EP0518742B1 - Method for detecting a noisy wanted signal - Google Patents

Method for detecting a noisy wanted signal Download PDF

Info

Publication number
EP0518742B1
EP0518742B1 EP92401553A EP92401553A EP0518742B1 EP 0518742 B1 EP0518742 B1 EP 0518742B1 EP 92401553 A EP92401553 A EP 92401553A EP 92401553 A EP92401553 A EP 92401553A EP 0518742 B1 EP0518742 B1 EP 0518742B1
Authority
EP
European Patent Office
Prior art keywords
noise
signal
threshold
ratio
white
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92401553A
Other languages
German (de)
French (fr)
Other versions
EP0518742A1 (en
Inventor
Dominique Pastor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales Avionics SAS
Original Assignee
Thales Avionics SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales Avionics SAS filed Critical Thales Avionics SAS
Publication of EP0518742A1 publication Critical patent/EP0518742A1/en
Application granted granted Critical
Publication of EP0518742B1 publication Critical patent/EP0518742B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/78Detection of presence or absence of voice signals

Definitions

  • the present invention relates to a method of detection of a noisy useful signal.
  • thresholds allow a first presumption on the presence or absence of the signal. They are also applicable at any signal. Also, are they supplemented by “confirmation”, defining “almost certain” criteria, specific to the type of useful signal, when the nature thereof is known a priori.
  • Such a complementary system is widely used in speech processing and can consist, for example, of a pitch extraction or minimum energy evaluation a vowel.
  • the subject of the present invention is a method of detection of a noisy useful signal, determining in the most rigorous possible the detection threshold, and able to work self-adaptively.
  • the signal / noise ratio is available expected signal to be processed, and we have a noise measurement only estimate, measurement digitized on M points, this noise being white or rendered white, we calculate an estimate of the average noise energy on these M points, we take a slice of N noisy signal points, we calculate an estimate of the average energy of these N points, we calculate a detection threshold different from 1 from the expected signal / noise ratio; we calculates the ratio of the two so-called estimated average energies, we compare this ratio to said threshold, and if this ratio is greater than the threshold, we decides on the presence of a useful signal, and if it is below this threshold, we decides that there is no useful signal.
  • u (n) s (n) + x (n) n being an integer: 0 ⁇ n ⁇ N-1, s (n) being a useful signal and x (n) a noise.
  • y (n) is a measure of the noise x (n) over another time slot free of useful signal.
  • the theoretical threshold of 1 is replaced by a threshold ⁇ , calculated as explained below, which takes into account the fact that the signals available are not perfectly ergodic and that U and V are only estimates of the true values of the variances ⁇ u 2 and ⁇ x 2.
  • f x (x) -1/2 1 2 ⁇ mx + ⁇ 2 (x 2 + ⁇ 2 ) 3/2 . e - ⁇ 2 2 . (x - m) 2 x 2 + ⁇ 2 .
  • the calculation of the density of Z was done by knowing ⁇ s 2 and ⁇ x 2 , here the calculation will be done by knowing ⁇ s 2 and ⁇ x 2 .
  • the density to be calculated will be noted by f z (z: ⁇ 2 / s, ⁇ 2 / x).
  • U ⁇ s 2 + (1 / N) ⁇ 0 ⁇ n ⁇ N-1 x (n) 2 belongs to ( ⁇ s 2 + ⁇ x 2 ; (2 / N) ⁇ x 4 ).
  • V belongs to ( ⁇ x 2 ; (2 / M) ⁇ x 4 ).
  • the activity detection using a maximum of likelihood.
  • the probability density of the variable Z is expressed by a function of the form: f k, M (z, r) where r denotes the signal to noise ratio. This probability therefore depends on the signal to noise ratio. Also, the decision rule can only be given with an expected signal-to-noise ratio. Let r o be this expected signal-to-noise ratio.
  • the threshold being determined for equality (instead of inequality) between the terms of these two expressions.
  • n additive noise
  • ⁇ o and ⁇ 1 The probability of appearance and absence ( ⁇ o and ⁇ 1 ) is equal to 0.5.
  • detection threshold depends on the context.
  • a noise and speech characterization using measures based on maximum likelihood estimation shows that the voice signal to be detected has a signal ratio on noise of at least 6 dB.
  • the processing system uses 128-point signal frames, the sampling frequency being 10 kHz.
  • This second threshold is chosen at 1.25, which corresponds to additive noise to stationary noise with a ratio signal to noise of -2 dB.
  • the use of two thresholds is generally preferable.
  • micro switch micro opening and closing
  • the same type of application also allows to segment speech files on which we perform a recognition.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Noise Elimination (AREA)

Description

La présente invention se rapporte à un procédé de détection d'un signal utile bruité.The present invention relates to a method of detection of a noisy useful signal.

Un des problèmes importants en traitement du signal, simple quant à son énoncé, mais d'autant plus complexe quant à sa résolution, consiste à déterminer la présence ou l'absence d'un signal utile noyé dans un bruit additif.One of the important problems in signal processing, simple as for its statement, but all the more complex as for its resolution, is to determine the presence or absence of a useful signal drowned in additive noise.

Diverses solutions sont envisageables. On peut utiliser comme variable l'amplitude instantanée du signal reçu ou traité par référence à un seuil déterminé expérimentalement.Various solutions are possible. We can use as variable the instantaneous amplitude of the signal received or processed by reference to a threshold determined experimentally.

On peut aussi utiliser comme variable l'énergie du signal total sur une tranche temporelle de durée T, en seuillant, toujours expérimentalement, cette énergie.We can also use the energy of the total signal over a time slot of duration T, by thresholding, always experimentally, this energy.

Ces seuillages permettent une première présomption sur la présence ou l'absence du signal. Ils sont de plus applicables à tout signal. Aussi, sont ils complétés par des systèmes de "confirmation", définissant des critères "quasi-certains", propres au type de signal utile, lorsque la nature de celui-ci est connue a priori.These thresholds allow a first presumption on the presence or absence of the signal. They are also applicable at any signal. Also, are they supplemented by "confirmation", defining "almost certain" criteria, specific to the type of useful signal, when the nature thereof is known a priori.

Un tel système complémentaire est largement utilisé en traitement de la parole et peut consister, par exemple, en une extraction de "pitch" ou en l'évaluation de l'énergie minimale d'une voyelle.Such a complementary system is widely used in speech processing and can consist, for example, of a pitch extraction or minimum energy evaluation a vowel.

La présente invention a pour objet un procédé de détection d'un signal utile bruité, déterminant de façon la plus rigoureuse possible le seuil de détection, et pouvant fonctionner de façon autoadaptative.The subject of the present invention is a method of detection of a noisy useful signal, determining in the most rigorous possible the detection threshold, and able to work self-adaptively.

Selon l'invention, on dispose du rapport signal/bruit attendu du signal à traiter, et on dispose d'une mesure du bruit seul estimé, mesure numérisée sur M points, ce bruit étant blanc ou rendu blanc, on calcule une estimée de l'énergie moyenne du bruit sur ces M points, on prend une tranche de N points de signal bruité, on calcule une estimée de l'énergie moyenne de ces N points, on calcule un seuil de détection différent de 1 à partir du rapport signal/bruit attendu; on calcule le rapport des deux dites estimées d'énergies moyennes, on compare ce rapport audit seuil, et si ce rapport est supérieur au seuil, on décide de la présence d'un signal utile, et s'il est inférieur à ce seuil, on décide de l'absence de signal utile.According to the invention, the signal / noise ratio is available expected signal to be processed, and we have a noise measurement only estimate, measurement digitized on M points, this noise being white or rendered white, we calculate an estimate of the average noise energy on these M points, we take a slice of N noisy signal points, we calculate an estimate of the average energy of these N points, we calculate a detection threshold different from 1 from the expected signal / noise ratio; we calculates the ratio of the two so-called estimated average energies, we compare this ratio to said threshold, and if this ratio is greater than the threshold, we decides on the presence of a useful signal, and if it is below this threshold, we decides that there is no useful signal.

La présente invention sera mieux comprise à la lecture de la description détaillée d'un mode de réalisation pris à titre d'exemple non limitatif.The present invention will be better understood on reading the detailed description of an embodiment taken as an example not limiting.

On va d'abord expliquer comment doit se faire théoriquement, dans le cas idéal, la détection d'un signal bruité.We will first explain how to do it theoretically, in the ideal case, the detection of a noisy signal.

On dispose d'une première information u(n) pour une première tranche temporelle telle que : u(n) = s(n) + x(n)    n étant un nombre entier : 0 ≤ n ≤ N-1, s(n) étant un signal utile et x(n) un bruit. En outre, on dispose d'une autre information y(n), avec 0 ≤ n ≤ M-1, et M pouvant être égal à N ou différent de celui-ci. y(n) est une mesure du bruit x(n) sur une autre tranche temporelle exempte de signal utile.We have a first piece of information u (n) for a first time slot such as: u (n) = s (n) + x (n) n being an integer: 0 ≤ n ≤ N-1, s (n) being a useful signal and x (n) a noise. In addition, there is other information y (n), with 0 ≤ n ≤ M-1, and M can be equal to or different from this. y (n) is a measure of the noise x (n) over another time slot free of useful signal.

On pose : U = (u(0)2 + u(1)2 + ... + u(N)2)/N et V = (y(0)2 + y(1)2 + ... + y(M)2)/M et Z = U/V We ask: U = (u (0) 2 + u (1) 2 + ... + u (N) 2 )/NOT and V = (y (0) 2 + y (1) 2 + ... + y (M) 2 ) / M and Z = U / V

Ainsi, dans un cas idéal et irréaliste, on aurait, en notant RSB = rapport signal à bruit : Z = 1 + RSB    et le simple critère de détection serait :
   Z > 1 : présence de signal utile
   Z < 1 : absence de signal utile
Thus, in an ideal and unrealistic case, we would have, by noting RSB = signal to noise ratio: Z = 1 + RSB and the simple detection criterion would be:
Z> 1: presence of useful signal
Z <1: absence of useful signal

Selon la présente invention, on remplace le seuil théorique de 1 par un seuil µ, calculé de la façon expliquée ci-dessous, qui tient compte du fait que les signaux dont on dispose ne sont pas parfaitement ergodiques et que U et V ne sont que des estimées des valeurs vraies des variances σu2 et σx2. According to the present invention, the theoretical threshold of 1 is replaced by a threshold µ, calculated as explained below, which takes into account the fact that the signals available are not perfectly ergodic and that U and V are only estimates of the true values of the variances σ u 2 and σ x 2.

Pour effectuer ce calcul de µ, on procède de la façon suivante.To perform this calculation of µ, we proceed as follows next.

On part du fait que les variables U et V sont de nature aléatoire, et que par conséquent Z l'est aussi. On calcule alors la densité de probabilité de Z (qui dépend du rapport signal sur bruit).We start from the fact that the variables U and V are of a nature random, and therefore Z too. We then calculate the probability density of Z (which depends on the signal to noise).

Il s'agit ensuite, en faisant appel au principe du maximum de vraisemblance, de déterminer la meilleure estimation du rapport signal sur bruit après avoir calculé la variable Z.Then, using the principle of maximum likelihood, determine the best estimate the signal-to-noise ratio after calculating the variable Z.

A cet effet, on mesure sur une tranche temporelle la variable U(n) précitée, et on mesure la variable y(n) sur une autre tranche temporelle où l'on est sûr qu'il n'y a pas de signal utile, mais uniquement du bruit (indépendant et décorrélé de s(n)).For this purpose, we measure over a time slice the variable U (n) above, and we measure the variable y (n) on a other time slice where we are sure that there is no useful signal, but only noise (independent and uncorrelated from s (n)).

Pour déterminer la densité de la variable aléatoire Z (que l'on peut qualifier de variable observée), on procède de la façon suivante. Soient X1 appartenant à N (m1 ; σ1 2) et X2 appartenant à N (m2 ; σ2 2) deux variables aléatoires gaussiennes indépendantes pour lesquelles les probabilités Pr {X1 < o} et Pr {X2 < o} sont pratiquement nulles.To determine the density of the random variable Z (which can be called the observed variable), we proceed as follows. Let X 1 belonging to N (m 1 ; σ 1 2 ) and X 2 belong to N (m 2 ; σ 2 2 ) two independent Gaussian random variables for which the probabilities P r {X 1 <o} and P r {X 2 <o} are practically zero.

On pose : m = m1/m2, σ2 = σ1222, α = m22. We ask: m = m 1 / m 2 , σ 2 = σ 1 2 / σ 2 2 , α = m 2 / σ 2 .

La densité de probabilité fx (x) de X est alors : fx(x) = -1/2 1 mx + σ2 (x2 + σ2)3/2 . e - α2 2 . (x - m)2 x2 + σ2 . U(x) où U(x) = 1 si x ≥ o et U(x) = o si x < o. The probability density f x (x) of X is then: f x (x) = -1/2 1 mx + σ 2 (x 2 + σ 2 ) 3/2 . e - α 2 2 . (x - m) 2 x 2 + σ 2 . U (x) where U (x) = 1 if x ≥ o and U (x) = o if x <o.

Si h(x) = α . x - m(x2 + σ2)1/2 on a : P(x) = Pr {X < x} = F [h(x)], expression dans laquelle F(x) désigne la fonction caractéristique de la variable gaussienne normalisée.Yes h (x) = α. x - m (x 2 + σ 2 ) 1/2 we have: P (x) = P r {X <x} = F [h (x)], expression in which F (x) denotes the characteristic function of the normalized Gaussian variable.

On suppose maintenant que les signaux s(n), x(n) et y(n) sont blancs, gaussiens et centrés.We now assume that the signals s (n), x (n) and y (n) are white, Gaussian and centered.

On pose

Figure 00040001
Figure 00040002
We pose
Figure 00040001
Figure 00040002

Ce dernier terme est donc, lui aussi, blanc, gaussien et centré ;
et on pose

Figure 00040003
This last term is therefore also white, Gaussian and centered;
and we ask
Figure 00040003

Puisque l'on définit σs 2 et σx 2, on suppose implicitement que le calcul de la densité de probabilité se fait à σs 2 et σx 2 connus. On évalue donc la densité de Z en connaissant σs 2 et σx 2. Dans ce cas, U et V suivent des lois du chi-2, et, pour N et M suffisamment grands, U et V sont approximées par des lois gaussiennes pratiquement toujours positives :
U appartient à

Figure 00040004
Z est donc le rapport de deux variables gaussiennes indépendantes. On peut facilement démontrer que U et V sont indépendantes.Since we define σ s 2 and σ x 2 , we implicitly assume that the probability density is calculated at σ s 2 and σ x 2 known. We therefore evaluate the density of Z by knowing σ s 2 and σ x 2 . In this case, U and V follow laws of chi-2, and, for N and M sufficiently large, U and V are approximated by Gaussian laws practically always positive:
U belongs to
Figure 00040004
Z is therefore the ratio of two independent Gaussian variables. We can easily demonstrate that U and V are independent.

Avec : m1 = σu 2, σ1 2 = 2σu 4/N, m2 = σx 2, σ2 2 = 2σx 4/M
il vient : m = σu 2 / σx 2, σ2 = (M/N) (σu 2 / σx 2)2, α = (M/2)1/2.
Or : σu 2 / σx 2 = 1+ r où r = σs 2x 2 est le rapport signal à bruit. Soit k = M/N, il vient : m = r+1, σ2= k(r+1)2.
With: m 1 = σ u 2 , σ 1 2 = 2σ u 4 / N, m 2 = σ x 2 , σ 2 2 = 2σ x 4 / M
it comes: m = σ u 2 / σ x 2 , σ 2 = (M / N) (σ u 2 / σ x 2 ) 2 , α = (M / 2) 1/2 .
Now: σ u 2 / σ x 2 = 1+ r where r = σ s 2 / σ x 2 is the signal to noise ratio. Let k = M / N, it comes: m = r + 1, σ 2 = k (r + 1) 2 .

La densité de probabilité de Z, connaissant σs 2 et σx 2, s'exprime donc par :

  • 1°) x ≥ 0 fz(z:σs2, σx2) = (M/4π)1/2 (r+1) z+k(1+r)[z2+k(r+1)2]3/2 e - M[z-(r+1)]2 4[z2+k(r+1)2]
  • 2°) x ≤ 0 d'où : fz(z : σs 2, σx 2) = 0
  • The probability density of Z, knowing σ s 2 and σ x 2 , is therefore expressed by:
  • 1 °) x ≥ 0 f z (z: σ s 2 , σ x 2 ) = (M / 4π) 1/2 (r + 1) z + k (1 + r) [z 2 + k (r + 1) 2 ] 3/2 e - M [z- (r + 1)] 2 4 [z 2 + k (r + 1) 2 ]
  • 2 °) x ≤ 0 where: f z (z: σ s 2 , σ x 2 ) = 0
  • On posera : fk,M(z,r)=(M/4π)1/2 (r+1) z+k(1+r)[z2+k(r+1)2]3/2 e - M[z-(r+1)]2 4[z2+k(r+1)2] U(z) de sorte que : fz(z:σs 2, σx 2) = fk,M(z,σs 2x 2)We will ask: f k, M (z, r) = (M / 4π) 1/2 (r + 1) z + k (1 + r) [z 2 + k (r + 1) 2 ] 3/2 e - M [z- (r + 1)] 2 4 [z 2 + k (r + 1) 2 ] U (z) so that: f z (z: σ s 2 , σ x 2 ) = f k, M (z, σ s 2 / σ x 2 )

    D'après les résultats ci-dessus relatifs à la densité de probabilité fx(x), on déduit la probabilité Pr { Z < z : σs 2, σx 2}. From the above results relating to the probability density f x (x), we deduce the probability Pr {Z <z: σ s 2 , σ x 2 }.

    Soit : hk.M(x,r) = (M/2)1/2 x - (r+1)[x2 + k(r+1)2]1/2 Il vient : Pr {Z < z : σs 2 ; σx 2} = F{hk,M(x,r)}.Is : h kM (x, r) = (M / 2) 1/2 x - (r + 1) [x 2 + k (r + 1) 2 ] 1/2 It comes: Pr {Z <z: σ s 2 ; σ x 2 } = F {h k, M (x, r)}.

    On va maintenant examiner le cas d'un signal quelconque s(n) et d'un bruit blanc gaussien.We will now examine the case of any signal s (n) and a white Gaussian noise.

    On suppose toujours que les bruits x(n) et y(n) sont blancs, gaussiens avec σx 2 = E[x(n)2] = E[y(n)2]. Le signal utile s(n) est supposé quelconque, indépendant du bruit.We always assume that the noises x (n) and y (n) are white, Gaussian with σ x 2 = E [x (n) 2 ] = E [y (n) 2 ]. The useful signal s (n) is assumed to be arbitrary, independent of noise.

    L'hypothèse nouvelle faite ici est de supposer que s(n) et x(n) sont non corrélés au sens temporel du terme, c'est-à-dire que : c = Σ 0 ≤ n ≤ N-1 s (n) x (n)(Σ 0 ≤ n ≤ N-1 s(n)2)1/2 (Σ 0 ≤ n ≤ N-1 x(n)2)1/2 = 0 The new hypothesis made here is to assume that s (n) and x (n) are uncorrelated in the temporal sense of the term, that is to say: c = Σ 0 ≤ n ≤ N-1 s (n) x (n) (Σ 0 ≤ n ≤ N-1 s (n) 2 ) 1/2 (Σ 0 ≤ n ≤ N-1 x (n) 2 ) 1/2 = 0

    On montre alors que U peut être approximée par : U = µ2 s + (1/N) Σ 0 ≤ n ≤ N-1 x(n)2 et Z par : Z = µs2 + (1/N) Σ 0 ≤ n ≤ N-1 x(n)2 (1/M) Σ 0 ≤ n ≤ M-1 y(n)2 We then show that U can be approximated by: U = µ 2 s + (1 / N) Σ 0 ≤ n ≤ N-1 x (n) 2 and Z by: Z = µ s 2 + (1 / N) Σ 0 ≤ n ≤ N-1 x (n) 2 (1 / M) Σ 0 ≤ n ≤ M-1 y (n) 2

    De même que ci-dessus, le calcul de la densité de Z s'est fait en connaissant σs 2 et σx 2, ici le calcul se fera en connaissant µs 2 et σx 2. La densité à calculer sera notée par fz (z:µ 2 / s, σ 2 / x).As above, the calculation of the density of Z was done by knowing σ s 2 and σ x 2 , here the calculation will be done by knowing µ s 2 and σ x 2 . The density to be calculated will be noted by f z (z: µ 2 / s, σ 2 / x).

    Connaissant µs 2, U = µs 2 + (1/N) Σ 0≤n ≤ N-1 x(n)2 appartient à

    Figure 00060001
    s 2 + σx 2; (2/N) σx 4). V appartient à x 2 ; (2/M) σx 4).Knowing µ s 2 , U = µ s 2 + (1 / N) Σ 0≤n ≤ N-1 x (n) 2 belongs to
    Figure 00060001
    s 2 + σ x 2 ; (2 / N) σ x 4 ). V belongs to x 2 ; (2 / M) σ x 4 ).

    Z = U/V est donc approchée par le rapport de deux lois gaussiennes indépendantes. Comme U et V sont indépendantes, on applique donc le résultat concernant la densité de probabilité de X, avec : m1 = µs2 + σx2, σ12 = (2/N) σx4, m2 = σx2, σ22 = (2/M)σx4 Donc : m = r+1, σ2 = k, α = (M/2)1/2, avec k = M/N et r = µs 2x 2 .Z = U / V is therefore approximated by the ratio of two independent Gaussian laws. As U and V are independent, we therefore apply the result concerning the probability density of X, with: m 1 = µ s 2 + σ x 2 , σ 1 2 = (2 / N) σ x 4 , m 2 = σ x 2 , σ 2 2 = (2 / M) σ x 4 So: m = r + 1, σ 2 = k, α = (M / 2) 1/2 , with k = M / N and r = µ s 2 / σ x 2 .

    La densité de probabilité de Z, connaissant µs 2 et σx 2 vaut donc : fz(z:µs2, σx2) = (M/4π)1/2 (1+r)z+k[z2+k]3/2 e - M4 [z-(r+1)]2 z2+k . U(z) On posera : fk,M (z) = (M/4π)1/2 (1+r)z+k[z2+k]3/2 e - M4 [z-(r+1)]2 z2+k . U(z) de sorte que : fz(z:σs 2, σx 2) = fk,M (z, σs 2x 2)The probability density of Z, knowing µ s 2 and σ x 2 is therefore equal to: f z (z: µ s 2 , σ x 2 ) = (M / 4π) 1/2 (1 + r) z + k [z 2 + k] 3/2 e - M 4 [z- (r + 1)] 2 z 2 + k . U (z) We will ask: f k, M (z) = (M / 4π) 1/2 (1 + r) z + k [z 2 + k] 3/2 e - M 4 [z- (r + 1)] 2 z 2 + k . U (z) so that: f z (z: σ s 2 , σ x 2 ) = f k, M (z, σ s 2 / σ x 2 )

    D'après les résultats ci-dessus concernant la densité de probabilité de X, on en déduit la probabilité Pr {Z < z : µs2, σx2}. Soit: hk,M(x,r) = (M/2)1/2 x - (r+1)[x2 + k]1/2 il vient : Pr { Z < z : µs, σx 2 } = F (hk,M(x,r))From the above results concerning the probability density of X, we deduce the probability Pr {Z <z: µ s 2 , σ x 2 }. Is: h k, M (x, r) = (M / 2) 1/2 x - (r + 1) [x 2 + k] 1/2 it comes: Pr {Z <z: µ s , σ x 2 } = F (h k, M (x, r))

    Selon la présente invention, on met en oeuvre la détection d'activité en faisant appel au maximum de vraisemblance.According to the present invention, the activity detection using a maximum of likelihood.

    Dans les cas de signaux traités, la densité de probabilité de la variable Z, connaissant les énergies du signal utile et du bruit, s'exprime par une fonction de la forme :
    fk,M(z,r) où r désigne le rapport signal à bruit. Cette probabilité dépend donc du rapport signal sur bruit. Aussi, la règle de décision ne peut se donner qu'à rapport signal sur bruit attendu. Soit donc ro ce rapport signal à bruit attendu.
    In the case of processed signals, the probability density of the variable Z, knowing the energies of the useful signal and of the noise, is expressed by a function of the form:
    f k, M (z, r) where r denotes the signal to noise ratio. This probability therefore depends on the signal to noise ratio. Also, the decision rule can only be given with an expected signal-to-noise ratio. Let r o be this expected signal-to-noise ratio.

    On suppose que la probabilité d'absence de s(n) est πo et que la probabilité de présence de s(n) est π1.We assume that the probability of the absence of s (n) is π o and that the probability of the presence of s (n) is π 1 .

    Puisqu'on connaít la densité de probabilité fk,M(z,r) la règle de décision optimale est fournie par la théorie générale de la détection et s'exprime par : π1 fk,M(z,ro)πo fk,M(z,0) > 1 ⇒ D = 1 π1 fk,M(z,ro)πo fk,M(z,0) < 1 ⇒ D = 0 Since we know the probability density f k, M (z, r) the optimal decision rule is provided by the general theory of detection and is expressed by: π 1 f k, M (z, r o ) π o f k, M (z, 0) > 1 ⇒ D = 1 π 1 f k, M (z, r o ) π o f k, M (z, 0) <1 ⇒ D = 0

    On peut aussi exprimer cette régle de décision sous la forme : (Z < µ ⇒ D = 0) et (Z > µ ⇒ D = 1). We can also express this decision rule in the form: (Z <µ ⇒ D = 0) and (Z> µ ⇒ D = 1).

    Il faut alors déterminer µ et résoudre l'équation : ln[fk,M(z,ro)] - ln[fk,M(z, 0)] - ln(πo1) = 0. We must then determine µ and solve the equation: ln [f k, M (z, r o )] - ln [f k, M (z, 0)] - ln (π o / π 1 ) = 0.

    On démontre alors que la probabilité d'erreur vaut : Pe = πo [1 - F(hk,M(µ,0))] + π1 F(hk,M(µ,ro)). We then demonstrate that the probability of error is worth: Pe = π o [1 - F (h k, M (µ, 0))] + π 1 F H k, M (µ, r o )).

    On va maintenant examiner le cas de la détection d'un signal blanc gaussien dans un bruit lui-même blanc gaussien.We will now examine the case of the detection of a white Gaussian signal in a white Gaussian noise itself.

    Les signaux s(n), x(n) et y(n) sont supposés blancs, gaussiens, centrés. Soit ro le rapport signal à bruit attendu, et k = M/N. la probabilité d'absence de s(n) est πo et la probabilité de présence de s(n) est π1.The signals s (n), x (n) and y (n) are assumed to be white, Gaussian, centered. Let r o be the expected signal-to-noise ratio, and k = M / N. the probability of absence of s (n) is π o and the probability of presence of s (n) is π 1 .

    La règle de décision est alors :

  • Décision D = 1 lorsque :
    Figure 00090001
  • Décision D = 0 lorsque :
    Figure 00090002
  • The decision rule is then:
  • Decision D = 1 when:
    Figure 00090001
  • Decision D = 0 when:
    Figure 00090002
  • Le seuil étant déterminé pour l'égalité (au lieu d'inégalité) entre les termes de ces deux expressions.The threshold being determined for equality (instead of inequality) between the terms of these two expressions.

    On peut aussi exprimer cette règle de décision sous la forme : (Z < µ ⇒ D = 0) et (Z > µ ⇒ D = 1).
    On obtient par exemple pour µ, à M = N = 128, πo = π1 = 1/2 : ro en dB µ -2 1,27 -1 1,34 0 1,41 1 1,50 2 1,68
    We can also express this decision rule in the form: (Z <µ ⇒ D = 0) and (Z> µ ⇒ D = 1).
    We obtain for example for µ, at M = N = 128, π o = π 1 = 1/2: r o in dB µ -2 1.27 -1 1.34 0 1.41 1 1.50 2 1.68

    La probabilité d'erreur est : Pe = πo [1-F(hk,M(µ,0))] + π1 F(hk,M(µ,ro)) avec : hk,M(x,ro) = (M/2)1/2 x - (ro+1)[x2 + k(ro+1)2]1/2 The probability of error is: Pe = π o [1-F (h k, M (µ, 0))] + π 1 F H k, M (µ, r o ))) with: h k, M (x, r o ) = (M / 2) 1/2 x - (r o +1) [x 2 + k (r o +1) 2 ] 1/2

    Nous donnons ci-après quelques valeurs de Pe fonction de ro . πo et π1 sont prises égales à 0,5. ro en dB Pe -2 0,086 -1 0,052 0 0,028 1 0,013 2 0,005 We give below some values of Pe as a function of r o . π o and π 1 are taken equal to 0.5. r o in dB Pe -2 0.086 -1 0.052 0 0.028 1 0.013 2 0.005

    Dans un exemple de simulation, on a généré un bruit blanc gaussien de variance unité. Pour chaque trame de 128 points (N = M = 128), on a décidé aléatoirement de générer un bruit s(n) additif, présentant un rapport signal sur bruit défini préalablement. Les probabilités d'apparition et d'absence (πo et π1) sont égales à 0,5. On a généré un second bruit blanc gaussien de variance unité, qui a servi à calculer la variable aléatoire V. Pour chaque trame, on a calculé Z. On a appliqué alors la règle de décision et l'on a compté le nombre d'erreurs. ro en dB Nombre d'erreurs sur 1000 itérations -2 73 -1 43 0 18 1 10 2 2 In a simulation example, a white Gaussian noise with unit variance was generated. For each frame of 128 points (N = M = 128), it was randomly decided to generate an additive noise s (n), having a signal to noise ratio defined beforehand. The probability of appearance and absence (π o and π 1 ) is equal to 0.5. We generated a second Gaussian white noise of unit variance, which was used to calculate the random variable V. For each frame, we calculated Z. We then applied the decision rule and we counted the number of errors . r o in dB Number of errors in 1000 iterations -2 73 -1 43 0 18 1 10 2 2

    Ces résultats corroborent ceux prévus par le calcul théorique.These results corroborate those predicted by the calculation theoretical.

    On va maintenant examiner le cas d'un signal quelconque s(n) et d'un bruit blanc gaussien.We will now examine the case of any signal s (n) and a white Gaussian noise.

    On suppose toujours que les bruits x(n) et y(n) sont blancs, gaussiens avec σx 2= E[x(n)2)=E(y(n)2]. Le signal utile s(n) est supposé quelconque, indépendant du bruit. Soit ro le rapport signal à bruit attendu, k = M/N. La probabilité d'absence de s(n) est πo et celle de présence de s(n) est π1.
    La règle de décision est alors :

  • Décision D = 1 lorsque : ln (ro+1) z+kz+k > (M/4) [z-(ro+1)]2 - (z-1)2 z2+k + ln πo π1
  • Décision D = 0 lorsque : ln (ro+1) z+kz+k < (M/4) [z-(ro+1)]2 - (z-1)2 z2+k + ln πo π1
  • We always assume that the noises x (n) and y (n) are white, Gaussian with σ x 2 = E [x (n) 2 ) = E (y (n) 2 ]. The useful signal s (n) is assumed to be arbitrary, independent of noise. Let r o be the expected signal-to-noise ratio, k = M / N. The probability of absence of s (n) is π o and that of the presence of s (n) is π 1 .
    The decision rule is then:
  • Decision D = 1 when: ln (r o +1) z + k z + k > (M / 4) [z- (r o +1)] 2 - (z-1) 2 z 2 + k + ln π o π 1
  • Decision D = 0 when: ln (r o +1) z + k z + k <(M / 4) [z- (r o +1)] 2 - (z-1) 2 z 2 + k + ln π o π 1
  • On peut aussi exprimer cette règle de décision sous la forme : (Z < µ ⇒ D = 0) et (Z > µ ⇒ D = 1). We can also express this decision rule under the form: (Z <µ ⇒ D = 0) and (Z> µ ⇒ D = 1).

    On obtient pour p les valeurs suivantes en fonction de ro, pour M = N = 128, πo = π1 = 1/2. ro en dB µ -2 1,30 -1 1,38 0 1,48 1 1,60 2 1,76 The following values are obtained for p as a function of r o , for M = N = 128, π o = π 1 = 1/2. r o in dB µ -2 1.30 -1 1.38 0 1.48 1 1.60 2 1.76

    De plus, on obtient : Pe = πo [ 1-F (hk,M(µ,0))] + π1 F (hk,M(µ,ro)) avec : hk,M(x,ro) = (M/2)1/2 x - (ro+1)[x2 + k ]1/2 In addition, we get: Pe = π o [1-F (h k, M (µ, 0))] + π 1 F H k, M (µ, r o ))) with: h k, M (x, r o ) = (M / 2) 1/2 x - (r o +1) [x 2 + k] 1/2

    Nous donnons ci-après quelques valeurs de Pe en fonction de ro. Les probabilités πo et πo sont prises égales à 0,5. ro en dB Pe -2 0,062 -1 0,032 0 0,013 1 0,004 2 0,001 We give below some values of Pe as a function of r o . The probabilities π o and π o are taken equal to 0.5. r o in dB Pe -2 0.062 -1 0.032 0 0.013 1 0.004 2 0.001

    Dans un exemple de simulation, pour chaque trame de 128 points de bruit blanc généré (N = M = 128), on a décidé aléatoirement d'y ajouter s(n), qui est ici, une sinusoïde, présentant un rapport signal sur bruit défini préalablement. π1 et πo sont prises égales à 0,5.In a simulation example, for each frame of 128 points of white noise generated (N = M = 128), we decided randomly to add s (n), which is here, a sinusoid, presenting a signal to noise ratio defined beforehand. π 1 and π o are taken equal to 0.5.

    On a généré un second bruit blanc gaussien de variance unité, servant à calculer V. Pour chaque trame, on a calculé Z et on a appliqué la règle de décision précitée. On a compté le nombre d'erreurs.We generated a second Gaussian white noise of variance unit, used to calculate V. For each frame, Z and the above decision rule was applied. We counted the number of errors.

    On a obtenu les résultats suivants : ro en dB Nombre d'erreurs sur 1000 itérations -2 70 -1 37 0 12 1 6 2 3 The following results were obtained: r o in dB Number of errors in 1000 iterations -2 70 -1 37 0 12 1 6 2 3

    Ces résultats corroborent ceux prévus par le calcul théorique.These results corroborate those predicted by the calculation theoretical.

    Les résultats précédents, parce que très généraux, permettent la détection de signaux noyés dans du bruit additif, même lorsque le rapport signal sur bruit est faible, voisin de 0 dB.The previous results, because very general, allow the detection of signals embedded in additive noise, even when the signal to noise ratio is low, close to 0 dB.

    On va décrire ci-dessous une application dans laquelle ce type de détection peut se révéler très utile.We will describe below an application in which this type of detection can be very useful.

    Les algorithmes présentés s'appliquent au cas de la parole, comme pré-système de détection d'activité vocale. The algorithms presented apply to the case of speech, as a voice activity pre-system.

    Le choix du seuil de détection dépend du contexte.The choice of detection threshold depends on the context.

    En ce qui concerne les bandes audio utilisées, une caractérisation préalable du bruit et de la parole, à l'aide de mesures basées sur l'estimation par maximum de vraisemblance montre que le signal vocal à détecter présente un rapport signal sur bruit d'au moins 6 dB.Regarding the audio tapes used, a noise and speech characterization, using measures based on maximum likelihood estimation shows that the voice signal to be detected has a signal ratio on noise of at least 6 dB.

    D'autre part, le système de traitement utilise des trames de signal de 128 points, la fréquence d'échantillonnage étant de 10 kHz.On the other hand, the processing system uses 128-point signal frames, the sampling frequency being 10 kHz.

    Les variables U et V sont toutes les deux évaluées sur 128 points de sorte que M = N = 128.The variables U and V are both evaluated on 128 points so that M = N = 128.

    D'après ce qui précède, on déduit le seuil théorique de détection à 3.From the above, we deduce the theoretical threshold of detection at 3.

    Cependant, on ne peut pas se contenter de cet unique seuil. En effet, si le bruit est relativement stationnaire, il présente des instationnarités à prendre en compte pour renouveler la variable V, ce qui permet de rendre l'algorithme partiellement adaptatif.However, we cannot be satisfied with this unique threshold. Indeed, if the noise is relatively stationary, it presents instabilities to take into account to renew the variable V, which makes the algorithm partially adaptive.

    On introduit donc un second seuil, qui permet de décider si la variable V va être renouvelée ou non.We therefore introduce a second threshold, which allows decide whether the variable V will be renewed or not.

    Ce second seuil est choisi à 1,25, ce qui correspond à un bruit additif au bruit stationnaire présentant un rapport signal à bruit de -2 dB.This second threshold is chosen at 1.25, which corresponds to additive noise to stationary noise with a ratio signal to noise of -2 dB.

    La règle de décision est alors :

  • Si Z < 1,25 : Alors la trame traitée est composée du même bruit que celle utilisée comme référence. La variable V est remplacée par la valeur de l'énergie de la trame traitée.On notera que, puisque la décision est de considérer la trame traitée comme du bruit représentatif, on pourrait renouveler la variable V en faisant la moyenne de l'ancienne valeur de V et de l'énergie de la trame considérée. Ce qui amène à changer la valeur de M (nombre de points sur lequel est évalué V) mais cette opération peut induire un mauvais fonctionnement de l'algorithme.
  • Si 1,25 < z > 3 : La trame est considérée comme contenant une non-stationnarité du bruit, et exempte de parole.
  • Si 3 < Z : La trame est considéré comme de la parole.
  • The decision rule is then:
  • If Z <1.25 : Then the processed frame is composed of the same noise as that used as a reference. The variable V is replaced by the value of the energy of the processed frame. Note that, since the decision is to consider the processed frame as representative noise, we could renew the variable V by averaging the old value of V and of the energy of the frame considered. This leads to changing the value of M (number of points on which V is evaluated) but this operation can induce a malfunction of the algorithm.
  • If 1.25 <z> 3 : The frame is considered to contain noise non-stationarity, and free of speech.
  • If 3 <Z : The frame is considered to be speech.
  • Des essais effectués sur des échantillons de signaux bruités ont validé cette détection.Tests carried out on signal samples noises validated this detection.

    Cependant, rappelons que cette détection vocale peut être améliorée par l'utilisation de critères propres au signal de parole, tel que le calcul de "pitch".However, remember that this voice detection can be improved by the use of signal specific criteria speech, such as calculating pitch.

    L'algorithme proposé ici concerne l'étude de quelques exemples de signaux. Il est évident que pour d'autres signaux de parole présentant des rapports signal à bruit différents, un nouveau choix de seuils est nécessaire.The algorithm proposed here concerns the study of some examples of signals. It is obvious that for other signals of speech with different signal-to-noise ratios, a new choice of thresholds is necessary.

    L'utilisation de deux seuils est généralement préférable.The use of two thresholds is generally preferable.

    Une application de cet algorithme permet de créer des fichiers de référence corrects pour le système de reconnaissance vocale étudié. Une segmentation précise des élocutions est alors nécessaire.An application of this algorithm makes it possible to create correct reference files for the recognition system vocal studied. A precise segmentation of speech is then necessary.

    Dans une application, on a utilisé un alternat micro (ouverture et fermeture micro) qui fournit une segmentation grossière des élocutions.In one application, we used a micro switch (micro opening and closing) which provides segmentation coarse speeches.

    L'algorithme précédent a été utilisé pour affiner cet alternat. Une première passe de l'algorithme a permis de préciser le début de l'élocution. Une seconde passe a consisté à lire le fichier de parole "à l'envers", c'est-à-dire en partant de la fermeture micro vers l'ouverture micro. Ce qui a permis alors de préciser la fin de l'élocution. The previous algorithm was used to refine this work-study program. A first pass of the algorithm made it possible to specify the start of speech. A second pass consisted in reading the speech file "upside down", that is to say starting from the microphone closure to microphone opening. This then made it possible to specify the end of the speech.

    Cette utilisation non causale de l'algorithme est nécessaire, car la détection d'activité est suffisamment précise pour détecter, à l'intérieur des mots, la présence de silences, ce qui est préjudiciable à une mise en place d'une segmentation pour les apprentissages.This non-causal use of the algorithm is necessary because the activity detection is sufficiently precise to detect, within words, the presence of silences, which is detrimental to the implementation of segmentation for learning.

    Le même type d'application permet aussi de segmenter les fichiers de parole sur lesquels on effectue une reconnaissance.The same type of application also allows to segment speech files on which we perform a recognition.

    Cependant, cet algorithme n'est évidemment pas causal, ce qui est préjudiciable à une utilisation temps réel. D'où la nécessité de compléter cet algorithme par un calcul propre au traitement de la parole.However, this algorithm is obviously not causal, which is detrimental to real time use. Hence the need to complete this algorithm with a calculation specific to speech processing.

    Nous avons démontré l'existence de seuils optimaux de détection, ce qui permet d'avoir une approche théorique du problème de l'estimation du rapport signal sur bruit et, surtout de la détection, dans le cas d'un bruit blanc et d'un signal connu seulement par son énergie sur N points lorsque celle-ci reste relativement stationnaire.We have demonstrated the existence of optimal thresholds of detection, which provides a theoretical approach to the problem of estimating the signal to noise ratio and, above all detection, in the case of white noise and a signal known only by its energy on N points when it remains relatively stationary.

    Claims (5)

    1. Method of detecting a useful signal affected by noise, for which the expected signal/noise ratio of the signal to be processed is available, and a measurement of the estimated noise alone is available, a measurement enumerated over M points, characterized in that an estimate of the mean energy of the noise over these M points (V) is calculated, a slice of M points of noise-affected signal is taken, an estimate of the mean energy of these N points (V) is calculated, a detection threshold (µ), differing from 1, is calculated on the basis of the expected signal/noise ratio (ro), the ratio (Z) of the two said estimated mean energies is calculated, this ratio is compared with the said threshold, and, if this ratio is above the threshold, it is decided that a useful signal is present, and, if it is below this threshold, it is decided that a useful signal is absent.
    2. Method according to Claim 1, characterized in that the estimated noise alone is white or made to be white.
    3. Method according to one of the preceding claims, in the case where the useful signal is any signal and the noise is a gaussian white noise, characterized in that the theoretical detection threshold is the solution for Z = µ of the following equation: ln (ro+1)z+kz+k = (M/4) [z-(ro+1)]2 - (z-1)2 z2+k + ln πo π1 ro being the expected signal-to-noise ratio, k = M/N, πo being the probability of absence of the useful signal and π1 its probability of presence.
    4. Method according to one of Claims 1 or 2 for detection of a gaussian white signal affected by noise which is also white and gaussian, characterized in that the theoretical detection threshold is the solution for Z = µ of the following equation:
      Figure 00220001
      ro being the expected signal-to-noise ratio, k = M/N, πo being the probability of absence of the useful signal and π1 its probability of presence.
    5. Method according to one of Claims 1 to 3, for speech detection, characterized in that over and above the theoretical detection threshold a second decision threshold is used for updating the measured slice of the estimated noise alone, in order to take account of non-stationary noise.
    EP92401553A 1991-06-14 1992-06-05 Method for detecting a noisy wanted signal Expired - Lifetime EP0518742B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9107323 1991-06-14
    FR9107323A FR2677828B1 (en) 1991-06-14 1991-06-14 METHOD FOR DETECTION OF A NOISE USEFUL SIGNAL.

    Publications (2)

    Publication Number Publication Date
    EP0518742A1 EP0518742A1 (en) 1992-12-16
    EP0518742B1 true EP0518742B1 (en) 1998-04-15

    Family

    ID=9413874

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP92401553A Expired - Lifetime EP0518742B1 (en) 1991-06-14 1992-06-05 Method for detecting a noisy wanted signal

    Country Status (6)

    Country Link
    US (1) US5337251A (en)
    EP (1) EP0518742B1 (en)
    JP (1) JPH06503185A (en)
    DE (1) DE69225090T2 (en)
    FR (1) FR2677828B1 (en)
    WO (1) WO1992022889A1 (en)

    Families Citing this family (26)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE69421911T2 (en) * 1993-03-25 2000-07-20 British Telecommunications P.L.C., London VOICE RECOGNITION WITH PAUSE DETECTION
    US6230128B1 (en) 1993-03-31 2001-05-08 British Telecommunications Public Limited Company Path link passing speech recognition with vocabulary node being capable of simultaneously processing plural path links
    US5819222A (en) * 1993-03-31 1998-10-06 British Telecommunications Public Limited Company Task-constrained connected speech recognition of propagation of tokens only if valid propagation path is present
    FR2704111B1 (en) * 1993-04-16 1995-05-24 Sextant Avionique Method for energetic detection of signals embedded in noise.
    US5544250A (en) * 1994-07-18 1996-08-06 Motorola Noise suppression system and method therefor
    US5488377A (en) * 1995-03-28 1996-01-30 Mcdonnell Douglas Corporation Method and apparatus for controlling the false alarm rate of a receiver
    US6263307B1 (en) 1995-04-19 2001-07-17 Texas Instruments Incorporated Adaptive weiner filtering using line spectral frequencies
    GB2303471B (en) * 1995-07-19 2000-03-22 Olympus Optical Co Voice activated recording apparatus
    FR2744277B1 (en) * 1996-01-26 1998-03-06 Sextant Avionique VOICE RECOGNITION METHOD IN NOISE AMBIENCE, AND IMPLEMENTATION DEVICE
    DE69735107T2 (en) 1996-11-14 2006-08-31 Auto-Sense, Ltd., Lakewood DETECTION SYSTEM WITH INCREASED NOISE TOLERANCE
    EP0867856B1 (en) * 1997-03-25 2005-10-26 Koninklijke Philips Electronics N.V. Method and apparatus for vocal activity detection
    FR2765715B1 (en) 1997-07-04 1999-09-17 Sextant Avionique METHOD FOR SEARCHING FOR A NOISE MODEL IN NOISE SOUND SIGNALS
    US6178161B1 (en) * 1997-10-31 2001-01-23 Nortel Networks Corporation Communications methods and apparatus
    US6327564B1 (en) * 1999-03-05 2001-12-04 Matsushita Electric Corporation Of America Speech detection using stochastic confidence measures on the frequency spectrum
    US6611150B1 (en) 1999-03-31 2003-08-26 Sadelco, Inc. Leakage detector for use in combination with a signal level meter
    DE19939102C1 (en) * 1999-08-18 2000-10-26 Siemens Ag Speech recognition method for dictating system or automatic telephone exchange
    US6054927A (en) * 1999-09-13 2000-04-25 Eaton Corporation Apparatus and method for sensing an object within a monitored zone
    FR2808917B1 (en) * 2000-05-09 2003-12-12 Thomson Csf METHOD AND DEVICE FOR VOICE RECOGNITION IN FLUATING NOISE LEVEL ENVIRONMENTS
    AU2001292963A1 (en) * 2000-09-21 2002-04-02 The Regents Of The University Of California Visual display methods for use in computer-animated speech production models
    US7136813B2 (en) * 2001-09-25 2006-11-14 Intel Corporation Probabalistic networks for detecting signal content
    US6681194B2 (en) 2001-12-21 2004-01-20 General Electric Company Method of setting a trigger point for an alarm
    US7197456B2 (en) * 2002-04-30 2007-03-27 Nokia Corporation On-line parametric histogram normalization for noise robust speech recognition
    US7190741B1 (en) 2002-10-21 2007-03-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Real-time signal-to-noise ratio (SNR) estimation for BPSK and QPSK modulation using the active communications channel
    US8032370B2 (en) * 2006-05-09 2011-10-04 Nokia Corporation Method, apparatus, system and software product for adaptation of voice activity detection parameters based on the quality of the coding modes
    US7876247B1 (en) * 2007-11-29 2011-01-25 Shawn David Hunt Signal dependent dither
    US9241672B2 (en) * 2012-02-09 2016-01-26 Sharp Laboratories Of America, Inc. Determining usability of an acoustic signal for physiological monitoring using frequency analysis

    Family Cites Families (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4052568A (en) * 1976-04-23 1977-10-04 Communications Satellite Corporation Digital voice switch
    FR2466825A1 (en) * 1979-09-28 1981-04-10 Thomson Csf DEVICE FOR DETECTING VOICE SIGNALS AND ALTERNAT SYSTEM COMPRISING SUCH A DEVICE
    US4410763A (en) * 1981-06-09 1983-10-18 Northern Telecom Limited Speech detector
    JPS59139099A (en) * 1983-01-31 1984-08-09 株式会社東芝 Voice section detector
    FR2583938A1 (en) * 1985-06-21 1986-12-26 Labo Electronique Physique DIGITAL QUADRATURE FILTER AND DIGITAL SIGNAL DEMODULATOR FREQUENCY MODULE COMPRISING SUCH A FILTER
    US4630304A (en) * 1985-07-01 1986-12-16 Motorola, Inc. Automatic background noise estimator for a noise suppression system
    US4914418A (en) * 1989-01-03 1990-04-03 Emerson Electric Co. Outbound detector system and method
    US5029187A (en) * 1989-05-22 1991-07-02 Motorola, Inc. Digital correlation receiver
    US5093842A (en) * 1990-02-22 1992-03-03 Harris Corporation Mechanism for estimating Es/No from pseudo error measurements
    US5097486A (en) * 1990-07-31 1992-03-17 Ampex Corporation Pipelined decision feedback decoder
    US5142554A (en) * 1990-10-31 1992-08-25 Rose Communications, Inc. Data separator with noise-tolerant adaptive threshold

    Also Published As

    Publication number Publication date
    FR2677828A1 (en) 1992-12-18
    DE69225090D1 (en) 1998-05-20
    JPH06503185A (en) 1994-04-07
    FR2677828B1 (en) 1993-08-20
    DE69225090T2 (en) 1998-08-06
    WO1992022889A1 (en) 1992-12-23
    EP0518742A1 (en) 1992-12-16
    US5337251A (en) 1994-08-09

    Similar Documents

    Publication Publication Date Title
    EP0518742B1 (en) Method for detecting a noisy wanted signal
    US6782363B2 (en) Method and apparatus for performing real-time endpoint detection in automatic speech recognition
    US6453285B1 (en) Speech activity detector for use in noise reduction system, and methods therefor
    US6711536B2 (en) Speech processing apparatus and method
    EP0594480B1 (en) Speech detection method
    US10854220B2 (en) Pitch detection algorithm based on PWVT of Teager energy operator
    US9142221B2 (en) Noise reduction
    EP0620546B1 (en) Energy detection procedure for noisy signals
    EP2293594B1 (en) Method for filtering lateral non stationary noise for a multi-microphone audio device
    US20040064314A1 (en) Methods and apparatus for speech end-point detection
    EP1008140B1 (en) Waveform-based periodicity detector
    US8046215B2 (en) Method and apparatus to detect voice activity by adding a random signal
    EP1877826B1 (en) Markov sequence detection
    EP1887559B1 (en) Yule walker based low-complexity voice activity detector in noise suppression systems
    EP2772916B1 (en) Method for suppressing noise in an audio signal by an algorithm with variable spectral gain with dynamically adaptive strength
    US6411925B1 (en) Speech processing apparatus and method for noise masking
    Li et al. Voice activity detection based on statistical likelihood ratio with adaptive thresholding
    US6560575B1 (en) Speech processing apparatus and method
    CA2304012A1 (en) Method for detecting speech activity
    EP3192073B1 (en) Discrimination and attenuation of pre-echoes in a digital audio signal
    CN110556128B (en) Voice activity detection method and device and computer readable storage medium
    EP0714088A1 (en) Voice activity detection
    KR100303477B1 (en) Voice activity detection apparatus based on likelihood ratio test
    US20180108345A1 (en) Device and method for audio frame processing
    EP2680263B1 (en) Estimation of low complexity coupling

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): BE CH DE FR GB IT LI LU NL SE

    17P Request for examination filed

    Effective date: 19930420

    17Q First examination report despatched

    Effective date: 19951206

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): BE CH DE FR GB IT LI LU NL SE

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    ITF It: translation for a ep patent filed
    REF Corresponds to:

    Ref document number: 69225090

    Country of ref document: DE

    Date of ref document: 19980520

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19980506

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19980605

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 19990512

    Year of fee payment: 8

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000630

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000630

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20010525

    Year of fee payment: 10

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020606

    EUG Se: european patent has lapsed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050605

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20090603

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20090619

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20090603

    Year of fee payment: 18

    Ref country code: DE

    Payment date: 20090529

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20100729

    Year of fee payment: 19

    BERE Be: lapsed

    Owner name: *SEXTANT AVIONIQUE

    Effective date: 20100630

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V1

    Effective date: 20110101

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20100605

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110101

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110101

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100605

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20120229

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110630