EP0514421B1 - Process for depleting viruses in solutions and for determining the depletion rate of the viruses - Google Patents

Process for depleting viruses in solutions and for determining the depletion rate of the viruses Download PDF

Info

Publication number
EP0514421B1
EP0514421B1 EP91903318A EP91903318A EP0514421B1 EP 0514421 B1 EP0514421 B1 EP 0514421B1 EP 91903318 A EP91903318 A EP 91903318A EP 91903318 A EP91903318 A EP 91903318A EP 0514421 B1 EP0514421 B1 EP 0514421B1
Authority
EP
European Patent Office
Prior art keywords
viruses
virus
filtration
depletion
purified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91903318A
Other languages
German (de)
French (fr)
Other versions
EP0514421A1 (en
EP0514421B2 (en
Inventor
Werner Dr. Nader
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanorell Pharma GmbH and Co KG
Original Assignee
Sanorell Pharma GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6399564&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0514421(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sanorell Pharma GmbH and Co KG filed Critical Sanorell Pharma GmbH and Co KG
Publication of EP0514421A1 publication Critical patent/EP0514421A1/en
Publication of EP0514421B1 publication Critical patent/EP0514421B1/en
Application granted granted Critical
Publication of EP0514421B2 publication Critical patent/EP0514421B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0011Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
    • A61L2/0017Filtration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/022Filtration
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/24Methods of sampling, or inoculating or spreading a sample; Methods of physically isolating an intact microorganisms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/948Microorganisms using viruses or cell lines

Definitions

  • the invention relates to a method for depleting viruses and for determining the depletion rate of viruses in organic material.
  • Medicinal products derived from animal or human cell cultures, organs or blood are potentially contaminated with animal or human pathogenic viruses.
  • viruses With the wide range of viruses with which the sample can be contaminated, it is impossible to test the starting material for all viruses that may be present.
  • virus groups there is also no reliable or sufficiently sensitive detection method.
  • a cleaning or inactivation process must therefore be carried out, by means of which pathogenic viruses are depleted, so that no problems are to be expected even in the case of a massive infection of starting material or intermediate products.
  • the cleaning process or inactivation process should be so efficient that viruses can be depleted by rates of up to 10 12 .
  • viruses can differ significantly from one another in their physicochemical behavior, the material for the manufacturing process must be exposed to a spectrum of at least four different virus types. This requires considerable effort, since potentially human-pathogenic viruses must also be used.
  • Sterile filtration has long been used in the manufacture of pharmaceuticals to remove bacteria and is considered a safe decontamination process for these potential pathogens.
  • the manufacturer applies random samples to the sterile filter with the smallest bacterium Pseudomonas diminuta known outside the groups of mycoplasma and L-shape bacteria. If a certain depletion rate for sterile filtration can be detected for this bacterium in the "bacteria challenge test", the production batch is considered safe.
  • Such a method is described in Walljarer, Kir der Sterilmaschine, Thieme Verlag, Stuttgart, 1988, pages 324 ff.
  • Filtration methods can also be used to remove viruses, the filters used having to retain molecules and particles of more than 1 million Daltons.
  • ultrafilters are available in various designs, but - in contrast to sterile filters - they are not absolute filters; d. H. Molecules and particles over 1 million Daltons are not retained absolutely, but only to a large extent. The retention rate is not only dependent on the filter type, it can even differ from production batch to production batch. Ultrafilters have therefore not yet been used for virus removal, but have at most contributed to total virus depletion in a production process consisting of several steps (Werner and Langlius-Gane, Meeting the Regulatory Requirements for Pharmaceutical Production of Recombinant DNA Derived Products, Arzneistoff-Forschung, Vol.
  • ultrafilters which are provided for a defined molecular weight exclusion, ever larger micropores can occur, which, for. B. can be permeable to viruses.
  • ultrafilters like microfilters, cannot be tested for leaks using the so-called bubble point method.
  • a method for the depletion of viruses in solutions which is characterized in that the solution to be cleaned is passed through a filter or a filtration unit, the depletion rate of which has previously been determined by the filter or the filtration unit with viruses of the Leviviridae family was applied and the titer of the viruses was determined before and after filtration and the depletion rate was determined therefrom.
  • the invention it is also possible to use other comparatively small bacteriophages. These bacteriophages are preferably detectable through simple holes in a bacterial lawn.
  • the invention it is possible to carry out ultrafiltration as the only method for secure virus depletion without additional cleaning or inactivation steps by controlling the depletion rate of the viruses in the running process. If this depletion rate is determined before and after the filtration of the production batch and is higher than 10 12 , virus contamination of the product can be excluded with the greatest possible certainty. So far, validation experiments have only been carried out with animal or even human pathogenic viruses. For safety reasons, the validated filters could therefore no longer be used afterwards. For this reason, new filters with possibly different depletion rates had to be used. Such a validation was therefore always only valid for a single filter and, because of the effort involved, could only be carried out once before or after depletion. In contrast to this, it is possible according to the invention to monitor the virus depletion in the running process, that is to say to carry out an in-process control.
  • the solution to be cleaned is passed through a filter or a filtration unit, the depletion rate of which was previously determined.
  • the depletion rate can be detected safely and without great effort.
  • the filter is loaded with a virus solution with a titer of over 10 10 pfu / ml and the concentration of the phages in the filtrate and in the retained solution is determined.
  • the determination is carried out in a manner known per se (for example using the top agar method from NH Adams (1959), Bacteriophages, Interscience Publishers, New York).
  • the phages are mixed with suitable host bacteria (e.g. BE coli 3300, ATCC No. 19853) and in a layer of 0.6% agar agar on plates with nutrient agar (e.g.
  • agar agar 1% bactotrypton, 0.5% Yeast extract, 0.5% NaCl, 0.1 mM CaCl 2 , 1.5% agar agar) applied. 10 7 to 10 8 bacteria and less than 100 phages should be applied per plate. The plates are then incubated at 37 ° C, whereupon a bacterial lawn develops after 10 hours. Holes in this lawn indicate virus infection and the number of holes gives the virus titer in pfu (plaque-forming units). Since a virus can cause plaque, 1 virus per ml can also be detected with standard agar plates. A virus concentration range of over 10 14 to 1 pfu per ml can thus be covered.
  • the virus depletion rate is then determined by determining the virus concentration in the filtrate and in the solution before the filtration. By determining the virus titer in the concentrate (i.e. the solution retained in front of the filter), it can be calculated whether viruses have been lost due to absorption to the filter or inactivation, which gives the validation process an additional security.
  • the filter or filter system provided for cleaning the organic material is preferably checked under precisely defined pressure conditions, which are then also complied with later in the cleaning process.
  • the filters can then be removed from the bacteriophages and other residues such as pyrogens by simply rinsing with sodium hydroxide solution, and the filters can then be used for the cleaning process of the organic material.
  • the viruses MS2, f2, f4, Qß, Vk, ST or R17 or comparable strains from the group of Leviviridae are preferably used for the process according to the invention, which are available from H. Fraenkel, Conrat, The Viruses Catalog, Characterization and Classification, Plenum Press , New York, 1982.
  • the bacteriophage fr is particularly preferably used as the test virus, which is deposited with ATCC under the number 15767-B1 and is described in Knolle and Hoffmann-Berling, Virology, Volume 123, 271-273 (1964).
  • This phage consists of a round protein-RNA complex in the form of a polyhedron with a diameter of 23 nm and has a molecular weight of 1.4 million daltons.
  • the organic material is purified by ultrafiltration in spiral cartridges.
  • the cartridges are fed by a pump.
  • the virus depletion factor is determined using the test virus.
  • the test solution which contains the test viruses in a known amount, is filtered through the cartridge in a tangential flow under precisely defined pressure conditions.
  • the virus titer is then determined in the filtrate according to known methods.
  • the organic material is then cleaned in the same cartridge under the same conditions.
  • the test viruses can be raised to a titer of 10 14 in a manner known per se.
  • a host bacterium for the bacteriophages z. B. Escherichia coli 3300, ATCC No. 19853.
  • Culture media for growing phages are known. Suitable is, for example, the medium described by Luria and Bertani, which contains 1 g of distilled water, 10 g of bactotryptone, 5 g of yeast extract and 5 g of NaCl and has a pH of 7.5, which is optionally adjusted with NaOH.
  • a precipitant for example polyethylene glycol PEG6000.
  • the viruses are then resuspended in buffer and adjusted to the desired titer in the buffer.
  • a Tris-HCl buffer with pH 7.5, for example, which contains 100 mM NaCl under 3 mM CaCl 2 is suitable as a buffer.
  • the titer can be determined using the top agar method.
  • This phage suspension is then subjected to the filtration process desired for the organic material. After completion of this filtration, the virus titer is determined and the depletion factor can be calculated from the decrease in the titer.
  • the virus titer is given in the unit "pfu" (plaque-forming-units) and means the number of holes in the bacterial turf caused by the virus infection.
  • the filtration is then repeated after rinsing the cartridge with sodium hydroxide solution and neutralizing by rinsing with distilled water until the desired depletion rate is reached.
  • filters can also be connected in series, through which the filtration is carried out in series. After the depletion factor has been determined, the pyrogens introduced by the phages are removed by rinsing the cartridge with sodium hydroxide solution and are then ready for use in the production process after neutralization.
  • the method according to the invention is particularly suitable for using the virus depletion during the production process in the production of aseptic extracts from biological material as a so-called in-process control. It has been found that the depletion of marker substances in the sample to be cleaned correlates with the depletion rate of the viruses. In this way it is possible to follow the virus depletion by determining the depletion of the marker substance.
  • the procedure according to the invention is such that the depletion rate of the virus and marker is determined, the ratio between the two depletion rates is formed, i.e. that a calibration curve is created therefrom and the virus decrease is monitored in the ongoing process by determining the marker depletion on the basis of the calibration curve.
  • marker substances are proteins, peptides and / or nucleic acids.
  • synthetic substances in particular oligomers and polymers, as marker substances.
  • Such polymers are known to the person skilled in the art and can be found by simple, simple experiments for the respective system. According to the invention, BSA is used as a particularly preferred marker.
  • Preferred preparations to be cleaned are usually biological materials, in particular those from plant and animal organisms. Such preparations are preferably obtained from organs, tissues and / or cells. Preferred organs are spleen, thymus and / or bone marrow. However, the method according to the invention is also suitable for cleaning biological material which has been obtained from body fluids or also from bacterial or viral material, in particular from pathogenic material.
  • the depletion factor is determined using four different viruses.
  • Figure 1 shows a filtration system for ultrafiltration of organic solutions.
  • the solution is passed from a storage tank (not shown) via a line 3, which is provided with a circulation pump 5 and has a throttle valve 7, a pressure gauge 9, a shut-off valve 11 and a drain opening 13, via the inlet head 15 into the filtration arrangement 17.
  • the filtration arrangement 17, which is provided with an inlet head 15 and an outlet head 19 and has clamps 21, contains a spiral cartridge 23. From the filtration arrangement 17, the filtrate is fed via a line 25, which has a shut-off valve 27, a drain opening 29, a pressure gauge 31 and has a back pressure valve 33, into a further reservoir (not shown).
  • FIG. 2 shows the filtration arrangement 117.
  • the filtration arrangement 117 has an inlet head 115 which is provided with a pressure gauge 116 and a clamping device 121.
  • a permeate port 126 leads into the inlet head.
  • the filtration arrangement 117 contains a spiral cartridge 123.
  • a filtration cassette made of polysulfone from Sartorius (Göttingen, Germany) was subjected to a phage suspension in tangential flow, the conditions described in the prototype process being observed. Table 1 shows the result of these test runs at three different partial pressures. The phage was only reduced by a power of ten at all partial pressures. In order to achieve a depletion by a factor of 10 10 , the filtration would have to be repeated at least 10 times and this repetition had to be checked by exposure to the phage fr.
  • virus depletion was tested by the Amicon S1 filtration system with an ultrafiltration membrane with a molecular exclusion of 30,000 daltons.
  • the technical principle of the filtration system is shown in Figure 1, the filtration cartridge is shown in Figure 2.
  • the solution to be filtered flows in a tangential flow over the membrane and part of the solution is filtered off by the transmembrane pressure (P t ) existing over the membrane.
  • the pressure at inlet 15 (P a ) and outlet 19 (P b ) of the device can be read on two pressure gauges.
  • the transmission pressure that forms over the membrane is calculated according to the formula calculated, where Pp means the permeate pressure, which is usually zero and P a .
  • the samples were pumped into the cartridge 23 with a peristaltic pump 31 at 130 revolutions per minute and an inner tube diameter of 8 mm and the transmission pressure was adjusted to 0.2, 0.4 and 0.7 bar by regulating the outlet valve.
  • phage solutions with a titer of 7.8 x 10 9 pfu (plaque forming units) per ml (in 10 mM Tris-CI buffer, pH 7.5 with 100 mM NaCl and 1 mg bovine serum albumin per ml) were added to the Pumped membrane. 1.5 l of the phage solution were filtered per test. Between each filtration, the cartridge was washed with 0.1 M NaOH and then rinsed with PBS (phosphate buffered saline) until the eluate was neutralized. This washing process completely inactivated phages remaining in the system. The cartridge was stored in 10 mM NaOH.
  • Table 2 contains the results of this test with the filtration cartridge SlY30 of the serial number 8864. There were discrepancies of 4.53 tens logarithms immediately after start-up and 4.4 tens logarithms after storage of the cartridge in 10 mM NaOH for several months after the first Filtration.
  • 600 ml of a phage suspension with an initial titer of 3x10 10 was filtered three times in succession over the cartridge in five parallel batches. Between each filtration step, the cartridge was rinsed with 2 I RO water (water purified by reverse osmosis). Table 3 shows that in all five parallel runs after three filtrations through the cartridge, no infectious phage fr is contained in 1 ml of the permeate.
  • the SlY30 filtration cartridge with the serial number 10330 was tested.
  • the phage solution consisted of 600 ml phage buffer (methods) with 600 mg bovine serum albumin and 50 ml phage concentrate (titer: 1.3x10 12 pfu (plaque forming units) / ml).
  • the filtration was first carried out three times in succession. The volume of the diltrate decreases from 600 to 400 to 380 ml. The filtration times were approx. 20 minutes per step. Between each filtration, the cartridge was washed with 1 l of 10 mM sodium hydroxide solution to inactivate phage residues and then with dist. Rinsed water to neutrality (measured with the pH electrode).
  • the virus content in the individual filtrates was determined and is shown in Table 4.
  • the data from the virus depletion show that with the ultrafiltration cartridge used, the virus titer decreased by 6.92 and 7.22 tens logarithms after the first filtration. After the second filtration, no phages were detectable in the filtrate. Accordingly, the viruses were reduced by a total of 11 powers of ten after the first two filtrations and by 11.7 powers of ten after the further two filtrations, which arithmetically results in a total reduction of 22.7 powers of ten after four filtrations. The depletion of 12 to 16 that is often recommended in the literature is exceeded with 18.22 powers of ten after just three filtrations.
  • the virus depletion is better in this production series with 7 logs of ten than in the production series used in Examples 2 and 3 with approx. 4.5 logs (tables 3 and 4). Significant differences in virus depletion can thus be determined between the individual production batches, which in turn underlines the need for careful validation with a test virus.
  • the thymus was removed from calves and homogenized. An extract was obtained from this homogenate in a manner known per se.
  • the bacteriophage fr (ATCC No. 15767-B1; Knolle and Hoffmann Verlag, Virology, Vol. 123, 271-273 (1964) was added to the extract thus obtained as a test virus, and the content of BSA and of purine and pyrimidine bases was determined using a HPLC analysis determined in a conventional manner known to those skilled in the art.
  • the sample with the test phage was then, as described in Examples 3 and 4, filtered through a filtration cartridge SlY30 with the serial number 10330 (Amicon Div .; WR Grace & Co .; Danvers, MA, USA) and both the virus depletion and the acceptance to BSA determines.
  • the decrease in the virus correlated with the decrease in BSA.
  • Bacteriophage fr (ATCC 15767-B1) was deposited on November 19, 1964 with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland 20852-1776 USA, and has been freely available since November 19.
  • E. Coli 3300 (ATCC 19853) was deposited on January 12, 1967 with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland 20852-1776 USA, and has been freely available since January 12, 1967.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Wood Science & Technology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

To deplete viruses in organic material, the material to be purified is conveyed through an ultrafilter or an ultrafiltration unit the depletion rate of which is previously determined. The filter or filtration unit is charged with viruses of the family Leviviridae and the viral count is determined before and after filtration and used to derive the depletion rate. The virus depletion can be monitored during the process by following the depletion of a marker.

Description

Die Erfindung betrifft ein Verfahren zur Abreicherung von Viren und zur Bestimmung der Abreicherungsrate von Viren in organischem Material.The invention relates to a method for depleting viruses and for determining the depletion rate of viruses in organic material.

Arzneimittel, die aus Zellkulturen, Organen oder Blut von Tier oder Mensch gewonnen werden, sind potentiell mit tier- oder humanpathogenen Viren kontaminiert. Bei dem breiten Spektrum von Viren, mit denen die Probe verseucht sein kann, ist es unmöglich, das Ausgangsmaterial auf alle Viren, die vorhanden sein könnten, zu testen. Für einige Virusgruppen gibt es außerdem keine zuverlässige oder genügend sensitive Nachweismethode. Deshalb muß ein Reinigungs- oder Inaktivierungsverfahren durchgeführt werden, durch das pathogene Viren abgereichert werden, so daß auch bei einer massiven Infektion von Ausgangsmaterial oder Zwischenprodukten keine Probleme zu erwarten sind. Das Reinigungsverfahren oder Inaktivierungsverfahren soll dabei so effizient sein, daß Viren um Raten bis zu 1012 abgereichert werden können.Medicinal products derived from animal or human cell cultures, organs or blood are potentially contaminated with animal or human pathogenic viruses. With the wide range of viruses with which the sample can be contaminated, it is impossible to test the starting material for all viruses that may be present. For some virus groups there is also no reliable or sufficiently sensitive detection method. A cleaning or inactivation process must therefore be carried out, by means of which pathogenic viruses are depleted, so that no problems are to be expected even in the case of a massive infection of starting material or intermediate products. The cleaning process or inactivation process should be so efficient that viruses can be depleted by rates of up to 10 12 .

Um diese Abreicherungsraten zu überprüfen, müssen Proben des Materials mit Viren in extremen Konzentrationsbereichen beaufschlagt (Spiking) und die Abnahme des Virustiters überprüft werden. Da Viren sich in ihrem physikochemischen Verhalten erheblich voneinander unterscheiden können, muß das Material für das Herstellungsverfahren mit einem Spektrum von mindestens vier verschiedenen Virusarten beaufschlagt werden. Dies erfordert einen erheblichen Aufwand, da auch potentiell humanpathogene Viren eingesetzt werden müssen. Diese aufwendigen Verfahren sind beispielsweise in Heimburger,Schwinn, Gratz, Lüben, Kumpe und Herchenhahn, Faktor VIII-Konzentrat, hochgereinigt und in Lösung erhitzt, Arzneimittelforschung 31 (1981), 619-622; Mauler und Hilfenhaus; Inaktivierung von Viren in Faktor VIII-Konzentrat durch Erhitzen in Lösung; Arzneimittelforschung 34 (1984), 1524-1527; Hilfenhaus, Mauler, Friis und Bauer; Safety of human blood products; inactivation of retroviruses by heat treatment at 60 ° C, Proc. Soc. Exp. Biol. Med., 178 (1985), 580-584, für die Gewinnung von Gerinnungsfaktoren aus Humanserum beschrieben.In order to check these depletion rates, samples of the material have to be spiked with viruses in extreme concentration ranges and the decrease in the virus titer has to be checked. Since viruses can differ significantly from one another in their physicochemical behavior, the material for the manufacturing process must be exposed to a spectrum of at least four different virus types. This requires considerable effort, since potentially human-pathogenic viruses must also be used. These complex processes are, for example, in Heimburger, Schwinn, Gratz, Lüben, Kumpe and Herchenhahn, factor VIII concentrate, highly purified and heated in solution, Arzneimittelforschung 31 (1981), 619-622; Mauler and Hilfenhaus; Inactivation of viruses in factor VIII concentrate by heating in solution; Drug Research 34 (1984), 1524-1527; Hilfenhaus, Mauler, Friis and Bauer; Safety of human blood products; inactivation of retroviruses by heat treatment at 60 ° C, Proc. Soc. Exp. Biol. Med., 178 (1985), 580-584, for obtaining coagulation factors from human serum.

Bei der Herstellung von Arzneimitteln wird seit langem zur Entfernung von Bakterien die Sterilfiltration eingesetzt und gilt als sicheres Dekontaminierungsverfahren für diese potentiellen Pathogene. Die Sterilfilter werden dabei vom Hersteller stichprobenweise mit dem kleinsten, außerhalb der Gruppen der Mykoplasmen und L-Formbakterien bekannten Bakterium Pseudomonas diminuta beaufschlagt. Wenn für dieses Bakterium im "Bakterien-Challenge-Test" eine bestimmte Abreicherungsrate bei der Sterilfiltration nachgewiesen werden kann, gilt die Produktionscharge als sicher. Ein derartiges Verfahren ist beschrieben bei Wallhäußer, Praxis der Sterilisation, Thieme Verlag, Stuttgart, 1988, Seiten 324 ff.Sterile filtration has long been used in the manufacture of pharmaceuticals to remove bacteria and is considered a safe decontamination process for these potential pathogens. The manufacturer applies random samples to the sterile filter with the smallest bacterium Pseudomonas diminuta known outside the groups of mycoplasma and L-shape bacteria. If a certain depletion rate for sterile filtration can be detected for this bacterium in the "bacteria challenge test", the production batch is considered safe. Such a method is described in Wallhäußer, Praxis der Sterilisierung, Thieme Verlag, Stuttgart, 1988, pages 324 ff.

Zur Entfernung von Viren können auch Filtrationsverfahren eingesetzt werden, wobei die verwendeten Filter Moleküle und Partikel über 1 Million Dalton zurückhalten müssen. Solche Ultrafilter sind in verschiedensten Ausführungen verfügbar, jedoch handelt es sich - im Gegensatz zu Sterilfiltern - um keine Absolutfilter; d. h. Moleküle und Partikel über 1 Million Dalton werden nicht absolut, sondern nur zu einem großen Teil zurückgehalten. Dabei ist die Rückhalterate nicht nur abhängig vom Filtertyp, sondern sie kann sich sogar von Produktionscharge zur Produktionscharge unterscheiden. Ultrafilter wurden deshalb bisher noch nicht zur Virusentfernung eingesetzt, sondern trugen allenfalls zur Gesamtvirusabreicherung in einem Produktionsverfahren aus mehreren Schritten bei (Werner und Langlius-Gane, Meeting the Regulatory Requirements for Pharmaceutical Production of Recombinant DNA Derived Products, Arzneimittel-Forschung, Bd. 39 (1989), 108-111). Diese Unzuverlässigkeit von Ultrafiltern ist im Produktionsverfahren der Filter begründet. Bei Ultrafiltern, die für einen definierten Molekulargewichtsausschluß vorgesehen sind, können immer größere Mikroporen auftreten, die z. B. für Viren durchlässig sein können. Außerdem können Ultrafilter nicht wie Mikrofilter durch das sogenannte Bubble-Point-Verfahren auf ihre Dichtigkeit getestet werden.Filtration methods can also be used to remove viruses, the filters used having to retain molecules and particles of more than 1 million Daltons. Such ultrafilters are available in various designs, but - in contrast to sterile filters - they are not absolute filters; d. H. Molecules and particles over 1 million Daltons are not retained absolutely, but only to a large extent. The retention rate is not only dependent on the filter type, it can even differ from production batch to production batch. Ultrafilters have therefore not yet been used for virus removal, but have at most contributed to total virus depletion in a production process consisting of several steps (Werner and Langlius-Gane, Meeting the Regulatory Requirements for Pharmaceutical Production of Recombinant DNA Derived Products, Arzneimittel-Forschung, Vol. 39 ( 1989), 108-111). This unreliability of ultrafilters is due to the filter production process. With ultrafilters, which are provided for a defined molecular weight exclusion, ever larger micropores can occur, which, for. B. can be permeable to viruses. In addition, ultrafilters, like microfilters, cannot be tested for leaks using the so-called bubble point method.

Es war daher Aufgabe der Erfindung, ein Verfahren zur Abreicherung von Viren zur Verfügung zu stellen, mit dem eine Abreicherung um mindestens 12 Zehnerpotenzen erreicht wird. Darüberhinaus war es Aufgabe der Erfindung, ein Verfahren zu schaffen, mit dem die Abreicherungsrate für Viren einfach und präzise bestimmt werden kann und das Auskunft gibt, durch welches Filtrationsverfahren und durch wie viele Filtrationsschritte eine als sicher geltende Abreicherung erreicht wird.It was therefore an object of the invention to provide a method for the depletion of viruses, with which a depletion by at least 12 powers of ten is achieved. In addition, it was an object of the invention to provide a method with which the depletion rate for viruses can be determined simply and precisely and which provides information about which filtration method and by how many filtration steps a depletion deemed safe is achieved.

Diese Aufgabe wird gelöst durch ein Verfahren zur Abreicherung von Viren in Lösungen, das dadurch gekennzeichnet ist, daß man die zu reinigende Lösung über einen Filter oder eine Filtrationseinheit leitet, deren Abreicherungsrate vorher ermittelt wurde, indem der Filter oder die Filtrationseinheit mit Viren der Familie Leviviridae beaufschlagt wurde und vor und nach der Filtration der Titer der Viren bestimmt und daraus die Abreicherungsrate ermittelt wurde. Es ist erfindungsgemäß auch möglich andere vergleichbar kleine Bakteriophagen zu verwenden. Diese Bakteriophagen sind vorzugsweise durch einfache Löcher in einem Bakterienrasen nachweisbar.This object is achieved by a method for the depletion of viruses in solutions, which is characterized in that the solution to be cleaned is passed through a filter or a filtration unit, the depletion rate of which has previously been determined by the filter or the filtration unit with viruses of the Leviviridae family was applied and the titer of the viruses was determined before and after filtration and the depletion rate was determined therefrom. According to the invention, it is also possible to use other comparatively small bacteriophages. These bacteriophages are preferably detectable through simple holes in a bacterial lawn.

Erfindungsgemäß ist es möglich, eine Ultrafiltration als einzige Methode zur gesicherten Virusabreicherung ohne zusätzliche Reinigungs- oder Inaktivierungsschritte durchzuführen, indem man im laufenden Prozess die Abreicherungsrate der Viren kontrolliert. Wenn diese Abreicherungsrate vor und nach der Filtration der Produktionscharge bestimmt wird und höher als 1012 ist, so kann mit größter Sicherheit eine Virus-Kontamination des Produktes ausgeschlossen werden. Bisher wurden Validierungsversuche nur mit tier- oder sogar mit humanpathogenen Viren durchgeführt. Deshalb konnten aus Sicherheitsgründen die validierten Filter nachher nicht mehr verwendet werden. Aus diesem Grund mußten dann neue Filter mit möglicherweise verschiedenen Abreicherungsraten eingesetzt werden. Eine solche Validierung war daher immer nur für einen einzigen Filter gültig und konnte im übrigen auch wegen des damit verbundenen Aufwands nur einmal vor oder nach einer Abreicherung exemplarisch durchgeführt werden. Im Gegensatz dazu ist es erfindungsgemäß möglich im laufenden Verfahren die Virusabreicherung zu verfolgen, also eine In-Prozess-Kontrolle durchzuführen.According to the invention, it is possible to carry out ultrafiltration as the only method for secure virus depletion without additional cleaning or inactivation steps by controlling the depletion rate of the viruses in the running process. If this depletion rate is determined before and after the filtration of the production batch and is higher than 10 12 , virus contamination of the product can be excluded with the greatest possible certainty. So far, validation experiments have only been carried out with animal or even human pathogenic viruses. For safety reasons, the validated filters could therefore no longer be used afterwards. For this reason, new filters with possibly different depletion rates had to be used. Such a validation was therefore always only valid for a single filter and, because of the effort involved, could only be carried out once before or after depletion. In contrast to this, it is possible according to the invention to monitor the virus depletion in the running process, that is to say to carry out an in-process control.

Erfindungsgemäß wird die zu reinigende Lösung über einen Filter oder eine Filtrationseinheit geleitet, deren Abreicherungsrate vorher ermittelt wurde. Durch Einsatz von Viren der Gruppe Leviviridae als Testvirus gelingt es, die Abreicherungsrate sicher und ohne größeren Aufwand nachzuweisen.According to the invention, the solution to be cleaned is passed through a filter or a filtration unit, the depletion rate of which was previously determined. By using viruses from the Leviviridae group as test viruses, the depletion rate can be detected safely and without great effort.

Die Leviviridae sind mit 23 nm Durchmesser und einem Molekulargewicht von 1,4 Millionen Dalton kleiner als tier- oder humanpathogene Viren (H. Fraenkel-Conrat, The Viruses, Catalogue, Characterization and Classification, Plenum Press, 1982). Sie befallen nur Bestimmte F+-Stämme des harmlosen Darmbakteriums Escherichia coli und werden als RNA-Viren bereits in 10 mM NaOH innerhalb kurzer Zeit hydrolysiert und dabei in ihre molekularen Einzelbestandteile zerlegt. Die kleinsten tier- und/oder humanpathogenen Viren stammen aus der Gruppe der Picornaviren, sind 27 nm im Durchmesser und 2,5 Millionen Dalton schwer. Damit eignen sich die Leviviridae für die Validierung der nach Größe selektionierenden Ultrafilter. Die Filter können danach mit 0,1 M NaOH gewaschen werden, wodurch auch aus Escherichia coli stammende Pyrogene entfernt werden. Die Filter sind dann wieder für die Produktion einsatzbereit. Die für eine In-Prozess-Kontrolle definierten Bedingungen sind damit erfüllt, nämlich durch:

  • - ein einfaches, innerhalb kurzer Zeit durchführbares und exaktes Validierungsverfahren
  • - eine Wiederverwendbarkeit der getesteten Filter ohne zusätzliche Verunreinigung des Produkts. Außerdem können die Leviviridae in extrem hohen Titern von bis zu 1014 pfu pro ml angezogen werden und durch ein einfaches Plattierungsverfahren selbst in Konzentrationen von 1 pfu pro ml zuverlässig nachgewiesen werden.
With a diameter of 23 nm and a molecular weight of 1.4 million daltons, the Leviviridae are smaller than viruses that are pathogenic to humans or humans (H. Fraenkel-Conrat, The Viruses, Catalog, Characterization and Classification, Plenum Press, 1982). They only attack certain F + strains of the harmless intestinal bacterium Escherichia coli and, as RNA viruses, are hydrolyzed in 10 mM NaOH within a short time and thereby broken down into their individual molecular components. The smallest animal and / or human pathogenic viruses come from the Picornavirus group, are 27 nm in diameter and 2.5 million Daltons heavy. The Leviviridae are therefore suitable for the validation of size-selecting ultrafilters. The filters can then be washed with 0.1 M NaOH, which also removes pyrogens derived from Escherichia coli. The filters are then ready for production again. The conditions defined for an in-process control are thus fulfilled, namely by:
  • - A simple, precise and quick validation procedure
  • - Reusability of the tested filters without additional contamination of the product. In addition, the Leviviridae can be grown in extremely high titers of up to 10 14 pfu per ml and can be reliably detected by a simple plating method even in concentrations of 1 pfu per ml.

Für die Bestimmung wird der Filter mit einer Viruslösung mit einem Titer von über 1010 pfu/ml beaufschlagt und die Konzentration der Phagen in Filtrat und in der zurückgehaltenen Lösung bestimmt. Die Bestimmung erfolgt in an sich bekannter Weise (z. B. nach der Top-Agar-Methode von N.H. Adams (1959), Bacteriophages, Interscience Publishers, New York). Dazu werden beispielsweise die Phagen mit geeigneten Wirtsbakterien gemischt (z. B. E. coli 3300, ATCC Nr. 19853) und in einer Schicht von 0,6 % Agar-Agar auf Platten mit Nährstoffagar (z. B. 1 % Bactotrypton, 0,5 % Hefeextrakt, 0,5 % NaCI, 0,1 mM CaCl2, 1,5 % Agar-Agar) aufgetragen. Pro Platte sollten 107 bis 108 Bakterien und weniger als 100 Phagen aufgetragen werden. Die Platten werden dann bei 37 ° C inkubiert, worauf nach 10 Stunden ein Bakterienrasen entsteht. Löcher in diesem Rasen zeigen Virusbefall an und die Anzahl der Löcher ergibt den Virustiter in pfu (plaque-forming-units). Da schon ein Virus einen Plaque hervorrufen kann, können auch mit Standardagarplatten 1 Virus pro ml nachgewiesen werden. Es läßt sich also ein Viruskonzentrationsbereich von über 1014 bis zu 1 pfu pro ml abdecken.For the determination, the filter is loaded with a virus solution with a titer of over 10 10 pfu / ml and the concentration of the phages in the filtrate and in the retained solution is determined. The determination is carried out in a manner known per se (for example using the top agar method from NH Adams (1959), Bacteriophages, Interscience Publishers, New York). For this purpose, for example, the phages are mixed with suitable host bacteria (e.g. BE coli 3300, ATCC No. 19853) and in a layer of 0.6% agar agar on plates with nutrient agar (e.g. 1% bactotrypton, 0.5% Yeast extract, 0.5% NaCl, 0.1 mM CaCl 2 , 1.5% agar agar) applied. 10 7 to 10 8 bacteria and less than 100 phages should be applied per plate. The plates are then incubated at 37 ° C, whereupon a bacterial lawn develops after 10 hours. Holes in this lawn indicate virus infection and the number of holes gives the virus titer in pfu (plaque-forming units). Since a virus can cause plaque, 1 virus per ml can also be detected with standard agar plates. A virus concentration range of over 10 14 to 1 pfu per ml can thus be covered.

Durch Bestimmung der Viruskonzentration im Filtrat und in der Lösung vor der Filtration ergibt sich dann die Virusabreicherungsrate. Durch Bestimmung des Virustiter im Konzentrat (d. i. die vor dem Filter zurückgehaltene Lösung) kann errechnet werden, ob Viren durch Absorption an den Filter oder Inaktivierung verloren gingen, was dem Validierungsverfahren eine zusätzliche Sicherheit gibt.The virus depletion rate is then determined by determining the virus concentration in the filtrate and in the solution before the filtration. By determining the virus titer in the concentrate (i.e. the solution retained in front of the filter), it can be calculated whether viruses have been lost due to absorption to the filter or inactivation, which gives the validation process an additional security.

Da sich das Abreicherungsverhalten von Filtrationsmembranen nicht nur von Hersteller zu Hersteller, sondern auch von Produktionscharge zu Produktionscharge erheblich unterscheiden kann, ist es wesentlich, die Abreicherungsrate für Viren für jeden individuellen Filter zu bestimmen.Since the depletion behavior of filtration membranes can differ significantly not only from manufacturer to manufacturer, but also from production batch to production batch, it is essential to determine the depletion rate for viruses for each individual filter.

Bevorzugt überprüft man den für die Reinigung des organischen Materials vorgesehenen Filter bzw. die Filteranlage unter genau definierten Druckbedingungen, die dann beim Reinigungsverfahren später auch eingehalten werden.The filter or filter system provided for cleaning the organic material is preferably checked under precisely defined pressure conditions, which are then also complied with later in the cleaning process.

Die Filter können dann nach Bestimmung der Abreicherungsrate von den Bakteriophagen und anderen Rückständen wie Pyrogenen durch einfaches Spülen mit Natronlauge entfernt werden und die Filter dann für das Reinigungsverfahren des organischen Materials eingesetzt werden. Dies ist ein weiterer Vorteil des erfindungsgemäßen Verfahrens, da dies bei Verwendung von tier- oder humanpathogenen Viren zur Bestimmung der Abreicherungsrate wegen der großen Gefahr der Kontamination mit derartigen Viren nicht möglich wäre.After the depletion rate has been determined, the filters can then be removed from the bacteriophages and other residues such as pyrogens by simply rinsing with sodium hydroxide solution, and the filters can then be used for the cleaning process of the organic material. This is a further advantage of the method according to the invention, since this would not be possible if animal or human pathogenic viruses were used to determine the depletion rate because of the great risk of contamination with such viruses.

Bevorzugt werden aus der Gruppe der Leviviridae für das erfindungsgemäße Verfahren die Viren MS2, f2, f4, Qß, Vk, ST oder R17 oder vergleichbare Stämme eingesetzt, die bei H. Fraenkel, Conrat, The Viruses-Catalogue, Characterization and Classification, Plenum Press, New York, 1982, beschrieben sind. Besonders bevorzugt wird der Bakteriophage fr als Testvirus verwendet, der bei ATCC unter der Nummer 15767-B1 hinterlegt ist und in Knolle und Hoffmann-Berling, Virology, Band 123, 271-273 (1964) beschrieben ist. Dieser Phage besteht aus einem runden Protein-RNA-Komplex in Form eines Polyeders mit einem Durchmesser von 23 nm und hat ein Molekulargewicht von 1,4 Millionen Dalton.The viruses MS2, f2, f4, Qß, Vk, ST or R17 or comparable strains from the group of Leviviridae are preferably used for the process according to the invention, which are available from H. Fraenkel, Conrat, The Viruses Catalog, Characterization and Classification, Plenum Press , New York, 1982. The bacteriophage fr is particularly preferably used as the test virus, which is deposited with ATCC under the number 15767-B1 and is described in Knolle and Hoffmann-Berling, Virology, Volume 123, 271-273 (1964). This phage consists of a round protein-RNA complex in the form of a polyhedron with a diameter of 23 nm and has a molecular weight of 1.4 million daltons.

In einer bevorzugten Ausführungsform wird das organische Material durch Ultrafiltration in Spiralpatronen gereinigt. Die Patronen werden dabei über eine Pumpe beschickt. Vor Einsatz der Filtrationspatronen wird der Virus-Abreicherungsfaktor mit dem Testvirus ermittelt. Die Testlösung, die die Testviren in bekannter Menge enthält, wird über die Patrone im Tangentialfluß filtriert unter genau definierten Bedingungen hinsichtlich des Drucks. Im Filtrat wird dann nach bekannten Verfahren der Virustiter bestimmt. Anschließend wird dann das organische Material in derselben Patrone unter Einhaltung der gleichen Bedingungen gereinigt.In a preferred embodiment, the organic material is purified by ultrafiltration in spiral cartridges. The cartridges are fed by a pump. Before the filtration cartridges are used, the virus depletion factor is determined using the test virus. The test solution, which contains the test viruses in a known amount, is filtered through the cartridge in a tangential flow under precisely defined pressure conditions. The virus titer is then determined in the filtrate according to known methods. The organic material is then cleaned in the same cartridge under the same conditions.

Die Testviren können vor Einsatz für das erfindungsgemäße Verfahren in an sich bekannter Weise bis auf einen Titer von 1014 angezogen werden. Als Wirtsbakterium für die Bakteriophagen eignet sich z. B. Escherichia coli 3300, ATCC Nr. 19853. Kulturmedien zur Anzucht von Phagen sind bekannt. Geeignet ist beispielsweise das von Luria und Bertani beschriebene Medium, das auf 1 I destilliertes Wasser 10 g Bactotrypton, 5 g Hefeextrakt und 5 g NaCI enthält und einen pH von 7,5 hat, der gegebenenfalls mit NaOH eingestellt wird. Zur Gewinnung der Viren werden diese aus dem Kulturmedium ausgefällt durch Zugabe eines Fällungsmittels, beispielsweise Polyethylenglykol PEG6000. Die Viren werden dann in Puffer resuspendiert und in dem Puffer auf den gewünschten Titer eingestellt. Als Puffer ist beispielsweise ein Tris-HCI-Puffer mit pH 7,5 geeignet, der 100 mM NaCI under 3 mM CaC12 enthält. Die Bestimmung des Titers kann erfolgen nach der Top-Agar-Methode. Anschließend wird diese eingestellte Phagensuspension dem für das organische Material gewünschten Filtrationsverfahren unterworfen. Nach Abschluß dieser Filtration wird der Virustiter bestimmt und aus der Abnahme des Titers kann der Abreicherungsfaktor berechnet werden. Der Virustiter wird in der Einheit "pfu" (Plaque-forming-units) angegeben und bedeutet die Anzahl von Löchern im Bakterienrasen, die durch die Virusinfektion hervorgerufen werden. Die Filtration wird dann nach Spülen der Patrone mit Natronlauge und Neutralisieren durch Spülen mit destilliertem Wasser so lange wiederholt, bis die gewünschte Abreicherungsrate erreicht ist. Ebenso können auch mehrere Filter hintereinander geschaltet werden, über die die Filtration hintereinander durchgeführt wird. Nach der Bestimmung des Abreicherungsfaktors werden die durch die Phagen eingetragenen Pyrogene durch Spülen der Patrone mit Natronlauge entfernt und sind dann nach Neutralisieren für den Produktionsprozeß einsatzfähig.Before being used for the method according to the invention, the test viruses can be raised to a titer of 10 14 in a manner known per se. As a host bacterium for the bacteriophages z. B. Escherichia coli 3300, ATCC No. 19853. Culture media for growing phages are known. Suitable is, for example, the medium described by Luria and Bertani, which contains 1 g of distilled water, 10 g of bactotryptone, 5 g of yeast extract and 5 g of NaCl and has a pH of 7.5, which is optionally adjusted with NaOH. To obtain the viruses, they are precipitated from the culture medium by adding a precipitant, for example polyethylene glycol PEG6000. The viruses are then resuspended in buffer and adjusted to the desired titer in the buffer. A Tris-HCl buffer with pH 7.5, for example, which contains 100 mM NaCl under 3 mM CaCl 2 is suitable as a buffer. The titer can be determined using the top agar method. This phage suspension is then subjected to the filtration process desired for the organic material. After completion of this filtration, the virus titer is determined and the depletion factor can be calculated from the decrease in the titer. The virus titer is given in the unit "pfu" (plaque-forming-units) and means the number of holes in the bacterial turf caused by the virus infection. The filtration is then repeated after rinsing the cartridge with sodium hydroxide solution and neutralizing by rinsing with distilled water until the desired depletion rate is reached. Likewise, several filters can also be connected in series, through which the filtration is carried out in series. After the depletion factor has been determined, the pyrogens introduced by the phages are removed by rinsing the cartridge with sodium hydroxide solution and are then ready for use in the production process after neutralization.

Es hat sich überraschenderweise gezeigt, daß das erfindungsgemäße Verfahren besonders geeignet ist, die Virusabreicherung während des Produktionsprozesses bei der Herstellung von keimfreien Extrakten aus biologischem Material als sogenannte In-Prozess-Kontrolle zu verwenden. Es wurde nämlich gefunden, daß die Abreicherung von Markerstoffen in der zu reinigenden Probe mit der Abreicherungsrate der Viren korreliert. Auf diese Weise ist es möglich, durch Bestimmung der Abreicherung des Markerstoffes die Virusabreicherung zu verfolgen.It has surprisingly been found that the method according to the invention is particularly suitable for using the virus depletion during the production process in the production of aseptic extracts from biological material as a so-called in-process control. It has been found that the depletion of marker substances in the sample to be cleaned correlates with the depletion rate of the viruses. In this way it is possible to follow the virus depletion by determining the depletion of the marker substance.

Dabei wird erfindungsgemäß so vorgegangen, daß man die Abreicherungsrate von Virus und Marker bestimmt, das Verhältnis aus den beiden Abreicherungsraten bildet, d.h., daß man daraus eine Eichkurve erstellt und im laufenden Prozess durch Bestimmung der Markerabreicherung anhand der Eichkurve die Virusabnahme verfolgt.The procedure according to the invention is such that the depletion rate of the virus and marker is determined, the ratio between the two depletion rates is formed, i.e. that a calibration curve is created therefrom and the virus decrease is monitored in the ongoing process by determining the marker depletion on the basis of the calibration curve.

Als Markerstoffe werden üblicherweise leicht bestimmbare Substanzen verwendet, die vorzugsweise bereits im zu reinigenden System vorhanden sind. Es ist jedoch auch möglich, solche Markerstoffe dem abzureichernden System zuzusetzen. Bevorzugte Markerstoffe sind Proteine, Peptide und/oder Nukleinsäuren. Es ist jedoch auch möglich, synthetische Substanzen, insbesondere Oligo- und Polymere als Markerstoffe einzusetzen. Solche Polymere sind dem Fachmann bekannt und können durch leichte, einfache Versuche für das jeweilige System gefunden werden. Als besonders bevorzugter Marker wird erfindungsgemäß BSA verwendet.Easily determinable substances are usually used as marker substances, which are preferably already present in the system to be cleaned. However, it is also possible to add such marker substances to the system to be depleted. Preferred marker substances are proteins, peptides and / or nucleic acids. However, it is also possible to use synthetic substances, in particular oligomers and polymers, as marker substances. Such polymers are known to the person skilled in the art and can be found by simple, simple experiments for the respective system. According to the invention, BSA is used as a particularly preferred marker.

Bevorzugte zu reinigende Präparationen sind üblicherweise biologische Materialien, insbesondere solche aus pflanzlichen und tierischen Organismen. Vorzugsweise werden solche Präparationen aus Organen, Geweben und/oder Zellen gewonnen. Bevorzugte Organe sind, Milz, Thymus und/oder Knochenmark. Das erfindungsgemäße Verfahren eignet sich jedoch ebenfalls zur Reinigung von biologischem Material, das aus Körperflüssigkeiten oder auch aus bakteriellem oder virellem Material, insbesondere aus pathogenem Material gewonnen wurde.Preferred preparations to be cleaned are usually biological materials, in particular those from plant and animal organisms. Such preparations are preferably obtained from organs, tissues and / or cells. Preferred organs are spleen, thymus and / or bone marrow. However, the method according to the invention is also suitable for cleaning biological material which has been obtained from body fluids or also from bacterial or viral material, in particular from pathogenic material.

In einer bevorzugten erfindungsgemäßen Ausfürungsform wird der Abreicherungsfaktor mit vier verschiedenen Viren bestimmt.In a preferred embodiment according to the invention, the depletion factor is determined using four different viruses.

Die Erfindung wird durch die Figuren und die folgenden Beispiele erläutert.

  • Fig. 1 zeigt das Schema eines Filtrationssystems, das unter dem Namen Amicon S1 im Handel ist.
  • Fig. 2 zeigt eine Filtrationspatrone des Filtrationssystems von Fig. 1.
The invention is illustrated by the figures and the following examples.
  • Fig. 1 shows the schematic of a filtration system, which is commercially available under the name Amicon S1.
  • FIG. 2 shows a filtration cartridge of the filtration system of FIG. 1.

Figur 1 zeigt ein Filtrationssystem zur Ultrafiltration von organischen Lösungen. Aus einem Vorratstank (nicht gezeigt) wird die Lösung über eine Leitung 3, die mit einer Umlaufpumpe 5 versehen ist und ein Drosselventil 7, einen Druckmesser 9, ein Absperrventil 11 und eine Abflußöffnung 13 aufweist, über den Einlaßkopf 15 in die Filtrationsanordnung 17 geleitet. Die Filtrationsanordnung 17, die mit einem Einlaßkopf 15 und einem Auslaßkopf 19 versehen ist und Klemmen 21 aufweist, enthält eine Spiralpatrone 23. Aus der Filtrationsanordnung 17 wird das Filtrat über eine Leitung 25, die ein Absperrventil 27, eine Abflußöffnung 29, einen Druckmesser 31 und ein Rückdruckventil 33 aufweist, in einen weiteren Vorratsbehälter (nicht gezeigt) geführt.Figure 1 shows a filtration system for ultrafiltration of organic solutions. The solution is passed from a storage tank (not shown) via a line 3, which is provided with a circulation pump 5 and has a throttle valve 7, a pressure gauge 9, a shut-off valve 11 and a drain opening 13, via the inlet head 15 into the filtration arrangement 17. The filtration arrangement 17, which is provided with an inlet head 15 and an outlet head 19 and has clamps 21, contains a spiral cartridge 23. From the filtration arrangement 17, the filtrate is fed via a line 25, which has a shut-off valve 27, a drain opening 29, a pressure gauge 31 and has a back pressure valve 33, into a further reservoir (not shown).

Figur 2 zeigt die Filtrationsanordnung 117. Die Filtrationsanordnung 117 weist einen Einlaßkopf 115 auf, der mit einem Druckmesser 116 und einer Klemmvorrichtung 121 versehen ist. In den Einlaßkopf führt ein Permeat Port 126. Die Filtrationsanordnung 117 enthält eine Spiralpatrone 123. Am oberen Teil der Filtrationsanordnung 117 befindet sich der Auslaßkopf 119, der mit einem Rückdruckventil 120 und einer Klemmvorrichtung 121 versehen ist.FIG. 2 shows the filtration arrangement 117. The filtration arrangement 117 has an inlet head 115 which is provided with a pressure gauge 116 and a clamping device 121. A permeate port 126 leads into the inlet head. The filtration arrangement 117 contains a spiral cartridge 123. At the upper part of the filtration arrangement 117 there is the outlet head 119, which is provided with a back pressure valve 120 and a clamping device 121.

Beispiel 1example 1

Test einer Sartorius-Polysulfonmembran mit einem molekularen Ausschluß von 100.000 Dalton auf VirusabreicherungTest of a Sartorius polysulfone membrane with a molecular exclusion of 100,000 daltons for virus depletion

Eine Filtrationskassette aus Polysulfon der Firma Sartorius (Göttingen, BRD) wurde mit einer Phagensuspension im Tangentialfluß beaufschlagt, wobei die im Prototypverfahren beschriebenen Bedingungen eingehalten wurden. Tabelle 1 zeigt das Ergebnis dieser Probeläufe bei drei verschiedenen Partialdrücken. Der Phage wurde bei allen Partialdrücken nur um eine Zehnerpotenz abgereichert. Um eine Abreicherung um den Faktor 1010 zu erreichen, müßte also die Filtration mindestens 10mal wiederholt und diese Wiederholung durch Beaufschlagung mit dem Phagen fr kontrolliert werden.A filtration cassette made of polysulfone from Sartorius (Göttingen, Germany) was subjected to a phage suspension in tangential flow, the conditions described in the prototype process being observed. Table 1 shows the result of these test runs at three different partial pressures. The phage was only reduced by a power of ten at all partial pressures. In order to achieve a depletion by a factor of 10 10 , the filtration would have to be repeated at least 10 times and this repetition had to be checked by exposure to the phage fr.

Beispiel 2Example 2

Für dieses Beispiel wurde die Virusabreicherung durch das Filtrationssystem Amicon S1 mit einer Ultrafiltrationsmembran mit einem molekularen Ausschluß von 30.000 Dalton getestet.For this example, virus depletion was tested by the Amicon S1 filtration system with an ultrafiltration membrane with a molecular exclusion of 30,000 daltons.

Das technische Prinzip des Filtrationssystems ist in Figur 1 dargestellt, die Filtrationspatrone ist in Figur 2 gezeigt. Die zu filternde Lösung strömt dabei im Tangentialfluß über die Membran und ein Teil der Lösung wird durch den über die Membran bestehenden Transmembrandruck (Pt) abfiltriert. Der Druck am Eingang 15 (Pa) und am Ausgang 19 (Pb) des Geräts kann an zwei Manometern abgelesen werden. Der sich über die Membran ausbildende Transmissionsdruck wird nach der Formel

Figure imgb0001
berechnet, wobei Pp der Permeatdruck bedeutet, der üblicherweise gleich Null und Pa ist. Die Proben wurden mit einer Schlauchquetschpumpe 31 bei 130 Umdrehungen pro Minute und einem Schlauchinnendurchmesser von 8 mm in die Patrone 23 gepumpt und der Transmissionsdruck durch Regulierung des Auslaßventils auf 0,2, 0,4 und 0,7 bar eingestellt.The technical principle of the filtration system is shown in Figure 1, the filtration cartridge is shown in Figure 2. The solution to be filtered flows in a tangential flow over the membrane and part of the solution is filtered off by the transmembrane pressure (P t ) existing over the membrane. The pressure at inlet 15 (P a ) and outlet 19 (P b ) of the device can be read on two pressure gauges. The transmission pressure that forms over the membrane is calculated according to the formula
Figure imgb0001
calculated, where Pp means the permeate pressure, which is usually zero and P a . The samples were pumped into the cartridge 23 with a peristaltic pump 31 at 130 revolutions per minute and an inner tube diameter of 8 mm and the transmission pressure was adjusted to 0.2, 0.4 and 0.7 bar by regulating the outlet valve.

Zum Testen der Patrone wurden Phagenlösungen mit einem Titer von 7,8 x 109 pfu (plaque forming units) pro ml (in 10 mM Tris-CI Puffer, ph 7,5 mit 100 mM NaCI und 1 mg Rinderserumalbumin pro ml) über die Membran gepumpt. Pro Test wurden je 1,5 I der Phagenlösung filtriert. Zwischen jeder Filtration wurde die Patrone mit 0,1 M NaOH gewaschen und dann solange mit PBS (phosphatgepufferte Kochsalzlösung) gespült, bis das Eluat neutralisiert war. Durch diesen Waschvorgang wurden im System verbleibende Phagen vollständig inaktiviert. Gelagert wurde die Patrone in 10 mM NaOH.To test the cartridge, phage solutions with a titer of 7.8 x 10 9 pfu (plaque forming units) per ml (in 10 mM Tris-CI buffer, pH 7.5 with 100 mM NaCl and 1 mg bovine serum albumin per ml) were added to the Pumped membrane. 1.5 l of the phage solution were filtered per test. Between each filtration, the cartridge was washed with 0.1 M NaOH and then rinsed with PBS (phosphate buffered saline) until the eluate was neutralized. This washing process completely inactivated phages remaining in the system. The cartridge was stored in 10 mM NaOH.

Tabelle 2 enthält die Ergebnisse dieses Tests mit der Filtrationspatrone SlY30 der Seriennummer 8864. Es ergaben sich Abreicherungen um 4,53 Zehnerlogarithmen unmittelbar nach Inbetriebnahme und um 4,4 Zehnerlogarithmen nach mehrmonatiger Lagerung der Patrone in 10 mM NaOH nach der ersten Filtration.Table 2 contains the results of this test with the filtration cartridge SlY30 of the serial number 8864. There were discrepancies of 4.53 tens logarithms immediately after start-up and 4.4 tens logarithms after storage of the cartridge in 10 mM NaOH for several months after the first Filtration.

Beispiel 3Example 3 Bestimmung der Abreicherungsrate in einer Ultrafiltrationsanlage mit dem Bakteriophagen frDetermination of the depletion rate in an ultrafiltration system with the bacteriophage fr

Überprüft wurde eine Spiralpatrone S1Y30 der Firma Amicon mit der Serien-Nr. 8864. Hierzu wurde je 600 ml einer Phagensuspension mit einem Ausgangstiter von 3x1010 in fünf parallelen Ansätzen dreimal hintereinander über die Patrone gefiltert. Zwischen jedem Filtrationsschritt wurde die Patrone mit 2 I RO-Wasser (über Reverse Osmose hochgereinigtes Wasser) gespült. Aus Tabelle 3 geht hervor, daß in allen fünf Parallelansätzen nach drei Filtrationen über die Patrone kein infektiöser Phage fr in 1 ml des Permeats enthalten ist.A spiral cartridge S1Y30 from Amicon with the serial no. 8864. For this purpose, 600 ml of a phage suspension with an initial titer of 3x10 10 was filtered three times in succession over the cartridge in five parallel batches. Between each filtration step, the cartridge was rinsed with 2 I RO water (water purified by reverse osmosis). Table 3 shows that in all five parallel runs after three filtrations through the cartridge, no infectious phage fr is contained in 1 ml of the permeate.

Beispiel 4Example 4 Abreicherung der Testviren um den Faktor 12Depletion of test viruses by a factor of 12

Getestet wurde die Filtrationspatrone SlY30 mit der Seriennummer 10330. Die Phagenlösung bestand aus 600 ml Phagenpuffer (Methoden) mit 600 mg Rinderserumalbumin und 50 ml Phagenkonzentrat (Titer: 1,3x1012 pfu (plaque forming units)/ml). Die Filtration wurde zunächst dreimal hintereinander durchgeführt. Das Volumen des Diltrats verringert sich von 600 über 400 auf 380 ml. Die Filtrationszeiten betrugen je Schritt ca. 20 Minuten. Zwischen jeder Filtration wurde die Patrone zur Inaktivierung von Phagenrückständen mit 1 I 10 mM Natronlauge gewaschen und dann mit dest. Wasser bis zur Neutralität (gemessen mit der pH-Elektrode) gespült.The SlY30 filtration cartridge with the serial number 10330 was tested. The phage solution consisted of 600 ml phage buffer (methods) with 600 mg bovine serum albumin and 50 ml phage concentrate (titer: 1.3x10 12 pfu (plaque forming units) / ml). The filtration was first carried out three times in succession. The volume of the diltrate decreases from 600 to 400 to 380 ml. The filtration times were approx. 20 minutes per step. Between each filtration, the cartridge was washed with 1 l of 10 mM sodium hydroxide solution to inactivate phage residues and then with dist. Rinsed water to neutrality (measured with the pH electrode).

Der Virusgehalt in den einzelnen Filtraten wurde bestimmt und ist in Tabelle 4 dargestellt.The virus content in the individual filtrates was determined and is shown in Table 4.

Da bereits nach der 2. Filtration in 1 ml Filtrat kein Bakteriophage fr mehr nachweisbar ist, wurde das letzte Filtrat (380 ml) erneut mit 40 ml Viruskonzentrat (Titer: 5,2x1012 pfu/ml) angereichert und dreimal hintereinander filtriert. Wie aus Tabelle 1 ersichtlich, lassen sich in 1 ml des Filtrats nach der zweiten Filtration keine Phagen mehr nachweisen.Since no bacteriophage was detectable in 1 ml filtrate after the 2nd filtration, the last filtrate (380 ml) was again enriched with 40 ml virus concentrate (titer: 5.2x10 12 pfu / ml) and filtered three times in succession. As can be seen from Table 1, no phages can be detected in 1 ml of the filtrate after the second filtration.

Aus den Daten der Virusabreicherung (Tabelle 4) geht hervor, daß mit der eingesetzten Ultrafiltrationspatrone nach der ersten Filtration der Virustiter um 6,92 und 7,22 Zehnerlogarithmen abnahm. Nach der jeweils zweiten Filtration waren bereits keine Phagen mehr im Filtrat nachweisbar. Demnach wurden die Viren nach den ersten zwei Filtrationen um insgesamt 11 Zehnerpotenzen und nach den weiteren zwei Filtrationen um 11,7 Zehnerpotenzen reduziert, woraus sich rechnerisch eine Gesamtreduktion um 22,7 Zehnerpotenzen nach vier Filtrationen ergibt. Die in der Literatur häufig empfohlene Abreicherung um 12 bis 16 wird mit 18,22 Zehnerpotenzen bereits nach drei Filtrationen überschritten. Die Virusabreicherung ist bei dieser Produktionsserie mit 7 Zehnerlogarithmen besser als bei der in den Beispielen 2 und 3 verwendeten Produktionsserie mit ca. 4,5 Zehnerlogarithmen (Tabelle 3 und 4). Zwischen den einzelnen Produktionschargen können also erhebliche Unterschiede in der Virusabreicherung festgestellt werden, was wiederum die Notwendigkeit einer sorgfältigen Validierung mit einem Testviren unterstreicht.The data from the virus depletion (Table 4) show that with the ultrafiltration cartridge used, the virus titer decreased by 6.92 and 7.22 tens logarithms after the first filtration. After the second filtration, no phages were detectable in the filtrate. Accordingly, the viruses were reduced by a total of 11 powers of ten after the first two filtrations and by 11.7 powers of ten after the further two filtrations, which arithmetically results in a total reduction of 22.7 powers of ten after four filtrations. The depletion of 12 to 16 that is often recommended in the literature is exceeded with 18.22 powers of ten after just three filtrations. The virus depletion is better in this production series with 7 logs of ten than in the production series used in Examples 2 and 3 with approx. 4.5 logs (tables 3 and 4). Significant differences in virus depletion can thus be determined between the individual production batches, which in turn underlines the need for careful validation with a test virus.

Beispiel 5Example 5 Kontrolle der Virusabreicherung eines Thymusextraktes durch Bestimmung von BSAControl of the virus depletion of a thymus extract by determination of BSA

Kälbern wurde die Thymusdrüse entnommen und homogenisiert. Aus diesem Homogenisat wurde auf an sich bekannte Weise ein Extrakt gewonnen. Dem so erhaltenen Extrakt wurde als Testvirus der Bakteriophage fr (ATCC Nr. 15767-B1; Knolle und Hoffmann Verlag, Virology, Bd. 123, 271-273 (1964) zugesetzt und der Gehalt an BSA sowie an Purin- und Pyrimidinbasen wurde mittels einer HPLC-Analyse auf eine übliche, dem Fachmann bekannte Weise bestimmt.The thymus was removed from calves and homogenized. An extract was obtained from this homogenate in a manner known per se. The bacteriophage fr (ATCC No. 15767-B1; Knolle and Hoffmann Verlag, Virology, Vol. 123, 271-273 (1964) was added to the extract thus obtained as a test virus, and the content of BSA and of purine and pyrimidine bases was determined using a HPLC analysis determined in a conventional manner known to those skilled in the art.

Die mit dem Testphagen versetzte Probe wurde dann, wie in den Beispielen 3 und 4 beschrieben, über eine Filtrationspatrone SlY30 mit der Seriennummer 10330 (Amicon Div.; W. R. Grace & Co.; Danvers, M. A., U.S.A.) filtriert und sowohl die Virusabreicherung als auch die Abnahme an BSA bestimmt. Die Abnahme des Virus korrellierte mit der Abnahme an BSA.The sample with the test phage was then, as described in Examples 3 and 4, filtered through a filtration cartridge SlY30 with the serial number 10330 (Amicon Div .; WR Grace & Co .; Danvers, MA, USA) and both the virus depletion and the acceptance to BSA determines. The decrease in the virus correlated with the decrease in BSA.

Der Bakteriophage fr ( ATCC 15767-B1 ) wurde am 19. November 1964 bei der American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland 20852-1776 USA hinterlegt, und ist seit dem 19. November frei erhältlich.Bacteriophage fr (ATCC 15767-B1) was deposited on November 19, 1964 with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland 20852-1776 USA, and has been freely available since November 19.

E. Coli 3300 (ATCC 19853) wurde am 12. Januar 1967 bei der American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland 20852-1776 USA hinterlegt, und ist seit dem 12 Januar 1967 frei erhältlich.

Figure imgb0002
Figure imgb0003
Figure imgb0004
Figure imgb0005
E. Coli 3300 (ATCC 19853) was deposited on January 12, 1967 with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland 20852-1776 USA, and has been freely available since January 12, 1967.
Figure imgb0002
Figure imgb0003
Figure imgb0004
Figure imgb0005

Claims (10)

1. Method to remove viruses and/or pathogenic material from organic preparations, characterised in that the material to be purified is passed through an ultrafilter or an ultrafiltration unit, the removal rate of which has previously been ascertained by admitting into the filter or filtration unit viruses of the leviviridae family or other comparatively small bacteriophages, by determining the titer of the viruses before and after the filtration, and by ascertaining the removal rate therefrom.
2. Method according to claim 1, characterised in that MS2, f2, f4, Qß, Vk, ST or R17 is used as the test virus.
3. Method according to one of claims 1 or 2, characterised in that the bacteriophage fr, ATCC No. 15767-B1, is used as the test virus.
4. Method according to one of the preceding claims, characterised in that the specimen containing the test virus is ultrafiltered, whilst adhering to precisely defined pressure conditions, and the same precisely defined conditions are adhered to for the purification of the organic material.
5. Method to determine the removal rate of viruses and/or pathogenic material in organic preparations, characterised in that a specimen of the material is mixed with viruses of the leviviridae group as the test virus, this specimen is subjected to the purification steps intended for the material, the number of viruses is determined before and after purification, and the decrease in the virus titer is detected.
6. Method according to one of the preceding claims, characterised in that the removal rate of a marker substance is determined, which substance was already contained in or subsequently added to the material to be purified, the ratio of the removal rates between the marker and the virus is formed, and the removal of the virus is tracked by the removal of the marker substance.
7. Method according to one of the preceding claims, characterised in that the material to be purified is obtained from plant parts, from human or animal tissues or organs, or from bacteria or virus extracts.
8. Method according to one of the preceding claims, characterised in that the material to be purified is obtained from spleen, thymus and/or bone marrow.
9. Method according to one of claims 6 to 8, characterised in that a protein or a nucleic acid is used as the marker substance.
10. Method according to one of claims 6 to 9, characterised in that BSA is used as the marker substance.
EP91903318A 1990-02-06 1991-02-06 Process for depleting viruses in solutions and for determining the depletion rate of the viruses Expired - Lifetime EP0514421B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4003543A DE4003543A1 (en) 1990-02-06 1990-02-06 METHOD FOR TREATING VIRUSES IN SOLUTIONS AND DETERMINING THE TREATMENT RATE OF VIRUSES
DE4003543 1990-02-06
PCT/DE1991/000099 WO1991012027A1 (en) 1990-02-06 1991-02-06 Process for depleting viruses in solutions and for determining the depletion rate of the viruses

Publications (3)

Publication Number Publication Date
EP0514421A1 EP0514421A1 (en) 1992-11-25
EP0514421B1 true EP0514421B1 (en) 1995-08-16
EP0514421B2 EP0514421B2 (en) 2000-01-26

Family

ID=6399564

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91903318A Expired - Lifetime EP0514421B2 (en) 1990-02-06 1991-02-06 Process for depleting viruses in solutions and for determining the depletion rate of the viruses

Country Status (12)

Country Link
US (1) US5645984A (en)
EP (1) EP0514421B2 (en)
JP (1) JPH0679654B2 (en)
AT (1) ATE126443T1 (en)
AU (1) AU652738B2 (en)
CA (1) CA2074824C (en)
DE (2) DE4003543A1 (en)
DK (1) DK0514421T4 (en)
ES (1) ES2078506T5 (en)
GR (2) GR3018090T3 (en)
RU (1) RU2093579C1 (en)
WO (1) WO1991012027A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4126034C1 (en) * 1991-08-06 1992-09-10 Sanorell Pharma Gmbh & Co, 7292 Baiersbronn, De
CA2128296A1 (en) * 1993-12-22 1995-06-23 Peter John Degen Polyvinylidene fluoride membrane
DE4429558A1 (en) * 1994-08-19 1996-02-22 Sanorell Pharma Gmbh & Co Process for the production of infection-free pharmaceutical preparations and / or foods from infectious material
DE19504211A1 (en) * 1995-02-09 1996-08-14 Behringwerke Ag Removal of viruses by ultrafiltration from protein solutions
DE19622422A1 (en) * 1996-06-04 1997-12-11 Sanorell Pharma Gmbh & Co Storage-stable pharmaceutical composition with immunomodulating and anti-inflammatory properties and a process for its production
EP1175128B1 (en) * 2000-07-17 2010-09-22 FUJIFILM Corporation Light emitting element and azole compound
DE102005047301B4 (en) * 2005-09-30 2009-04-16 Sartorius Stedim Biotech Gmbh Method for detection of virus depletion for the validation of filters and filtration processes
US20090220940A1 (en) * 2005-10-17 2009-09-03 Ovadia Lev Method for Testing the Integrity of Membranes
WO2008026953A1 (en) * 2006-08-28 2008-03-06 Akademia Medyczna Im. Piastow Slaskich We Wroclawiu A system and method for the extra-corporeal purification of blood of pathogenic enzymes
FR2940318B1 (en) 2008-12-22 2011-05-13 Centre Nat Rech Scient NEW BIOTRACTORS AND THEIR USES FOR THE CONTROL OF FILTRATION FACILITIES
BR112012026095A2 (en) 2010-04-14 2015-09-15 Emd Millipore Corp methods of producing high purity virus stocks and high titers and methods of using them.
RU2526494C1 (en) * 2013-03-19 2014-08-20 Государственное бюджетное образовательное учреждение высшего профессионального образования "Челябинская государственная медицинская академия" Министерства здравоохранения Российской Федерации" (ГБОУ ВПО ЧелГМА Минздрава России) Method of removing human immunodeficiency virus from male's sperm

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808315A (en) * 1986-04-28 1989-02-28 Asahi Kasei Kogyo Kabushiki Kaisha Porous hollow fiber membrane and a method for the removal of a virus by using the same
AU605901B2 (en) * 1987-09-11 1991-01-24 Ares Trading S.A. Purification process
DE3816885A1 (en) * 1988-05-18 1989-11-30 Behringwerke Ag METHOD FOR OBTAINING A TESTANTANT FOR DIAGNOSIS OF THE BOVINE HERPESVIRUS TYPE 1 (HBV 1) INFECTION

Also Published As

Publication number Publication date
DE4003543A1 (en) 1991-08-08
DK0514421T4 (en) 2000-06-13
ES2078506T3 (en) 1995-12-16
GR3033155T3 (en) 2000-08-31
ATE126443T1 (en) 1995-09-15
EP0514421A1 (en) 1992-11-25
CA2074824C (en) 2001-04-17
AU7210391A (en) 1991-09-03
RU2093579C1 (en) 1997-10-20
GR3018090T3 (en) 1996-02-29
CA2074824A1 (en) 1991-08-07
JPH0679654B2 (en) 1994-10-12
ES2078506T5 (en) 2000-06-16
WO1991012027A1 (en) 1991-08-22
US5645984A (en) 1997-07-08
DE59106273D1 (en) 1995-09-21
DK0514421T3 (en) 1995-12-18
DE4003543C2 (en) 1993-08-19
AU652738B2 (en) 1994-09-08
JPH05502164A (en) 1993-04-22
EP0514421B2 (en) 2000-01-26

Similar Documents

Publication Publication Date Title
EP0514421B1 (en) Process for depleting viruses in solutions and for determining the depletion rate of the viruses
DE69327891T2 (en) Material for removing pathogenic substance and blood filter made with this material
DE68908101T2 (en) Hygiene products for hemodialysis.
DE3887812T2 (en) Process for removing pyrogens.
DE60128861T2 (en) Method for virus inactivation
DE3310727A1 (en) METHOD AND DEVICE FOR SELECTIVE, EXTRACORPORAL SEPARATION OF PATHOLOGICAL AND / OR TOXIC BLOOD COMPONENTS
CH644520A5 (en) METHOD FOR PRODUCING A FACTOR STIMULATING PROLIFERATION AND DIFFERENTIATION OF HUMAN GRANULOPOETIC STEM CELLS.
DE602005002461T2 (en) A NANOFILTRATION STEP COMPRISING METHOD FOR PURIFYING ALBUMINE, SOLUTION AND COMPOSITION FOR THERAPEUTIC USE THEREOF
DE2742588B2 (en) Process for the sterilization of a dialyzer with a semipermeable membrane
DE69735974T2 (en) Use of structured depth filters to remove viruses
DE102011105525A1 (en) Process for separating biopolymer aggregates and viruses from a fluid
DE2817871A1 (en) METHOD AND DEVICE FOR SEPARATION AND PURIFICATION OF PROTEINS BY CHROMATOGRAPHY
EP2328623B1 (en) Method for reducing the viral and microbial load of extracts containing solids and obtained from animal pancreas
DE1792600A1 (en) Vaccine and method of manufacture
US5731164A (en) method of checking the rate of removal of pyrogenic substances, in particular viruses, from organic material
DD209737A5 (en) METHOD FOR OBTAINING CELLATIVE FORMULATING ACTIVE INGREDIENTS FROM CABBLE BLOOD
DE2418405A1 (en) METHOD AND DEVICE FOR STERILIZATION OF LIQUIDS CONTAMINATED WITH ORGANISMS
EP2488215B1 (en) Method for deactivating undesired contaminations in leech extracts
EP0599981B1 (en) Method of checking the rate of removal of pyrogenic substances, in particular viruses, from organic material
EP0776212B1 (en) Method of producing infection-free pharmaceutical preparations and/or foodstuffs from infectious material, particular material containing prions
DE3005605A1 (en) Antigen extn. from cell suspension - by membrane and ultrafiltration stages
CH640865A5 (en) GLYCOPROTEIDE OF HUMAN URINE, METHOD FOR THE PRODUCTION THEREOF AND MEANS FOR COMBATING LEUKOCYTOPENIA.
DE1041649B (en) Process for the preparation of vaccine solutions for poliomyelitis virus
EP0417531A1 (en) Process for production of biological materials in cell cultures and devices
DE2519723A1 (en) Aq. solns. for medical purposes - using water passed through reverse osmosis column to retain pyrogenic materials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920805

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

ITCL It: translation for ep claims filed

Representative=s name: JACOBACCI CASETTA & PERANI S.P.A.

GBC Gb: translation of claims filed (gb section 78(7)/1977)
EL Fr: translation of claims filed
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SANORELL PHARMA GMBH & CO.

17Q First examination report despatched

Effective date: 19941222

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 126443

Country of ref document: AT

Date of ref document: 19950915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59106273

Country of ref document: DE

Date of ref document: 19950921

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951106

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2078506

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3018090

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: IMMUNO AKTIENGESELLSCHAFT

Effective date: 19960515

NLR1 Nl: opposition has been filed with the epo

Opponent name: IMMUNO AKTIENGESELLSCHAFT

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20000126

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
NLR2 Nl: decision of opposition
NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000404

ITF It: translation for a ep patent filed
ET3 Fr: translation filed ** decision concerning opposition
REG Reference to a national code

Ref country code: DK

Ref legal event code: T4

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Kind code of ref document: T5

Effective date: 20000426

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060215

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20060220

Year of fee payment: 16

Ref country code: LU

Payment date: 20060220

Year of fee payment: 16

Ref country code: SE

Payment date: 20060220

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20060221

Year of fee payment: 16

Ref country code: BE

Payment date: 20060221

Year of fee payment: 16

Ref country code: GB

Payment date: 20060221

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20060222

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060228

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070207

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070206

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20071030

BERE Be: lapsed

Owner name: *SANORELL PHARMA G.M.B.H. & CO.

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070206

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100222

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20100217

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100218

Year of fee payment: 20

Ref country code: DE

Payment date: 20100423

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59106273

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20110206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110206