EP0500020A1 - Cold water producing system - Google Patents

Cold water producing system Download PDF

Info

Publication number
EP0500020A1
EP0500020A1 EP92102614A EP92102614A EP0500020A1 EP 0500020 A1 EP0500020 A1 EP 0500020A1 EP 92102614 A EP92102614 A EP 92102614A EP 92102614 A EP92102614 A EP 92102614A EP 0500020 A1 EP0500020 A1 EP 0500020A1
Authority
EP
European Patent Office
Prior art keywords
container
ice
water
heat exchanger
cold water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92102614A
Other languages
German (de)
French (fr)
Other versions
EP0500020B1 (en
Inventor
Ulrich Dipl.-Ing. Klüe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0500020A1 publication Critical patent/EP0500020A1/en
Application granted granted Critical
Publication of EP0500020B1 publication Critical patent/EP0500020B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/12Producing ice by freezing water on cooled surfaces, e.g. to form slabs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/18Storing ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D16/00Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine

Definitions

  • Cold water which has a temperature close to 0 ° C and is used, for example, to cool milk in dairies, can be generated directly by heat exchange with a chiller. If the cost difference between day and night electricity is considerable or the demand for cooling capacity fluctuates greatly, an arrangement is preferred in large systems, which is formed from a container for holding an ice-water mixture and a heat exchanger arranged above it, which is used at night or regardless of the peak demand times, ice forms while the cold water is withdrawn from the container, in which the peak demand for cooling capacity is satisfied by melting the ice supply contained therein (DE-A-2900372, Fig. 3). Accordingly, the pipe connection for the removal of water (flow) is on the container.
  • the return connection can also be provided on the container, in the upper area of its ice-water storage part, where the returning, warmer water is cooled by the ice supply before it returns to the flow at the lower end of the ice-water storage part ( DE-A-2900372, Fig. 3).
  • heated water is given to the heat exchanger. Part of it remains with ice formation on the heat exchanger plates and periodically falls into the container. The other part, which remains liquid and drips into the container, is cooled on the ice coating of the heat exchanger plates and therefore reaches the container at a temperature which is not far above 0 ° C.
  • the invention is therefore based on the object of creating a system of the type mentioned at the outset, which offers the possibility of a slender installation outdoors without any disadvantages in terms of heat economy.
  • the solution lies in the combination of the features of claim 1.
  • the simple construction in which the container forms both the supporting structure and the casing of the heat exchanger, is only economical if the empty space enclosed by the container in the area of the heat exchanger is as small as to keep possible and the horizontal dimensions of the container is also kept small.
  • the consequence of this is that the ice-water container is designed with a smaller horizontal dimension and a greater height than was previously the case.
  • the avoidance of temperature stratification and the advantageous thermodynamic conditions are achieved in that a vertical flow from bottom to top is provided in the ice-water reservoir by appropriate arrangement of the nozzle connections for the supply and removal of water at the container. This trick makes it possible to make the ice-water storage space in the container much higher than previously customary, preferably more than 4 m high.
  • the diameter is reduced accordingly, so that the container diameter can be adapted to the horizontal space requirement of the heat exchanger and thus useless empty space is avoided.
  • the arrangement of the heat exchanger in the container on the one hand and the creation of a vertical flow in the ice-water supply on the other hand thus complement each other in a surprising manner.
  • the ratio of the height to the diameter of the ice-water storage part of the container has a certain minimum size, if the container has no cylindrical cross-sectional shape, the diameter of the hydraulic diameter (4 x base / circumference) takes the place.
  • Cylindrical silo construction leads to a particularly favorable use of space and material with regard to the absorption of the heat exchanger weight.
  • the feature that so little empty space is to be enclosed by the container in the area of the heat exchanger is considered to be fulfilled according to the invention in the case of a cylindrical construction if the container diameter is approximately equal to the diagonal dimension of the heat exchanger (or the heat exchanger group) or slightly larger (to about a factor of 1.5 or better 1.2).
  • the placement of the heat exchanger package, which is rectangular in horizontal section, in the cylindrical jacket means that there is sufficient space for maintenance work on the main sides of the heat exchanger.
  • the container does not require an upper closure, which at the same time should have sufficient strength to accommodate the weight of the heat exchanger. Instead, brackets for the heat exchanger are provided on the inside of the container walls which are raised above the height of the heat exchanger.
  • the cover only has to take weather aspects into account. Continuous thermal insulation of the walls is easier to achieve than with the execution of the container and heat exchanger in separate units.
  • the silo-shaped container 2 rises on the foundation 1 with a height of, for example, 10 m and a diameter of its cylindrical side walls of, for example, approximately 4 m.
  • Its side walls 3 are made of a suitable material, for example stainless steel with a thermal barrier coating.
  • Its hood 4 is used only for weather and heat protection and therefore has no special static requirements.
  • the lower part of the container is intended for the storage of ice-water mixture up to the maximum fill height at 6 m indicated at 5, which is secured by a sensor (not shown) and possibly an overflow.
  • Suitable nozzle connections 6, 7 serve for the supply and removal of water. As indicated at 7, they can be protected from the removal of lumpy ice by a perforated sheet weir. Since there is a height difference between the deeply arranged supply nozzle 6 (return) and the discharge nozzle 7 (flow) arranged near the surface of the ice-water supply, there is a vertical flow through the ice-water supply from bottom to top.
  • the heat exchanger 8 is provided, which is supported by the wall 3 via suitable holders 9. It has a square shape, so that between its side surfaces and the wall 3 access spaces 10 are formed for maintenance purposes, which are accessible via a ladder 11, a stage 12 and a door opening 13, wherein a grating 14 can be provided to form a standing area.
  • the cylindrical silo construction combines a high intake volume with a small space requirement and little construction effort; because the load-bearing capacity of the cylindrical walls with respect to the heat exchanger weight is greater than that of other container shapes, especially when the container diameter is hardly larger than the diagonal dimension of the heat exchanger and the ratio of the maximum ice storage height 5 to the diameter is greater than 1 and in particular greater than 1 , 3 is.
  • the ratio of the total height to the diameter is expediently greater than 2. This is in contrast to Previously common ice storage arrangements of large capacity when efforts were made to keep at least one horizontal dimension large and the vertical dimension small.
  • a mixing device provided in the ice storage part of the container, which is preferably formed by a device for the finely divided blowing of air near the bottom of the container.
  • a device for the finely divided blowing of air near the bottom of the container is indicated at 15, namely a pipe or several pipes with wall bores from which air emerges and bubbles upwards.

Abstract

The system has a container (2) for receiving an ice-water mixture, a heat exchanger (8) arranged above it for periodic ice production, and with conduit connections (6) for the supply and discharge of water. A space-saving arrangement with favourable construction cost and good heat economy properties can be achieved by arranging the heat exchanger (8) carried by the container (2) in the upper space of the container. The ice-water storage space is here made with small transverse dimensions and correspondingly greater height (5), to reduce its diameter in the container. The problem of heat layering resulting from this is avoided by the formation of a vertical throughflow which can be reinforced by blowing in air (15). <IMAGE>

Description

Kaltwasser, das eine Temperatur nahe 0° C hat und bspw. zur Milchkühlung in Molkereien verwendet wird, kann unmittelbar durch Wärmeaustausch mit einer Kältemaschine erzeugt werden. Wenn die Kostendifferenz zwischen Tag- und Nachtstrom beträchtlich ist oder der Bedarf an Kühlleistung stark schwankt, zieht man bei Großanlagen eine Anordnung vor, die aus einem Behälter zur Aufnahme eines Eis-Wasser-Gemischs und einem darüber angeordneten Wärmeaustauscher gebildet wird, der nachts bzw. unabhängig von den Spitzenbedarfszeiten Eis bildet, während das Kaltwasser vom Behälter abgezogen wird, in welchem der Spitzenbedarf an Kühlleistung durch Abschmelzen des darin enthaltenen Eisvorrats befriedigt wird (DE-A-2900372, Fig.3). Demnach befindet sich der Rohrleitungsanschluß für die Abfuhr von Wasser (Vorlauf) an dem Behälter. Der Rücklaufanschluß kann gleichfalls am Behälter vorgesehen sein, und zwar im oberen Bereich von dessen Eis-Wasser-Speicherteils, wo das rücklaufende, wärmere Wasser von dem Eisvorrat abgekühlt wird, bevor es am unteren Ende des Eis-Wasser-Speicherteils wieder zum Vorlauf gelangt (DE-A-2900372, Fig. 3). Wegen thermodynamischer Nachteile dieser Anordnung ist bei bekannten, ausgeführten Anlagen hingegen vorgesehen, daß das erwärmte Wasser dem Wärmeaustauscher aufgegeben. Ein Teil davon verbleibt unter Eisbildung an den Wärmeaustauscherplatten und fällt periodisch in den Behälter ab. Der andere, flüssig bleibende, in den Behälter abtropfende Teil wird an dem Eisbelag der Wärmeaustauscherplatten abgekühlt und gelangt daher mit einer Temperatur, die nicht weit über 0° C liegt, in den Behälter. Erst die weitere Abkühlung auf 0° C findet im Wärmeaustausch mit dem dort befindlichen Eis statt. - In einer anderen Betriebsart, die bei hohem Kälteleistungsbedarf angewendet wird, wird die gesamte Leistung des Wärmeaustauschers ohne Eisbildung zur Abkühlung des ihm aufgegebenen wärmeren Rücklaufwassers verwendet. Auch in diesem Fall erreicht das Rücklaufwasser den Wasser-Eis-Behälter bereits in gekühltem Zustand, so daß nur noch eine geringe Temperaturabsenkung im Wärmeaustausch mit dem dort befindlichen Eis stattfinden muß. In allen diesen bekannten Fällen treten wesentliche Temperaturdifferenzen im Eis-Wasser-Behälter nicht auf, weil das Wasser von oben in den Behälter gelangt und daher erst nach Passieren der schwimmender Eisschicht und entsprechender Abkühlung tiefere Bereiche erreichen kann. Das Problem einer Temperaturschichtung tritt daher bei den bekannten Anlagen nur in außergewöhnlichen Betriebsfällen auftreten, sofern die Vertikalabmessungen des Eis-Wasser-Speicherteils nicht groß sind. Deshalb ist man bemüht, die Höhe des Eis-Wasser-Vorrats im Behälter gering zu halten, nämlich in der Größenordnung von 1 bis 3 m, so daß eine etwaige Wärmeschichtung in dem unter der Eisschicht befindlichen Wasser durch das im Normalbetrieb periodisch stattfindende Vordringen des Eisvorrats in tiefere Behälterbereiche bald beseitigt wird. Dabei kommt die begrenzte Höhe der Aufstellung in Gebäudestockwerken entgegen, führt aber bei großen Kühlleistungen zu beträchtlichen Horizontalabmessungen. Eine schlanke Bauart mit großem Verhältnis von Höhe zu Breite kennt man bislang nur bei kleinen Anlagen, bei denen die Höhe des Eis-Wasser-Speicherteils gering ist und aus diesem Grund keine Gefahr störender Temperaturentwicklung vorhanden ist.Cold water, which has a temperature close to 0 ° C and is used, for example, to cool milk in dairies, can be generated directly by heat exchange with a chiller. If the cost difference between day and night electricity is considerable or the demand for cooling capacity fluctuates greatly, an arrangement is preferred in large systems, which is formed from a container for holding an ice-water mixture and a heat exchanger arranged above it, which is used at night or regardless of the peak demand times, ice forms while the cold water is withdrawn from the container, in which the peak demand for cooling capacity is satisfied by melting the ice supply contained therein (DE-A-2900372, Fig. 3). Accordingly, the pipe connection for the removal of water (flow) is on the container. The return connection can also be provided on the container, in the upper area of its ice-water storage part, where the returning, warmer water is cooled by the ice supply before it returns to the flow at the lower end of the ice-water storage part ( DE-A-2900372, Fig. 3). Because of the thermodynamic disadvantages of this arrangement, however, it is provided in known, implemented systems that heated water is given to the heat exchanger. Part of it remains with ice formation on the heat exchanger plates and periodically falls into the container. The other part, which remains liquid and drips into the container, is cooled on the ice coating of the heat exchanger plates and therefore reaches the container at a temperature which is not far above 0 ° C. Only further cooling to 0 ° C takes place in the heat exchange with the ice located there. - In another operating mode, which is used when there is a high cooling capacity requirement, the entire capacity of the heat exchanger without ice formation is used to cool the warmer return water that has been fed into it. In this case, too, the return water already reaches the water-ice container in the cooled state, so that only a slight drop in temperature in the heat exchange with the ice located there has to take place. In all of these known cases, significant temperature differences do not occur in the ice-water container because the water enters the container from above and can therefore only reach deeper areas after passing through the floating ice layer and cooling accordingly. The problem of temperature stratification therefore only occurs in the known systems in exceptional operating cases, provided the vertical dimensions of the ice-water storage part are not large. Therefore, efforts are made to keep the height of the ice-water supply in the container low, namely in the order of magnitude of 1 to 3 m, so that any thermal stratification in the water under the ice layer due to the progressive advance of the ice supply taking place during normal operation will soon be disposed of in deeper container areas. The limited height of the installation in storey floors accommodates, but leads to considerable horizontal dimensions with large cooling capacities. A slim design with a large ratio of height to width has only been seen in small systems in which the height of the ice-water storage section is low and for this reason there is no risk of disturbing temperature development.

Der Erfindung liegt daher die Aufgabe zugrunde, eine Anlage der eingangs genannten Art zu schaffen, die die Möglichkeit zu schlanker Aufstellung im Freien ohne wärmewirtschaftliche Nachteile bietet.The invention is therefore based on the object of creating a system of the type mentioned at the outset, which offers the possibility of a slender installation outdoors without any disadvantages in terms of heat economy.

Die Lösung liegt in der Kombination der Merkmale des Anspruchs 1. Die einfache Bauweise, bei der der Behälter sowohl die Tragkonstruktion als auch die Umhüllung des Wärmeaustauschers bildet, ist nur dann wirtschaftlich, wenn der im Bereich des Wärmeaustauschers von dem Behälter eingeschlossenen Leerraum so gering wie möglich zu halten und also die Horizontalabmessungen des Behälters gleichfalls gering gehalten wird. Dies hat die Konsequenz, daß der Eis-Wasser-Behälter mit geringerer Horizontalausdehnung und größerer Höhe als bislang üblich ausgeführt wird. Die Vermeidung der Temperaturschichtung und die vorteilhafte thermodynamische Verhältnisse werden dadurch erreicht, daß in dem Eis-Wasser-Speicher eine vertikale Durchströmung von unten nach oben durch entsprechende Anordnung der Stutzenanschlüsse für die Zu- bzw. Abfuhr von Wasser am Behälter vorgesehen wird. Durch diesen Kunstgriff wird es möglich, den Eis-Wasser-Speicherraum im Behälter wesentlich höher als bisher üblich auszuführen, vorzugsweise mehr als 4 m hoch. Entsprechend verringert sich der Durchmesser, so daß sich der Behälterdurchmesser an den Horizontalplatzbedarf des Wärmetauschers anpassen läßt und damit nutzloser Leerraum vermieden wird. Die Anordnung des Wärmetauschers im Behälter einerseits und die Herbeiführung einer Vertikalströmung im Eis-Wasser-Vorrat andererseits ergänzen sich somit in überraschender Weise.The solution lies in the combination of the features of claim 1. The simple construction, in which the container forms both the supporting structure and the casing of the heat exchanger, is only economical if the empty space enclosed by the container in the area of the heat exchanger is as small as to keep possible and the horizontal dimensions of the container is also kept small. The consequence of this is that the ice-water container is designed with a smaller horizontal dimension and a greater height than was previously the case. The avoidance of temperature stratification and the advantageous thermodynamic conditions are achieved in that a vertical flow from bottom to top is provided in the ice-water reservoir by appropriate arrangement of the nozzle connections for the supply and removal of water at the container. This trick makes it possible to make the ice-water storage space in the container much higher than previously customary, preferably more than 4 m high. The diameter is reduced accordingly, so that the container diameter can be adapted to the horizontal space requirement of the heat exchanger and thus useless empty space is avoided. The arrangement of the heat exchanger in the container on the one hand and the creation of a vertical flow in the ice-water supply on the other hand thus complement each other in a surprising manner.

Die Vertikalströmung von unten nach oben sowie die Durchmischung von Wasserschichten wird dadurch gefährdet, daß der Behälter mit einer Mischeinrichtung in Form einer Einrichtung zum Einblasen von Luft ausgerüstet wird. Solche Mischung ist bei niedrigen Eis-Wasser-Behältern zwar bekannt; bei höheren Behältern mit geringerer Grundfläche arbeitet sie jedoch im Verhältnis zum Energieaufwand effektiver.The vertical flow from bottom to top and the mixing of water layers is endangered in that the container is equipped with a mixing device in the form of a device for blowing in air. Such a mixture is known for low ice-water containers; with higher containers with a smaller footprint, however, it works more effectively in relation to the energy consumption.

Hinsichtlich der Anspruchsmerkmals, daß das Verhältnis der Höhe zum Durchmesser des Eis-Wasser-Speicherteils des Behälters eine bestimmte Mindestgröße hat tritt dann, wenn der Behälter keine zylindrische Querschnittsgestalt hat, an die Stelle des Durchmessers der hydraulische Durchmesser (4 x Grundfläche / Umfang).With regard to the claim feature that the ratio of the height to the diameter of the ice-water storage part of the container has a certain minimum size, if the container has no cylindrical cross-sectional shape, the diameter of the hydraulic diameter (4 x base / circumference) takes the place.

Zylindrische Silobauweise führt zu einer besonders günstigen Platzbeanspruchung und günstiger Materialausnutzung im Hinblick auf die Aufnahme des Wärmetauschergewichts. Das Merkmal, daß im Bereich des Wärmetauschers so wenig Leerraum von dem Behälter umgeschlossen sein soll, gilt dann nach der Erfindung bei zylindrischer Bauweise als erfüllt, wenn, der Behälterdurchmesser etwa gleich der Diagonalabmessung des Wärmetauschers (oder der Wärmeaustauschergruppe) oder wenig größer ist (bis etwa zum Faktor 1,5 oder besser 1,2). Dabei führt die Unterbringung des im Horizontalschnitt rechteckig gestalteten Wärmeaustauscherpakets in dem zylindrischen Mantel dazu, daß auf den Hauptseiten des Wärmeaustauschers hinreichend Platz für Wartungsarbeiten verbleibt.Cylindrical silo construction leads to a particularly favorable use of space and material with regard to the absorption of the heat exchanger weight. The feature that so little empty space is to be enclosed by the container in the area of the heat exchanger is considered to be fulfilled according to the invention in the case of a cylindrical construction if the container diameter is approximately equal to the diagonal dimension of the heat exchanger (or the heat exchanger group) or slightly larger (to about a factor of 1.5 or better 1.2). The placement of the heat exchanger package, which is rectangular in horizontal section, in the cylindrical jacket means that there is sufficient space for maintenance work on the main sides of the heat exchanger.

Der Behälter benötigt keinen oberen Abschluß, der gleichzeitig hinreichende Festigkeit zur Aufnahme des Wärmetauschergewichtes aufweisen müßte. Statt dessen sind innen an den über die Höhe des Wärmetauschers hochgezogenen Behälterwänden Halterungen für den Wärmeaustauscher vorgesehen. Die Abdeckung braucht lediglich Witterungsgesichtspunkte zu berücksichtigen. Eine durchgehende Wärmeisolierung der Wände läßt sich einfacher verwirklichen als bei der Ausführung von Behälter und Wärmetauscher in gesonderten Einheiten.The container does not require an upper closure, which at the same time should have sufficient strength to accommodate the weight of the heat exchanger. Instead, brackets for the heat exchanger are provided on the inside of the container walls which are raised above the height of the heat exchanger. The cover only has to take weather aspects into account. Continuous thermal insulation of the walls is easier to achieve than with the execution of the container and heat exchanger in separate units.

Die Erfindung wird im folgenden näher unter Bezugnahme auf die Zeichnung erläutert, die ein vorteilhaftes Ausführungsbeispiel etwa maßstäblich veranschaulicht. Darin zeigen:

  • Fig. 1 einen vertikalen Längsschnitt und
  • Fig. 2 einen horizontalen Querschnitt gemäß den in Fig. 1 angegebenen Pfeilen II-II.
The invention is explained in more detail below with reference to the drawing, which illustrates an advantageous exemplary embodiment approximately to scale. In it show:
  • Fig. 1 is a vertical longitudinal section and
  • Fig. 2 shows a horizontal cross section according to the arrows II-II indicated in Fig. 1.

Auf dem Fundament 1 erhebt sich der siloförmige Behälter 2 mit einer Höhe von bspw. 10 m und einem Durchmesser seiner zylindrischen Seitenwände von bspw. etwa 4 m. Seine Seitenwände 3 bestehen aus geeignetem Material, bspw. Edelstahl mit Wärmedämmschicht. Seine Haube 4 dient lediglich dem Wetter- und Wärmeschutz und stellt daher keine besonderen statischen Anforderungen. Der untere Teil des Behälters ist für die Speicherung von Eis-Wassergemisch vorgesehen und zwar bis zu der bei 5 angedeuteten maximalen Füllhöhe bei 6 m, die durch einen nicht dargestellten Sensor und ggfs. Überlauf gesichert wird. Geeignete Stutzenanschlüsse 6, 7 dienen der Zu- bzw. Abfuhr von Wasser. Sie können - wie bei 7 angedeutet - durch ein Lochblechwehr vor dem Abzug von stückigem Eis geschützt werden. Da zwischen dem tief angeordneten Zufuhrstutzen 6 (Rücklauf) und dem nahe der Oberfläche des Eis-Wasser-Vorrats angeordneten Abfuhrstutzen 7 (Vorlauf) eine Höhendifferenz vorhanden ist, ergibt sich eine vertikale Durchströmung des Eis-Wasser-Vorrats von unten nach oben.The silo-shaped container 2 rises on the foundation 1 with a height of, for example, 10 m and a diameter of its cylindrical side walls of, for example, approximately 4 m. Its side walls 3 are made of a suitable material, for example stainless steel with a thermal barrier coating. Its hood 4 is used only for weather and heat protection and therefore has no special static requirements. The lower part of the container is intended for the storage of ice-water mixture up to the maximum fill height at 6 m indicated at 5, which is secured by a sensor (not shown) and possibly an overflow. Suitable nozzle connections 6, 7 serve for the supply and removal of water. As indicated at 7, they can be protected from the removal of lumpy ice by a perforated sheet weir. Since there is a height difference between the deeply arranged supply nozzle 6 (return) and the discharge nozzle 7 (flow) arranged near the surface of the ice-water supply, there is a vertical flow through the ice-water supply from bottom to top.

Oberhalb des Eis-Wasser-Speicherraums ist der Wärmetauscher 8 vorgesehen, der über geeignete Halterungen 9 von der Wand 3 getragen wird. Er hat quadrische Gestalt, so daß sich zwischen seinen Seitenflächen und der Wand 3 Zugangsräume 10 zu Wartungszwecken bilden, die über eine Leiter 11, eine Bühne 12 und eine Türöffnung 13 zugänglich sind, wobei ein Gitterrost 14 zur Bildung einer Standfläche vorgesehen sein kann.Above the ice-water storage space, the heat exchanger 8 is provided, which is supported by the wall 3 via suitable holders 9. It has a square shape, so that between its side surfaces and the wall 3 access spaces 10 are formed for maintenance purposes, which are accessible via a ladder 11, a stage 12 and a door opening 13, wherein a grating 14 can be provided to form a standing area.

Die zylindrische Silobauweise verbindet hohes Aufnahmevolumen mit geringem Stellplatzbedarf und geringem konstruktiven Aufwand; denn die Tragfähigkeit der zylindrischen Wände in bezug auf das Wärmetauschergewicht ist größer als die von anderen Behälterformen, zumal dann, wenn der Behälterdurchmesser kaum größer als die Diagonalabmessung des Wärmetauschers ist und das Verhältnis der maximalen Eisspeicherhöhe 5 zum Durchmesser größer als 1 und insbesondere größer als 1,3 ist. Das Verhältnis der Gesamthöhe zum Durchmesser ist zweckmäßigerweise größer als 2. Dies steht insofern im Gegensatz zu bisher üblichen Eisspeicheranordnungen großer Kapazität, als man bemüht war, wenigstens eine Horizontalabmessung groß und die vertikale Abmessung gering zu halten. Dies hängt damit zusammen, daß die durch das Aufschwimmen des Eises im Wasser verursachte Entmischung eine mehr horizontale Durchströmung des Behälters nahezulegen schien, während die erfindungsgemäße Anordnung eine mehr vertikale Durchströmung erzielt. Besonders vorteilhaft ist deshalb die Kombination der erfindungsgemäßen Anordnung mit einer im Eisspeicherteil des Behälters vorgesehenen Mischeinrichtung, die vorzugsweise von einer Einrichtung zum fein verteilten Einblasen von Luft in Bodennähe des Behälters gebildet wird. Eine solche Einrichtung ist bei 15 angedeutet, nämlich ein Rohr oder mehrere Rohre mit Wandungsbohrungen, aus denen Luft austritt und nach oben perlt.The cylindrical silo construction combines a high intake volume with a small space requirement and little construction effort; because the load-bearing capacity of the cylindrical walls with respect to the heat exchanger weight is greater than that of other container shapes, especially when the container diameter is hardly larger than the diagonal dimension of the heat exchanger and the ratio of the maximum ice storage height 5 to the diameter is greater than 1 and in particular greater than 1 , 3 is. The ratio of the total height to the diameter is expediently greater than 2. This is in contrast to Previously common ice storage arrangements of large capacity when efforts were made to keep at least one horizontal dimension large and the vertical dimension small. This is due to the fact that the segregation caused by the floating of the ice in the water seemed to suggest a more horizontal flow through the container, while the arrangement according to the invention achieves a more vertical flow. It is therefore particularly advantageous to combine the arrangement according to the invention with a mixing device provided in the ice storage part of the container, which is preferably formed by a device for the finely divided blowing of air near the bottom of the container. Such a device is indicated at 15, namely a pipe or several pipes with wall bores from which air emerges and bubbles upwards.

Claims (4)

Kaltwassererzeugungsanlage mit einem Behälter (2) zur Aufnahme eines Eis-Wasser-Gemischs, einem darüber angeordneten Wärmeaustauscher (8) zur periodischen Eiserzeugung sowie mit Rohrleitungsanschlüssen (6, 7) für die Zu- bzw. Abfuhr von Wasser, wobei der vom Behälter (2) getragene Wärmeaustauscher (8) im Oberraum des Behälters (2) angeordnet ist und daß die Rohrleitungsanschlüsse (6, 7) für die Zu- bzw. Abfuhr von Wasser an dem Behälter (2) einen Höhenabstand aufweisen, dadurch gekennzeichnet, daß der Eis-Wasser-Speicherteil des Behälters (2) mindestens 4 m hoch ist und ein Verhältnis seiner Höhe zu seinem Durchmesser größer als 1, vorzugsweise größer als 1,3 hat und daß der Vorlaufanschluß im oberen Bereich und der Kühllaufanschluß im unteren Bereich des Eis-Wasser-Speicherteils vorgesehen sind.Cold water production system with a container (2) for receiving an ice-water mixture, a heat exchanger (8) arranged above for periodic ice production and with pipe connections (6, 7) for the supply and removal of water, whereby the water from the container (2 ) worn heat exchanger (8) is arranged in the upper space of the container (2) and that the pipe connections (6, 7) for the supply and removal of water to the container (2) are at a height distance, characterized in that the ice Water storage part of the container (2) is at least 4 m high and has a ratio of its height to its diameter greater than 1, preferably greater than 1.3, and that the flow connection in the upper area and the cooling run connection in the lower area of the ice-water Storage part are provided. Kaltwassererzeugungsanlage nach Anspruch 1, dadurch gekennzeichnet, daß der Behälterdurchmesser etwa gleich der Diagonalabmessung des Wärmeaustauschers oder wenig größer ist.Chilled water production system according to claim 1, characterized in that the container diameter is approximately equal to the diagonal dimension of the heat exchanger or slightly larger. Kaltwassererzeugungsanlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Behälter (2) eine Mischeinrichtung (15) in Form einer Einrichtung zum Einblasen von Luft enthält.Cold water production system according to claim 1 or 2, characterized in that the container (2) contains a mixing device (15) in the form of a device for blowing in air. Kaltwassererzeugungsanlage nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Behälter (2) zylindrisch ist.Cold water production system according to one of claims 1 to 3, characterized in that the container (2) is cylindrical.
EP19920102614 1991-02-21 1992-02-17 Cold water producing system Expired - Lifetime EP0500020B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE9102050 1991-02-21
DE9102050U 1991-02-21
DE9110982U DE9110982U1 (en) 1991-02-21 1991-09-04
DE9110982U 1991-09-04

Publications (2)

Publication Number Publication Date
EP0500020A1 true EP0500020A1 (en) 1992-08-26
EP0500020B1 EP0500020B1 (en) 1994-02-02

Family

ID=25957879

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19920102614 Expired - Lifetime EP0500020B1 (en) 1991-02-21 1992-02-17 Cold water producing system

Country Status (4)

Country Link
EP (1) EP0500020B1 (en)
DE (3) DE9110982U1 (en)
DK (1) DK0500020T3 (en)
ES (1) ES2049553T3 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2706982B1 (en) * 1993-06-21 1995-08-04 Thermique Generale Vinicole
DE102010026648B4 (en) 2010-07-09 2015-12-31 Gea Grasso Gmbh Refrigeration system for cooling a container

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE625499C (en) * 1932-11-28 1936-02-10 Daubron Ets Process for cold storage
DE668100C (en) * 1937-04-07 1938-11-25 Julius Pintsch Kom Ges Device for securing small pieces of ice
US2212275A (en) * 1938-03-14 1940-08-20 Mojonnier Bros Co Apparatus for treating fluids
GB668001A (en) * 1949-04-27 1952-03-12 Sabroe & Co As Thomas Ths Method and apparatus for refrigeration by a circulating cooling medium
DE1501225A1 (en) * 1966-07-13 1969-10-30 Alfa Laval Bergedorfer Eisen Process for cold storage and cooling of liquids
DE2900372A1 (en) * 1978-01-06 1979-07-12 Laszlo Simon SYSTEM FOR STORING CONTINUOUSLY GENERATED COOLS AND FOR INTERACTIVE DISPENSING OF AT LEAST A PART OF THE STORED COOLS
GB2053434A (en) * 1979-07-05 1981-02-04 Doomernik Bv Accumulator for storing heat or cold
DE3424549A1 (en) * 1983-07-06 1985-01-17 Aktieselskabet Thomas Ths. Sabroe & Co., Hoejbjerg METHOD AND DEVICE FOR PRODUCING AN ICE STORAGE
LU86565A1 (en) * 1986-08-29 1988-03-02 Hiross Int Co DEVICE FOR COOLING MACHINES OR MEDIA BY CIRCULATING A REFRIGERATED FLUID
US4829782A (en) * 1988-08-29 1989-05-16 Paul Mueller Company Ice harvesting/water chiller machine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE625499C (en) * 1932-11-28 1936-02-10 Daubron Ets Process for cold storage
DE668100C (en) * 1937-04-07 1938-11-25 Julius Pintsch Kom Ges Device for securing small pieces of ice
US2212275A (en) * 1938-03-14 1940-08-20 Mojonnier Bros Co Apparatus for treating fluids
GB668001A (en) * 1949-04-27 1952-03-12 Sabroe & Co As Thomas Ths Method and apparatus for refrigeration by a circulating cooling medium
DE1501225A1 (en) * 1966-07-13 1969-10-30 Alfa Laval Bergedorfer Eisen Process for cold storage and cooling of liquids
DE2900372A1 (en) * 1978-01-06 1979-07-12 Laszlo Simon SYSTEM FOR STORING CONTINUOUSLY GENERATED COOLS AND FOR INTERACTIVE DISPENSING OF AT LEAST A PART OF THE STORED COOLS
GB2053434A (en) * 1979-07-05 1981-02-04 Doomernik Bv Accumulator for storing heat or cold
DE3424549A1 (en) * 1983-07-06 1985-01-17 Aktieselskabet Thomas Ths. Sabroe & Co., Hoejbjerg METHOD AND DEVICE FOR PRODUCING AN ICE STORAGE
LU86565A1 (en) * 1986-08-29 1988-03-02 Hiross Int Co DEVICE FOR COOLING MACHINES OR MEDIA BY CIRCULATING A REFRIGERATED FLUID
US4829782A (en) * 1988-08-29 1989-05-16 Paul Mueller Company Ice harvesting/water chiller machine

Also Published As

Publication number Publication date
DK0500020T3 (en) 1994-05-30
DE9110982U1 (en) 1991-10-24
DE59200058D1 (en) 1994-03-17
EP0500020B1 (en) 1994-02-02
DE9218174U1 (en) 1993-08-19
ES2049553T3 (en) 1994-04-16

Similar Documents

Publication Publication Date Title
DE4041295A1 (en) CORE REACTOR PLANT, IN PARTICULAR FOR LIGHT WATER REACTORS, WITH A CORE RETENTION DEVICE, METHOD FOR EMERGENCY COOLING IN SUCH A CORE REACTOR PLANT AND USE OF TURBULENT GENERATING DELTA LEVEL
DE102012011032B4 (en) Passively cooled instrument protective housing
EP0061697B1 (en) Cold storage accumulator with mounting means and air-regulating louvres
DE2361795A1 (en) ROOM FOR LONG-TERM AND SEALED STORAGE OF RADIOACTIVE WASTE PRODUCTS
DE2430174C2 (en) Thermally insulating cover for a closure lid of a nuclear reactor vessel
DE2459339C3 (en) Cooling and collecting device for the melting or molten core of an atomic nuclear reactor
DE4306864C2 (en) Arrangement for securing a nuclear reactor in the event of a meltdown
WO1999042782A1 (en) Device for storing heat energy
EP0109043B1 (en) Latent heat storage device with a salt hydrate or a mixture of salt hydrates and salts
EP0500020B1 (en) Cold water producing system
DE2657244A1 (en) Hot water reservoir for district heating - pumps water over top of insulating cover to absorb solar radiation
DE2020046B2 (en) Holding structure for fusible solid material in a condenser chamber forming part of a reactor safety device
DE3136607C2 (en) Swimming pool facility
DE2949209C2 (en) Solid heat storage agent and its uses
DE2825734A1 (en) HEAT PROTECTION DEVICE FOR NUCLEAR REACTOR
DE2909549A1 (en) Nuclear fuel element store - suspended from lid and cooled through can actuated inlet valve
DE3109677C1 (en) Filling body for dripping coolers
DE4328930A1 (en) Heat-exchange device
DE4113144C2 (en) Heat storage module
DE3132630A1 (en) PCM device
DE3627180A1 (en) Liquid-cooled transformer
DE3624091A1 (en) Device for cooling housings
DE102008004543A1 (en) Solar collector for e.g. industrial application, has channels with twin wall plates having cover plates running at distance to each other and bars for connecting cover plates, where each channel is limited by bars and cover plate section
AT375171B (en) HEAT CONVERTER, ESPECIALLY SOLAR ENERGY ABSORBER
DE202015101978U1 (en) Storage tank with flow guide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920610

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE DK ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19921019

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE DK ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19940202

REF Corresponds to:

Ref document number: 59200058

Country of ref document: DE

Date of ref document: 19940317

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2049553

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940427

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 92102614.2

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20030221

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040301

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070221

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070222

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070223

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070226

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070216

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110225

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110421

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59200058

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59200058

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20120217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120218