EP0496246B1 - Circuit for operating a discharge lamp - Google Patents

Circuit for operating a discharge lamp Download PDF

Info

Publication number
EP0496246B1
EP0496246B1 EP92100456A EP92100456A EP0496246B1 EP 0496246 B1 EP0496246 B1 EP 0496246B1 EP 92100456 A EP92100456 A EP 92100456A EP 92100456 A EP92100456 A EP 92100456A EP 0496246 B1 EP0496246 B1 EP 0496246B1
Authority
EP
European Patent Office
Prior art keywords
voltage
lamp
operational amplifier
discharge lamp
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92100456A
Other languages
German (de)
French (fr)
Other versions
EP0496246A1 (en
Inventor
Franz Bernitz
Frank Hansmann
Andreas Huber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0496246A1 publication Critical patent/EP0496246A1/en
Application granted granted Critical
Publication of EP0496246B1 publication Critical patent/EP0496246B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/2881Load circuits; Control thereof
    • H05B41/2882Load circuits; Control thereof the control resulting from an action on the static converter

Definitions

  • the invention relates to a circuit arrangement for operating a discharge lamp according to the preamble of patent claim 1 or 2.
  • Such a circuit arrangement is disclosed, for example, in EP 0 228 123.
  • This circuit arrangement has a circuit unit for detecting the changes in the instantaneous lamp power, the input signal of this circuit unit being additively composed of a current drop relative to the instantaneous lamp current and a voltage drop proportional to the instantaneous lamp operating voltage.
  • the circuit unit compares the input signal with a predetermined reference signal and generates an output signal that is used to control the switching power supply that supplies the discharge lamp, so that the discharge lamp is operated with approximately constant power.
  • the input signal is generated with the aid of a voltage divider arranged in parallel with the discharge lamp and by means of a current measuring resistor through which the lamp flows, and is evaluated using a plurality of operational amplifiers, which are likewise part of the circuit unit.
  • This circuit arrangement has the disadvantage that it allows the lamp to be regulated only in the immediate vicinity of the operating point of the above-mentioned circuit unit. Since the lamp lamp voltage usually increases in the course of the lamp aging process, no reliable power control over the lamp life is guaranteed with this circuit arrangement. Furthermore, it is comparatively complex.
  • the published patent application EP 0 350 104 describes a power control of a high-pressure discharge lamp with the aid of transformers, which generate voltage components proportional to the lamp current and the lamp operating voltage and which use the accumulated voltage components to control the inverter.
  • This circuit arrangement is also comparatively complex.
  • EP 0 445 882 discloses a circuit arrangement for operating a high-pressure sodium discharge lamp. To keep the color temperature constant To ensure the lamp, it is important to regulate the lamp voltage to a constant level. On the other hand, the circuit arrangement should prevent the lamp from extinguishing in the event of abrupt changes in the lamp current which occasionally occur. For this reason, it is proposed in the aforementioned publication to use a signal to control the switched-mode power supply which operates the high-pressure sodium discharge lamp and which is additively composed of a proportion proportional to the lamp operating voltage and a possibly small proportion proportional to the lamp current.
  • the circuit arrangement according to the invention has the decisive advantage that the voltage is automatically reduced proportionally in the case of short-circuit operation and the current in the case of excessively high voltage.
  • the working range of the circuit arrangement according to the invention in which the lamp power is almost constant is expanded by using a second operational amplifier, which is connected as a comparator and effects an operating point switchover as a function of the lamp operating voltage.
  • a second operational amplifier which is connected as a comparator and effects an operating point switchover as a function of the lamp operating voltage.
  • differences in the lamp operating voltage which are caused by production or caused by the aging process of the discharge lamps, can be compensated for.
  • this circuit arrangement makes it possible to limit the deviation of the electrical power at the discharge lamp from the target value to approximately ⁇ 1%.
  • this first embodiment has a relatively high stability to temperature fluctuations.
  • the working range of the circuit arrangement according to the invention is expanded by using a Zener diode which is arranged in parallel with the first voltage divider, so that manufacturing or age-related variations in the lamp operating voltage can also be compensated for here.
  • Another very important advantage of the second embodiment is that the object of the invention is achieved with very little circuitry and cost.
  • the deviation of the electrical power of the discharge lamp from its target value in the working range of this exemplary embodiment is only about ⁇ 2%.
  • the Circuit arrangement has a DC voltage source U Batt , a switched-mode power supply SNT, an inverter WR, an ignition device ZG, a discharge lamp L, a control circuit ST and a circuit part ADD for detecting the lamp power.
  • the circuit part ADD translates the instantaneous lamp power into a voltage signal, compares it with a reference signal and gives the differential signal to an input of the control circuit ST, which clocks the switching power supply SNT in such a way that the discharge lamp L, which is connected to the output of the switching power supply SNT, with almost constant electrical power consumption is operated.
  • a battery or an AC voltage source with a downstream rectifier can serve as the DC voltage source U Batt .
  • the inverter WR is not required for DC discharge lamps.
  • Figure 2 shows the structure of the circuit part ADD according to a first embodiment. Also shown are the output capacitor CA of the switched-mode power supply SNT and a high-pressure discharge lamp L with a power consumption of 75 watts and an operating voltage of approximately 85 volts.
  • a first voltage divider R2 ', R3' is connected in parallel with the output capacitor CA and in parallel with the discharge lamp L and consists of the ohmic resistors R2 'and R3', which have a resistance of 120 k ⁇ or 300 ⁇ .
  • Another ohmic resistor R1 'with a resistance value of 0.22 ⁇ , which is called current measuring resistor here, is connected to the output capacitor CA via a branch point A', which is at ground potential, and via a branch point B 'to the discharge lamp L and the ohmic resistor R2 'of the first voltage divider R2', R3 'connected.
  • the first voltage divider R2 ', R3' has a tap C 'between the resistors R2' and R3 ', which has a low-pass filter R2', C1 ', which consists of the resistor R2' and the capacitor C1 'with a capacitance of 100 nF , is connected to the non-inverting input of a first operational amplifier IC2-A '.
  • a first reference voltage U1 ' is applied to the inverting input of the first operational amplifier IC2-A' via a 15 k ⁇ resistor R4 '.
  • the output of the first operational amplifier IC2-A ' is fed back via an RC element R5', C2 ', which has a resistance of 56 k ⁇ and a capacitance of 22nF, to the inverting input of the first operational amplifier IC2-A'.
  • a second voltage divider R6, R7 which consists of two ohmic resistors R6 and R7, is connected in parallel with the discharge lamp and in parallel with the output capacitor CA.
  • a tap D of the second voltage divider R6, R7 is connected to the non-inverting input of a second operational amplifier IC2-B.
  • a second reference voltage U2 is present at the inverting input of the second operational amplifier IC2-B.
  • the output of the second operational amplifier IC2-B is connected to the control electrode of a first transistor switch T1 via an ohmic resistor R8.
  • the first transistor switch T1 is connected, on the one hand, to a pole of the first reference voltage source U1 'and, on the other hand, is connected to the other pole of the first reference voltage source, ie to ground potential, via a voltage divider R9, R10, which consists of the ohmic resistors R9, R10.
  • the tap E of this voltage divider R9, R10 is led via the ohmic resistor R4 'to the inverting input of the first operational amplifier IC2-A'.
  • Another ohmic resistor R11 is connected in parallel with transistor switch T1 and resistor R9, but in series with resistor R10, and is connected via a branch point F to resistor R4 'and the inverting input of the first operational amplifier IC2-A'. Values for the resistors used can be found in Table I.
  • An ohmic resistor R12 and a second transistor switch are connected in parallel with the resistor R2 'of the first voltage divider R2', R3 '.
  • the control electrode of this second transistor switch T2 is controlled via an ohmic resistor R13 from the output of the second operational amplifier IC2-B.
  • the non-inverting input of the second operational amplifier IC2-B is fed back via an ohmic resistor R14 to the output of the second operational amplifier IC2-B.
  • a branching point G which leads to the non-inverting input of the first operational amplifier IC2-A '.
  • the first operational amplifier IC2-A ' therefore carries out a target / actual comparison and works as a so-called PI controller.
  • the control circuit ST which clocks the switching power supply SNT, receives the amplified difference signal from the output of the first operational amplifier IC2-A '.
  • the total voltage U p or the difference signal can be used to regulate the lamp power.
  • the operating point of the circuit part ADD is set to the desired value with the aid of the resistor R2 'and the first reference voltage U1'.
  • the expansion of the circuit part ADD by a further operational amplifier IC2-B enables an operating point switchover depending on the lamp operating voltage.
  • the transistors T1 and T2 block and the circuit part ADD works exactly as stated above. However, if the voltage drop across the resistor R6 of the second voltage divider reaches a critical value, then the two transistors T1 and T2 are closed by the output signal of the second operational amplifier IC2-B. Thereby, the resistor R11, the resistor R9 and the resistor R2 ', the resistor R12 are connected in parallel.
  • the resulting change in the distribution of the voltage drops across the resistors R9, R10, R11 changes the reference signal at the inverting input of the first operational amplifier IC2-A 'and, together with the voltage drop across the resistor R2' changed by the parallel resistor R12, causes an operating point switchover the circuit arrangement.
  • the switchover point is defined by the resistors R6 and R7 connected in parallel with the discharge lamp L and by the second reference voltage U2 at the inverting input of the second operational amplifier IC2-B.
  • FIG. 3 shows the circuit part ADD according to a second embodiment together with the output capacitor CA of the switched-mode power supply SNT and with a 170 W high-pressure discharge lamp L.
  • a voltage divider R2 ", R3", R3 “' is connected in parallel with the output capacitor CA and in parallel with the discharge lamp L and consists of the ohmic resistors R2", R3 ", R3”' consists.
  • a series circuit comprising a temperature-compensated Zener diode DZ with an ohmic resistor R15 is connected in parallel with the resistors R2 "and R3" of the voltage divider. This defines further branch points A "and D".
  • the branch point A is at ground potential and is connected to the output capacitor CA, the zener diode DZ and, via an ohmic resistor R1", to a branch point B ", which in turn has connections to the discharge lamp L and to the resistor R2".
  • the tapping point C "of the voltage divider R2", R3 " is connected via a capacitor C1" connected in parallel to the non-inverting input of an operational amplifier IC2-A ".
  • the ohmic resistor R2" and the capacitor C1 form an RC low-pass filter that high-frequency interference signals suppressed.
  • the inverting input of the operational amplifier IC2-A is connected via an ohmic resistor R4" to a pole U1 ". Of a reference voltage source.
  • Table II contains numerical values for the components used for the operation of a 170 W high-pressure discharge lamp.
  • Table 2 R1 '': 0.11 ⁇ R2 '': 2.7 k ⁇ R3 '': 390 k ⁇ R3 ''': 510 k ⁇ R4 '': 15 k ⁇ R5 '': 56 k ⁇ R15: 680 k ⁇ C1 '': 100 nF C2 '': 22 nF DR: ZTK 33
  • the amplified differential signal reaches the control circuit ST, which clocks the switching power supply SNT.
  • the total voltage Up ′′ corresponds to the lamp power.
  • the total voltage Up ′′ can therefore be used to regulate the output of the discharge lamp.
  • the Zener diode DZ becomes conductive and switches the resistor R15 in parallel with the resistors R2 ′′ and R3 ′′.
  • the potential at the branch point C '' and thus the signal at the non-inverting input of the Operational amplifier IC2-A '' manipulated in such a way that it is still possible to regulate the lamp L to constant power even with a higher lamp operating voltage.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Dc-Dc Converters (AREA)

Description

Die Erfindung betrifft eine Schaltungsanordnung zum Betrieb einer Entladungslampe gemäß dem Oberbegriff des Patentanspruchs 1 oder 2.The invention relates to a circuit arrangement for operating a discharge lamp according to the preamble of patent claim 1 or 2.

Eine derartige Schaltungsanordnung ist beispielsweise in der EP 0 228 123 offenbart. Diese Schaltungsanordnung besitzt eine Schaltungseinheit zur Erfassung der Änderungen der momentanen Lampenleistung, wobei sich das Eingangssignal dieser Schaltungseinheit additiv aus einem zum momentanen Lampen strom und aus einem zur momentanen Lampenbrennspannung proportionalen Spannungsabfall zusammensetzt. Die Schaltungseinheit vergleicht das Eingangssignal mit einem vorgegebenen Referenzsignal und erzeugt ein Ausgangssignal, das zur Steuerung des die Entladungslampe versorgenden Schaltnetzteiles verwendet wird, so daß die Entladungslampe mit annähernd konstanter Leistung betrieben wird. Das Eingangssignal wird mit Hilfe eines parallel zur Entladungslampe angeordneten Spannungsteilers und mittels eines vom Lampen strom durchflossenen Strommeßwiderstandes erzeugt und unter Verwendung mehrerer Operationsverstärker, die ebenfalls Bestandteil der Schaltungseinheit sind, ausgewertet. Diese Schaltungsanordnung hat den Nachteil, daß sie eine Leistungsregelung der Lampe nur in unmittelbarer Umgebung des Arbeitspunktes der obengenannten Schaltungseinheit erlaubt. Da sich im Verlaufe des Lampenalterungsprozeßes die Lampenbrennspannung üblicherweise erhöht, ist mit dieser Schaltungsanordnung keine zuverlässige Leistungsregelung über die Lampenlebensdauer gewährleistet. Ferner ist sie vergleichsweise aufwendig.Such a circuit arrangement is disclosed, for example, in EP 0 228 123. This circuit arrangement has a circuit unit for detecting the changes in the instantaneous lamp power, the input signal of this circuit unit being additively composed of a current drop relative to the instantaneous lamp current and a voltage drop proportional to the instantaneous lamp operating voltage. The circuit unit compares the input signal with a predetermined reference signal and generates an output signal that is used to control the switching power supply that supplies the discharge lamp, so that the discharge lamp is operated with approximately constant power. The input signal is generated with the aid of a voltage divider arranged in parallel with the discharge lamp and by means of a current measuring resistor through which the lamp flows, and is evaluated using a plurality of operational amplifiers, which are likewise part of the circuit unit. This circuit arrangement has the disadvantage that it allows the lamp to be regulated only in the immediate vicinity of the operating point of the above-mentioned circuit unit. Since the lamp lamp voltage usually increases in the course of the lamp aging process, no reliable power control over the lamp life is guaranteed with this circuit arrangement. Furthermore, it is comparatively complex.

Die Offenlegungsschrift EP 0 350 104 beschreibt eine Leistungsregelung einer Hochdruckentladungslampe mit Hilfe von Transformatoren, die zum Lampenstrom und zur Lampenbrennspannung proportionale Spannungskomponenten erzeugen und die aufsummierten Spannungskomponenten zur Ansteuerung des Inverters ausnutzen. Auch diese Schaltungsanordnung ist vergleichsweise aufwendig.The published patent application EP 0 350 104 describes a power control of a high-pressure discharge lamp with the aid of transformers, which generate voltage components proportional to the lamp current and the lamp operating voltage and which use the accumulated voltage components to control the inverter. This circuit arrangement is also comparatively complex.

Die EP 0 445 882 offenbart eine Schaltungsanordnung zum Betrieb einer Natriumdampf-Hochdruckentladungslampe. Um eine gleichbleibende Farbtemperatur der Lampe zu gewährleisten, ist es wichtig, die Lampenbrennspannung auf ein konstantes Niveau zu regeln. Andererseits soll die Schaltungsanordnung bei gelegentlich auftretenden abrupten Änderungen des Lampen stromes ein Verlöschen der Lampe verhindern. Aus diesem Grund wird in der vorgenannten Druckschrift vorgeschlagen, ein Signal zur Ansteuerung des die Natriumdampf-Hochdruckentladungslampe betreibenden Schaltnetzteils zu verwenden, das sich additiv aus einem zur Lampenbrennspannung proportionalen Anteil und einem möglicht kleinen, zum Lampen strom proportionalen Anteil zusammensetzt.EP 0 445 882 discloses a circuit arrangement for operating a high-pressure sodium discharge lamp. To keep the color temperature constant To ensure the lamp, it is important to regulate the lamp voltage to a constant level. On the other hand, the circuit arrangement should prevent the lamp from extinguishing in the event of abrupt changes in the lamp current which occasionally occur. For this reason, it is proposed in the aforementioned publication to use a signal to control the switched-mode power supply which operates the high-pressure sodium discharge lamp and which is additively composed of a proportion proportional to the lamp operating voltage and a possibly small proportion proportional to the lamp current.

Es ist die Aufgabe der Erfindung, eine relativ einfache und mit geringen Herstellungskosten verbundene Schaltungsanordnung für den Betrieb einer Entladungslampe bereitzustellen, die es ermöglicht die Entladungslampe mit konstanter elektrischer Leistung zu versorgen.It is the object of the invention to provide a relatively simple circuit arrangement for the operation of a discharge lamp which is associated with low manufacturing costs and which makes it possible to supply the discharge lamp with constant electrical power.

Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruchs 1 bzw. des Patentanspruchs 2 gelöst. Besonders vorteilhafte Ausführungen der finden sich in den Unteransprüchen.This object is achieved according to the invention by the characterizing features of claim 1 and claim 2. Particularly advantageous versions of the can be found in the subclaims.

Die erfindungsgemäße Schaltungsanordnung besitzt den entscheidenden Vorteil, daß bei Kurzschlußbetrieb automatisch die Spannung und bei zu hoher Spannung automatisch der Strom überproportional zurückgeregelt werden.The circuit arrangement according to the invention has the decisive advantage that the voltage is automatically reduced proportionally in the case of short-circuit operation and the current in the case of excessively high voltage.

Der Arbeitsbereich der erfindungsgemäßen Schaltungsanordnung, in dem die Lampenleistung nahezu konstant ist, wird durch Verwendung eines zweiten Operationsverstärkers, der als Komparator verschaltet ist und eine Arbeitspunktumschaltung in Abhängigkeit der Lampenbrennspannung bewirkt, erweitert. Außerdem können Unterschiede in der Lampenbrennspannung, die herstellungsbedingt oder durch den Alterungsprozeß der Entladungslampen verursacht sind, aufgefangen werden. Ferner ermöglicht diese Schaltungsanordnung die Abweichung der elektrischen Leistung an der Entladungslampe vom Sollwert auf ungefähr ±1% zu begrenzen. Weiterhin besitzt dieses erste Ausführungsbeispiel eine relativ hohe Stabiltät gegenüber Temperaturschwankungen. Beim zweiten Ausführungsbeispiel wird durch Verwendung einer Zenerdiode, die parallel zum ersten Spannungsteiler angeordnet ist, der Arbeitsbereich der erfindungsgemäßen Schaltungsanordnung erweitert, so daß hier ebenfalls herstellungs- oder alterungsbedingte Streuungen der Lampenbrennspannung ausgeglichen werden können. Ein weiterer sehr wichtiger Vorteil des zweiten Ausführungsbeispiels besteht darin, daß die Aufgabe der Erfindung mit einem sehr geringen Schaltungs- und Kostenaufwand gelöst wird. Dabei beträgt die Abweichung der elektrischen Leistung der Entladungslampe von ihrem Sollwert im Arbeitsbereich dieses Ausführungsbeispiels nur etwa ± 2 %.The working range of the circuit arrangement according to the invention, in which the lamp power is almost constant is expanded by using a second operational amplifier, which is connected as a comparator and effects an operating point switchover as a function of the lamp operating voltage. In addition, differences in the lamp operating voltage, which are caused by production or caused by the aging process of the discharge lamps, can be compensated for. Furthermore, this circuit arrangement makes it possible to limit the deviation of the electrical power at the discharge lamp from the target value to approximately ± 1%. Furthermore, this first embodiment has a relatively high stability to temperature fluctuations. In the second exemplary embodiment, the working range of the circuit arrangement according to the invention is expanded by using a Zener diode which is arranged in parallel with the first voltage divider, so that manufacturing or age-related variations in the lamp operating voltage can also be compensated for here. Another very important advantage of the second embodiment is that the object of the invention is achieved with very little circuitry and cost. The deviation of the electrical power of the discharge lamp from its target value in the working range of this exemplary embodiment is only about ± 2%.

Die erfindungsgemäße Schaltungsanordnung wird nun anhand mehrerer Ausführungsbeispiele näher erläutert.The circuit arrangement according to the invention will now be explained in more detail using several exemplary embodiments.

Es zeigen

Figur 1
ein Blockschaltbild der gesamten Schaltungsanordnung zum Betrieb einer Entladungslampe
Figur 2
den Aufbau des Schaltungsteils ADD nach einem ersten Ausführungsbeispiel
Figur 3
den Aufbau des Schaltungsteils ADD nach einem zweiten Ausführungsbeispiel
Show it
Figure 1
a block diagram of the entire circuit arrangement for operating a discharge lamp
Figure 2
the structure of the circuit part ADD according to a first embodiment
Figure 3
the structure of the circuit part ADD according to a second embodiment

In Figur 1 ist mit Hilfe eines Blockschaltbildes die gesamte Schaltungsanordnung zum Betrieb einer Entladungslampe schematisch dargestellt. Die Schaltungsanordnung weist eine Gleichspannungsquelle UBatt, ein Schaltnetzteil SNT, einen Wechselrichter WR, ein Zündgerät ZG, eine Entladungslampe L, eine Steuerschaltung ST und einen Schaltungsteil ADD zur Erfassung der Lampenleistung auf.In Figure 1, the entire circuit arrangement for operating a discharge lamp is shown schematically with the aid of a block diagram. The Circuit arrangement has a DC voltage source U Batt , a switched-mode power supply SNT, an inverter WR, an ignition device ZG, a discharge lamp L, a control circuit ST and a circuit part ADD for detecting the lamp power.

Der Schaltungsteil ADD übersetzt die momentane Lampenleistung in ein Spannungssignal, vergleicht dieses mit einem Referenzsignal und gibt das Differentsignal auf einen Eingang der Steuerschaltung ST, die das Schaltnetzteil SNT so taktet, daß die Entladungslampe L, die am Ausgang des Schaltnetzteiles SNT angeschlossen ist, mit nahezu konstanter elektrischer Leistungsaufnahme betrieben wird. Als Gleichspannungquelle UBatt kann eine Batterie oder eine Wechselspannungsquelle mit nachgeschaltetem Gleichrichter dienen. Der Wechselrichter WR entfällt bei Gleichstromentladungslampen.The circuit part ADD translates the instantaneous lamp power into a voltage signal, compares it with a reference signal and gives the differential signal to an input of the control circuit ST, which clocks the switching power supply SNT in such a way that the discharge lamp L, which is connected to the output of the switching power supply SNT, with almost constant electrical power consumption is operated. A battery or an AC voltage source with a downstream rectifier can serve as the DC voltage source U Batt . The inverter WR is not required for DC discharge lamps.

Im folgenden werden zwei Ausführungsbeispiele einer Schaltungsanordnung zum Betrieb einer Entladungslampe beschrieben, die sich nur im Aufbau des Schaltungsteils ADD unterscheiden.Two exemplary embodiments of a circuit arrangement for operating a discharge lamp are described below, which differ only in the construction of the circuit part ADD.

Die Figur 2 zeigt den Aufbau des Schaltungsteils ADD nach einem ersten Ausführungsbeispiel. Dargestellt sind außerdem auch der Ausgangskondensator CA des Schaltnetzteils SNT und eine Hochdruckentladungslampe L mit einer Leistungsaufnahme von 75 Watt und einer Brennspannung von ca. 85 Volt.Figure 2 shows the structure of the circuit part ADD according to a first embodiment. Also shown are the output capacitor CA of the switched-mode power supply SNT and a high-pressure discharge lamp L with a power consumption of 75 watts and an operating voltage of approximately 85 volts.

Parallel zum Ausgangskondensator CA und parallel zur Entladungslampe L ist ein erster Spannungsteiler R2', R3' geschaltet, der aus den ohmschen Widerständen R2' und R3' besteht, die einen Widerstand von 120 kΩ bzw. 300Ω aufweisen. Ein weiterer ohmscher Widerstand R1' mit einem Widerstandswert von 0,22Ω, der hier Strommeßwiderstand genannt wird, ist über einen Verzweigungspunkt A', der auf Erdpotential liegt, mit dem Ausgangskondensator CA und über einen Verzweigungspunkt B' mit der Entladungslampe L und dem ohmschen Widerstand R2' des ersten Spannungsteilers R2', R3' verbunden.A first voltage divider R2 ', R3' is connected in parallel with the output capacitor CA and in parallel with the discharge lamp L and consists of the ohmic resistors R2 'and R3', which have a resistance of 120 kΩ or 300Ω. Another ohmic resistor R1 'with a resistance value of 0.22Ω, which is called current measuring resistor here, is connected to the output capacitor CA via a branch point A', which is at ground potential, and via a branch point B 'to the discharge lamp L and the ohmic resistor R2 'of the first voltage divider R2', R3 'connected.

Der erste Spannungsteiler R2', R3' besitzt zwischen den Widerständen R2' und R3' einen Abgriff C', der über ein Tiefpaßfilter R2', C1', das aus dem Widerstand R2' und dem Kondensator C1' mit einer Kapazität von 100 nF besteht, an den nichtinvertierenden Eingang eines ersten Operationsverstärkers IC2-A' angeschlossen ist. An den invertierenden Eingang des ersten Operationsverstärkers IC2-A' ist über einen 15 kΩ-Widerstand R4' eine erste Referenzspannung U1' angelegt. Der Ausgang des ersten Operationsverstärkers IC2-A' ist über ein RC-Glied R5', C2', das einen Widerstand von 56 kΩ und eine Kapazität von 22nF besitzt, zum invertierenden Eingang des ersten Operationsverstärkers IC2-A' rückgekoppelt.
Parallel zur Entladungslampe und parallel zum Ausgangskondensator CA ist ein zweiter Spannungsteiler R6, R7, der aus zwei ohmschen Widerständen R6 und R7 besteht, geschaltet. Ein Abgriff D des zweiten Spannungsteilers R6, R7 ist mit dem nichtinvertierenden Eingang eines zweiten Operationsverstärkers IC2-B verbunden. Am invertierenden Eingang des zweiten Operationsverstärkers IC2-B liegt eine zweite Referenzspannung U2 an. Der Ausgang des zweiten Operationsverstärkers IC2-B ist über einen ohmschen Widerstand R8 an die Steuerelektrode eines ersten Transistorschalters T1 angeschlossen. Der erste Transistorschalter T1 ist einerseits mit einem Pol der ersten Referenzspannungsquelle U1' verbunden und andererseits über einen Spannungsteiler R9, R10, der aus den ohmschen Widerständen R9, R10 besteht, mit dem anderen Pol der ersten Referenzspannungsquelle, d.h., dem Erdpotential verbunden. Der Abgriff E dieses Spannungsteilers R9, R10 ist über den ohmschen Widerstand R4' an den invertierenden Eingang des ersten Operationsverstärkers IC2-A' geführt. Parallel zum Transistorschalter T1 und zum Widerstand R9, aber in Reihe zum Widerstand R10 ist eine weiterer ohmscher Widerstand R11 geschaltet, der über einen Verzweigungspunkt F mit dem Widertsand R4' und dem invertierenden Eingang des ersten Operationsverstärkers IC2-A' verbunden ist. Werte für die verwendeten Widerstände können der Tabelle I entnommen werden.
The first voltage divider R2 ', R3' has a tap C 'between the resistors R2' and R3 ', which has a low-pass filter R2', C1 ', which consists of the resistor R2' and the capacitor C1 'with a capacitance of 100 nF , is connected to the non-inverting input of a first operational amplifier IC2-A '. A first reference voltage U1 'is applied to the inverting input of the first operational amplifier IC2-A' via a 15 kΩ resistor R4 '. The output of the first operational amplifier IC2-A 'is fed back via an RC element R5', C2 ', which has a resistance of 56 kΩ and a capacitance of 22nF, to the inverting input of the first operational amplifier IC2-A'.
A second voltage divider R6, R7, which consists of two ohmic resistors R6 and R7, is connected in parallel with the discharge lamp and in parallel with the output capacitor CA. A tap D of the second voltage divider R6, R7 is connected to the non-inverting input of a second operational amplifier IC2-B. A second reference voltage U2 is present at the inverting input of the second operational amplifier IC2-B. The output of the second operational amplifier IC2-B is connected to the control electrode of a first transistor switch T1 via an ohmic resistor R8. The first transistor switch T1 is connected, on the one hand, to a pole of the first reference voltage source U1 'and, on the other hand, is connected to the other pole of the first reference voltage source, ie to ground potential, via a voltage divider R9, R10, which consists of the ohmic resistors R9, R10. The tap E of this voltage divider R9, R10 is led via the ohmic resistor R4 'to the inverting input of the first operational amplifier IC2-A'. Another ohmic resistor R11 is connected in parallel with transistor switch T1 and resistor R9, but in series with resistor R10, and is connected via a branch point F to resistor R4 'and the inverting input of the first operational amplifier IC2-A'. Values for the resistors used can be found in Table I.

Parallel zum Widerstand R2' des ersten Spannungsteilers R2', R3' sind ein ohmscher Widerstand R12 und ein zweiter Transistorschalter geschaltet. Die Steuerelektrode dieses zweiten Transistorschalters T2 wird über einen ohmschen Widerstand R13 vom Ausgang des zweiten Operationsverstärkers IC2-B angesteuert. Der nichtinvertierende Eingang des zweiten Operationsverstärkers IC2-B ist über einen ohmschen Widerstand R14 zum Ausgang des zweiten Operationsverstärkers IC2-B rückgekoppelt. Zwischen dem Abgriff C' des ersten Spannungsteilers R2', R3' und dem ohmschen Widerstand R12 befindet sich ein Verzweigungspunkt G, der zum nichtinvertierenden Eingang des ersten Operationsverstärkers IC2-A' geführt ist.An ohmic resistor R12 and a second transistor switch are connected in parallel with the resistor R2 'of the first voltage divider R2', R3 '. The control electrode of this second transistor switch T2 is controlled via an ohmic resistor R13 from the output of the second operational amplifier IC2-B. The non-inverting input of the second operational amplifier IC2-B is fed back via an ohmic resistor R14 to the output of the second operational amplifier IC2-B. Between the tap C 'of the first voltage divider R2', R3 'and the ohmic resistor R12 there is a branching point G which leads to the non-inverting input of the first operational amplifier IC2-A '.

Der Strommeßwiderstand R1' wird wegen des relativ hohen Widerstandswertes von R3' nahezu vom gesamten Lampenstrom durchflossen und erzeugt daher einen zum Lampenstrom proportionalen Spannungsabfall. Der ohmsche Widerstand R2' des ersten Spannungsteilers R2', R3' bewirkt einen zur Lampenbrennspannung proportionalen Spannungsabfall. Da der Verzweigungspunkt A' auf Erdpotential liegt, addieren sich die Spannungsabfälle über den Widerständen R1' und R2' zu einer Gesamtspannung Up, die über den Abgriff C' am nichtinvertierenden Eingang des Operationsverstärkers IC2-A' anliegt. Die Gesamtspannung Up wird mit einer ersten Referenzspannung U1' verglichen, die am invertierenden Eingang des ersten Operationsverstärkers IC2-A' anliegt. Der erste Operationsverstärkers IC2-A' führt also einen Soll-Ist-Vergleich durch und arbeitet als sogenannter PI-Regler. Vom Ausgang des ersten Operationsverstärkers IC2-A' erhält die Steuerschaltung ST, die das Schaltnetzteil SNT taktet, das verstärkte Differenzsignal. Im Arbeitspunkt des Schaltungsteils ADD kann die Gesamtspannung Up bzw. das Differenzsignal zur Regelung der Lampenleistung benutzt werden. Der Arbeitspunkt des Schaltungsteils ADD wird mit Hilfe des Widerstandes R2' und der ersten Referenzspannung U1' auf den gewünschten Wert eingestellt.
Die Erweiterung des Schaltungsteils ADD um einen weiteren Operationsverstärkers IC2-B ermöglicht eine Arbeitspunktumschaltung in Abhängigkeit der Lampenbrennspannung. Bei geringem Spannungsabfall über dem Widerstand R6 sperren die Transistoren T1 und T2 und der Schaltungsteil ADD arbeitet exakt so wie oben ausgeführt. Erreicht allerdings der Spannungsabfall am Widerstand R6 des zweiten Spannungsteilers einen kritischen Wert, so werden die beiden Transistoren T1 und T2 vom Ausgangssignal des zweiten Operationsverstärkers IC2-B geschlossen. Dadurch werden dem Widerstand R11 der Widerstand R9 und dem Widerstand R2' der Widerstand R12 parallel geschaltet. Die daraus resultierende geänderte Aufteilung der Spannungsabfälle an den Widerständen R9, R10, R11 verändert das Referenzsignal am invertierenden Eingang des ersten Operationsverstärkers IC2-A' und bewirkt zusammen mit dem durch den Parallelwiderstand R12 veränderten Spannungsabfall am Widertstand R2' eine Arbeitspunktumschaltung der Schaltungsanordnung. Der Umschaltpunkt wird durch die zur Entladungslampe L parallel geschalteten Widerstände R6 und R7 sowie durch die zweite Referenzspannung U2 am invertierenden Eingang des zweiten Operationsverstärkers IC2-B definiert. Tabelle 1 R1' : 0,22 Ω R2' : 300 Ω R3' : 120 kΩ R4' : 15 kΩ R5' : 56 kΩ R6 : 1,5 kΩ R7 : 300 kΩ R8 : 47 kΩ R9 : 86 kΩ R10 : 1 kΩ R11 : 18 kΩ R12 : 100 kΩ R13 : 47 kΩ R14 : 1 MΩ T1 : BC 327-25 T2 : BC 337-25 C1' : 100 nF C2' : 22 nF IC2-A' : LM 358 IC2-B : LM 358
Because of the relatively high resistance value of R3 ', almost all of the lamp current flows through the current measuring resistor R1' and therefore generates a voltage drop proportional to the lamp current. The ohmic resistance R2 'of the first voltage divider R2', R3 'causes a voltage drop proportional to the lamp lamp voltage. Since the branching point A 'is at ground potential, the voltage drops across the resistors R1' and R2 'add up to a total voltage U p , which is present via the tap C' at the non-inverting input of the operational amplifier IC2-A '. The total voltage U p is compared with a first reference voltage U1 'which is present at the inverting input of the first operational amplifier IC2-A'. The first operational amplifier IC2-A 'therefore carries out a target / actual comparison and works as a so-called PI controller. The control circuit ST, which clocks the switching power supply SNT, receives the amplified difference signal from the output of the first operational amplifier IC2-A '. At the operating point of the circuit part ADD, the total voltage U p or the difference signal can be used to regulate the lamp power. The operating point of the circuit part ADD is set to the desired value with the aid of the resistor R2 'and the first reference voltage U1'.
The expansion of the circuit part ADD by a further operational amplifier IC2-B enables an operating point switchover depending on the lamp operating voltage. With a small voltage drop across the resistor R6, the transistors T1 and T2 block and the circuit part ADD works exactly as stated above. However, if the voltage drop across the resistor R6 of the second voltage divider reaches a critical value, then the two transistors T1 and T2 are closed by the output signal of the second operational amplifier IC2-B. Thereby, the resistor R11, the resistor R9 and the resistor R2 ', the resistor R12 are connected in parallel. The resulting change in the distribution of the voltage drops across the resistors R9, R10, R11 changes the reference signal at the inverting input of the first operational amplifier IC2-A 'and, together with the voltage drop across the resistor R2' changed by the parallel resistor R12, causes an operating point switchover the circuit arrangement. The switchover point is defined by the resistors R6 and R7 connected in parallel with the discharge lamp L and by the second reference voltage U2 at the inverting input of the second operational amplifier IC2-B. Table 1 R1 ': 0.22 Ω R2 ': 300 Ω R3 ': 120 kΩ R4 ': 15 kΩ R5 ': 56 kΩ R6: 1.5 kΩ R7: 300 kΩ R8: 47 kΩ R9: 86 kΩ R10: 1 kΩ R11: 18 kΩ R12: 100 kΩ R13: 47 kΩ R14: 1 MΩ T1: BC 327-25 T2: BC 337-25 C1 ': 100 nF C2 ': 22 nF IC2-A ': LM 358 IC2-B: LM 358

Die Figur 3 zeigt den Schaltungsteil ADD nach einem zweiten Ausführungsbeispiel zusammen mit dem Ausgangskondensator CA des Schaltnetzteils SNT und mit einer 170 W - Hochdruckentladungslampe L. Parallel zum Ausgangskondensator CA und parallel zur Entladungslampe L ist ein Spannungsteiler R2", R3", R3"' geschaltet, der aus den ohmschen Widerständen R2", R3", R3"' besteht. Eine Reihenschaltung aus einer temperaturkompensierten Zenerdiode DZ mit einem ohmschen Widerstand R15 ist parallel zu den Widerständen R2" und R3" des Spannungsteilers geschaltet. Dadurch werden weitere Verzweigungspunkte A" und D" definiert. Der Verzweigungspunkt A" liegt auf Erdpotential und ist mit dem Ausgangskondensator CA, der Zenerdiode DZ und über einen ohmschen Widerstand R1" mit einem Verzweigungspunkt B" verbunden, der seinerseits Verbindungen zur Entladungslampe L und zum Widerstand R2" aufweist. Der Abgriffspunkt C" des Spannungsteilers R2", R3" ist über einen parallelgeschalteten Kondensator C1" mit dem nichtinvertierenden Eingang eines Operationsverstärkers IC2-A" verbunden. Dabei bilden der ohmsche Widerstand R2" und der Kondensator C1" ein RC-Tiefpaßfilter, daß hochfrequente Störsignale unterdrückt.
Der invertierende Eingang des Operationsverstärkers IC2-A" ist über einen ohmschen Widerstand R4" an einen Pol U1". einer Referenzspannungsquelle angeschlossen. Außerdem sind der Ausgang und der invertierende Eingang des Operationsverstärkers IC2-A" mittels eines RC-Gliedes, das aus dem ohmschen Widerstand R5" und dem Kondensator C2" besteht, rückgekoppelt. Tabelle II enthält Zahlenwerte für die verwendeten Bauelemente für den Betrieb einer 170 W - Hochdruckentladungslampe. Tabelle 2 R1'' : 0,11 Ω R2'' : 2,7 kΩ R3'' : 390 kΩ R3''' : 510 kΩ R4'' : 15 kΩ R5'' : 56 kΩ R15 : 680 kΩ C1'' : 100 nF C2'' : 22 nF DZ : ZTK 33 C IC2-A'' : LM 358
FIG. 3 shows the circuit part ADD according to a second embodiment together with the output capacitor CA of the switched-mode power supply SNT and with a 170 W high-pressure discharge lamp L. A voltage divider R2 ", R3", R3 "'is connected in parallel with the output capacitor CA and in parallel with the discharge lamp L and consists of the ohmic resistors R2", R3 ", R3"' consists. A series circuit comprising a temperature-compensated Zener diode DZ with an ohmic resistor R15 is connected in parallel with the resistors R2 "and R3" of the voltage divider. This defines further branch points A "and D". The branch point A "is at ground potential and is connected to the output capacitor CA, the zener diode DZ and, via an ohmic resistor R1", to a branch point B ", which in turn has connections to the discharge lamp L and to the resistor R2". The tapping point C "of the voltage divider R2", R3 "is connected via a capacitor C1" connected in parallel to the non-inverting input of an operational amplifier IC2-A ". The ohmic resistor R2" and the capacitor C1 "form an RC low-pass filter that high-frequency interference signals suppressed.
The inverting input of the operational amplifier IC2-A "is connected via an ohmic resistor R4" to a pole U1 ". Of a reference voltage source. In addition, the output and the inverting input of the operational amplifier IC2-A" are connected by means of an RC element which results from the ohmic Resistor R5 "and capacitor C2" is fed back. Table II contains numerical values for the components used for the operation of a 170 W high-pressure discharge lamp. Table 2 R1 '': 0.11 Ω R2 '': 2.7 kΩ R3 '': 390 kΩ R3 ''': 510 kΩ R4 '': 15 kΩ R5 '': 56 kΩ R15: 680 kΩ C1 '': 100 nF C2 '': 22 nF DR: ZTK 33 C IC2-A '': LM 358

Das Funktionsprinzip dieser Schaltungsanordnung stimmt wieder im wesentlichen mit dem des ersten Ausführungsbeispiels überein. Der ohmsche Widerstand R1'' wird, da die Widerstände R3'', R3''' relativ groß sind, nahezu vom gesamten Lampenstrom durchflossen und erzeugt daher einen zum Lampenstrom proportionalen Spannungsabfall. Der ohmsche Widerstand R2'' erzeugt einen Spannungsabfall, der proportional zur Lampenbrennspannung ist. Da der Verzweigungspunkt A'' auf Erdpotential liegt, addieren sich die Spannungsabfälle an Widerständen R1'' und R2'' am nichtinvertierenden Eingang des Operationsverstärkers zu einer Gesamtspannung Up'', die mit der Referenzspannung U1'' am invertierenden Eingang des Operationsverstärkers IC2-A'' verglichen wird. Vom Ausgang des Operationsverstärkers IC2-A'' gelangt das verstärkte Differenzsignal zur Steuerschaltung ST, die das Schaltnetzteil SNT taktet. Im Arbeitspunkt der Schaltung, der durch die Wahl des Widerstandes R2'' und der Referenzspannung U1'' festgelegt wird, entspricht die Gesamtspannung Up'' der Lampenleistung. Die Gesamtspannung Up'' kann daher zur Leistungsregelung der Entladungslampe verwendet werden.The functional principle of this circuit arrangement is again essentially the same as that of the first exemplary embodiment. Since the resistors R3 ″, R3 ″ ″, the ohmic resistor R1 ″ is traversed by almost the entire lamp current and therefore generates a voltage drop proportional to the lamp current. The ohmic resistor R2 '' generates a voltage drop that is proportional to the lamp voltage. Since the branching point A ″ lies at ground potential, the voltage drops across resistors R1 ″ and R2 ″ at the non-inverting input of the operational amplifier add up to a total voltage Up ″, which corresponds to the reference voltage U1 ″ at the inverting input of the operational amplifier IC2-A '' is compared. From the output of the operational amplifier IC2-A '', the amplified differential signal reaches the control circuit ST, which clocks the switching power supply SNT. At the operating point of the circuit, which is determined by the choice of the resistor R2 ″ and the reference voltage U1 ″, the total voltage Up ″ corresponds to the lamp power. The total voltage Up ″ can therefore be used to regulate the output of the discharge lamp.

Beim Überschreiten der Durchbruchsspannung wird die Zenerdiode DZ leitend und schaltet den Widerstand R15 parallel zu den Widerständen R2'' und R3'' . Dadurch wird das Potential im Verzweigungspunkt C'' und damit das Signal am nichtinvertierenden Eingang des Operationsverstärkers IC2-A'' derart manipuliert, daß eine Regelung der Lampe L auf konstante Leistung auch zu höherer Lampenbrennspannung hin noch möglich ist.When the breakdown voltage is exceeded, the Zener diode DZ becomes conductive and switches the resistor R15 in parallel with the resistors R2 ″ and R3 ″. As a result, the potential at the branch point C '' and thus the signal at the non-inverting input of the Operational amplifier IC2-A '' manipulated in such a way that it is still possible to regulate the lamp L to constant power even with a higher lamp operating voltage.

Claims (3)

  1. Circuit arrangement for operating a discharge lamp (L), comprising
    - a switched-mode power supply (SNT) for converting a DC voltage which is fixed within defined limits into a variable DC voltage with a large operating range,
    - a control circuit (ST) for clocking the switched-mode power supply (SNT),
    - possibly an invertor (WR) for generating an AC voltage,
    - an ignition device (ZG) for igniting the discharge lamp (L),
    - a circuit section (ADD) for detecting the change in the instantaneous lamp power, which section compares an input signal, which is formed by adding together a voltage drop proportional to the lamp current and a voltage drop proportional to the instantaneous lamp running voltage, with a reference signal and generates therefrom at its output an input signal for the control circuit (ST),
    - the circuit section (ADD) contains a first voltage divider (R2', R3'), which is connected in parallel with the discharge lamp (L), and a current measuring resistor (R1'), which serves as a sensor for changes in the lamp current, as well as at least one operational amplifier (IC2-A'),
    characterized in that the circuit section (ADD) has a second voltage divider (R6, R7), which is connected in parallel with the discharge lamp (L), and a second operational amplifier (IC2-B) which is connected as a comparator and effects an operating point change of the circuit section (ADD) as a function of the instantaneous lamp running voltage.
  2. Circuit arrangement for operating a discharge lamp (L), comprising
    - a switched-mode power supply (SNT) for converting a DC voltage which is fixed within defined limits into a variable DC voltage with a large operating range,
    - a control circuit (ST) for clocking the switched-mode power supply (SNT),
    - possibly an invertor (WR) for generating an AC voltage,
    - an ignition device (ZG) for igniting the discharge lamp (L),
    - a circuit section (ADD) for detecting the change in the instantaneous lamp power, which section compares an input signal, which is formed by adding together a voltage drop proportional to the lamp current and a voltage drop proportional to the instantaneous lamp running voltage, with a reference signal and generates therefrom at its output an input signal for the control circuit (ST),
    - the circuit section (ADD) contains a voltage divider (R2", R3"), which is connected in parallel with the discharge lamp (L), and a current measuring resistor (R1"), which serves as a sensor for changes in the lamp current, as well as at least one operational amplifier (IC2-A"),
    characterized in that the circuit section (ADD) has a series circuit which comprises a passive semiconductor switch (DZ) and a resistor (R15) and is arranged in parallel with the first voltage divider (R2", R3").
  3. Circuit arrangement according to Claim 1, characterized in that the output signal of the second operational amplifier (IC2-B) controls two active semiconductor switches (T1, T2), one of these active semiconductor switches (T2) being connected in parallel with a non-reactive resistor (R2') of the first voltage divider (R2', R3') and the other active semiconductor switch (T1) being linked to the inverting input of the first operational amplifier (IC2-A'), and the non-inverting input of the second operational amplifier (ICB-2) being connected to the second voltage divider (R6, R7).
EP92100456A 1991-01-24 1992-01-13 Circuit for operating a discharge lamp Expired - Lifetime EP0496246B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4102069A DE4102069A1 (en) 1991-01-24 1991-01-24 CIRCUIT ARRANGEMENT FOR OPERATING A DISCHARGE LAMP
DE4102069 1991-01-24

Publications (2)

Publication Number Publication Date
EP0496246A1 EP0496246A1 (en) 1992-07-29
EP0496246B1 true EP0496246B1 (en) 1996-04-17

Family

ID=6423628

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92100456A Expired - Lifetime EP0496246B1 (en) 1991-01-24 1992-01-13 Circuit for operating a discharge lamp

Country Status (5)

Country Link
US (1) US5198728A (en)
EP (1) EP0496246B1 (en)
JP (1) JP3210052B2 (en)
KR (1) KR100218980B1 (en)
DE (2) DE4102069A1 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357174A (en) * 1992-11-05 1994-10-18 General Electric Company Feedback-controlled circuit and method for powering a high intensity discharge lamp
DE4301276A1 (en) * 1993-01-19 1994-07-21 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Method and power supply unit for the stabilized operation of a sodium high-pressure discharge lamp
DE4342590A1 (en) * 1993-12-14 1995-06-22 Bosch Gmbh Robert Clocked power supply
JP3224948B2 (en) * 1994-08-30 2001-11-05 株式会社小糸製作所 Lighting circuit of discharge lamp
JP3197166B2 (en) * 1994-09-02 2001-08-13 株式会社小糸製作所 Lighting circuit of discharge lamp
JP3197169B2 (en) * 1994-09-08 2001-08-13 株式会社小糸製作所 Lighting circuit of discharge lamp
DE4437453A1 (en) * 1994-10-19 1996-04-25 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Method for operating a discharge lamp and circuit arrangement for operating a discharge lamp
DE19515510A1 (en) * 1995-04-27 1997-02-20 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Circuit arrangement for the pulse operation of discharge lamps
DE19515511A1 (en) * 1995-04-27 1996-10-31 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Method and circuit arrangement for starting and operating a discharge lamp
JP3174993B2 (en) * 1995-05-12 2001-06-11 株式会社小糸製作所 Discharge lamp lighting circuit
JP3280540B2 (en) * 1995-05-12 2002-05-13 株式会社小糸製作所 Discharge lamp lighting circuit
JP3210561B2 (en) * 1995-06-14 2001-09-17 株式会社小糸製作所 Discharge lamp lighting circuit
CN1124778C (en) * 1995-06-29 2003-10-15 皇家菲利浦电子有限公司 Circuit arrangement
DE29511680U1 (en) * 1995-07-19 1996-11-21 Niggemeyer, Gert Günther, 21244 Buchholz Multiplication circuit
DE19540326B4 (en) * 1995-10-28 2006-06-14 Automotive Lighting Reutlingen Gmbh Headlights for vehicles
WO1998011763A1 (en) * 1996-09-11 1998-03-19 Philips Electronics N.V. Circuit arrangement
US6011357A (en) * 1997-04-10 2000-01-04 Philips Electronics North America Corporation Triac dimmable compact fluorescent lamp with low power factor
US6495971B1 (en) 1998-06-13 2002-12-17 Hatch Transformers, Inc. High intensity discharge lamp ballast
EP0984670B1 (en) 1998-06-13 2009-12-09 Greenwood Soar IP Limited High intensity discharge lamp ballast
AT407462B (en) * 1998-11-20 2001-03-26 Springer Erwin Dipl Ing Circuit arrangement for controlled feeding of a gas discharge lamp
US6359394B1 (en) * 1999-12-22 2002-03-19 Phillips Electronics North America Corporation Scheme for sampling lamp conditions during ignition and steady state modes of lamp operation
DE10018860A1 (en) * 2000-04-14 2001-10-18 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Stabilization of the operation of gas discharge lamps
US6798153B2 (en) * 2001-08-02 2004-09-28 Koninklijke Philips Electronics N.V. Method of regulating power in a high-intensity-discharge lamp
US7109668B2 (en) * 2003-10-30 2006-09-19 I.E.P.C. Corp. Electronic lighting ballast
US20070194721A1 (en) * 2004-08-20 2007-08-23 Vatche Vorperian Electronic lighting ballast with multiple outputs to drive electric discharge lamps of different wattage
JP4923852B2 (en) * 2005-09-29 2012-04-25 東芝ライテック株式会社 Discharge lamp lighting device and lighting device
US7589480B2 (en) * 2006-05-26 2009-09-15 Greenwood Soar Ip Ltd. High intensity discharge lamp ballast
ES2327264T3 (en) 2006-10-21 2009-10-27 Sma Solar Technology Ag ELECTRICAL CIRCUIT DEVICE AND PROCEDURE, IN PARTICULAR FOR PHOTOVOLTAIC GENERATORS.
DE102007054805A1 (en) * 2007-11-16 2009-05-20 Tridonicatco Schweiz Ag Circuit arrangement for operating gas discharge lamps, for example HID lamps
CN102193607B (en) * 2010-03-11 2013-12-11 鸿富锦精密工业(深圳)有限公司 Power supply circuit
CN105027017B (en) * 2013-06-20 2016-11-09 富士电机株式会社 Reference voltage circuit

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3999100A (en) * 1975-05-19 1976-12-21 Morton B. Leskin Lamp power supply using a switching regulator and commutator
US4523128A (en) * 1982-12-10 1985-06-11 Honeywell Inc. Remote control of dimmable electronic gas discharge lamp ballasts
NL8600812A (en) * 1985-12-17 1987-07-16 Philips Nv CIRCUIT SUITABLE FOR OPERATING A HIGH PRESSURE DISCHARGE LAMP.
US4958106A (en) * 1988-02-10 1990-09-18 U.S. Philips Corporation High-pressure sodium discharge lamp
DK89388D0 (en) * 1988-02-19 1988-02-19 Silver Gruppen Prod As ELECTRONIC BALLAST
US4952848A (en) * 1988-07-05 1990-08-28 North American Philips Corporation Signal generating circuit for ballast control of discharge lamps
US4952849A (en) * 1988-07-15 1990-08-28 North American Philips Corporation Fluorescent lamp controllers
US4958108A (en) * 1989-02-14 1990-09-18 Avtech Corporation Universal fluorescent lamp ballast
US5068572A (en) * 1989-06-08 1991-11-26 U.S. Philips Corporation Switch mode power supply
US5097181A (en) * 1989-09-29 1992-03-17 Toshiba Lighting & Technology Corporation Discharge lamp lighting device having level shift control function
US5103141A (en) * 1990-03-08 1992-04-07 U.S. Philips Corporation Switching arrangement for increasing the white life of a high pressure sodium lamp
US5048033A (en) * 1990-09-04 1991-09-10 Coherent, Inc. Method and apparatus for controlling the power supply of a laser operating in a pulse mode

Also Published As

Publication number Publication date
JPH04319295A (en) 1992-11-10
EP0496246A1 (en) 1992-07-29
KR100218980B1 (en) 1999-09-01
DE4102069A1 (en) 1992-07-30
JP3210052B2 (en) 2001-09-17
US5198728A (en) 1993-03-30
KR920015963A (en) 1992-08-27
DE59205981D1 (en) 1996-05-23

Similar Documents

Publication Publication Date Title
EP0496246B1 (en) Circuit for operating a discharge lamp
DE19533103B4 (en) Circuit arrangement for operating a discharge lamp
DE3888278T2 (en) High-frequency ballast for discharge gas lamps.
DE3447486C2 (en) Circuit arrangement for operating an electrical consumer
EP0241976B1 (en) Circuit arrangement to produce a dc voltage from a sinusoidal input voltage
EP0800335A2 (en) Circuit for operating electric lamps
DE10303246B3 (en) Switch control circuit for switched power factor converter has signal generation circuit responding to detected critical condition for providing control signal with pulse ratio dependent on regulation signal
DE19622803B4 (en) Circuit arrangement for high-pressure discharge lamp
EP1467474B1 (en) Interface circuit for operation of capacitive loads
DE19841719C2 (en) Circuit arrangement for edge slope shaping
EP0144754A1 (en) Flyback converter switching power supply
EP1526622A2 (en) Electronic ballast with protection circuit for switching transitors of a converter
DE10241327A1 (en) Circuit arrangement for operating discharge lamps
DE9310461U1 (en) Burner control
DE19830368A1 (en) Electronic ballast with inrush current limitation
EP0389847B1 (en) Circuit
DE60127966T2 (en) CIRCUIT
EP0642295B1 (en) Electronic ballast for a load, for example a discarge lamp
EP0634087B2 (en) Electronic ballast for a gas discharge lamp
EP1326484A2 (en) Apparatus for operating discharge lamps
DE69817326T2 (en) BALLAST
DE4036604A1 (en) CIRCUIT ARRANGEMENT FOR OPERATING A DISCHARGE LAMP
EP0241979B1 (en) Circuit arrangement for the reduction of an interfering current produced by a load
DE4335375B4 (en) Power supply unit for supplying a gas discharge lamp
DE2100929A1 (en) Control circuit for supplying an inductive consumer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19921007

17Q First examination report despatched

Effective date: 19940421

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59205981

Country of ref document: DE

Date of ref document: 19960523

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961010

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060105

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060123

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060131

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070113

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110321

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59205981

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59205981

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120114