise suppression system
US4914418A (en) * 1989-01-03 1990-04-03 Emerson Electric Co. Outbound detector system and method
US5029187A (en) * 1989-05-22 1991-07-02 Motorola, Inc. Digital correlation receiver
US5093842A (en) * 1990-02-22 1992-03-03 Harris Corporation Mechanism for estimating Es/No from pseudo error measurements
US5097486A (en) * 1990-07-31 1992-03-17 Ampex Corporation Pipelined decision feedback decoder
US5142554A (en) * 1990-10-31 1992-08-25 Rose Communications, Inc. Data separator with noise-tolerant adaptive threshold

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4052568A (en) * 1976-04-23 1977-10-04 Communications Satellite Corporation Digital voice switch
US4410763A (en) * 1981-06-09 1983-10-18 Northern Telecom Limited Speech detector

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IBM TECHNICAL DISCLOSURE BULLETIN, vol. 29, no. 12, May 1987, pages 5606-5609, Armonk, New York, US; "Digital signal processing algorithm for microphone input energy detection having adaptive sensitivity" *
IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, vol. ASSP-31, no. 3, juin 1983, pages 678-684, New York, US; P. DE SOUZA: "A statistical approach to the design of an adaptive self-normalizing silence detector" *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994022131A2 (en) * 1993-03-25 1994-09-29 British Telecommunications Public Limited Company Speech recognition with pause detection
WO1994022131A3 (en) * 1993-03-25 1995-01-12 British Telecomm Speech recognition with pause detection
US5848388A (en) * 1993-03-25 1998-12-08 British Telecommunications Plc Speech recognition with sequence parsing, rejection and pause detection options
US5819222A (en) * 1993-03-31 1998-10-06 British Telecommunications Public Limited Company Task-constrained connected speech recognition of propagation of tokens only if valid propagation path is present
US6230128B1 (en) 1993-03-31 2001-05-08 British Telecommunications Public Limited Company Path link passing speech recognition with vocabulary node being capable of simultaneously processing plural path links
EP0620546A2 (en) * 1993-04-16 1994-10-19 Sextant Avionique Energy detection procedure for noisy signals
FR2704111A1 (en) * 1993-04-16 1994-10-21 Sextant Avionique Method for energy detection of signals embedded in noise
EP0620546A3 (en) * 1993-04-16 1994-12-14 Sextant Avionique Energy detection procedure for noisy signals.
US5511009A (en) * 1993-04-16 1996-04-23 Sextant Avionique Energy-based process for the detection of signals drowned in noise
CN104316915A (en) * 2014-10-22 2015-01-28 中国船舶重工集团公司第七〇五研究所 Distortion resistance weak signal detection threshold processing method used in torpedo homing system

Also Published As

Publication number Publication date
FR2677828A1 (en) 1992-12-18
US5337251A (en) 1994-08-09
DE69225090T2 (en) 1998-08-06
EP0518742B1 (en) 1998-04-15
WO1992022889A1 (en) 1992-12-23
FR2677828B1 (en) 1993-08-20
DE69225090D1 (en) 1998-05-20
JPH06503185A (en) 1994-04-07

Similar Documents

Publication Publication Date Title
EP0518742B1 (en) Method for detecting a noisy wanted signal
US6782363B2 (en) Method and apparatus for performing real-time endpoint detection in automatic speech recognition
US6453285B1 (en) Speech activity detector for use in noise reduction system, and methods therefor
US6711536B2 (en) Speech processing apparatus and method
US10854220B2 (en) Pitch detection algorithm based on PWVT of Teager energy operator
US6351731B1 (en) Adaptive filter featuring spectral gain smoothing and variable noise multiplier for noise reduction, and method therefor
US8019089B2 (en) Removal of noise, corresponding to user input devices from an audio signal
US9142221B2 (en) Noise reduction
EP0620546B1 (en) Energy detection procedure for noisy signals
US6477489B1 (en) Method for suppressing noise in a digital speech signal
EP1008140B1 (en) Waveform-based periodicity detector
EP2318854B1 (en) Method for protecting a radio navigation receiver user against aberrant pseudo-range measurements
EP1877826B1 (en) Markov sequence detection
US6678657B1 (en) Method and apparatus for a robust feature extraction for speech recognition
FR2697101A1 (en) Speech detection method
US8046215B2 (en) Method and apparatus to detect voice activity by adding a random signal
US20100161326A1 (en) Speech recognition system and method
US6411925B1 (en) Speech processing apparatus and method for noise masking
JPS62261255A (en) Method of detecting tone
EP1016071B1 (en) Method and apparatus for detecting speech activity
US6560575B1 (en) Speech processing apparatus and method
US6865529B2 (en) Method of estimating the pitch of a speech signal using an average distance between peaks, use of the method, and a device adapted therefor
US8280725B2 (en) Pitch or periodicity estimation
EP0530645B1 (en) Telephone signal classification and phone message delivery method and system
EP0714088A1 (en) Voice activity detection

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19930420

17Q First examination report despatched

Effective date: 19951206

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI LU NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 69225090

Country of ref document: DE

Date of ref document: 19980520

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980605

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990512

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010525

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020606

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050605

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090603

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090619

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090603

Year of fee payment: 18

Ref country code: DE

Payment date: 20090529

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100729

Year of fee payment: 19

BERE Be: lapsed

Owner name: *SEXTANT AVIONIQUE

Effective date: 20100630

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100605

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630