EP0515608B1 - Hydraulic system - Google Patents

Hydraulic system Download PDF

Info

Publication number
EP0515608B1
EP0515608B1 EP92900271A EP92900271A EP0515608B1 EP 0515608 B1 EP0515608 B1 EP 0515608B1 EP 92900271 A EP92900271 A EP 92900271A EP 92900271 A EP92900271 A EP 92900271A EP 0515608 B1 EP0515608 B1 EP 0515608B1
Authority
EP
European Patent Office
Prior art keywords
pump
pressure difference
pressure
hydraulic system
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92900271A
Other languages
German (de)
French (fr)
Other versions
EP0515608A1 (en
Inventor
Otwin Eich
Franz-Peter Salz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Barmag AG
Original Assignee
Barmag AG
Barmag Barmer Maschinenfabrik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Barmag AG, Barmag Barmer Maschinenfabrik AG filed Critical Barmag AG
Publication of EP0515608A1 publication Critical patent/EP0515608A1/en
Application granted granted Critical
Publication of EP0515608B1 publication Critical patent/EP0515608B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/163Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for sharing the pump output equally amongst users or groups of users, e.g. using anti-saturation, pressure compensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/087Control strategy, e.g. with block diagram
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • F15B2211/20553Type of pump variable capacity with pilot circuit, e.g. for controlling a swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/25Pressure control functions
    • F15B2211/253Pressure margin control, e.g. pump pressure in relation to load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • F15B2211/3053In combination with a pressure compensating valve
    • F15B2211/30535In combination with a pressure compensating valve the pressure compensating valve is arranged between pressure source and directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3111Neutral or centre positions the pump port being closed in the centre position, e.g. so-called closed centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/605Load sensing circuits
    • F15B2211/6051Load sensing circuits having valve means between output member and the load sensing circuit
    • F15B2211/6054Load sensing circuits having valve means between output member and the load sensing circuit using shuttle valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6652Control of the pressure source, e.g. control of the swash plate angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders

Definitions

  • the invention relates to a hydraulic system according to the preamble of the claim.
  • This hydraulic system is known from WO-A-9002882.
  • the position of the control valves is always readjusted when there is a deviation between the pressure difference between the load pressure and the pump pressure and the specified pressure difference.
  • the regulation provided there thus serves to regulate the pressure difference from the load pressure and the pump pressure as precisely as possible to the predetermined pressure difference, as a result of which the control circuit must constantly readjust the positions of the control valves.
  • a control valve is notified on the one hand of the pressure at the pump and on the other hand of the highest load pressure. If the pump can no longer deliver the volume flow required by the control valves and the associated consumers, the pressure difference between the pressure of the pump and the highest load pressure is reduced. The control valve consequently reduces the supply to the control pressure transmitter, by means of which the valves assigned to the consumers are actuated. This limits the flow of the valves. However, this limitation only becomes effective if there is already an excessive demand. If this limitation comes into effect, the consumers can no longer be controlled by means of their control valves.
  • the object of the invention is to design the hydraulic system so that it is not susceptible to vibration and that any weighting and adaptation of the individual consumer flows to the operating parameters of the pump is also possible.
  • the solution results from the characterizing part of claim 1.
  • the solution has the advantage that it does not affect the response range of the setpoint generator. Therefore, the individual consumers remain controllable even when the consumption is high, while in the known system the speed of the individual consumers can no longer be controlled if the maximum predetermined pump current is exceeded.
  • the control signals of the valves are reduced.
  • the reduction of consumer currents can take place proportionally. However, a reduction according to priorities is also possible if, for. B. an individual consumer should not reduce his speed in contrast to the others.
  • control circuit which is the subject of this invention, intervenes only in exceptional cases, namely when the pumpable pump flow is not sufficient for the consumer flows set on the respective valves, which add up to the current production volume. In this case, the current flow rate is reduced by reducing the respective consumer flows supplied.
  • valves which are assigned to the consumers. Basically, it can be assumed that these valves are adjusted electromagnetically or hydraulically from the outside, that is, by hand or by external input parameters. According to this invention, however, an adjustment signal for reducing the actuation of the valve piston by multiplication is superimposed on these input signals (setpoint signals) when it is determined in the hydraulic system by measuring the pressure difference that the pumpable pump current has been exceeded.
  • the maximum pump current does not necessarily correspond to the maximum pump current that can be pumped. Rather, a lower limit, e.g. B. 80% of the maximum conveyable pump flow. This ensures that the hydraulic system does not fall out of its control range due to an absolute overload of the pump. The same applies to the specified minimum pressure difference.
  • the adaptation of the consumer flows to the specified pump flow that can be conveyed when the minimum limit value of the pressure difference is exceeded is basically achieved by reducing the sum of the consumer flows to the specified limit value. In the simplest case, this can be done by reducing all consumer flows by the same percentage. However, it is also possible to weight the control signals, by means of which the consumer currents are reduced, differently for each consumer. This allows individual consumers to be given priority over other consumers. It can e.g. B. ensure that such consumers for security reasons always have to be loaded with a certain consumer current, e.g. B. hydraulic brakes have priority over other consumers. This will be discussed later.
  • the particular importance of the invention according to claim 1 is that the adaptation of the consumer currents to a predetermined limit value (maximum pump current) by monitoring the minimum pressure difference to be observed only functions when the predetermined limit value is reached. So several control loops are superimposed.
  • An internal control circuit uses the pressure difference Delta P between the pump pressure and the highest load pressure as a measured variable, the specified minimum pressure difference as a control variable and the control position of the control pump as a control variable.
  • the superimposed outer control loop uses the currently measured pressure difference minus the minimum pressure difference in order to reduce the consumer flows and increase the pressure difference again in the event of a deficiency (consumption exceeds the maximum pump current) and the resulting drop below the limit value of the pressure difference (minimum pressure difference).
  • This has the advantage that a desired weighting of the delivery rate, the delivery torque and the delivery pressure of the control pump can be predetermined when the valve position is adapted to the maximum pump flow.
  • the delivery capacity or the torque of the pump which is currently determined from the respective control position of the pump and the delivery pressure of the pump by multiplication, is compared with a target torque, and the output signal obtained from the difference is compared selectable function is superimposed, for example in such a way that the position and adjustability of the valves assigned to the individual consumers is influenced only when a predetermined drive torque is exceeded, but not below this limit value.
  • the position and adjustability of the valves assigned to the individual consumers can be influenced when a certain pressure is exceeded by superimposing the delivery pressure after a certain function, but not below this pressure or only with a certain percentage.
  • the maximum external load is also taken into account when influencing the valves assigned to the consumers, in particular directional valves.
  • the influencing of the pump current supplied to each consumer and the total of the consumers takes place, for. B. electrically or hydraulically in that the entered setpoints of the valves assigned to the individual consumers are influenced as a function of the pressure difference between the highest consumer pressure and the pump pressure of the control pump.
  • a setpoint processing is expedient.
  • the setpoints are the manually or automatically specified control signals for the valves assigned to the consumers. These externally entered setpoints can be fed to the system via attenuators (ramps). This specifies the rates of change at which the consumer currents can change if the setpoints entered change suddenly. It is thereby achieved that the adjustment speed of the pump or pressure differential balance is sufficient in any case to follow the change in the consumer flows over time. There can therefore be no shortage of consumers for a short time. Furthermore, the consumer flows requested by the entered target values can be roughly adapted to the maximum flow rate that can be supplied by the pump.
  • those entered from outside Setpoints are brought into dependence on the sum of the entered setpoints and, in addition, on the specified pump flow that can be pumped or the minimum pressure difference.
  • this leads to a weighting of the individual consumers and ensures that B. for safety reasons - important consumers always have an adequate oil flow.
  • the setpoints are reduced in advance if the specified pump flow that can be conveyed is expected to be exceeded on the basis of the input setpoint signals.
  • control pump 1 can be adjusted hydraulically by means of a control valve 2.
  • the control valve 2 is controlled by a magnet via an amplifier 3 and has a feedback 4 to the control position of the control pump 1.
  • the individual consumers 5 ', 5 ⁇ , 5 ′′′ are controlled by directional valves 6', 6 ⁇ , 6 ′′′, which are actuated by electromagnets a1-a3, b1-b3.
  • Each directional control valve 6 ', 6 ⁇ , 6 ′′′ is preceded by a pressure control valve 7', 7 ⁇ , 7 ′′′.
  • Each of the pressure control valves 7 ', 7 ⁇ , 7 ′′′ is acted on the one hand with the pressure in front of the directional control valve 6', 6 ⁇ , 6 ′′′ and on the other hand with the consumer pressure behind the directional control valve 6 ', 6 ⁇ , 6 ′′′.
  • each Pressure control valves 7 ', 7 ⁇ , 7 ′′′ resulting pump pressure and the highest consumer pressure detected via a shuttle valve chain 8 is given to a differential encoder 9 together.
  • Its output signal represents the pressure drop Delta P between the pump 1 and the highest consumer pressure.
  • This pressure difference is given, together with its differentiation (differentiating element 12), on the one hand, to a delta-p controller 10, which controls the control valve 2 via the amplifier 3 already mentioned.
  • the two signals are given via a weighting block 13 to comparison blocks 14 ', 14 ⁇ , 14 ′′′, which are each assigned to the individual actuators 16', 16 ⁇ , 16 ′′′ of the directional control valves 6 ', 6 ⁇ , 6 ′′′.
  • the comparison blocks 14 ', 14 ⁇ , 14 ′′′ have a second input, to which a desired setpoint from setpoint generator 15', 15 ⁇ , 15 ′′′ can be specified.
  • the comparison blocks 14 ', 14 ⁇ , 14 ′′′ influence the actuators 16', 16 ⁇ , 16 ′′′ in such a way that the adjustment of the valves 6 ', 6 ⁇ , 6 ′′′ is adapted and reduced such that the maximum Pump 1 flow rate cannot be exceeded.
  • torque can also be superimposed, in that the pump pressure and, on the other hand, the already mentioned pressure drop are recorded in a multiplier 17 and the output signal of this multiplier 17 is fed to the weighting module 13 via a comparator 18.
  • FIG. 2 is a functional diagram in which the control unit 21 is shown with the functional modules contained therein.
  • the pressure difference delta P is input to a module 23 in the control unit 21.
  • a limit value Delta P min is specified for module 23. This limit value can be specified constantly if only the input of the pressure difference is connected to the control unit 21. If the pump pressure P is also connected, further processing of the value Delta P follows, which will be discussed later.
  • the measured or further processed pressure difference and the limit value Delta Pmin are weighted.
  • the output signal of the block 23 is given to the weighting block 13.
  • the pressure difference signal Delta P continues to be applied to the Delta P controller 10.
  • the setpoint value of the pressure difference is also given to the delta-P controller 10.
  • the output signal of the delta-P controller 10 leads via amplifier 3 to the control valve 2 shown in FIG. 1, by means of which the control position of the pump 1 is adjusted.
  • the solenoid of the control valve 2 is acted upon by the output current of the amplifier 3. This results in an adjustment of the control valve 2 in the sense that the two sides of the control piston are equally loaded and the control pump 1 is adjusted in the sense of a reduction in the flow rate (pump flow, pump flow) (adjustment piston moves to the left).
  • the output signal of the delta-P controller 10 is applied to the multiplication module 17 at the same time as the pump pressure P tapped via the pressure converter 11.
  • the output signal of the multiplication module 17 represents the current torque M of the pump 1, since the input signal to the amplifier 3 represents the current delivery quantity of the pump 1.
  • This output signal is related in block 18 (comparator) to a maximum possible limit value of the torque.
  • the output signal of the comparator 18 is given to the weighting module 13.
  • the output signal from 1 is reduced according to a time-dependent, continuous function until the torque M of the pump 1 has decreased so far that the equilibrium is established by feedback of the setpoints (which will be discussed later).
  • the output signal of the function block 26 is a multiplication block 24 together with the pressure difference Delta P abandoned.
  • the pressure difference and the output signal, which has been obtained from the torque comparison, are multiplied in the multiplication module 24.
  • the output signal of this multiplication module 24 represents the measured but further processed pressure difference and is given to the weighting module 23 already mentioned and described.
  • the output signal of the function block 26 is thus used to process the pressure difference in the multiplication block 24, as has already been indicated.
  • the weighting module 23 is supplied with a constantly reduced delta P signal. Therefore, the output signal of the weighting module 23 will also decrease continuously and, in the function module 25, the output signal A will be reduced if the overload P P / Delta P min continues.
  • a permanently entered limit value of the pump pressure P max is related to the currently measured pump pressure P.
  • the module 13 also contains a function module 29 which is controlled by the output signal of the comparator 28 and additionally by a limit value which represents the maximum target value S max .
  • These entered variables are processed in the function block 29 in such a way that the function block 29 gives an output signal B which is equal to one as long as the measured pump pressure P is less than the limit value P max of the pressure and which is equal to the limit value S max of the desired values when the measured pump pressure P exceeds the limit value P max of the pump pressure.
  • the weighting block 13 with its two output signals A of the function block 25 and B of the function block 29 then controls comparison elements 14 ', 14 ⁇ , 14 ′′′, each one of the valves 6', 6 ⁇ , 6 ′′′ for the individual Consumers 5 ', 5 ⁇ , 5 ′′′ are assigned.
  • Each of these comparison elements 14 is given a different setpoint S1, S2, S3 via the setpoint generator 15 ', 15 ⁇ , 15 15.
  • these output signals A and B are superimposed on the entered target values.
  • the outputs then go via the actuators 16 ', 16 ⁇ , 16 ′′′ to the respective magnets a1, b1; a2, b2; a3, b3 of the respective valves 6 ', 6 ⁇ , 6 ′′′.
  • the volume flow supplied to the individual consumer 5 ', 5 ⁇ , 5 ′′′ can be reduced to such an extent that the total amount that can be pumped by the pump 1 is not exceeded.
  • the comparison elements 14 - as shown in FIG. 2 - are divided into a multiplication module 31 ', 31 ⁇ , 31 ′′′ and a limitation module 32', 32 ⁇ , 32 ′′′.
  • the output signal A of the function block 25 and the setpoint value S1, S2, S3 are given to the multiplication block.
  • the setpoints S1, S2, S3 are reduced accordingly.
  • the output signal of the multiplication module 31 is given to the limiting module 32 together with the output signal B of the function module 29, which establishes the relationship to the measured pump pressure P.
  • the output signal of the limiting module becomes 32 limited to the entered limit value Smax of the setpoint.
  • a further evaluation of the limit value Smax can be carried out in the sense that either there is no limit at all or the limit value S max is reduced or increased.
  • individual consumers 5 ', 5 ⁇ , 5 ′′′ priorities can be granted.
  • Other consumers can be shut down or treated subordinately if the setpoint specifications S1, S2, S3 would lead to the limit value of the pump current being exceeded.
  • a setpoint generator 33 can be arranged upstream of the control unit 21.
  • the setpoint generator 33 has a first component 34 for each input setpoint S1, S2, S3, which is referred to below as ramp 34.
  • This ramp means that an abruptly entered setpoint only changes over time. This has the effect that the signal processing and adaptation of the hydraulic system can follow in time even when the setpoint input is erratic and there is no temporary undersupply of the consumers 5 ', 5 ⁇ , 5 ′′′.
  • the output signals of the ramps 34 are then multiplied in multiplication modules 35 by input limit values G1 to G3. These limit values represent a certain percentage of the limit value of the pump delivery flow.
  • the signal e2 is given to a function block 37 together with a signal e1.
  • the signal e1 represents the maximum predetermined pump delivery flow in a form that is comparable to the signal e2.
  • the output signal A is equal to 1 as long as the predetermined limit value of the pump delivery flow e1 is greater than the set and weighted sum e2 of the setpoints S1, S2, S3.
  • the output signal A is equal to the quotient of the limit value el and the weighted sum e2 if the weighted sum e2 is greater than the limit value e1.
  • the output signal A of the function block 37 is now given to the multiplication blocks 38 ', 38 ⁇ , 38 ′′′.
  • the respective setpoint S1, S2, S3 is multiplied after it has preferably first been passed over the ramps 34 ′, 34 ⁇ , 34 ′′′.
  • the output signal of the multiplication modules 38 represents the respective setpoint given to the comparison module 14.
  • This setpoint processing ensures that the setpoint values S1, S2, S3 do not lead to a consumption which does not contribute to the predetermined limit value of the pump delivery flow e1 far exceeds. However, this is only a rough precaution.
  • the inventive superimposition of the adaptation of the consumer flows to the measured pump flow ensures that each consumer 5 ', 5 ⁇ , 5 ′′′ remains functional in the frame assigned to it.
  • the particular importance of the invention lies in the fact that on the one hand the pump torque M is corrected, but that a torque control can be superimposed on this torque control by simultaneously also detecting the speed of the pump 1 or its delivery rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

Disclosed is a hydraulic system in which several consumers (5', 5''; 5''') are powered by a common pump (1). The pump (1) is controlled as a function of the difference between the pump pressure (Delta P) and the maximum load pressure. This pressure difference (Delta Pmax) is compared with a minimum pressure difference (Delta Pmin) and the signal resulting from this comparison process used in a control unit (21) to adjust the reference-value signals (S1, S2, S3) with which the individual valves (6'; 6''; 6''') are controlled.

Description

Die Erfindung betrifft ein Hydrauliksystem nach dem Oberbegriff des Anspruchs.The invention relates to a hydraulic system according to the preamble of the claim.

Dieses Hydrauliksystem ist bekannt aus der WO-A-9002882.This hydraulic system is known from WO-A-9002882.

Bei diesem Hydrauliksystem wird grundsätzlich die Position der Steuerventile immer dann nachgeregelt, wenn eine Abweichung zwischen der Druckdifferenz aus Lastdruck und Pumpendruck und der vorgegebenen Druckdifferenz besteht. Die dort vorgesehene Regelung dient damit einer möglichst genauen Einregelung der Druckdifferenz aus Lastdruck und Pumpendruck auf die vorgegebene Druckdifferenz, wodurch ein ständiges Nachregeln der Positionen der Steuerventile durch den Regelkreis erforderlich ist. Damit wird dieses Hydrauliksystem schwingungsanfällig, da dann, wenn der Pumpenförderstrom prinzipiell zur Versorgung aller Verbraucher ausreicht, im Sinne einer weiteren Öffnung der Steuerventile nachgeregelt wird, wodurch ab einer bestimmten Stellung der Steuerventile in entgegengesetztem Sinne zurück zu regeln wäre usw.In this hydraulic system, the position of the control valves is always readjusted when there is a deviation between the pressure difference between the load pressure and the pump pressure and the specified pressure difference. The regulation provided there thus serves to regulate the pressure difference from the load pressure and the pump pressure as precisely as possible to the predetermined pressure difference, as a result of which the control circuit must constantly readjust the positions of the control valves. This makes this hydraulic system susceptible to vibration, since when the pump flow is sufficient to supply all consumers, the control valves are readjusted, which means that from a certain position the control valves would have to be regulated in the opposite direction, etc.

Ein weiteres Hydrauliksystem ist bekannt durch die DE 26 51 325 C2. Dabei wird einem Regelventil einerseits der an der Pumpe anstehende Druck und andererseits der höchste Lastdruck gemeldet. Kann die Pumpe den von den Steuerventilen und den zugeordneten Verbrauchern geforderten Volumenstrom nicht mehr fördern, so reduziert sich die Druckdifferenz zwischen dem Druck der Pumpe und dem höchsten Lastdruck. Folglich reduziert das Regelventil die Versorgung der Steuerdruckgeber, durch welche die den Verbrauchern zugeordneten Ventile angesteuert werden. Dadurch werden die Ventile in ihrem Durchfluß begrenzt. Diese Begrenzung wird jedoch erst bei schon vorhandenem Überbedarf wirksam. Tritt diese Begrenzung in Funktion, so sind die Verbraucher mittels ihrer Steuerventile nicht mehr steuerbar.Another hydraulic system is known from DE 26 51 325 C2. A control valve is notified on the one hand of the pressure at the pump and on the other hand of the highest load pressure. If the pump can no longer deliver the volume flow required by the control valves and the associated consumers, the pressure difference between the pressure of the pump and the highest load pressure is reduced. The control valve consequently reduces the supply to the control pressure transmitter, by means of which the valves assigned to the consumers are actuated. This limits the flow of the valves. However, this limitation only becomes effective if there is already an excessive demand. If this limitation comes into effect, the consumers can no longer be controlled by means of their control valves.

Bei dem durch das Patent 35 46 336 bekannten System werden die elektrischen Stellsignale der angesteuerten Wegeventile addiert. Der Volumenstrom, welcher der Summe der Stellsignale entspricht, wird mit dem maximal möglichen Pumpenstrom verglichen. Wenn die Summe der Stellsignale den möglichen Pumpenstrom überschreitet, werden die Stellsignale reduziert. Bei diesem System müssen alle Stellsignale erfaßt werden. Außerdem muß die Abhängigkeit der Ventildurchflüsse von den Stellsignalen mittels eines Rechners richtig berücksichtigt werden.In the system known from patent 35 46 336, the electrical control signals of the controlled directional valves are added. The volume flow, which corresponds to the sum of the control signals, is compared with the maximum possible pump flow. If the total of the control signals exceeds the possible pump current, the control signals are reduced. With this system, all control signals must be recorded. In addition, the dependence of the valve flows on the control signals correctly taken into account by means of a computer.

Aufgabe der Erfindung ist es, das Hydrauliksystem so auszugestalten, daß es nicht schwingungsanfällig ist und daß im übrigen eine beliebige Gewichtung und Anpassung der einzelnen Verbraucherströme an die Betriebsparameter der Pumpe möglich ist.The object of the invention is to design the hydraulic system so that it is not susceptible to vibration and that any weighting and adaptation of the individual consumer flows to the operating parameters of the pump is also possible.

Die Lösung ergibt sich aus dem Kennzeichen des Anspruchs 1. Die Lösung hat den Vorteil, daß hierbei nicht der Ansprechbereich der Sollwertgeber beeinflußt wird. Daher bleiben die einzelnen Verbraucher auch bei hohem Verbrauch steuerbar, während bei dem bekannten System bei Überschreitung des maximal vorgegebenen Pumpenstroms die Geschwindigkeit der einzelnen Verbraucher nicht mehr steuerbar ist. Ferner hat man den Vorteil, daß nicht nur die Druckdifferenz, sondern bevorzugt auch die Änderung der Druckdifferenz und die Änderungsrichtung der Druckdifferenz erfaßt werden können. Hierdurch kann die Verbrauchsreduzierung bereits einsetzen, wenn sich durch die Größe und Richtung der Änderungsgeschwindigkeit der Druckdifferenz ein Mangel (d. h. die Summe der eingestellten Verbraucherströme übersteigt den als maximal vorgegebenen Pumpenstrom (maximaler Pumpenstrom)) ankündigt.The solution results from the characterizing part of claim 1. The solution has the advantage that it does not affect the response range of the setpoint generator. Therefore, the individual consumers remain controllable even when the consumption is high, while in the known system the speed of the individual consumers can no longer be controlled if the maximum predetermined pump current is exceeded. There is also the advantage that not only the pressure difference, but preferably also the change in the pressure difference and the direction of change of the pressure difference can be detected. In this way, the reduction in consumption can already begin if a deficiency (i.e. the sum of the set consumer flows exceeds the maximum pump flow specified (maximum pump flow)) is heralded by the size and direction of the rate of change of the pressure difference.

Steigt die Summe der Verbraucherströme, die durch entsprechende Einstellung der den Verbrauchern zugeordneten Ventile gefordert wird, über den maximalen Pumpenstrom an, so werden die Ansteuersignale der Ventile reduziert. Die Reduzierung der Verbraucherströme kann verhältnisgleich erfolgen. Es ist jedoch auch eine Reduzierung nach Prioritäten möglich, wenn z. B. ein einzelner Verbraucher seine Geschwindigkeit im Gegensatz zu den anderen nicht reduzieren soll.If the sum of the consumer flows, which is required by appropriate setting of the valves assigned to the consumers, rises above the maximum pump current, the control signals of the valves are reduced. The reduction of consumer currents can take place proportionally. However, a reduction according to priorities is also possible if, for. B. an individual consumer should not reduce his speed in contrast to the others.

Dabei erfolgt jedoch ein Eingriff des Regelkreises, der Gegenstand dieser Erfindung ist, nur in Ausnahmefällen, und zwar dann, wenn der förderbare Pumpenstrom nicht ausreicht für die an den jeweiligen Ventilen eingestellten Verbraucherströme, die in ihrer Summe die aktuelle Fördermenge ergeben. In diesem Falle wird die aktuelle Fördermenge durch Reduzierung der jeweils zugeführten Verbraucherströme vermindert.However, the control circuit, which is the subject of this invention, intervenes only in exceptional cases, namely when the pumpable pump flow is not sufficient for the consumer flows set on the respective valves, which add up to the current production volume. In this case, the current flow rate is reduced by reducing the respective consumer flows supplied.

Die Anpassung der Verbraucherströme an den maximalen Pumpenstrom geschieht durch die Verstellung der Ventile, die den Verbrauchern jeweils zugeordnet sind. Grundsätzlich ist davon auszugehen, daß diese Ventile von außen, also von Hand oder durch fremde Eingabeparameter elektromagnetisch oder hydraulisch verstellt werden. Nach dieser Erfindung wird diesen Eingabesignalen (Sollwertsignalen) jedoch ein Verstellsignal zur Verminderung der Aussteuerung des Ventilkolbens durch Multiplikation überlagert, wenn in dem Hydrauliksystem durch Messung der Druckdifferenz festgestellt wird, daß der förderbare Pumpenstrom überschritten worden ist.The adjustment of the consumer flows to the maximum pump flow is done by adjusting the valves, which are assigned to the consumers. Basically, it can be assumed that these valves are adjusted electromagnetically or hydraulically from the outside, that is, by hand or by external input parameters. According to this invention, however, an adjustment signal for reducing the actuation of the valve piston by multiplication is superimposed on these input signals (setpoint signals) when it is determined in the hydraulic system by measuring the pressure difference that the pumpable pump current has been exceeded.

Der maximale Pumpenstrom entspricht nicht notwendigerweise dem maximal förderbaren Pumpenstrom. Vielmehr wird ein geringerer Grenzwert, z. B. 80 % des maximal förderbaren Pumpenstromes vorgegeben. Dadurch wird erreicht, daß das Hydrauliksystem durch absolute Überlastung der Pumpe nicht aus seinem Regelbereich herausfällt. Entsprechendes gilt für die vorgegebene Mindestdruckdifferenz.The maximum pump current does not necessarily correspond to the maximum pump current that can be pumped. Rather, a lower limit, e.g. B. 80% of the maximum conveyable pump flow. This ensures that the hydraulic system does not fall out of its control range due to an absolute overload of the pump. The same applies to the specified minimum pressure difference.

Die Anpassung der Verbraucherströme an den vorgegebenen förderbaren Pumpenstrom bei Überschreitung des Mindestgrenzwertes der Druckdifferenz geschieht grundsätzlich dadurch, daß die Summe der Verbraucherströme bis auf den vorgegebenen Grenzwert vermindert wird. Dies kann im einfachsten Falle dadurch geschehen, daß sämtliche Verbraucherströme um den gleichen Prozentsatz vermindert werden. Es ist jedoch auch möglich, die Ansteuersignale, durch welche die Verbraucherströme reduziert werden, für jeden Verbraucher unterschiedlich zu gewichten. Dadurch kann einzelnen Verbrauchern ein Vorrang vor anderen Verbrauchern eingeräumt werden. Es kann z. B. gewährleistet werden, daß solche Verbraucher, die aus Sicherheitsgründen immer mit einem bestimmten Verbraucherstrom beschickt werden müssen, z. B. hydraulische Bremsen, Vorrang haben vor anderen Verbrauchern. Hierauf wird an späterer Stelle noch eingegangen.The adaptation of the consumer flows to the specified pump flow that can be conveyed when the minimum limit value of the pressure difference is exceeded is basically achieved by reducing the sum of the consumer flows to the specified limit value. In the simplest case, this can be done by reducing all consumer flows by the same percentage. However, it is also possible to weight the control signals, by means of which the consumer currents are reduced, differently for each consumer. This allows individual consumers to be given priority over other consumers. It can e.g. B. ensure that such consumers for security reasons always have to be loaded with a certain consumer current, e.g. B. hydraulic brakes have priority over other consumers. This will be discussed later.

Die besondere Bedeutung der Erfindung nach Anspruch 1 besteht darin, daß die Anpassung der Verbraucherströme an einen vorgegebenen Grenzwert (maximaler Pumpenstrom) durch Überwachung der einzuhaltenden Mindestdruckdifferenz nur dann in Funktion tritt, wenn der vorgegebene Grenzwert erreicht wird. Es werden also mehrere Regelkreise überlagert. Ein innerer Regelkreis benutzt die Druckdifferenz Delta P zwischen dem Pumpendruck und dem höchsten Lastdruck als Meßgröße, die vorgegebene Mindestdruckdifferenz als Regelgröße und die Regelstellung der Regelpumpe als Stellgröße.The particular importance of the invention according to claim 1 is that the adaptation of the consumer currents to a predetermined limit value (maximum pump current) by monitoring the minimum pressure difference to be observed only functions when the predetermined limit value is reached. So several control loops are superimposed. An internal control circuit uses the pressure difference Delta P between the pump pressure and the highest load pressure as a measured variable, the specified minimum pressure difference as a control variable and the control position of the control pump as a control variable.

Der überlagerte äußere Regelkreis benutzt die aktuell gemessene Druckdifferenz minus Mindestdruckdifferenz, um bei einem Mangel (Verbrauch überschreitet den maximalen Pumpenstrom) und dem dadurch bewirkten Unterschreiten des Grenzwerts der Druckdifferenz (Mindestdruckdifferenz), die Verbraucherströme zu reduzieren und die Druckdifferenz wieder zu erhöhen.The superimposed outer control loop uses the currently measured pressure difference minus the minimum pressure difference in order to reduce the consumer flows and increase the pressure difference again in the event of a deficiency (consumption exceeds the maximum pump current) and the resulting drop below the limit value of the pressure difference (minimum pressure difference).

Zusätzlich kann die Anpassung der Verbraucherströme der einzelnen Verbraucher an den vorgegebenen, maximalen Pumpenstrom auch durch Überlagerung des aus der Messung der aktuellen Fördermenge (Auslenkung = Regelstellung der Regelpumpe) gewonnenen Meßsignals mit der Pumpenleistung bzw. dem Pumpenmoment (Fördervolumen x Förderdruck) und/oder dem Förderdruck erfolgen. Das hat den Vorteil, daß eine gewünschte Gewichtung der Fördermenge, des Fördermoments und des Förderdrucks der Regelpumpe bei der Anpassung der Ventilstellung an den maximalen Pumpenstrom vorgebbar ist. Dabei wird die aktuell aus der jeweiligen Regelstellung der Pumpe und dem Förderdruck der Pumpe durch Multiplikation ermittelte Förderleistung bzw. das Drehmoment der Pumpe mit einem Solldrehmoment verglichen und das aus der Differenz gewonnene Ausgangssignal nach einer wählbaren Funktion überlagert, etwa derart, daß nur bei Überschreiten eines vorgegebenen Antriebsmoments eine Beeinflussung der Stellung und Stellbarkeit der den einzelnen Verbrauchern zugeordneten Ventile erfolgt, unterhalb dieses Grenzwerts dagegen nicht. Ebenso kann durch Überlagerung des Förderdruckes nach einer bestimmten Funktion die Stellung und Stellbarkeit der den einzelnen Verbrauchern zugeordneten Ventile bei Überschreitung eines bestimmten Druckes beeinflußt werden, unterhalb dieses Druckes jedoch nicht oder nur mit einem bestimmten Prozentsatz. Dadurch wird auch die maximale äußere Last bei der Beeinflussung der den Verbrauchern zugeordneten Ventile, insbesondere Wegeventile berücksichtigt.In addition, the adaptation of the consumer flows of the individual consumers to the specified maximum pump current can also be achieved by superimposing the measurement signal obtained from the measurement of the current delivery volume (deflection = control position of the control pump) with the pump output or the pump torque (delivery volume x delivery pressure) and / or Delivery pressure. This has the advantage that a desired weighting of the delivery rate, the delivery torque and the delivery pressure of the control pump can be predetermined when the valve position is adapted to the maximum pump flow. Here, the delivery capacity or the torque of the pump, which is currently determined from the respective control position of the pump and the delivery pressure of the pump by multiplication, is compared with a target torque, and the output signal obtained from the difference is compared selectable function is superimposed, for example in such a way that the position and adjustability of the valves assigned to the individual consumers is influenced only when a predetermined drive torque is exceeded, but not below this limit value. Likewise, the position and adjustability of the valves assigned to the individual consumers can be influenced when a certain pressure is exceeded by superimposing the delivery pressure after a certain function, but not below this pressure or only with a certain percentage. As a result, the maximum external load is also taken into account when influencing the valves assigned to the consumers, in particular directional valves.

Die Beeinflussung des jedem Verbraucher und der Gesamtheit der Verbraucher zugeführten Pumpenstroms erfolgt z. B. elektrisch oder hydraulisch dadurch, daß die eingegebenen Sollwerte der den einzelnen Verbrauchern zugeordneten Ventile in Abhängigkeit von der Druckdifferenz zwischen dem höchsten Verbraucherdruck und dem Pumpendruck der Regelpumpe beeinflußt werden.The influencing of the pump current supplied to each consumer and the total of the consumers takes place, for. B. electrically or hydraulically in that the entered setpoints of the valves assigned to the individual consumers are influenced as a function of the pressure difference between the highest consumer pressure and the pump pressure of the control pump.

Für besondere Einsatzzwecke des erfindungsgemäßen Hydrauliksystems ist eine Sollwert-Aufbereitung zweckmäßig. Die Sollwerte sind die von Hand oder automatisch vorgegebenen Ansteuersignale für die den Verbrauchern zugeordneten Ventile. Diese von außen eingegebenen Sollwerte können über Dämpfungsglieder dem System zugeführt werden (Rampen). Dadurch werden die Änderungsgeschwindigkeiten vorgegeben, mit welchen sich die Verbraucherströme bei sprunghafter Änderung der eingegebenen Sollwerte ändern können. Dadurch wird erreicht, daß die Verstellgeschwindigkeit der Pumpe bzw. Druckdifferenzwaage in jedem Falle ausreicht, um der zeitlichen Änderung der Verbraucherströme zu folgen. Es kann daher auch kurzzeitig nicht zu einer Unterversorgung der Verbraucher kommen. Ferner können die durch die eingegebenen Sollwerte angeforderten Verbraucherströme grob an die von der Pumpe maximal lieferbare Durchflußmenge angepaßt werden. Hierzu werden die von außen eingegebenen Sollwerte in Abhängigkeit gebracht von der Summe der eingegebenen Sollwerte und zusätzlich von dem vorgegebenen förderbaren Pumpenstrom bzw. der Mindestdruckdifferenz. Dadurch wird zum einen eine Gewichtung der einzelnen Verbraucher erreicht und gewährleistet, daß für die - z. B. aus Sicherheitsgründen - wichtigeren Verbraucher stets ein ausreichender Ölstrom bereitsteht. Es erfolgt zum anderen bereits vorab eine Reduzierung der Sollwerte, wenn eine Überschreitung des vorgegebenen förderbaren Pumpenstroms aufgrund der eingegebenen Sollwertsignale zu erwarten ist.For special applications of the hydraulic system according to the invention, a setpoint processing is expedient. The setpoints are the manually or automatically specified control signals for the valves assigned to the consumers. These externally entered setpoints can be fed to the system via attenuators (ramps). This specifies the rates of change at which the consumer currents can change if the setpoints entered change suddenly. It is thereby achieved that the adjustment speed of the pump or pressure differential balance is sufficient in any case to follow the change in the consumer flows over time. There can therefore be no shortage of consumers for a short time. Furthermore, the consumer flows requested by the entered target values can be roughly adapted to the maximum flow rate that can be supplied by the pump. For this purpose, those entered from outside Setpoints are brought into dependence on the sum of the entered setpoints and, in addition, on the specified pump flow that can be pumped or the minimum pressure difference. On the one hand, this leads to a weighting of the individual consumers and ensures that B. for safety reasons - important consumers always have an adequate oil flow. On the other hand, the setpoints are reduced in advance if the specified pump flow that can be conveyed is expected to be exceeded on the basis of the input setpoint signals.

Im folgenden werden Ausführungsbeispiele der Erfindung anhand der nachfolgend beschriebenen Schaltpläne dargestellt.In the following, exemplary embodiments of the invention are illustrated using the circuit diagrams described below.

Es zeigen:

Fig. 1
einen Schaltplan für ein Hydrauliksystem mit Regelpumpe;
Fig. 2
einen Schaltplan mit Einzelheiten nach Figur 1;
Fig. 3
einen Schaltplan für die Sollwert-Aufbereitung.
Show it:
Fig. 1
a circuit diagram for a hydraulic system with control pump;
Fig. 2
a circuit diagram with details of Figure 1;
Fig. 3
a circuit diagram for the setpoint processing.

Mehrere Verbraucher 5′, 5˝, 5‴ werden durch eine gemeinsame Regelpumpe 1 gespeist. Die Regelpumpe 1 kann hydraulisch mittels eines Stellventils 2 verstellt werden. Das Stellventil 2 wird mittels eines Magneten über einen Verstärker 3 angesteuert und besitzt eine Rückführung 4 auf die Regelstellung der Regelpumpe 1.Several consumers 5 ', 5˝, 5 ‴ are fed by a common control pump 1. The control pump 1 can be adjusted hydraulically by means of a control valve 2. The control valve 2 is controlled by a magnet via an amplifier 3 and has a feedback 4 to the control position of the control pump 1.

Die einzelnen Verbraucher 5′, 5˝, 5‴ werden durch Wegeventile 6′, 6˝, 6‴, die durch Elektromagneten a1-a3, b1-b3 betätigt sind, angesteuert. Jedem Wegeventil 6′, 6˝, 6‴ ist ein Druckregelventil 7′, 7˝, 7‴ vorgeschaltet. Jedes der Druckregelventile 7′, 7˝, 7‴ wird einerseits mit dem Druck vor dem Wegeventil 6′, 6˝, 6‴ und andererseits mit dem Verbraucherdruck hinter dem Wegeventil 6′, 6˝, 6‴ beaufschlagt. Dadurch ist der den Verbrauchern 5′, 5˝, 5‴ zugeführte Volumenstrom lastunabhängig. Der zwischen dem vor den jeweiligen Druckregelventilen 7′, 7˝, 7‴ sich einstellenden Pumpendruck und der über eine Wechselventil-Kette 8 erfaßte, höchste Verbraucherdruck wird einem Differenzgeber 9 gemeinsam aufgegeben. Dessen Ausgangsignal repräsentiert den Druckabfall Delta P zwischen der Pumpe 1 und dem höchsten Verbraucherdruck. Diese Druckdifferenz wird gemeinsam mit ihrer Differentiation (Differenzierungsglied 12) einerseits einem Delta-p-Regler 10 aufgegeben, der über den bereits erwähnten Verstärker 3 das Stellventil 2 ansteuert. Andererseits werden die beiden Signale über einen Gewichtungsbaustein 13 auf Vergleichsbausteine 14′, 14˝, 14‴ gegeben, die jeweils den einzelnen Stellgebern 16′, 16˝, 16‴ der Wegeventile 6′, 6˝, 6‴ zugeordnet sind. Die Vergleichsbausteine 14′, 14˝, 14‴ haben einen zweiten Eingang, dem jeweils ein gewünschter Sollwert von Sollwertgeber 15′, 15˝, 15‴ aus vorgegeben werden kann. Durch die Vergleichsbausteine 14′, 14˝, 14‴ erfolgt eine Beeinflussung der Stellgeber 16′, 16˝, 16‴ in der Form, daß die Verstellung der Ventile 6′, 6˝, 6‴ derart angepaßt und reduziert wird, daß der maximale Förderstrom der Pumpe 1 nicht überschritten werden kann.The individual consumers 5 ', 5˝, 5 ‴ are controlled by directional valves 6', 6˝, 6 ‴, which are actuated by electromagnets a1-a3, b1-b3. Each directional control valve 6 ', 6˝, 6 ‴ is preceded by a pressure control valve 7', 7˝, 7 ‴. Each of the pressure control valves 7 ', 7˝, 7 ‴ is acted on the one hand with the pressure in front of the directional control valve 6', 6˝, 6 ‴ and on the other hand with the consumer pressure behind the directional control valve 6 ', 6˝, 6 ‴. As a result, the volume flow supplied to the consumers 5 ', 5˝, 5 ‴ is load-independent. The one in front of each Pressure control valves 7 ', 7˝, 7 ‴ resulting pump pressure and the highest consumer pressure detected via a shuttle valve chain 8 is given to a differential encoder 9 together. Its output signal represents the pressure drop Delta P between the pump 1 and the highest consumer pressure. This pressure difference is given, together with its differentiation (differentiating element 12), on the one hand, to a delta-p controller 10, which controls the control valve 2 via the amplifier 3 already mentioned. On the other hand, the two signals are given via a weighting block 13 to comparison blocks 14 ', 14˝, 14 ‴, which are each assigned to the individual actuators 16', 16˝, 16 ‴ of the directional control valves 6 ', 6˝, 6 ‴. The comparison blocks 14 ', 14˝, 14 ‴ have a second input, to which a desired setpoint from setpoint generator 15', 15˝, 15 ‴ can be specified. The comparison blocks 14 ', 14˝, 14 ‴ influence the actuators 16', 16˝, 16 ‴ in such a way that the adjustment of the valves 6 ', 6˝, 6 ‴ is adapted and reduced such that the maximum Pump 1 flow rate cannot be exceeded.

Gleichzeitig kann auch eine Momentenüberlagerung erfolgen, indem in einem Multiplizierbaustein 17 einerseits der Pumpendruck und andererseits der bereits erwähnte Druckabfall erfaßt werden und das Ausgangssignal dieses Multiplizierbausteins 17 über einen Komparator 18 dem Gewichtungsbaustein 13 zugeführt wird.At the same time, torque can also be superimposed, in that the pump pressure and, on the other hand, the already mentioned pressure drop are recorded in a multiplier 17 and the output signal of this multiplier 17 is fed to the weighting module 13 via a comparator 18.

Fig. 2 ist ein Funktionsdiagramm, in welchem das Steuergerät 21 mit den darin enthaltenen Funktionsbausteinen dargestellt ist.FIG. 2 is a functional diagram in which the control unit 21 is shown with the functional modules contained therein.

Anhand von Fig. 2 und unter Bezugnahme auf Fig. 1 wird im folgenden die Verarbeitung der eingegebenen Sollwerte in Steuergerät 21 zu Stellgrößen für die Wegeventile 6 beschrieben.2 and with reference to FIG. 1, the processing of the entered setpoints in control unit 21 into manipulated variables for the directional control valves 6 is described below.

In dem Steuergerät 21 wird die Druckdifferenz Delta P einem Baustein 23 eingegeben. Gleichzeitig wird dem Baustein 23 ein Grenzwert Delta Pmin vorgegeben. Dieser Grenzwert kann konstant vorgegeben werden, wenn nur die Eingabe der Druckdifferenz am Steuergerät 21 angeschlossen ist. Wenn auch der Pumpendruck P angeschlossen ist, folgt zuvor eine weitere Verarbeitung des Wertes Delta P, auf die später noch eingegangen wird.The pressure difference delta P is input to a module 23 in the control unit 21. At the same time, a limit value Delta P min is specified for module 23. This limit value can be specified constantly if only the input of the pressure difference is connected to the control unit 21. If the pump pressure P is also connected, further processing of the value Delta P follows, which will be discussed later.

In dem Baustein 23 erfolgt eine Gewichtung der gemessenen bzw. weiterverarbeiteten Druckdifferenz und des Grenzwertes Delta Pmin. Das Ausgangssignal des Bausteines 23 wird dem Gewichtungsbaustein 13 aufgegeben. Dieser enthält einen Funktionsbaustein 25, welcher das positive konstante Ausgangssignal A gleich 1 ergibt, solange der Grenzwert der Druckdifferenz Delta Pmin kleiner ist als die gemessene bzw. weiterverarbeitete Druckdifferenz Delta P. Wenn die Druckdifferenz Delta P den Grenzwert unterschreitet, wird das Ausgangssignal A des Funktionsbausteines 25 kleiner als 1. Es verkleinert sich von 1 ausgehend nach einer zeitabhängigen Funktion, bis sich durch Erhöhung der gemessenen bzw. weiterverarbeiteten Druckdifferenz ein Gleichgewicht einstellt. Darauf wird später eingegangen.In block 23, the measured or further processed pressure difference and the limit value Delta Pmin are weighted. The output signal of the block 23 is given to the weighting block 13. This contains a function block 25, which gives the positive constant output signal A equal to 1, as long as the limit value of the pressure difference Delta Pmin is smaller than the measured or further processed pressure difference Delta P. If the pressure difference Delta P falls below the limit value, the output signal A of the function block becomes 25 smaller than 1. It decreases from 1 based on a time-dependent function until an equilibrium is reached by increasing the measured or further processed pressure difference. This will be discussed later.

Das Druckdifferenzsignal Delta P wird weiterhin dem Delta-P-Regler 10 aufgegeben. Dem Delta-P-Regler 10 wird weiterhin der Sollwert der Druckdifferenz aufgegeben. Das Ausgangssignal des Delta-P-Reglers 10 führt über Verstärker 3 zu dem in Fig. 1 dargestellten Stellventil 2, durch welches die Regelstellung der Pumpe 1 eingeregelt wird. Hierzu wird der Magnet des Stellventils 2 durch den Ausgangsstrom des Verstärkers 3 beaufschlagt. Hierdurch erfolgt eine Verstellung des Stellventils 2 in dem Sinne, daß die beiden Seiten des Stellkolbens gleich druckbelastet sind und die Regelpumpe 1 im Sinne einer Verringerung der Fördermenge (Pumpenstrom, Pumpenförderstrom) verstellt wird (Verstellkolben bewegt sich nach links). Hierdurch wird die auf der anderen Seite des Ventils einwirkende Feder durch die Rückführung 4 belastet und es erfolgt eine Verstellung des Kolbens des Stellventils 2 in dem Sinne, daß der Druck auf der Federseite des Verstellkolbens entlastet wird. Hierdurch erfolgt eine Verstellung der Regelpumpe 1 im Sinne einer Vergrößerung der Fördermenge. Eine umgekehrte Wirkung ergibt sich bei Verkleinerung des Ausgangssignals des Verstärkers 3. In jedem Falle stellt sich an dem Stellventil 2 ein Gleichgewicht ein, so daß das Ausgangssignal des Delta-P-Reglers den ausgeregelten Sollwert für die Regelstellung der Regelpumpe 1 bildet und daher - bei gegebener Drehzahl - auch ein Maß für die aktuelle Fördermenge der Pumpe 1 ist.The pressure difference signal Delta P continues to be applied to the Delta P controller 10. The setpoint value of the pressure difference is also given to the delta-P controller 10. The output signal of the delta-P controller 10 leads via amplifier 3 to the control valve 2 shown in FIG. 1, by means of which the control position of the pump 1 is adjusted. For this purpose, the solenoid of the control valve 2 is acted upon by the output current of the amplifier 3. This results in an adjustment of the control valve 2 in the sense that the two sides of the control piston are equally loaded and the control pump 1 is adjusted in the sense of a reduction in the flow rate (pump flow, pump flow) (adjustment piston moves to the left). As a result, the spring acting on the other side of the valve is loaded by the return 4 and it takes place an adjustment of the piston of the control valve 2 in the sense that the pressure on the spring side of the adjusting piston is relieved. As a result, the control pump 1 is adjusted in the sense of increasing the delivery rate. A reverse effect results when the output signal of the amplifier 3 is reduced. In any case, an equilibrium is set at the control valve 2, so that the output signal of the delta-P controller forms the regulated setpoint for the control position of the control pump 1 and therefore - at given speed - is also a measure of the current delivery rate of pump 1.

Das Ausgangssignal des Delta-P-Reglers 10 wird dem Multiplikationsbaustein 17 gleichzeitig mit dem über Druckwandler 11 abgegriffenen Pumpendruck P aufgegeben. Das Ausgangssignal des Multiplikationsbausteins 17 repräsentiert das aktuelle Drehmoment M der Pumpe 1, da das Eingangssignal zum Verstärker 3 die aktuelle Fördermenge der Pumpe 1 repräsentiert. Dieses Ausgangssignal wird im Baustein 18 (Komparator) zu einem maximal möglichen Grenzwert des Drehmoments in Beziehung gesetzt. Das Ausgangssignal des Komparators 18 wird dem Gewichtungsbaustein 13 aufgegeben. In dem Gewichtungsbaustein 13 wird nun das Ausgangssignal des Vergleichsbausteins (Komparator) 18 in einem Funktionsbaustein 26 so verarbeitet, daß er ein Ausgleichssignal = 1 abgibt, wenn das aktuelle Drehmoment M kleiner als der Grenzwert des Drehmomentes ist, und daß er ein sich verkleinerndes Ausgangssignal abgibt, solange das aktuell ermittelte Drehmoment M größer als der vorgegebene konstante Grenzwert Mmax ist. Im letzteren Fall wird das Ausgangssignal von 1 ausgehend nach einer zeitabhängigen stetigen Funktion so lange verkleinert, bis sich durch Rückführung der Sollwerte (hierauf wird später noch eingegangen) das Drehmoment M der Pumpe 1 so weit verkleinert hat, daß sich Gleichgewicht einstellt.The output signal of the delta-P controller 10 is applied to the multiplication module 17 at the same time as the pump pressure P tapped via the pressure converter 11. The output signal of the multiplication module 17 represents the current torque M of the pump 1, since the input signal to the amplifier 3 represents the current delivery quantity of the pump 1. This output signal is related in block 18 (comparator) to a maximum possible limit value of the torque. The output signal of the comparator 18 is given to the weighting module 13. In the weighting block 13, the output signal of the comparison block (comparator) 18 is processed in a function block 26 so that it emits a compensation signal = 1 when the current torque M is less than the limit value of the torque, and that it emits a decreasing output signal as long as the currently determined torque M is greater than the predetermined constant limit value M max . In the latter case, the output signal from 1 is reduced according to a time-dependent, continuous function until the torque M of the pump 1 has decreased so far that the equilibrium is established by feedback of the setpoints (which will be discussed later).

Hierzu wird das Ausgangssignal des Funktionsbausteins 26 einem Multiplikationsbaustein 24 gemeinsam mit der Druckdifferenz Delta P aufgegeben. In dem Multiplikationsbaustein 24 wird die Druckdifferenz und das Ausgangssignal, das aus dem Momentenvergleich gewonnen worden ist, multipliziert. Das Ausgangssignal dieses Multiplikationsbausteines 24 repräsentiert die gemessene, jedoch weiterverarbeitete Druckdifferenz und wird dem bereits zuvor erwähnten und beschriebenen Gewichtungsbaustein 23 aufgegeben. Das Ausgangssignal des Funktionsbausteins 26 wird somit zur Aufarbeitung der Druckdifferenz im Multiplikationsbaustein 24 benutzt, wie dies bereits zuvor angedeutet worden ist. Bei Überbelastung wird also dem Gewichtungsbaustein 23 ein sich ständig verringertes Delta-P-Signal zugeführt. Daher wird sich auch das Ausgangssignal des Gewichtungsbausteins 23 laufend verkleinern und im Funktionsbaustein 25 bei fortdauernder Überlastung Delta P / Delta Pmin zu einer Verkleinerung des Ausgangssignals A führen.For this purpose, the output signal of the function block 26 is a multiplication block 24 together with the pressure difference Delta P abandoned. The pressure difference and the output signal, which has been obtained from the torque comparison, are multiplied in the multiplication module 24. The output signal of this multiplication module 24 represents the measured but further processed pressure difference and is given to the weighting module 23 already mentioned and described. The output signal of the function block 26 is thus used to process the pressure difference in the multiplication block 24, as has already been indicated. In the event of an overload, the weighting module 23 is supplied with a constantly reduced delta P signal. Therefore, the output signal of the weighting module 23 will also decrease continuously and, in the function module 25, the output signal A will be reduced if the overload P P / Delta P min continues.

Um auch den Pumpendruck P zu berücksichtigen, wird in einem weiteren Komparator 28 (Vergleichsbaustein) ein fest eingegebener Grenzwert des Pumpendrucks Pmax zu dem aktuell gemessenen Pumpendruck P in Beziehung gesetzt.In order to also take the pump pressure P into account, in a further comparator 28 (comparison module) a permanently entered limit value of the pump pressure P max is related to the currently measured pump pressure P.

Der Baustein 13 enthält auch einen Funktionsbaustein 29, der durch das Ausgangssignal des Komparators 28 und zusätzlich durch einen Grenzwert angesteuert wird, der den maximalen Sollwert Smax repräsentiert. Diese eingegebenen Größen werden in dem Funktionsbaustein 29 derart verarbeitet, daß der Funktionsbaustein 29 ein Ausgangssignal B gibt, das gleich eins ist, solange der gemessene Pumpendruck P kleiner als der Grenzwert Pmax des Druckes ist, und das gleich dem Grenzwert Smax der Sollwerte ist, wenn der gemessene Pumpendruck P den Grenzwert Pmax des Pumpendrucks übersteigt.The module 13 also contains a function module 29 which is controlled by the output signal of the comparator 28 and additionally by a limit value which represents the maximum target value S max . These entered variables are processed in the function block 29 in such a way that the function block 29 gives an output signal B which is equal to one as long as the measured pump pressure P is less than the limit value P max of the pressure and which is equal to the limit value S max of the desired values when the measured pump pressure P exceeds the limit value P max of the pump pressure.

Der Gewichtungsbaustein 13 mit seinen beiden Ausgangssignalen A des Funktionsbausteines 25 und B des Funktionsbausteines 29 steuert sodann Vergleichsglieder 14′, 14˝, 14‴ an, die jeweils einem der Ventile 6′, 6˝, 6‴ für die einzelnen Verbraucher 5′, 5˝, 5‴ zugeordnet sind. Jedem dieser Vergleichsglieder 14 wird über die Sollwertgeber 15′, 15˝, 15‴ ein unterschiedlicher Sollwert S1, S2, S3 aufgegeben. In den Vergleichsgliedern werden diese Ausgangssignale A und B den eingegebenen Sollwerten überlagert. Die Ausgänge gehen dann über die Stellgeber 16′, 16˝, 16‴ an die jeweiligen Magnete a1, b1; a2, b2; a3, b3 der jeweiligen Ventile 6′, 6˝, 6‴. Dadurch kann nach einer voreingestellten Funktion und einem voreingestellten Sollwert S1, S2, S3 der dem einzelnen Verbraucher 5′, 5˝, 5‴ zugeführte Volumenstrom so weit herabgenommen werden, daß die von der Pumpe 1 förderbare Gesamtmenge nicht überschritten wird. Durch die gleichzeitige Erfassung und direkte Eingabe des Verstellweges alpha bzw. des Schwenkwinkels der Regelpumpe 1 kann im Gewichtungsbaustein 13 gleichzeitig sichergestellt werden, daß zu der Anpassung der gemessenen Höchstdruckdifferenz Delta Pmax an die Mindestdruckdifferenz Delta Pmin gleichzeitig eine Anpassung an das aktuelle Drehmoment M der Pumpe 1 erfolgt. Ebenso können in die Gewichtung der aktuelle Pumpendruck P oder sonstige Betriebsparameter des Hydrauliksystems mit eingehen.The weighting block 13 with its two output signals A of the function block 25 and B of the function block 29 then controls comparison elements 14 ', 14˝, 14 ‴, each one of the valves 6', 6˝, 6 ‴ for the individual Consumers 5 ', 5˝, 5 ‴ are assigned. Each of these comparison elements 14 is given a different setpoint S1, S2, S3 via the setpoint generator 15 ', 15˝, 15 15. In the comparators, these output signals A and B are superimposed on the entered target values. The outputs then go via the actuators 16 ', 16˝, 16 ‴ to the respective magnets a1, b1; a2, b2; a3, b3 of the respective valves 6 ', 6˝, 6 ‴. As a result, after a preset function and a preset setpoint value S1, S2, S3, the volume flow supplied to the individual consumer 5 ', 5˝, 5 ‴ can be reduced to such an extent that the total amount that can be pumped by the pump 1 is not exceeded. Through the simultaneous detection and direct input of the adjustment path alpha or the swivel angle of the control pump 1, it can simultaneously be ensured in the weighting module 13 that for the adaptation of the measured maximum pressure difference Delta P max to the minimum pressure difference Delta P min an adaptation to the current torque M at the same time Pump 1 takes place. The current pump pressure P or other operating parameters of the hydraulic system can also be included in the weighting.

Hierzu sind die Vergleichsglieder 14 - wie Fig. 2 zeigt - aufgegliedert in einen Multiplikationsbaustein 31′, 31˝, 31‴ sowie in einen Begrenzungsbaustein 32′, 32˝, 32‴. Dem Multiplikationsbaustein wird das Ausgangssignal A des Funktionsbausteines 25 sowie der eingestellte Sollwert S1, S2, S3 jeweils vorgegeben. Dadurch wird der eingestellte Sollwert S in Beziehung gesetzt zu der aktuell gemessenen Höchstdruckdifferenz Delta Pmax, wenn die Summe der Verbraucherströme den Grenzwert des Pumpenstromes Pmax übersteigt. Die Sollwerte S1, S2, S3 werden entsprechend vermindert. Das Ausgangssignal des Multiplikationsbausteins 31 wird dem Begrenzungsbaustein 32 gemeinsam mit dem Ausgangssignal B des Funktionsbausteines 29 aufgegeben, der die Beziehung zu dem gemessenen Pumpendruck P herstellt. Bei Überschreitung des vorgegebenen Grenzwertes des Pumpendruckes Pmax wird das Ausgangssignal des Begrenzungsbausteines 32 begrenzt auf den eingegebenen Grenzwert Smax des Sollwerts. In jedem der Bausteine 32′, 32˝, 32‴ kann eine weitere Bewertung des zugeführten Grenzwertes Smax erfolgen in dem Sinne, daß entweder gar keine Begrenzung erfolgt oder eine Herabsetzung oder eine Vergrößerung des Grenzwertes Smax. Hierdurch können einzelnen Verbrauchern 5′, 5˝, 5‴ Prioritäten eingeräumt werden. Andere Verbraucher können stillgesetzt oder nachrangig behandelt werden, wenn die eingestellten Sollwertvorgaben S1, S2, S3 zu einer Überschreitung des Grenzwertes des Pumpenstromes führen würden.For this purpose, the comparison elements 14 - as shown in FIG. 2 - are divided into a multiplication module 31 ', 31˝, 31 ‴ and a limitation module 32', 32˝, 32 ‴. The output signal A of the function block 25 and the setpoint value S1, S2, S3 are given to the multiplication block. This sets the setpoint S in relation to the currently measured maximum pressure difference Delta P max when the sum of the consumer currents exceeds the limit value of the pump current P max . The setpoints S1, S2, S3 are reduced accordingly. The output signal of the multiplication module 31 is given to the limiting module 32 together with the output signal B of the function module 29, which establishes the relationship to the measured pump pressure P. If the specified limit value of the pump pressure P max is exceeded, the output signal of the limiting module becomes 32 limited to the entered limit value Smax of the setpoint. In each of the blocks 32 ', 32˝, 32 ‴, a further evaluation of the limit value Smax can be carried out in the sense that either there is no limit at all or the limit value S max is reduced or increased. As a result, individual consumers 5 ', 5˝, 5 ‴ priorities can be granted. Other consumers can be shut down or treated subordinately if the setpoint specifications S1, S2, S3 would lead to the limit value of the pump current being exceeded.

In Fig. 3 ist nun zusätzlich noch eine Sollwertaufbereitung gezeigt, die wahlweise eingesetzt werden kann. Hierzu kann dem Steuergerät 21 ein Sollwertgeber 33 vorgeordnet werden. Der Sollwertgeber 33 weist einen ersten Baustein 34 für jeden eingegebenen Sollwert S1, S2, S3 auf, der im folgenden als Rampe 34 bezeichnet wird. Diese Rampe bewirkt, daß ein sprunghaft eingegebener Sollwert sich nur zeitlich abhängig ändert. Dadurch wird bewirkt, daß auch bei sprunghafter Sollwerteingabe die Signalverarbeitung und Anpassung des Hydrauliksystems zeitlich folgen kann und es nicht zu einer zeitweiligen Unterversorgung der Verbraucher 5′, 5˝, 5‴ kommt. Die Ausgangssignale der Rampen 34 werden sodann in Multiplikationsbausteinen 35 mit eingegebenen Grenzwerten G1 bis G3 multipliziert. Diese Grenzwerte repräsentieren einen bestimmten Prozentsatz des Grenzwertes des Pumpenförderstromes. Hierdurch erfolgt in den Multiplikationsbausteinen 35 eine Gewichtung der eingegebenen Sollwerte S1, S2, S3. Die Ausgangssignale der Multiplikationsbausteine 35 werden einem Summierglied 36 aufgegeben mit dem Ausgangssignal e2, das die Summe der Ausgangssignale der Multiplikationsbausteine repräsentiert.In Fig. 3, a setpoint processing is now additionally shown, which can be used optionally. For this purpose, a setpoint generator 33 can be arranged upstream of the control unit 21. The setpoint generator 33 has a first component 34 for each input setpoint S1, S2, S3, which is referred to below as ramp 34. This ramp means that an abruptly entered setpoint only changes over time. This has the effect that the signal processing and adaptation of the hydraulic system can follow in time even when the setpoint input is erratic and there is no temporary undersupply of the consumers 5 ', 5˝, 5 ‴. The output signals of the ramps 34 are then multiplied in multiplication modules 35 by input limit values G1 to G3. These limit values represent a certain percentage of the limit value of the pump delivery flow. This results in a weighting of the entered target values S1, S2, S3 in the multiplication modules 35. The output signals of the multiplication modules 35 are fed to a summing element 36 with the output signal e2, which represents the sum of the output signals of the multiplication modules.

Das Signal e2 wird einem Funktionsbaustein 37 aufgegeben gemeinsam mit einem Signal e1. Das Signal e1 repräsentiert den maximal vorgegebenen Pumpenförderstrom in einer Form, die dem Signal e2 vergleichbar ist. Im Funktionsbaustein 37 werden die beiden Eingangssignale e1 und e2 in Verbindung gesetzt. Das Ausgangssignal A ist gleich 1, solange der vorgegebene Grenzwert des Pumpenförderstroms e1 größer als die eingestellte und gewichtete Summe e2 der Sollwerte S1, S2, S3 ist. Das Ausgangssignal A ist gleich dem Quotienten aus Grenzwert el und gewichteter Summe e2, wenn die gewichtete Summe e2 größer ist als der Grenzwert e1.The signal e2 is given to a function block 37 together with a signal e1. The signal e1 represents the maximum predetermined pump delivery flow in a form that is comparable to the signal e2. In function block 37, the two input signals e1 and e2 connected. The output signal A is equal to 1 as long as the predetermined limit value of the pump delivery flow e1 is greater than the set and weighted sum e2 of the setpoints S1, S2, S3. The output signal A is equal to the quotient of the limit value el and the weighted sum e2 if the weighted sum e2 is greater than the limit value e1.

Das Ausgangssignal A des Funktionsbausteines 37 wird nun den Multiplikationsbausteinen 38′, 38˝, 38‴ aufgegeben. In jedem der Multiplikationsbausteine 38 wird der jeweilige Sollwert S1, S2, S3, nachdem er vorzugsweise zunächst über die Rampen 34′, 34˝, 34‴ geführt worden ist, multipliziert. Das Ausgangssignal der Multiplikationsbausteine 38 stellt den dem Vergleichsbaustein 14 vorgegebenen, jeweiligen Sollwert dar. Durch diese Sollwertaufbereitung wird bereits bei der Sollwertaufgabe Vorsorge getragen, daß die eingestellten Sollwerte S1, S2, S3 nicht zu einem Verbrauch führen, der den vorgegebenen Grenzwert des Pumpenförderstroms e1 bei weitem übersteigt. Es handelt sich dabei jedoch nur um eine grobe Vorsorge. Die erfindungsgemäße Überlagerung der Anpassung der Verbraucherströme an den gemessenen Pumpenförderstrom gewährleistet, daß jeder Verbraucher 5′, 5˝, 5‴ in dem ihm zugewiesenen Rahmen funktionsfähig bleibt.The output signal A of the function block 37 is now given to the multiplication blocks 38 ', 38˝, 38 ‴. In each of the multiplication modules 38, the respective setpoint S1, S2, S3 is multiplied after it has preferably first been passed over the ramps 34 ′, 34˝, 34 ‴. The output signal of the multiplication modules 38 represents the respective setpoint given to the comparison module 14. This setpoint processing ensures that the setpoint values S1, S2, S3 do not lead to a consumption which does not contribute to the predetermined limit value of the pump delivery flow e1 far exceeds. However, this is only a rough precaution. The inventive superimposition of the adaptation of the consumer flows to the measured pump flow ensures that each consumer 5 ', 5˝, 5 ‴ remains functional in the frame assigned to it.

Die besondere Bedeutung der Erfindung liegt dabei darin, daß einerseits das Pumpendrehmoment M ausgeregelt wird, daß dieser Momentenregelung aber eine Leistungsregelung überlagert werden kann, indem gleichzeitig auch noch die Drehzahl der Pumpe 1 oder ihre Fördermenge erfaßt wird.The particular importance of the invention lies in the fact that on the one hand the pump torque M is corrected, but that a torque control can be superimposed on this torque control by simultaneously also detecting the speed of the pump 1 or its delivery rate.

BEZUGSZEICHENAUFSTELLUNGREFERENCE SIGN LISTING

11
RegelpumpeControl pump
22nd
StellventilControl valve
33rd
Verstärkeramplifier
44th
RückführeinrichtungFeedback device
55
Verbraucherconsumer
66
Steuerventil, WegeventilControl valve, directional valve
77
Druckregelventil, DruckdifferenzwaagePressure control valve, differential pressure balance
88th
WechselventilShuttle valve
99
DifferenzgeberDifferential encoder
1010th
Delta-P-ReglerDelta P controller
1111
DruckwandlerPressure transducer
1212th
DifferenziergliedDifferentiator
1313
Gewichtungsbaustein, FunktionsbausteinWeighting module, function module
1414
Vergleichsbaustein, VergleichsgliedComparison module, comparison element
1515
SollwertgeberSetpoint generator
1616
Verstärker, Stellgeber, StellwertgeberAmplifiers, actuators, actuators
1717th
Multiplizierbaustein, MultiplikationsbausteinMultiplier block, multiplication block
1818th
Komparator (M/Mmax)Comparator (M / M max )
2020th
PumpendruckleitungPump pressure line
2121
SteuergerätControl unit
2323
Baustein, GewichtungsbausteinBlock, weighting block
2424th
MultiplikationsbausteinMultiplication module
2525th
FunktionsbausteinFunction block
2626
FunktionsbausteinFunction block
2828
Komparator (P/Pmax)Comparator (P / P max )
2929
FunktionsbausteinFunction block
3131
MultiplikationsbausteinMultiplication module
3232
BegrenzungsbausteinLimiting block
3333
SollwertgeberSetpoint generator
3434
Baustein, RampenBuilding block, ramps
3535
MultiplikationsbausteinMultiplication module
3636
SummiergliedSummer
3737
FunktionsbausteinFunction block
38′38 ′
))
38˝38˝
MultiplikationsbausteinMultiplication module
38‴38 ‴
))
  • Legende zu Fig. 2Legend to Fig. 2
    Legende 10Legend 10
    Δp ReglerΔp controller
    Legende 17Legend 17
    Multiplikationmultiplication
    Legende 24Legend 24
    Multiplikationmultiplication
    Legende 25Legend 25
    wenn Δp/ΔpMin ≧ 1 ↝ A = 1;
    wenn Δp/ΔpMin < 1 ↝ A verkleinern bis Δp/ΔpMin = 1;
    if Δp / Δp Min ≧ 1 ↝ A = 1;
    if Δp / Δp Min <1 ↝ A decrease to Δp / Δp Min = 1;
    Legende 26Legend 26
    wenn M/MMax ≦ 1 ↝ a = 1;
    wenn M/MMax > 1 ↝ a verkleinern bis M/MMax = 1;
    if M / M Max ≦ 1 ↝ a = 1;
    if M / M Max > 1 ↝ a decrease to M / M Max = 1;
    Legende 29Legend 29
    wenn P/PMax ≦ 1 ↝ B = 1;
    wenn P/PMax > 1 ↝ S1 - S3 begrenzen auf SMax;
    if P / P Max ≦ 1 ↝ B = 1;
    if P / P Max > 1 ↝ S1 - S3 limit to S Max;
    Legende 31Legend 31
    Multiplikationmultiplication
    Legende 32Legend 32
    Begrenzung; LimitationLimitation; Limitation
    S1, S2, S3S1, S2, S3
    SollwertSetpoint
  • Legende zu Fig. 3Legend to Fig. 3
    Legende 35Legend 35
    Multiplikationmultiplication
    Legende 37Legend 37
    wenn e1 - e2 ≧ 0 ↝ a = 1;
    wenn e1 - e2 < 0 ↝ a = e1 e2
    Figure imgb0001
    ;
    if e1 - e2 ≧ 0 ↝ a = 1;
    if e1 - e2 <0 ↝ a = e1 e2
    Figure imgb0001
    ;
    Legende 38Legend 38
    Multiplikationmultiplication

Claims (5)

  1. Hydraulic system in which a plurality of consumer units (5′ ; 5˝ ; 5‴) are fed by a common regulating pump (1), in which the pressure difference between the consumer units (5′ ; 5˝ ; 5‴) is measured at the maximum load pressure and the pump pressure and is stabilized by adjusting the regulating pump (1) and is simultaneously used for influencing the actuating signals (a1, b1; a2, b2; a3, b3) for the control valves (6′; 6˝; 6‴) associated with the individual consumer units (5′ ; 5˝ ; 5‴) in such a way that the pump flow delivered to all the consumer units (5′ ; 5˝ ; 5‴) can be adapted to the maximum preset pump conveying flow, the pressure difference Delta P measured being placed in a function block in relation to a preset pressure difference and an output signal A being generated therefom with respect to which the actuating signals (a1, b1; a2, b2; a3, a4) presetting the control valves (6′ ; 6˝ ; 6‴) are varied with respect to the input nominal values (S1, S2, S3), characterized in that a minimum pressure difference Delta P min is preset as the preset pressure difference, the output signal A is equal to 1 provided the pressure difference measured is equal to or greater than this minimum pressure difference, and is continuously decreased from a value equal to 1 provided the pressure difference measured is smaller than this minimum pressure difference.
  2. Hydraulic system according to Claim 1, characterized in that the regulating setting of the regulating pump (1) is measured and its displacement (alpha) is multiplied by the additionally measured pump pressure and the product (M) is additionally used for adapting the consumer unit flows.
  3. Hydraulic system according to Claim 1 or 2, characterized in that the pump pressure is additionally used for adapting the consumer unit flows.
  4. Hydraulic system according to any one of the preceding Claims, characterized in that the nominal value signals (S1, S2, S3) are reduced in dependence on the preset conveyable pump flow and on the sum of the nominal value signals set before the nominal value signals (S1, S2, S3) are multiplied by the reducing factor.
  5. Hydraulic system according to Claim 4, characterized in that before the summation of the input nominal value signals (S1, S2, S3) each nominal value signal is multiplied by a limiting value Gv which is preset for the respective consumer unit
EP92900271A 1990-12-15 1991-12-13 Hydraulic system Expired - Lifetime EP0515608B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE4040176 1990-12-15
DE4040176 1990-12-15
DE4124793 1991-07-26
DE4124793 1991-07-26
PCT/DE1991/000967 WO1992010684A1 (en) 1990-12-15 1991-12-13 Hydraulic system

Publications (2)

Publication Number Publication Date
EP0515608A1 EP0515608A1 (en) 1992-12-02
EP0515608B1 true EP0515608B1 (en) 1995-03-29

Family

ID=25899381

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92900271A Expired - Lifetime EP0515608B1 (en) 1990-12-15 1991-12-13 Hydraulic system

Country Status (6)

Country Link
US (1) US5297381A (en)
EP (1) EP0515608B1 (en)
JP (1) JPH05504819A (en)
DE (1) DE59105057D1 (en)
DK (1) DK0515608T3 (en)
WO (1) WO1992010684A1 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4219787C1 (en) * 1992-06-17 1994-01-05 Jungheinrich Ag Vehicle with a battery-electric drive, especially a rear loader
US5666806A (en) * 1995-07-05 1997-09-16 Caterpillar Inc. Control system for a hydraulic cylinder and method
EP1553231B1 (en) * 1996-02-28 2008-01-09 Komatsu Ltd. Control device for hydraulic drive machine
US5680760A (en) * 1996-03-28 1997-10-28 Caterpillar Inc. Hydraulic drive system
JP3268527B2 (en) * 1996-09-25 2002-03-25 株式会社パブコ Control method of lifting device
DE19743801A1 (en) * 1997-10-02 1999-04-08 Claas Selbstfahr Erntemasch Device for controlling a hydraulic cylinder in a self-propelled harvesting machine
US6450081B1 (en) 1999-08-09 2002-09-17 Caterpillar Inc. Hydraulic system for controlling an attachment to a work machine such as thumb attachment used on an excavator
US6662705B2 (en) 2001-12-10 2003-12-16 Caterpillar Inc Electro-hydraulic valve control system and method
US7121189B2 (en) * 2004-09-29 2006-10-17 Caterpillar Inc. Electronically and hydraulically-actuated drain value
US7204084B2 (en) * 2004-10-29 2007-04-17 Caterpillar Inc Hydraulic system having a pressure compensator
US7146808B2 (en) * 2004-10-29 2006-12-12 Caterpillar Inc Hydraulic system having priority based flow control
US7441404B2 (en) 2004-11-30 2008-10-28 Caterpillar Inc. Configurable hydraulic control system
US7243493B2 (en) * 2005-04-29 2007-07-17 Caterpillar Inc Valve gradually communicating a pressure signal
US7204185B2 (en) * 2005-04-29 2007-04-17 Caterpillar Inc Hydraulic system having a pressure compensator
US7302797B2 (en) * 2005-05-31 2007-12-04 Caterpillar Inc. Hydraulic system having a post-pressure compensator
US7194856B2 (en) * 2005-05-31 2007-03-27 Caterpillar Inc Hydraulic system having IMV ride control configuration
US7331175B2 (en) * 2005-08-31 2008-02-19 Caterpillar Inc. Hydraulic system having area controlled bypass
US7210396B2 (en) * 2005-08-31 2007-05-01 Caterpillar Inc Valve having a hysteretic filtered actuation command
US20070071609A1 (en) * 2005-09-26 2007-03-29 Sturman Industries, Inc. Digital pump with multiple outlets
US20100043418A1 (en) * 2005-09-30 2010-02-25 Caterpillar Inc. Hydraulic system and method for control
US7614336B2 (en) * 2005-09-30 2009-11-10 Caterpillar Inc. Hydraulic system having augmented pressure compensation
US7320216B2 (en) * 2005-10-31 2008-01-22 Caterpillar Inc. Hydraulic system having pressure compensated bypass
US7621211B2 (en) * 2007-05-31 2009-11-24 Caterpillar Inc. Force feedback poppet valve having an integrated pressure compensator
US8479504B2 (en) * 2007-05-31 2013-07-09 Caterpillar Inc. Hydraulic system having an external pressure compensator
US20080295681A1 (en) * 2007-05-31 2008-12-04 Caterpillar Inc. Hydraulic system having an external pressure compensator
KR101595116B1 (en) * 2008-03-10 2016-02-18 파커-한니핀 코포레이션 Hydraulic system having multiple actuators and an associated control method
US8631650B2 (en) 2009-09-25 2014-01-21 Caterpillar Inc. Hydraulic system and method for control
US9719586B2 (en) 2012-12-21 2017-08-01 Cnh Industrial America Llc Ramping subsystem for a machine with a dual path electronically controlled hydrostatic transmission
KR102083686B1 (en) * 2013-12-26 2020-03-02 두산인프라코어 주식회사 Pressure peak rerief valve for excavator and system of the same
EP3236328B8 (en) 2016-04-21 2019-03-06 Kaeser Kompressoren SE Method for analysing the compressed air supply security of a compressed air installation
US10718100B2 (en) * 2016-11-21 2020-07-21 Van-Tech Corporation Electro-hydraulic feed delivery system
DE102017210823A1 (en) * 2017-06-27 2018-12-27 Robert Bosch Gmbh Valve block assembly and method for a valve block assembly
WO2020132934A1 (en) * 2018-12-26 2020-07-02 潍柴动力股份有限公司 Hydraulic variable pump set and excavator
DE102022118535A1 (en) * 2022-07-25 2024-01-25 Deere & Company Arrangement for operating a hydraulic consumer

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3987622A (en) * 1976-02-02 1976-10-26 Caterpillar Tractor Co. Load controlled fluid system having parallel work elements
US4103489A (en) * 1977-04-15 1978-08-01 Deere & Company Total power fluid system
US4165613A (en) * 1978-03-27 1979-08-28 Koehring Company Control apparatus for a plurality of simultaneously actuatable fluid motors
JPS55107511A (en) * 1979-02-09 1980-08-18 Jiro Shimizu High-speed spinning of polyethylene terephthalate having double cross-sectional structure
US4301102A (en) * 1979-07-16 1981-11-17 E. I. Du Pont De Nemours And Company Self-crimping polyamide fibers
JPS56139316A (en) * 1980-01-07 1981-10-30 Komatsu Ltd Power loss reduction controller for oil-pressure type construction machine
JPS59106508A (en) * 1982-12-06 1984-06-20 Teijin Ltd Manufacture of fiber having latent bulkiness
US4537364A (en) * 1982-12-15 1985-08-27 Sundstrand Corporation Constant tension cable reel drive
US4723478A (en) * 1983-02-04 1988-02-09 The Cessna Aircraft Company Series self-leveling valve
JPS59216918A (en) * 1983-05-26 1984-12-07 Toyobo Co Ltd Twisted polyester fiber and its manufacture
DE3321483A1 (en) * 1983-06-14 1984-12-20 Linde Ag, 6200 Wiesbaden HYDRAULIC DEVICE WITH ONE PUMP AND AT LEAST TWO OF THESE INACTED CONSUMERS OF HYDRAULIC ENERGY
US4554992A (en) * 1983-09-09 1985-11-26 Fmc Corporation Hydraulically operated four wheel sweeper
IT1234937B (en) * 1985-02-14 1992-06-02 Cinotto Hydraulic ANTI-SATURATION SYSTEM FOR HYDRAULIC CONTROL CIRCUITS WITH PUMPS AND PRESSURE-CONTROLLED DISTRIBUTORS FOR WORKING PARTS OF EARTH-MOVING MACHINES
DE3535771A1 (en) * 1985-10-07 1987-04-09 Linde Ag HYDROSTATIC DRIVE WITH SEVERAL CONSUMERS
DE3546336A1 (en) * 1985-12-30 1987-07-02 Rexroth Mannesmann Gmbh CONTROL ARRANGEMENT FOR AT LEAST TWO HYDRAULIC CONSUMERS SUPPLIED BY AT LEAST ONE PUMP
DE3644736C2 (en) * 1985-12-30 1996-01-11 Rexroth Mannesmann Gmbh Control arrangement for at least two hydraulic consumers fed by at least one pump
DE3623066A1 (en) * 1986-07-09 1988-01-28 Rexroth Mannesmann Gmbh CIRCUIT ARRANGEMENT FOR THE SPEED CONTROL OF A HYDROSTATIC MACHINE CONNECTED TO A PIPE WITH IMPRESSED PRESSURE
US4712376A (en) * 1986-10-22 1987-12-15 Caterpillar Inc. Proportional valve control apparatus for fluid systems
JPS63112719A (en) * 1986-10-23 1988-05-17 Toyobo Co Ltd Melt spinning method
DE3702000A1 (en) * 1987-01-23 1988-08-04 Hydromatik Gmbh CONTROL DEVICE FOR A HYDROSTATIC TRANSMISSION FOR AT LEAST TWO CONSUMERS
IN171213B (en) * 1988-01-27 1992-08-15 Hitachi Construction Machinery
DE68910940T2 (en) * 1988-05-10 1994-04-21 Hitachi Construction Machinery HYDRAULIC DRIVE UNIT FOR CONSTRUCTION MACHINERY.
EP0379595B1 (en) * 1988-07-08 1993-09-29 Hitachi Construction Machinery Co., Ltd. Hydraulic driving apparatus
SE8803181D0 (en) * 1988-09-09 1988-09-09 Atlas Copco Ab HYDRAULIC DRIVING SYSTEM WITH A PRIORITY FUNCTION FOR HYDRAULIC MOTORS
US5048293A (en) * 1988-12-29 1991-09-17 Hitachi Construction Machinery Co., Ltd. Pump controlling apparatus for construction machine
US5170625A (en) * 1989-07-27 1992-12-15 Hitachi Construction Machinery Co., Ltd. Control system for hydraulic pump
FR2650635A1 (en) * 1989-08-07 1991-02-08 Rexroth Sigma Method for operating at least one variable output pump in an electrohydraulic plant, and electrohydraulic plant implementing this method
US5167121A (en) * 1991-06-25 1992-12-01 University Of British Columbia Proportional hydraulic control

Also Published As

Publication number Publication date
DE59105057D1 (en) 1995-05-04
WO1992010684A1 (en) 1992-06-25
DK0515608T3 (en) 1995-06-12
US5297381A (en) 1994-03-29
JPH05504819A (en) 1993-07-22
EP0515608A1 (en) 1992-12-02

Similar Documents

Publication Publication Date Title
EP0515608B1 (en) Hydraulic system
EP1664551B1 (en) Control system and method for supplying pressure means to at least two hydraulic consumers
DE4127342C2 (en) Hydraulic system with a pump
EP2519365B1 (en) Method of controlling side guides of a metal strip
EP0515639B1 (en) Hydraulic system
EP3495056B1 (en) Improved control of water conservancy of a cooling section
DE2062368C3 (en) Hydrostatic transmission with power limitation control
DE4036720A1 (en) CONTROL CIRCUIT FOR THE LOAD-INDEPENDENT DISTRIBUTION OF A PRESSURE FLOW
EP3816455A1 (en) Hydraulic control arrangement for supplying compressed media of at least two hydraulic consumers
DE202011052170U1 (en) Coolant system for machine tools
EP0016862B1 (en) Control device for a hydraulic system
EP2304515B1 (en) Control arrangement having a pressure limiting valve
DE3420674C2 (en) Pressure supply device for a hydraulic system
DE4327313C2 (en) Process for regulating the pressure of a hydrostatic machine with an adjustable delivery volume
DE3844401C2 (en) Control device for a variable displacement pump
DE69016650T2 (en) CONTROL ARRANGEMENT AND METHOD FOR PROGRESSIVELY BREAKING PIECES TO BE TREATED.
DE4210252C1 (en)
EP3895819B1 (en) Operation of a cooling device with minimum working pressure
DE3609399C2 (en)
EP0284988B1 (en) Regulator for at least two hydrostatic machines linked to a common pressure pipe
DE3844399C2 (en) Control arrangement for several independently operable hydraulic consumers and their use
DE2657986B2 (en) Adjustment device for a sheet leveler to adjust the leveling gap
DE3140397A1 (en) Pilot-controlled apparatus for the load-independent regulation of a pressure medium flow in proportion to an electric input signal
EP0574737B1 (en) Vehicle with battery operated drive, in particular lift truck
DE4307827A1 (en) Hydraulic power supply system - with variable delivery provided by variable displacement pump that is adjusted to meet demands determined by commands to load devices

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920806

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK FR GB IT SE

17Q First examination report despatched

Effective date: 19940210

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19950329

Ref country code: GB

Effective date: 19950329

Ref country code: FR

Effective date: 19950329

REF Corresponds to:

Ref document number: 59105057

Country of ref document: DE

Date of ref document: 19950504

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950629

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19950329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19951020

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960424

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Effective date: 19961213

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970902