EP0499883B1 - Heat exchanger - Google Patents
Heat exchanger Download PDFInfo
- Publication number
- EP0499883B1 EP0499883B1 EP92101884A EP92101884A EP0499883B1 EP 0499883 B1 EP0499883 B1 EP 0499883B1 EP 92101884 A EP92101884 A EP 92101884A EP 92101884 A EP92101884 A EP 92101884A EP 0499883 B1 EP0499883 B1 EP 0499883B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sheet
- heat exchanger
- wall
- profiled
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010438 heat treatment Methods 0.000 claims abstract description 22
- 239000007789 gas Substances 0.000 claims description 21
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 11
- 239000003546 flue gas Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 11
- 238000000197 pyrolysis Methods 0.000 claims description 5
- 229910000831 Steel Inorganic materials 0.000 claims description 4
- 239000010959 steel Substances 0.000 claims description 4
- 229910010293 ceramic material Inorganic materials 0.000 claims description 2
- 238000002485 combustion reaction Methods 0.000 claims description 2
- 239000000725 suspension Substances 0.000 claims 1
- 238000005253 cladding Methods 0.000 description 10
- 239000002184 metal Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000010276 construction Methods 0.000 description 5
- 239000011214 refractory ceramic Substances 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 239000003779 heat-resistant material Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D21/0001—Recuperative heat exchangers
- F28D21/0003—Recuperative heat exchangers the heat being recuperated from exhaust gases
- F28D21/0005—Recuperative heat exchangers the heat being recuperated from exhaust gases for domestic or space-heating systems
- F28D21/0008—Air heaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/10—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
- F28D7/103—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of more than two coaxial conduits or modules of more than two coaxial conduits
Definitions
- the invention relates to a heat exchanger with a primary space for a primary medium and a secondary space for a secondary medium, which is separated from the primary space by a gas-tight, heat-conducting wall and is laterally delimited by an outer wall and has a floor at the bottom.
- a heat exchanger is used to transfer thermal energy from a hot primary medium to a cold secondary medium.
- the two media should not be mixed.
- Various embodiments of such a heat exchanger are known.
- One of these embodiments provides a container in which a plurality of pipelines connected in parallel are arranged. Webs are arranged as spacers between adjacent tubes.
- the parallel tubes are part of a secondary circuit that is passed gas-tight through the container wall.
- the interior of the tubes forms the secondary space through which the heat-absorbing secondary medium flows.
- the remaining interior of the container is part of a primary circuit. It forms the primary space through which a hot primary medium is conducted.
- Such a heat exchanger can also be used in a smoldering furnace according to EP-PS 0 302 310. Thermal energy from hot flue gas is fed to the contents of a pyrolysis drum via a secondary medium.
- the pipes carrying the secondary medium must consist of material that is resistant to high temperatures. Then it can be necessary that the pipes are coated with a refractory mass. To do this, the pipes must be provided with metal pins, between which a refractory ceramic mass is then held.
- Heat exchangers in which the secondary space is formed by parallel pipes can be produced with great effort and high costs.
- the pipes required are very expensive. Connecting the pipes by means of webs requires complex and expensive welding work.
- a heat exchanger is known in which the primary space is delimited on the inside by an inner tube and on the outside by a membrane.
- the space between the membrane and an outer stable housing forms the secondary space. This is extended downwards and limited by a floor.
- the membrane between the primary room and the secondary room is provided with knobs. These knobs are designed to improve heat exchange.
- the invention has for its object to provide a heat exchanger that can be assembled quickly with simple, inexpensive means and that still works reliably.
- a heat exchanger that can be assembled quickly with simple, inexpensive means and that still works reliably.
- the outer wall is a cladding sheet and that the secondary space is divided into an inner and an outer partial space by a profiled sheet.
- the arrangement of the profiled sheet forms tube-like channels which serve as a secondary space.
- the heat exchanger according to the invention therefore requires only inexpensive profiled sheet metal and even cheaper unprofiled sheet metal for the outer jacket sheet for its production instead of expensive pipes.
- parallel channels for the secondary medium are constructed in accordance with the invention, the effect of which corresponds to the expensive parallel tubes connected by webs. This is true, although the channels are often not delimited from one another.
- the arrangement of the profiled sheet in the space between the wall and the outer cladding sheet forms two partial spaces, each of which is divided into parallel channels by the profiled sheet.
- the channels of the inner sub-space are directly delimited by the wall that separates the secondary space from the primary space. Therefore, the secondary medium flowing in the inner subspace is first heated. This heated secondary medium can then release thermal energy via the profiled sheet metal to the secondary medium in the outer subspace.
- This two-stage heat transport largely avoids material stresses caused by thermal expansion.
- the profiled sheet is arranged in the direction of the flow of the primary medium and profiled in a plane perpendicular to the direction of flow of the primary medium.
- the secondary medium can then be rectified through the inner channels or can flow in countercurrent to the primary medium ensures good heat transfer through the heat-conducting wall between the primary space and the secondary space.
- the profiled sheet is arranged, for example, so that it alternately touches the wall that delimits the primary space and the outer cladding sheet, thereby forming subspaces and the outer cladding sheet is held at the same distance from the wall.
- the profiled sheet can be clamped. Welded connections are advantageously not required.
- the advantage is achieved that the wall, the profiled plate and the outer jacket plate assume a fixed position in the radial direction or perpendicular to the flow direction, while they can be freely moved in the direction of the axis of the heat exchanger or in the flow direction due to thermal expansion.
- the profiled sheet is only attached to its upper section and hangs down freely between the wall and the outer cladding sheet. This has the advantage that different thermal expansion of the jacket sheet, the wall and the profiled sheet can have no effect on the rest of the construction. Different thermal expansions of rigidly connected components could lead to bending or even cracks.
- the two subspaces of the secondary space are on one end, e.g. connected to each other at the foot of the heat exchanger.
- the outer part On the other end, e.g. at the head end of the heat exchanger, the outer part is connected to a feed line and the inner part is connected to a discharge line.
- the secondary subspace is connected to a supply line for the supply of the secondary medium.
- the inner part of the room is connected to a drain to discharge the secondary medium.
- the advantage is achieved that the same secondary medium is passed twice through the secondary space.
- the opposite direction of the secondary medium achieved the advantage that the warmer medium flowing in the inner part space can preheat the cooler medium flowing in the outer part space over the profiled sheet.
- the outer jacket plate is connected in a gastight manner through the floor to the wall of the primary space at one end of the heat exchanger and the profiled plate ends at a distance from the floor.
- the subspaces of the secondary space are connected to one another and a gas stream can advantageously be passed around the end of the profiled sheet.
- the gas passes from one subspace to the other, for example from the outer to the inner subspace. However, it is ensured that no gas escapes from the secondary space.
- the floor mentioned is, for example, elastic. This has the advantage that stresses due to different thermal expansions of the wall and the outer jacket sheet are compensated. Thermal expansion of the profiled sheet metal cannot lead to stress, since it ends at a distance from the floor and only needs to be fastened in its upper part.
- the head end of the heat exchanger for example, the outer partial space of the secondary space is closed by a closure plate extending between the outer jacket plate and the profiled plate.
- a second collecting duct which is open to the inner partial space and is connected to a discharge line, is arranged on the end face of the closure plate.
- a first collecting duct which is open to the outer part space, is arranged on the other side of the closure plate. This first collecting duct is connected to a feed line.
- This construction ensures that the secondary medium in the area of an end face of the heat exchanger only reaches the outer partial space of the secondary space.
- a distribution of the secondary medium on lower part spaces formed by the profiled sheet metal is ensured by the first collecting duct.
- This first collecting duct connects all the outer lower part spaces with each other. The secondary medium can thus get from the feed line via the first collecting duct into each individual outer lower part space. Since no further path is possible through the sealing plate, the secondary medium flows in the same direction between the profiled plate and the outer jacket plate. The direction of flow of the secondary medium is reversed on the floor, which connects the wall of the primary space to the outer casing sheet.
- the first collecting duct is placed on the outer surface of the casing plate, the outer casing plate having an opening continuously towards the first collecting duct.
- This embodiment ensures that all outer lower part spaces are also connected to one another by the first collecting duct when the profiled sheet metal touches the jacket sheet.
- the profiled sheet is only attached to its upper part hanging. It can be connected to the wall of the primary space via the second collecting duct. This provides a simple and effective construction and, since it is suspended like a curtain, the profiled sheet can expand downwards without tension or even cracks occurring in the material.
- the profiled sheet has, for example, an angular profile.
- the profile can be rectangular or trapezoidal. It can then lie flat against the outer cladding sheet and / or against the wall of the primary space.
- the profile can also be triangular.
- the profiled sheet can be a corrugated sheet with a round, in particular sinusoidal, profile.
- a corrugated sheet is commercially available in the required form.
- the advantage is achieved that the costs for the heat exchanger can be further reduced. This is due to the fact that corrugated iron can be purchased at a low price, which is significantly lower than the price of pipes.
- the profiled sheet and / or the cladding sheet and / or other parts of the secondary space are made of steel, for example.
- inexpensive steel is sufficient, since in the heat exchanger according to the invention the profiled sheet and the jacket sheet do not come into contact with the hot primary medium.
- the hot primary medium only hits the wall of the primary room. While in a known embodiment with tubes and webs all parts come into contact with the hot primary medium and therefore have to be made of heat-resistant material, the profiled sheet and the jacket sheet can consist of a simpler, less expensive steel in the heat exchanger according to the invention. This has the advantage that largely any commercially available corrugated iron can be used. Only the wall of the primary room has to consist of high temperatures, eg 800 ° C resistant material.
- the wall between the primary space and the secondary space can, for example, be pinned on its side facing the primary space and covered with a refractory ceramic material. This ensures that corrosion of the wall by hot primary medium containing pollutants is excluded.
- the arrangement of the pins on the wall can be done by automatic welding, since a flat or only slightly curved surface must be pinned.
- the primary medium is a hot flue gas
- the secondary medium is a heating gas
- the thermal energy of the hot flue gas can be used via the heating gas for heating or preheating a substance.
- the primary medium is a hot flue gas from a combustion chamber of a smoldering furnace according to EP 0 302 310 and the secondary medium is a heating gas for heating a pyrolysis reactor of a smoldering furnace.
- a heat exchanger according to the invention can therefore be usefully used in a smoldering plant known as such. By working reliably and with simple means, quickly, inexpensively and reliably The heat exchanger to be built can direct heat energy from the very hot flue gas into the pyrolysis reactor for preheating the material to be smoldered there.
- a heat exchanger which can be operated with simple, commercially available and inexpensive means, e.g. Corrugated iron, is quick to assemble and works reliably. In particular, its function cannot be impaired by thermal expansion of its material.
- the heat exchanger 1 consists of a primary space 2 in which a hot primary medium, for example hot flue gas R, flows, and a secondary space 3 in which a heat-absorbing secondary medium, for example heating gas H for a pyrolysis reactor, flows.
- the primary space 2 and the secondary space 3 are separated from one another by a wall 4.
- this wall 4 forms a tube with a round cross section.
- any other cross section is also possible.
- the secondary space 3 is delimited by an outer cladding sheet 5 in addition to the wall 4.
- the secondary space 3 therefore forms an annular space around the primary space 2.
- the secondary space 3 is divided by a profiled sheet 6 into an inner partial space 3a and an outer partial space 3b.
- the profiled sheet 6 can be a self-contained corrugated sheet which alternately touches the wall 4 and the outer jacket sheet 5 in a sinusoidally curved manner.
- the inner sub-space 3a and the outer sub-space 3b of the secondary space 3 are each subdivided into subspaces and the profiled one Sheet 6 serves as a spacer for the wall 4 and the outer cladding sheet 5.
- An exchange of heating gas H may be possible between the respective lower part spaces, since the profiled sheet 6 is not gas-tightly connected to the wall 4 and the outer cladding sheet 5.
- the two sub-rooms 3a and 3b are connected to one another on one end of the heat exchanger 1, in FIG. 1 on the lower end, and are closed off from the outside. This connection is provided by a floor 7.
- the profiled sheet 6 ends at a distance above the floor 7. The heating gas H can therefore reach the inner partial space 3a or vice versa via this distance from the outer partial space 3b.
- a feed line 8 is provided for feeding heating gas H into the secondary space 3. This opens into a first collecting duct 9, which surrounds the heat exchanger 1.
- the first collecting duct 9 is open to the outer part space 3b.
- the outer partial space 3b above the first collecting duct 9 is closed by a sealing plate 10 arranged between the outer jacket plate 5 and the profiled plate 6. This ensures that the supplied heating gas H is always conducted downward in the outer subspace 3b.
- the heating gas H is distributed through the first collecting duct 9 to the lower part spaces of the outer part space 3b. Between the bottom 7 and the lower end of the profiled sheet 6, the direction of flow of the heating gas H is reversed and the heating gas H passes from the outer part space 3b into the inner part space 3a. There it flows upwards according to FIG.
- the second collecting duct 11 receives the heating gas H, which first flows from top to bottom in the outer part space 3b and then from bottom to top in the inner part space 3a.
- a discharge line 12 for the heating gas H is connected to the second collecting duct 11.
- the profiled sheet 6 is mechanically connected to the wall 4 by the second collecting duct 11.
- the outer jacket plate 5 is connected to the profiled plate 6 by the first collecting duct 9 and the closure plate 10.
- the closure plate 10 can also be connected directly to the second collecting duct 11 instead of the profiled plate 6 or even be part of the second collecting duct 11.
- the hot primary medium flows in the primary space, for example flue gas R, the temperature of which can be above 800 ° C.
- the primary space 2 like the secondary space 3, is connected to supply lines and discharge lines, not shown in FIG.
- the wall 4 of the primary space 2 consists of a heat-resistant material. For example, it is pinned and covered with a refractory ceramic mass 14. All other parts of the heat exchanger 1 can consist of an inexpensive sheet, since they only come into contact with the cooler secondary medium, the heating gas H.
- the heating gas H has, for example, the temperature 250 ° C. in the feed line 8 and the temperature 600 ° C. in the discharge line 12.
- FIG. 2 shows a radial section through the secondary space 3 of the heat exchanger 1 according to FIG. 1.
- the wall 4 of the primary space 2 is provided with pins 13 on the side of the primary space 2 and coated with a refractory ceramic mass 14.
- the pins 13 enable the ceramic mass 14 to adhere well.
- the secondary space 3 is delimited by the wall 4 and the outer jacket plate 5.
- the profiled sheet 6 Through the profiled sheet 6, its profiling Is not visible in the sectional view of Figure 2, the secondary space 3 is divided into an inner part space 3a and an outer part space 3b.
- the profiled sheet 6 is struck directly on the wall 4, directly on the outer jacket sheet 5 or at any location in between.
- the profiled sheet 6 is profiled in a plane perpendicular to the plane of the drawing and perpendicular to the wall 4, the profile covering the entire width of the secondary space 3.
- the profile of the profiled sheet 6 can be an angular profile or a round, for example sinusoidal profile, but also any other type of profile.
- the outer jacket plate 5 is connected to the wall 4 by a base 7. This bottom 7 can be box-shaped. The bottom 7 can also be elastic to compensate for different thermal expansions.
- the profiled sheet 6 ends in the secondary space 3 at a distance above the floor 7.
- the outer partial space 3b is closed at the top by a closure sheet 10. Below the closure plate 10, the outer sub-space 3b is connected to a feed line 8.
- a first collecting duct 9 can be located between the feed line 8 and the outer sub-space 3b. This connects the individual sub-spaces of the outer sub-space 3b formed by the profiling of the profiled sheet 6.
- the inner compartment 3a is connected to a drain 12.
- a second collecting duct 11 can be interposed, which first collects the secondary medium emerging from sub-compartments of the inner sub-compartment 3a.
- the profiled sheet 6 is exclusively attached to the second collecting duct 11. It hangs similarly to a curtain in the secondary space 3.
- thermal expansions of the profiled sheet 6 can have no effects on other components of the heat exchanger 1.
- the first collecting duct 9 and the outer jacket plate 5 are held on the profiled plate 6 via the closing plate 10.
- the Primary medium in particular flue gas R
- the secondary medium in particular heating gas H
- the advantage is achieved that only inexpensive material such as corrugated sheet is required to build the secondary space 3 instead of expensive pipes and that thermal expansion of the components of the heat exchanger 1 remain without affecting its stability.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Power Steering Mechanism (AREA)
- Gasification And Melting Of Waste (AREA)
Abstract
Description
Die Erfindung betrifft einen Wärmetauscher mit einem Primärraum für ein Primärmedium und einem Sekundärraum für ein Sekundärmedium, der durch eine gasdichte, wärmeleitende Wand vom Primärraum getrennt und durch eine äußere Wand seitlich und einen Boden nach unten begrenzt ist.The invention relates to a heat exchanger with a primary space for a primary medium and a secondary space for a secondary medium, which is separated from the primary space by a gas-tight, heat-conducting wall and is laterally delimited by an outer wall and has a floor at the bottom.
Ein Wärmetauscher dient dazu, Wärmeenergie von einem heissen Primärmedium auf ein kaltes Sekundärmedium zu übertragen. Dabei sollen jedoch die beiden Medien nicht vermischt werden. Es sind verschiedenartige Ausführungsformen eines solchen Wärmetauschers bekannt. Eine dieser Ausführungsformen sieht einen Behälter vor, in dem mehrere parallel geschaltete Rohrleitungen angeordnet sind. Zwischen benachbarten Rohren sind dabei als Abstandshalter Stege angeordnet. Die parallelen Rohre sind Bestandteil eines Sekundärkreislaufes, der gasdicht durch die Behälterwand hindurchgeführt ist. Das Innere der Rohre bildet den Sekundärraum, durch den das wärmeaufnehmende Sekundärmedium fließt. Der verbleibende Innenraum des Behälters ist Teil eines Primärkreislaufes. Er bildet den Primärraum, durch den ein heißes Primärmedium geleitet wird.A heat exchanger is used to transfer thermal energy from a hot primary medium to a cold secondary medium. However, the two media should not be mixed. Various embodiments of such a heat exchanger are known. One of these embodiments provides a container in which a plurality of pipelines connected in parallel are arranged. Webs are arranged as spacers between adjacent tubes. The parallel tubes are part of a secondary circuit that is passed gas-tight through the container wall. The interior of the tubes forms the secondary space through which the heat-absorbing secondary medium flows. The remaining interior of the container is part of a primary circuit. It forms the primary space through which a hot primary medium is conducted.
Ein derartiger Wärmetauscher kann auch in einer Schwel-Brenn-Anlage gemäß der EP-PS 0 302 310 eingesetzt werden. Dabei wird Wärmeenergie von heißem Rauchgas über ein Sekundärmedium dem Inhalt einer Pyrolysetrommel zugeführt. Bei einem derartigen Einsatz eines bekannten Wärmetauschers müssen die das Sekundärmedium führenden Rohre aus bei hohen Temperaturen widerstandsfähigem Material bestehen. Dann kann es erforderlich sein, daß die Rohre mit einer feuerfesten Masse überzogen sind. Dazu müssen die Rohre mit Metallstiften versehen werden, zwischen denen dann eine feuerfeste Keramikmasse gehalten wird.Such a heat exchanger can also be used in a smoldering furnace according to EP-PS 0 302 310. Thermal energy from hot flue gas is fed to the contents of a pyrolysis drum via a secondary medium. In such a use of a known heat exchanger, the pipes carrying the secondary medium must consist of material that is resistant to high temperatures. Then it can be necessary that the pipes are coated with a refractory mass. To do this, the pipes must be provided with metal pins, between which a refractory ceramic mass is then held.
Wärmetauscher, bei denen der Sekundärraum durch parallele Rohre gebildet wird, sind mit großem Aufwand und hohen Kosten herzustellen. Schon die benötigten Rohre sind sehr teuer. Das Verbinden der Rohre durch Stege macht aufwendige und teuere Schweißarbeiten erforderlich.Heat exchangers in which the secondary space is formed by parallel pipes can be produced with great effort and high costs. The pipes required are very expensive. Connecting the pipes by means of webs requires complex and expensive welding work.
Bei einem Einsatz eines solchen parallele Rohrleitungen aufweisenden Wärmetauschers in einer Schwel-Brenn-Anlage, bei der das Primärmedium ein heißes Rauchgas ist, müssen die Rohroberflächen mit einer feuerfesten Masse überzogen werden. Das ist wegen der gebogenen Oberflächen der Rohre aufwendig. Schon das Anschweißen der erforderlichen Stifte kann wegen der gebogenen Oberfläche nicht maschinell erfolgen und erfordert teuere Handarbeit.When using such a heat exchanger having parallel pipelines in a smoldering furnace in which the primary medium is a hot flue gas, the pipe surfaces must be covered with a refractory mass. This is expensive because of the curved surfaces of the pipes. Even the welding of the required pins cannot be done mechanically due to the curved surface and requires expensive manual work.
Aus der GB 2 065 861 A ist ein Wärmetauscher bekannt, in dem der Primärraum nach innen durch ein inneres Rohr und nach außen durch eine Membran begrenzt ist. Der Raum zwischen der Membran und einem äußeren stabilen Gehäuse bildet den Sekundärraum. Dieser ist nach unten erweitert und durch einen Boden begrenzt. Die Membran zwischen Primärraum und Sekundärraum ist mit Noppen versehen. Diese Noppen sollen einen besseren Wärmeaustausch bewirken.From
Der Erfindung liegt die Aufgabe zugrunde, einen Wärmetauscher anzugeben, der mit einfachen, kostengünstigen Mitteln schnell aufzubauen ist und der trotzdem zuverlässig arbeitet. Insbesondere sollen durch mögliche unterschiedliche Wärmedehnungen verschiedener Komponenten des Wärmetauschers keine Materialspannungen oder sogar Zerstörungen, z.B. von Verschweißungen, vorkommen.The invention has for its object to provide a heat exchanger that can be assembled quickly with simple, inexpensive means and that still works reliably. In particular, by different possible Thermal expansion of various components of the heat exchanger no material stresses or even destruction, such as welding, occur.
Die Aufgabe wird gemäß der Erfindung dadurch gelöst, daß die äußere Wand ein Mantelblech ist und daß der Sekundärraum durch ein profiliertes Blech in einen inneren und einen äußeren Teilraum unterteilt ist.The object is achieved according to the invention in that the outer wall is a cladding sheet and that the secondary space is divided into an inner and an outer partial space by a profiled sheet.
Durch die Anordnung des profilierten Blechs sind rohrähnliche Kanäle gebildet, die als Sekundärraum dienen. Der Wärmetauscher nach der Erfindung benötigt daher für seine Herstellung statt teuerer Rohre nur kostengünstiges profiliertes Blech sowie noch billigeres unprofiliertes Blech für das äußere Mantelblech. Mit diesem kostengünstig zu beziehenden Material sind gemäß der Erfindung parallel verlaufende Kanäle für das Sekundärmedium aufgebaut, die in ihrer Wirkung den teueren, durch Stege verbundenen parallelen Rohren entsprechen. Das trifft zu, obwohl die Kanäle häufig nicht voneinander abgegrenzt sind.The arrangement of the profiled sheet forms tube-like channels which serve as a secondary space. The heat exchanger according to the invention therefore requires only inexpensive profiled sheet metal and even cheaper unprofiled sheet metal for the outer jacket sheet for its production instead of expensive pipes. With this material, which can be obtained inexpensively, parallel channels for the secondary medium are constructed in accordance with the invention, the effect of which corresponds to the expensive parallel tubes connected by webs. This is true, although the channels are often not delimited from one another.
Durch die Anordnung des profilierten Blechs im Raum zwischen der Wand und dem äußeren Mantelblech sind zwei Teilräume gebildet, von denen jeder durch das profilierte Blech in parallel verlaufende Kanäle unterteilt ist. Die Kanäle des inneren Teilraums sind dabei unmittelbar durch die Wand begrenzt, die den Sekundärraum vom Primärraum trennt. Daher wird zunächst das im inneren Teilraum strömende Sekundärmedium erwärmt. Dieses erwärmte Sekundärmedium kann dann Wärmeenergie über das profilierte Blech an das Sekundärmedium im äußeren Teilraum abgeben. Durch diesen zweistufigen Wärmetransport werden Materialbeanspruchungen durch Wärmedehnungen weitgehend vermieden.The arrangement of the profiled sheet in the space between the wall and the outer cladding sheet forms two partial spaces, each of which is divided into parallel channels by the profiled sheet. The channels of the inner sub-space are directly delimited by the wall that separates the secondary space from the primary space. Therefore, the secondary medium flowing in the inner subspace is first heated. This heated secondary medium can then release thermal energy via the profiled sheet metal to the secondary medium in the outer subspace. This two-stage heat transport largely avoids material stresses caused by thermal expansion.
Beispielsweise ist das profilierte Blech in Richtung der Strömung des Primärmediums angeordnet und in einer Ebene senkrecht zur Strömungsrichtung des Primärmediums profiliert.For example, the profiled sheet is arranged in the direction of the flow of the primary medium and profiled in a plane perpendicular to the direction of flow of the primary medium.
Dadurch, daß dann das Sekundärmedium durch die inneren Kanäle gleichgerichtet oder im Gegenstrom zum Primärmedium strömen kann, ist ein guter Wärmeübergang durch die wärmeleitende Wand zwischen Primärraum und Sekundärraum hindurch gewährleistet.The fact that the secondary medium can then be rectified through the inner channels or can flow in countercurrent to the primary medium ensures good heat transfer through the heat-conducting wall between the primary space and the secondary space.
Das profilierte Blech ist beispielsweise so angeordnet, daß es abwechselnd die Wand, die den Primärraum begrenzt, und das äußere Mantelblech berührt, wodurch Unterteilräume gebildet sind und das äußere Mantelblech in gleichem Abstand zur Wand gehalten ist.The profiled sheet is arranged, for example, so that it alternately touches the wall that delimits the primary space and the outer cladding sheet, thereby forming subspaces and the outer cladding sheet is held at the same distance from the wall.
Dabei kann das profilierte Blech eingeklemmt sein. Schweißverbindungen sind vorteilhafterweise nicht erforderlich.The profiled sheet can be clamped. Welded connections are advantageously not required.
Es wird der Vorteil erzielt, daß die Wand, das profilierte Blech und das äußere Mantelblech in radialer Richtung bzw. senkrecht zur Strömungsrichtung eine feste Position zueinander einnehmen, während sie in Richtung der Achse des Wärmetauschers bzw. in Strömungsrichtung infolge Wärmedehnungen frei gegeneinander verschiebbar sind.The advantage is achieved that the wall, the profiled plate and the outer jacket plate assume a fixed position in the radial direction or perpendicular to the flow direction, while they can be freely moved in the direction of the axis of the heat exchanger or in the flow direction due to thermal expansion.
Beispielsweise ist das profilierte Blech nur an seinem oberen Abschnitt befestigt und hängt zwischen der Wand und dem äußeren Mantelblech frei nach unten. Damit wird der Vorteil erzielt, daß unterschiedliche Wärmedehnung des Mantelbleches, der Wand und des profilierten Blechs keine Auswirkung auf die übrige Konstruktion haben kann. Unterschiedliche Wärmedehnungen starr miteinander verbundener Bauteile könnten zu Verbiegungen oder sogar zu Rissen führen.For example, the profiled sheet is only attached to its upper section and hangs down freely between the wall and the outer cladding sheet. This has the advantage that different thermal expansion of the jacket sheet, the wall and the profiled sheet can have no effect on the rest of the construction. Different thermal expansions of rigidly connected components could lead to bending or even cracks.
Beispielsweise sind die beiden Teilräume des Sekundärraums an einer Stirnseite, z.B. am Fußende des Wärmetauschers miteinander verbunden. An der anderen Stirnseite, z.B. am Kopfende des Wärmetauschers ist der äußere Teilraum mit einer Zuleitung und der innere Teilraum mit einer Ableitung verbunden.For example, the two subspaces of the secondary space are on one end, e.g. connected to each other at the foot of the heat exchanger. On the other end, e.g. at the head end of the heat exchanger, the outer part is connected to a feed line and the inner part is connected to a discharge line.
Hiermit ist eine Führung des Sekundärmediums durch den Sekundärraum möglich, wobei das Sekundärmedium zuerst im äußeren Teilraum, z.B. in dessen Kanälen, strömt, dann umgelenkt wird und anschließend im inneren Teilraum, z.B. in dessen Kanälen, in entgegengesetzter Richtung zurückströmt. Für die Zufuhr des Sekundärmediums ist der äußere Teilraum mit einer Zuleitung verbunden. Für die Abfuhr des Sekundärmediums ist der innere Teilraum mit einer Ableitung verbunden.This allows the secondary medium to be guided through the secondary space, the secondary medium first in the outer subspace, e.g. in its channels, flows, is then deflected and then in the inner subspace, e.g. in its channels, flows back in the opposite direction. The outer subspace is connected to a supply line for the supply of the secondary medium. The inner part of the room is connected to a drain to discharge the secondary medium.
Mit dieser Anordnung wird der Vorteil erzielt, daß das gleiche Sekundärmedium zweimal durch den Sekundärraum geführt wird. Durch die entgegengerichtete Führung des Sekundärmediums wird der Vorteil erzielt, daß das im inneren Teilraum strömende wärmere Medium das im äußeren Teilraum strömende kühlere Medium über das profilierte Blech vorwärmen kann.With this arrangement, the advantage is achieved that the same secondary medium is passed twice through the secondary space. Through the opposite direction of the secondary medium achieved the advantage that the warmer medium flowing in the inner part space can preheat the cooler medium flowing in the outer part space over the profiled sheet.
Beispielsweise ist das äußere Mantelblech an einer Stirnseite des Wärmetauschers gasdicht durch den Boden mit der Wand des Primärraums verbunden und das profilierte Blech endet in einem Abstand vom Boden. Mit dieser Konstruktion sind die Teilräume des Sekundärraumes miteinander verbunden und es kann vorteilhaft ein Gasstrom um das Ende des profilierten Blechs herumgeleitet werden. Das Gas gelangt dabei von einem Teilraum in den anderen, beispielsweise vom äußeren in den inneren Teilraum. Es ist dabei jedoch gewährleistet, daß kein Gas aus dem Sekundärraum entweicht.For example, the outer jacket plate is connected in a gastight manner through the floor to the wall of the primary space at one end of the heat exchanger and the profiled plate ends at a distance from the floor. With this construction, the subspaces of the secondary space are connected to one another and a gas stream can advantageously be passed around the end of the profiled sheet. The gas passes from one subspace to the other, for example from the outer to the inner subspace. However, it is ensured that no gas escapes from the secondary space.
Der genannte Boden ist beispielsweise elastisch ausgebildet. Damit wird der Vorteil erzielt, daß Spannungen infolge von unterschiedlichen Wärmedehnungen der Wand und des äußeren Mantelblechs kompensiert werden. Wärmedehnungen des profilierten Blechs können nicht zu Spannungen führen, da es in einem Abstand vom Boden endet und nur in seinem oberen Teil befestigt zu sein braucht.The floor mentioned is, for example, elastic. This has the advantage that stresses due to different thermal expansions of the wall and the outer jacket sheet are compensated. Thermal expansion of the profiled sheet metal cannot lead to stress, since it ends at a distance from the floor and only needs to be fastened in its upper part.
An der dem Boden gegenüberliegenden Stirnseite, dem Kopfende des Wärmetauschers ist beispielsweise der äußere Teilraum des Sekundärraums durch ein sich zwischen dem äußerem Mantelblech und dem profilierten Blech erstreckendes Verschlußblech verschlossen. Stirnseitig vom Verschlußblech ist ein zum inneren Teilraum offener zweiter Sammelkanal angeordnet, der mit einer Ableitung verbunden ist. Ein zum äußeren Teilraum offener erster Sammelkanal ist auf der anderen Seite des Verschlußblechs angeordnet. Dieser erster Sammelkanal ist mit einer Zuleitung verbunden.On the end face opposite the floor, the head end of the heat exchanger, for example, the outer partial space of the secondary space is closed by a closure plate extending between the outer jacket plate and the profiled plate. A second collecting duct, which is open to the inner partial space and is connected to a discharge line, is arranged on the end face of the closure plate. A first collecting duct, which is open to the outer part space, is arranged on the other side of the closure plate. This first collecting duct is connected to a feed line.
Mit dieser Konstruktion ist gewährleistet, daß das Sekundärmedium im Bereich einer Stirnseite des Wärmetauschers ausschließlich in den äußeren Teilraum des Sekundärraums gelangt. Eine Verteilung des Sekundärmediums auf durch das profilierte Blech gebildete Unterteilräume ist dabei durch den ersten Sammelkanal gewährleistet. Dieser erste Sammelkanal verbindet alle äußeren Unterteilräume miteinander. Das Sekundärmedium kann also von der Zuleitung über den ersten Sammelkanal in jeden einzelnen äußeren Unterteilraum gelangen. Da durch das Verschlußblech kein weiterer Weg möglich ist, strömt das Sekundärmedium gleichgerichtet zwischen dem profilierten Blech und dem äußeren Mantelblech. Am Boden, der die Wand des Primärraums mit dem äusseren Mantelblech verbindet, wird die Strömungsrichtung des Sekundärmediums umgekehrt. Es fließt dabei um das Ende des profilierten Blechs herum und strömt dann zwischen dem profilierten Blech und der Wand des Primärraums zum zweiten Sammelkanal. Durch den zweiten Sammelkanal sind die inneren Unterteilräume des Sekundärraums miteinander verbunden. Dadurch wird das aus allen inneren Unterteilräumen ankommende Sekundärmedium gesammelt und kann dann über die Ableitung abgeführt werden.This construction ensures that the secondary medium in the area of an end face of the heat exchanger only reaches the outer partial space of the secondary space. A distribution of the secondary medium on lower part spaces formed by the profiled sheet metal is ensured by the first collecting duct. This first collecting duct connects all the outer lower part spaces with each other. The secondary medium can thus get from the feed line via the first collecting duct into each individual outer lower part space. Since no further path is possible through the sealing plate, the secondary medium flows in the same direction between the profiled plate and the outer jacket plate. The direction of flow of the secondary medium is reversed on the floor, which connects the wall of the primary space to the outer casing sheet. It flows around the end of the profiled sheet and then flows between the profiled sheet and the wall of the primary space to the second collecting duct. The inner lower part spaces of the secondary space are connected to one another by the second collecting duct. As a result, the secondary medium arriving from all inner lower part spaces is collected and can then be discharged via the drain.
Mit dieser Konstruktion wird der Vorteil erzielt, daß nach einer kurzen Anlaufzeit das Sekundärmedium im äußeren Teilraum durch das schon erwärmte Medium im inneren Teilraum infolge Wärmeaustausch durch das profilierte Blech hindurch vorgewärmt wird.With this construction the advantage is achieved that after a short start-up time the secondary medium in the outer part space is preheated by the already heated medium in the inner part space as a result of heat exchange through the profiled sheet metal.
Beispielsweise ist der erste Sammelkanal auf der äußeren Oberfläche des Mantelblechs aufgesetzt angeordnet, wobei das äußere Mantelblech durchgehend zum ersten Sammelkanal hin eine Öffnung aufweist. Mit dieser Ausführungsform ist gewährleistet, daß durch den ersten Sammelkanal alle äußeren Unterteilräume auch dann miteinander verbunden sind, wenn das profilierte Blech das Mantelblech berührt.For example, the first collecting duct is placed on the outer surface of the casing plate, the outer casing plate having an opening continuously towards the first collecting duct. This embodiment ensures that all outer lower part spaces are also connected to one another by the first collecting duct when the profiled sheet metal touches the jacket sheet.
Beispielsweise ist das profilierte Blech ausschließlich nur an seinem oberen Teil hängend befestigt. Es kann über den zweiten Sammelkanal mit der Wand des Primärraumes verbunden sein. Damit ist eine einfache und wirksame Konstruktion gegeben und das profilierte Blech kann, da es wie ein Vorhang aufgehängt ist, sich nach unten ausdehnen, ohne daß Spannungen oder sogar Risse im Material auftreten können.For example, the profiled sheet is only attached to its upper part hanging. It can be connected to the wall of the primary space via the second collecting duct. This provides a simple and effective construction and, since it is suspended like a curtain, the profiled sheet can expand downwards without tension or even cracks occurring in the material.
Das profilierte Blech hat beispielsweise ein eckiges Profil. Das Profil kann rechteckig oder trapezförmig sein. Es kann dann flächig am äußeren Mantelblech anliegen und/oder an der Wand des Primärraumes anliegen. Das Profil kann auch dreieckig sein.The profiled sheet has, for example, an angular profile. The profile can be rectangular or trapezoidal. It can then lie flat against the outer cladding sheet and / or against the wall of the primary space. The profile can also be triangular.
Das profilierte Blech kann nach einem anderen Beispiel ein Wellblech mit rundem, insbesondere sinusförmigem Profil sein. Ein solches Wellblech ist in der benötigten Form im Handel erhältlich. Mit dem Einsatz eines bekannten Wellbleches wird der Vorteil erzielt, daß die Kosten für den Wärmetauscher weiter erniedrigt werden können. Das ist darauf zurückzuführen, daß Wellblech zu einem niedrigen Preis, der deutlich unter dem Preis von Rohren liegt, bezogen werden kann.According to another example, the profiled sheet can be a corrugated sheet with a round, in particular sinusoidal, profile. Such a corrugated sheet is commercially available in the required form. With the use of a known corrugated sheet, the advantage is achieved that the costs for the heat exchanger can be further reduced. This is due to the fact that corrugated iron can be purchased at a low price, which is significantly lower than the price of pipes.
Das profilierte Blech und/oder das Mantelblech und/oder andere Teile des Sekundärraumes bestehen beispielsweise aus Stahl. Dabei ist ein kostengünstiger Stahl ausreichend, da im Wärmetauscher gemäß der Erfindung das profilierte Blech und das Mantelblech nicht mit dem heißen Primärmedium in Kontakt kommen. Das heiße Primärmedium trifft nur auf die Wand des Primärraums. Während bei einer bekannten Ausführungsform mit Rohren und Stegen alle Teile mit dem heißen Primärmedium in Kontakt kommen und daher aus hitzebeständigem Material gefertigt sein müssen, können beim Wärmetauscher nach der Erfindung das profilierte Blech und das Mantelblech aus einem einfacheren, kostengünstigeren Stahl bestehen. Damit wird der Vorteil erzielt, daß weitgehend jedes handelsübliche Wellblech verwendet werden kann. Nur die Wand des Primärraumes muß aus hohen Temperaturen, z.B. 800°C standhaltendem Material bestehen.The profiled sheet and / or the cladding sheet and / or other parts of the secondary space are made of steel, for example. In this case, inexpensive steel is sufficient, since in the heat exchanger according to the invention the profiled sheet and the jacket sheet do not come into contact with the hot primary medium. The hot primary medium only hits the wall of the primary room. While in a known embodiment with tubes and webs all parts come into contact with the hot primary medium and therefore have to be made of heat-resistant material, the profiled sheet and the jacket sheet can consist of a simpler, less expensive steel in the heat exchanger according to the invention. This has the advantage that largely any commercially available corrugated iron can be used. Only the wall of the primary room has to consist of high temperatures, eg 800 ° C resistant material.
Die Wand zwischen Primärraum und Sekundärraum kann auf ihrer dem Primärraum zugewandten Seite beispielsweise bestiftet und mit einer feuerfesten Keramikmasse bestampft sein. Dadurch wird gewährleistet, daß eine Korrosion der Wand durch heißes schadstoffhaltiges Primärmedium ausgeschlossen ist.The wall between the primary space and the secondary space can, for example, be pinned on its side facing the primary space and covered with a refractory ceramic material. This ensures that corrosion of the wall by hot primary medium containing pollutants is excluded.
Die Anordnung der Stifte auf der Wand kann durch Automatenschweißen erfolgen, da eine ebene oder nur wenig gekrümmte Oberfläche bestiftet werden muß. Darin ist ein zusätzlicher Vorteil des Wärmetauschers gemäß der Erfindung gegenüber einem bekannten Wärmetauscher zu sehen, bei dem die Oberflächen von Rohren bestiftet werden müssen, was wegen der hohen Krümmung der Rohroberflächen nur mit aufwendiger Handarbeit möglich ist. Gleiches gilt für die Beschichtung der bestifteten Wand mit Keramikmasse.The arrangement of the pins on the wall can be done by automatic welding, since a flat or only slightly curved surface must be pinned. This is an additional advantage of the heat exchanger according to the invention compared to a known heat exchanger in which the surfaces of pipes must be pinned, which is only possible with elaborate manual work because of the high curvature of the pipe surfaces. The same applies to the coating of the pinned wall with ceramic mass.
Beispielsweise ist das Primärmedium ein heißes Rauchgas, während das Sekundärmedium ein Heizgas ist. Mit dem Wärmetauscher nach der Erfindung kann also die Wärmeenergie des heißen Rauchgases über das Heizgas zum Erwärmen oder Vorwärmen eines Stoffes verwendet werden.For example, the primary medium is a hot flue gas, while the secondary medium is a heating gas. With the heat exchanger according to the invention, the thermal energy of the hot flue gas can be used via the heating gas for heating or preheating a substance.
Beispielsweise ist das Primärmedium ein heißes Rauchgas aus einer Brennkammer einer Schwel-Brenn-Anlage nach EP 0 302 310 und das Sekundärmedium ist ein Heizgas zum Heizen eines Pyrolysereaktors einer Schwel-Brenn-Anlage. Ein Wärmetauscher gemäß der Erfindung ist also in einer als solchen bekannten Schwel-Brenn Anlage sinnvoll einsetzbar. Durch den zuverlässig arbeitenden und mit einfachen Mitteln schnell, kostengünstig und zuverlässig zu bauenden Wärmetauscher kann Wärmeenergie vom sehr heißen Rauchgas in den Pyrolysereaktor zum Vorwärmen des dort zu verschwelenden Gutes geleitet werden.For example, the primary medium is a hot flue gas from a combustion chamber of a smoldering furnace according to EP 0 302 310 and the secondary medium is a heating gas for heating a pyrolysis reactor of a smoldering furnace. A heat exchanger according to the invention can therefore be usefully used in a smoldering plant known as such. By working reliably and with simple means, quickly, inexpensively and reliably The heat exchanger to be built can direct heat energy from the very hot flue gas into the pyrolysis reactor for preheating the material to be smoldered there.
Mit dem Wärmetauscher gemäß der Erfindung wird ein Wärmetauscher zur Verfügung gestellt, der mit einfachen, käuflichen und kostengünstigen Mitteln, wie z.B. Wellblech, schnell aufzubauen ist und zuverlässig arbeitet. Er ist insbesondere durch Wärmedehnungen seines Materials nicht in seiner Funktion zu beeinträchtigen.With the heat exchanger according to the invention, a heat exchanger is provided which can be operated with simple, commercially available and inexpensive means, e.g. Corrugated iron, is quick to assemble and works reliably. In particular, its function cannot be impaired by thermal expansion of its material.
Ein Wärmetauscher gemäß der Erfindung wird anhand der Zeichnung näher erläutert.
- FIG 1
- zeigt perspektivisch einen Wärmetauscher;
- FIG 2
- zeigt einen Teilschnitt durch den Wärmetauscher.
- FIG. 1
- shows in perspective a heat exchanger;
- FIG 2
- shows a partial section through the heat exchanger.
Der Wärmetauscher 1 nach Figur 1 besteht aus einem Primärraum 2, in dem ein heißes Primärmedium, z.B. heißes Rauchgas R, strömt, und aus einem Sekundärraum 3, in dem ein Wärme aufnehmendes Sekundärmedium, z.B. Heizgas H für einen Pyrolysereaktor, strömt. Der Primärraum 2 und der Sekundärraum 3 sind durch eine Wand 4 voneinander getrennt. Diese Wand 4 bildet nach Figur 1 ein Rohr mit rundem Querschnitt. Es ist jedoch auch jeder andere Querschnitt möglich. Der Sekundärraum 3 ist außer durch die Wand 4 durch ein äußeres Mantelblech 5 begrenzt. Der Sekundärraum 3 bildet daher einen Ringraum um den Primärraum 2. Der Sekundärraum 3 ist durch ein profiliertes Blech 6 in einen inneren Teilraum 3a und einen äußeren Teilraum 3b unterteilt. Das profilierte Blech 6 kann ein in sich geschlossen angeordnetes Wellblech sein, das sinusförmig gebogen abwechselnd die Wand 4 und das äußere Mantelblech 5 berührt. Dadurch sind der innere Teilraum 3a und der äußere Teilraum 3b des Sekundärraums 3 jeweils in Unterteilräume unterteilt und das profilierte Blech 6 dient als Abstandshalter für die Wand 4 und das äußere Mantelblech 5. Zwischen den jeweiligen Unterteilräumen kann ein Austausch von Heizgas H möglich sein, da das profilierte Blech 6 nicht gasdicht mit der Wand 4 und dem äußeren Mantelblech 5 verbunden ist.The
Die beiden Teilräume 3a und 3b sind an einer Stirnseite des Wärmetauschers 1, in Figur 1 an der unteren Stirnseite, miteinander verbunden und nach außen verschlossen. Diese Verbindung ist durch einen Boden 7 gegeben. Das profilierte Blech 6 endet in einem Abstand oberhalb des Bodens 7. Das Heizgas H kann daher über diesen Abstand vom äußeren Teilraum 3b in den inneren Teilraum 3a oder umgekehrt gelangen.The two sub-rooms 3a and 3b are connected to one another on one end of the
Zum Einspeisen von Heizgas H in den Sekundärraum 3 ist eine Zuleitung 8 vorgesehen. Diese mündet in einen ersten Sammelkanal 9, der den Wärmetauscher 1 umgibt. Der erste Sammelkanal 9 ist zum äußeren Teilraum 3b hin offen. In Figur 1 ist der äußere Teilraum 3b oberhalb des ersten Sammelkanals 9 durch ein zwischen dem äußeren Mantelblech 5 und dem profilierten Blech 6 angeordnetes Verschlußblech 10 verschlossen. Dadurch ist gewährleistet, daß das zugeleitete Heizgas H im äußeren Teilraum 3b stets nach unten geleitet wird. Durch den ersten Sammelkanal 9 wird das Heizgas H auf die Unterteilräume des äußeren Teilraumes 3b verteilt. Zwischen dem Boden 7 und dem unteren Ende des profilierten Bleches 6 wird die Strömungsrichtung des Heizgases H umgekehrt und das Heizgas H gelangt dabei vom äußeren Teilraum 3b in den inneren Teilraum 3a. Dort strömt es nach Figur 1 nach oben. Am oberen Ende des Wärmetauschers 1 ist ein zum inneren Teilraum 3a, nicht aber zum äußeren Teilraum 3b offener zweiter Sammelkanal 11 angeordnet. Der zweite Sammelkanal 11 kann durch das Verschlußblech 10 vom äußeren Teilraum 3b getrennt sein. Es kann aber auch ein eigenes Blech vorhanden sein, so daß zwischen den Sammelkanälen 9 und 11 von außen eine Öffnung bis zum profilierten Blech 6 reicht. Der zweite Sammelkanal 11 nimmt das Heizgas H auf, das zuerst im äußeren Teilraum 3b von oben nach unten und dann im inneren Teilraum 3a von unten nach oben geströmt ist. Mit dem zweiten Sammelkanal 11 ist eine Ableitung 12 für das Heizgas H verbunden. Durch den zweiten Sammelkanal 11 ist das profilierte Blech 6 mit der Wand 4 mechanisch verbunden. Es kann statt dessen eine andere starre Verbindung am oberen Abschnitt des Wärmetauschers 1 vorhanden sein. Das äußere Mantelblech 5 ist durch den ersten Sammelkanal 9 und das Verschlußblech 10 mit dem profilierten Blech 6 verbunden. Es kann das Verschlußblech 10 auch statt mit dem profilierten Blech 6 direkt mit dem zweiten Sammelkanal 11 verbunden sein oder sogar ein Teil des zweiten Sammelkanals 11 sein.A
Im Primärraum strömt das heiße Primärmedium, beispielsweise Rauchgas R, dessen Temperatur über 800°C sein kann. Der Primärraum 2 ist wie der Sekundärraum 3 mit in Figur 1 nicht dargestellten Zuleitungen und Ableitungen verbunden.The hot primary medium flows in the primary space, for example flue gas R, the temperature of which can be above 800 ° C. The
Die Wand 4 des Primärraumes 2 besteht aus einem hitzebeständigen Material. Sie ist beispielsweise bestiftet und mit einer feuerfesten Keramikmasse 14 bestampft. Alle anderen Teile des Wärmetauschers 1 können aus einem kostengünstigen Blech bestehen, da sie nur mit dem kühleren Sekundärmedium, dem Heizgas H, in Kontakt kommen. Das Heizgas H hat in der Zuleitung 8 beispielsweise die Temperatur 250°C und in der Ableitung 12 die Temperatur 600 °C.The wall 4 of the
Figur 2 zeigt einen radialen Schnitt durch den Sekundärraum 3 des Wärmetauschers 1 nach Figur 1. Die Wand 4 des Primärraumes 2 ist auf der Seite des Primärraumes 2 mit Stiften 13 versehen und mit einer feuerfesten Keramikmasse 14 bestampft. Die Stifte 13 ermöglichen dabei eine gute Haftung der Keramikmasse 14. Der Sekundärraum 3 ist durch die Wand 4 und das äußere Mantelblech 5 begrenzt. Durch das profilierte Blech 6, dessen Profilierung in der Schnittdarstellung der Figur 2 nicht sichtbar ist, ist der Sekundärraum 3 in einen inneren Teilraum 3a und einen äußerten Teilraum 3b unterteilt. Je nach Ort des radialen Schnittes ist das profilierte Blech 6 unmittelbar an der Wand 4, unmittelbar am äußeren Mantelblech 5 oder an einem beliebigen Ort dazwischen getroffen. Das ist darauf zurückzuführen, daß das profilierte Blech 6 in einer Ebene senkrecht zur Zeichenebene und senkrecht zur Wand 4 profiliert ist, wobei das Profil die gesamte Breite des Sekundärraumes 3 überdeckt. Das Profil des profilierten Bleches 6 kann ein eckiges Profil oder ein rundes, z.B. sinusförmiges Profil, aber auch jedes anders geartete Profil sein. Das äußere Mantelblech 5 ist durch einen Boden 7 mit der Wand 4 verbunden. Dieser Boden 7 kann kastenförmig geformt sein. Auch kann der Boden 7 elastisch ausgebildet sein, um unterschiedliche Wärmedehnungen auszugleichen. Das profilierte Blech 6 endet im Sekundärraum 3 in einem Abstand oberhalb des Bodens 7. Der äußere Teilraum 3b ist nach oben durch ein Verschlußblech 10 verschlossen. Unterhalb des Verschlußbleches 10 ist der äußere Teilraum 3b mit einer Zuleitung 8 verbunden. Zwischen der Zuleitung 8 und dem äußeren Teilraum 3b kann sich ein erster Sammelkanal 9 befinden. Dieser verbindet die einzelnen durch die Profilierung des profilierten Bleches 6 gebildeten Unterteilräume des äußeren Teilraumes 3b miteinander. Der innere Teilraum 3a ist mit einer Ableitung 12 verbunden. Hier kann ein zweiter Sammelkanal 11 dazwischen geschaltet sein, der zunächst das aus Unterteilräumen des inneren Teilraumes 3a austretende Sekundärmedium sammelt. Das profilierte Blech 6 ist nach Figur 2 ausschließlich am zweiten Sammelkanal 11 befestigt. Es hängt also ähnlich wie ein Vorhang im Sekundärraum 3. Dadurch könnnen Wärmedehnungen des profilierten Bleches 6 keine Auswirkungen auf andere Bauteile des Wärmetauschers 1 haben. Am profilierten Blech 6 ist über das Verschlußblech 10 der erste Sammelkanal 9 und an diesem das äußere Mantelblech 5 gehalten. Das Primärmedium, insbesondere Rauchgas R, strömt mit beispielsweise 800°C durch den Primärraum. Das Sekundärmedium, insbesondere Heizgas H, strömt mit beispielsweise 250°C durch die Zuleitung 8 und den ersten Sammelkanal 9 in den äußeren Teilraum 3b des Sekundärraumes. Dort strömt es nach unten, ändert vor dem Boden 7 seine Strömungsrichtung und strömt dann im inneren Teilraum 3a nach oben. Von dort gelangt es, beispielsweise auf 600°C erwärmt, über den zweiten Sammelkanal 11 in die Ableitung 12.FIG. 2 shows a radial section through the secondary space 3 of the
Mit dem Wärmetauscher 1 nach der Erfindung wird der Vorteil erzielt, daß zum Aufbau des Sekundärraumes 3 statt teuerer Rohre nur kostengünstiges Material wie Wellblech benötigt wird und daß Wärmedehnungen der Bauteile des Wärmetauschers 1 ohne Einfluß auf dessen Stabilität bleiben.With the
Claims (17)
- Heat exchanger (1) having a primary chamber (2) for a primary medium, and a secondary chamber (3) for a secondary medium which is separated by a gas-tight, heat-conducting wall (4) from the primary chamber (2) and which is bounded at the side by an outer wall and, at the bottom, by a base (7), characterised in that the outer wall is a jacket sheet (5) and in that the secondary chamber (3) is subdivided by a profiled sheet (6) into an inner partial chamber (3a) and an outer partial chamber (3b).
- Heat exchanger (1) according to claim 1, characterised in that the profiled sheet (6) extends in the flow direction of the primary medium and is profiled in a plane at right angles to the flow direction of the primary medium.
- Heat exchanger (1) according to claim 1 or 2, characterised in that the profiled sheet (6) alternately touches the wall (4) and the outer jacket sheet (5), forming compartmented partial chambers, and in that the outer jacket sheet (5) is kept at a constant distance from the wall (4).
- Heat exchanger (1) according to one of claims 1 to 3, characterised in that the profiled sheet (6) is secured at its upper portion and hangs freely downwards between the wall (4) and the outer jacket sheet (5).
- Heat exchanger (1) according to one of claims 1 to 4, characterised in that the two partial chambers (3a and 3b) are joined together at one end of the profiled sheet (6) and are closed to the outside, and in that at the other end the outer partial chamber (3b) is connected to a supply line (8), and the inner partial chamber (3a) is connected to a discharge line (12).
- Heat exchanger (1) according to claim 5, characterised in that the wall (4) and the outer jacket sheet (5) are joined in a gas-tight manner at one front end of the profiled sheet (6) by the base (7), and in that there the profiled sheet (6) ends at a distance from the bottom (7).
- Heat exchanger (1) according to claim 6, characterised in that the base (7) is elastic.
- Heat exchanger (1) according to one of claims 6 or 7, characterised in that the outer partial chamber (3b) is closed at the other end by a closure sheet (10) which extends between the profiled sheet (6) and the outer jacket sheet (5), in that a second collecting conduit (11) open towards the inner partial chamber (3a) is disposed on the end of the closure sheet (10), wherein the second collecting conduit (11) is connected to the discharge line (12), and in that a first collecting conduit (9) open towards the outer partial chamber (3b) is disposed on the other side of the closure sheet (10), wherein the first collecting conduit (9) is connected to the supply line (8).
- Heat exchanger (1) according to claim 8, characterised in that the first collecting conduit (9) is located on the outer surface of the outer jacket sheet (5), the outer jacket sheet (5) having a continuous opening leading to the first collecting conduit (9).
- Heat exchanger (1) according to one of claims 8 or 9, characterised in that the profiled sheet (6) is secured by suspension only from its upper portion.
- Heat exchanger (1) according to one of claims 1 to 10, characterised in that the profiled sheet (6) has a polygonal profile.
- Heat exchanger (1) according to one of claims 1 to 10, characterised in that the profiled sheet (6) is a corrugated sheet with a sinusoidal profile.
- Heat exchanger (1) according to one of claims 1 to 12, characterised in that the profiled sheet (6) and/or the jacket sheet (5) and/or other parts of the secondary chamber (3) are made of steel.
- Heat exchanger (1) according to one of claims 1 to 13, characterised in that the wall of the primary chamber (2) is made of high temperature-resistant material, and the profiled sheet (6) is made of less expensive material.
- Heat exchanger (1) according to one of claims 1 to 14, characterised in that the wall (4) is provided with pins (13) on its side facing the primary chamber (2) and is tamped with a fireproof ceramic material (14).
- Heat exchanger (1) according to one of claims 1 to 15, characterised in that the primary medium is a hot flue gas, and the secondary medium is a heating gas.
- Heat exchanger (1) according to claim 16, characterised in that the primary medium is a hot flue gas from a combustion chamber of a low temperature incineration plant, and in that the secondary medium is a heating gas for heating a pyrolysis reactor of a low temperature incineration plant.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4104959 | 1991-02-18 | ||
DE4104959A DE4104959A1 (en) | 1991-02-18 | 1991-02-18 | HEAT EXCHANGER |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0499883A1 EP0499883A1 (en) | 1992-08-26 |
EP0499883B1 true EP0499883B1 (en) | 1994-04-20 |
Family
ID=6425279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92101884A Expired - Lifetime EP0499883B1 (en) | 1991-02-18 | 1992-02-05 | Heat exchanger |
Country Status (11)
Country | Link |
---|---|
US (1) | US5215144A (en) |
EP (1) | EP0499883B1 (en) |
JP (1) | JPH0579777A (en) |
AT (1) | ATE104762T1 (en) |
CZ (1) | CZ283100B6 (en) |
DE (2) | DE4104959A1 (en) |
DK (1) | DK0499883T3 (en) |
ES (1) | ES2051603T3 (en) |
HU (1) | HU215992B (en) |
PL (1) | PL293465A1 (en) |
RU (1) | RU2070700C1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5466603A (en) * | 1994-02-15 | 1995-11-14 | Meehan; Brian W. | Temperature regulated hybridization chamber |
US5684346A (en) * | 1995-11-17 | 1997-11-04 | Itt Flygt Ab | Cooling device |
SE507479C2 (en) * | 1995-11-17 | 1998-06-08 | Flygt Ab Itt | Cooking apparatus for electrically driven mixer in hot liquids |
DE19617916B4 (en) | 1996-05-03 | 2007-02-01 | Airbus Deutschland Gmbh | Evaporator for evaporating a cryogenic liquid medium |
US6438936B1 (en) | 2000-05-16 | 2002-08-27 | Elliott Energy Systems, Inc. | Recuperator for use with turbine/turbo-alternator |
DE10129099A1 (en) * | 2001-06-16 | 2002-12-19 | Ballard Power Systems | Catalytic coating of structured heat exchanger plates |
FR2872264B1 (en) * | 2004-06-29 | 2007-03-09 | Solvay Sa Sa Belge | DOUBLE-WALL CONTAINER AND METHOD FOR MANUFACTURING THE SAME |
EP1657156A1 (en) * | 2004-11-16 | 2006-05-17 | Saab Ab | An air intake appliance for an aircraft engine |
US20080128345A1 (en) * | 2006-11-30 | 2008-06-05 | Sotiriades Aleko D | Unified Oil Filter and Cooler |
DK2684004T3 (en) * | 2011-03-11 | 2017-01-09 | Blentech Corp | Heat exchanger with multiple surfaces with the possibility vacuo and magnetic scrapers |
KR101475398B1 (en) * | 2013-04-25 | 2014-12-22 | 주식회사 두발 | Mixing tube boiler heat exchanger |
US9897398B2 (en) * | 2013-05-07 | 2018-02-20 | United Technologies Corporation | Extreme environment heat exchanger |
GB201513415D0 (en) * | 2015-07-30 | 2015-09-16 | Senior Uk Ltd | Finned coaxial cooler |
US10995998B2 (en) * | 2015-07-30 | 2021-05-04 | Senior Uk Limited | Finned coaxial cooler |
US11988147B2 (en) * | 2022-07-07 | 2024-05-21 | General Electric Company | Heat exchanger for a hydrogen fuel delivery system |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2445471A (en) * | 1944-05-09 | 1948-07-20 | Salem Engineering Company | Heat exchanger |
DE814159C (en) * | 1949-07-08 | 1951-09-20 | Otto H Dr-Ing E H Hartmann | Heat exchanger |
DE839806C (en) * | 1949-08-02 | 1952-05-26 | Otto H Dr-Ing E H Hartmann | Star-shaped folded tube as an insert tube for heat exchangers |
US2641451A (en) * | 1950-11-04 | 1953-06-09 | Edward W Kaiser | Heat exchanger |
US2900168A (en) * | 1955-03-24 | 1959-08-18 | Meredith M Nyborg | Reaction motor with liquid cooling means |
US2823026A (en) * | 1956-09-21 | 1958-02-11 | Amico Salvatore J D | Heater assembly for salvaging heat lost with products of combustion |
FR1210108A (en) * | 1957-08-30 | 1960-03-07 | Air Exchangers Ltd | Hearth and exchanger for gas heating |
GB920337A (en) * | 1959-08-14 | 1963-03-06 | John Montague Laughton | Improvements in and relating to heat exchange tubes with extended surface |
US3078919A (en) * | 1960-02-08 | 1963-02-26 | Brown Fintube Co | Recuperator |
US3143404A (en) * | 1960-09-30 | 1964-08-04 | Exxon Research Engineering Co | Gas chromatography columns |
US3475922A (en) * | 1967-07-31 | 1969-11-04 | Westinghouse Electric Corp | Liquid cooling chamber |
US3859040A (en) * | 1973-10-11 | 1975-01-07 | Holcroft & Co | Recuperator for gas-fired radiant tube furnace |
DE2606005C3 (en) * | 1976-02-14 | 1981-10-22 | MTU Motoren- und Turbinen-Union München GmbH, 8000 München | Cooled throttle arrangement for hot gases, especially for downstream connection behind the combustion chamber of a jet engine |
US4096616A (en) * | 1976-10-28 | 1978-06-27 | General Electric Company | Method of manufacturing a concentric tube heat exchanger |
US4113009A (en) * | 1977-02-24 | 1978-09-12 | Holcroft & Company | Heat exchanger core for recuperator |
GB2065861A (en) * | 1979-12-14 | 1981-07-01 | Aerco Int Inc | Countercurrent heat exchanger with a dimpled membrane |
EP0083379A1 (en) * | 1981-12-31 | 1983-07-13 | Emil Kress | Heat exchanger |
DE3811820A1 (en) * | 1987-08-03 | 1989-02-16 | Siemens Ag | METHOD AND SYSTEM FOR THERMAL WASTE DISPOSAL |
-
1991
- 1991-02-18 DE DE4104959A patent/DE4104959A1/en not_active Withdrawn
-
1992
- 1992-02-05 DE DE59200120T patent/DE59200120D1/en not_active Expired - Fee Related
- 1992-02-05 EP EP92101884A patent/EP0499883B1/en not_active Expired - Lifetime
- 1992-02-05 AT AT9292101884T patent/ATE104762T1/en not_active IP Right Cessation
- 1992-02-05 DK DK92101884.2T patent/DK0499883T3/en active
- 1992-02-05 ES ES92101884T patent/ES2051603T3/en not_active Expired - Lifetime
- 1992-02-13 PL PL29346592A patent/PL293465A1/en unknown
- 1992-02-14 JP JP4059702A patent/JPH0579777A/en active Pending
- 1992-02-17 RU SU925010829A patent/RU2070700C1/en active
- 1992-02-17 CZ CS92460A patent/CZ283100B6/en not_active IP Right Cessation
- 1992-02-17 HU HU9200468A patent/HU215992B/en not_active IP Right Cessation
- 1992-02-18 US US07/837,321 patent/US5215144A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CS46092A3 (en) | 1992-11-18 |
RU2070700C1 (en) | 1996-12-20 |
ATE104762T1 (en) | 1994-05-15 |
DK0499883T3 (en) | 1994-09-12 |
JPH0579777A (en) | 1993-03-30 |
EP0499883A1 (en) | 1992-08-26 |
ES2051603T3 (en) | 1994-06-16 |
HU9200468D0 (en) | 1992-04-28 |
CZ283100B6 (en) | 1998-01-14 |
DE59200120D1 (en) | 1994-05-26 |
HU215992B (en) | 1999-03-29 |
DE4104959A1 (en) | 1992-08-20 |
PL293465A1 (en) | 1992-08-24 |
HUT61096A (en) | 1992-11-30 |
US5215144A (en) | 1993-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0499883B1 (en) | Heat exchanger | |
DE69825408T2 (en) | HEAT EXCHANGER AND ITS USE METHOD | |
DE60308696T2 (en) | HEAT EXCHANGER FOR A BURNING VALVE WITH DOUBLE TUBE BUNDLE | |
DE2254848A1 (en) | PROCESS FOR THERMAL POST-COMBUSTION OF EXHAUST AIR FROM INDUSTRIAL WORK EQUIPMENT AND DEVICE FOR CARRYING OUT THIS PROCESS | |
DE69514424T2 (en) | Heat exchanger | |
DE3100074A1 (en) | RECUPERATIVE HEAT EXCHANGER WITH CYCLE SWITCHING AND USE OF THE SAME FOR HEAT RECOVERY FROM THE SMOKE GASES OF FLAME-OVENS | |
EP0131187A2 (en) | Heat exchanger for heating organic heat exchange media | |
EP3730890A1 (en) | Plate heat exchanger | |
EP0599103B1 (en) | Heat exchanger with heating by flame and and method for manufacturing same | |
EP1108963A2 (en) | Combustion gas heat exchanger | |
EP0065944A1 (en) | Tiled stove | |
EP0177904A2 (en) | Device for exchange of heat between two gases conducted in cross-flow to each other | |
DE4104960A1 (en) | Heat exchanger with tubular primary chamber - has secondary chamber formed from commercially available corrugated metal sheet | |
EP0473946B1 (en) | Sectional boiler | |
DE3438320C2 (en) | ||
DE2628925C2 (en) | Device for heating air | |
DE3700443A1 (en) | Heat exchanger for heating furnaces, in particular for high-efficiency furnaces | |
DE2309696C3 (en) | Heating boiler with deflection chamber | |
DE2911116C2 (en) | Heat exchanger | |
DE2245261C3 (en) | Steering wall arrangement in a burnout or combustion chamber of a heat exchanger | |
DE2807612A1 (en) | HEAT EXCHANGER | |
DE3730137A1 (en) | Ceramic heat exchanger | |
WO2000009959A1 (en) | Heating boiler | |
DE2717581A1 (en) | OVEN WITH AIR CHAMBER BRIDGE | |
DE3423628A1 (en) | Heating boiler with a combustion chamber and a burner arranged therein |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL PT SE |
|
17P | Request for examination filed |
Effective date: 19920915 |
|
17Q | First examination report despatched |
Effective date: 19930119 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19940420 |
|
REF | Corresponds to: |
Ref document number: 104762 Country of ref document: AT Date of ref document: 19940515 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 59200120 Country of ref document: DE Date of ref document: 19940526 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2051603 Country of ref document: ES Kind code of ref document: T3 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19940715 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
SC4A | Pt: translation is available |
Free format text: 940513 AVAILABILITY OF NATIONAL TRANSLATION |
|
EAL | Se: european patent in force in sweden |
Ref document number: 92101884.2 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 19950217 Year of fee payment: 4 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19950227 Year of fee payment: 4 Ref country code: FR Payment date: 19950227 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19950228 Year of fee payment: 4 Ref country code: BE Payment date: 19950228 Year of fee payment: 4 |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19950419 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19950517 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Effective date: 19960205 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19960206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19960228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19960229 Ref country code: CH Effective date: 19960229 |
|
BERE | Be: lapsed |
Owner name: SIEMENS A.G. Effective date: 19960228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19960901 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19961031 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19960901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19961101 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 19990121 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19990203 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19990211 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19990216 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19990222 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000205 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000205 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000831 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20000205 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: LAPSE DUE TO NON-PAYMENT OF FEES Effective date: 20000831 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20010910 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050205 |