EP0494563B1 - Process for electrowinning of zinc - Google Patents

Process for electrowinning of zinc

Info

Publication number
EP0494563B1
EP0494563B1 EP91403495A EP91403495A EP0494563B1 EP 0494563 B1 EP0494563 B1 EP 0494563B1 EP 91403495 A EP91403495 A EP 91403495A EP 91403495 A EP91403495 A EP 91403495A EP 0494563 B1 EP0494563 B1 EP 0494563B1
Authority
EP
European Patent Office
Prior art keywords
process according
equal
compound
carbon atoms
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91403495A
Other languages
German (de)
French (fr)
Other versions
EP0494563A1 (en
Inventor
Chantal Cachet
Valérie Mariotte
Robert Wiart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Elf Atochem SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elf Atochem SA filed Critical Elf Atochem SA
Publication of EP0494563A1 publication Critical patent/EP0494563A1/en
Application granted granted Critical
Publication of EP0494563B1 publication Critical patent/EP0494563B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/16Electrolytic production, recovery or refining of metals by electrolysis of solutions of zinc, cadmium or mercury

Definitions

  • the present invention relates to the electroextraction of zinc in an acid medium, in particular in a sulfuric medium.
  • Ethoxyacetylene alcohol which must be present in a high concentration, is not a commercial product. It also has the disadvantage of being consumed during electrolysis.
  • the surfactant compound according to the invention can be chosen from the known compounds of formula: R F -CH2CH2O (CH2CH2O) m H (I) in which R F represents a perfluoroalkyl radical containing from 4 to 20 carbon atoms, m is a number ranging from 6 to 18, n is equal to 0 or 2, p is equal to 2 or 3, q is equal to 1 or 2 , X represents a CO or SO2 group, R represents a hydrogen atom or an alkyl radical containing from 1 to 4 carbon atoms, and R 'and R'', identical or different, each represent an alkyl group containing from 1 to 4 carbon atoms.
  • a particularly preferred group of additives according to the invention consists of the compounds in which R F contains from 6 to 10 carbon atoms, R is a hydrogen atom, R 'and R''methyl groups, X a SO2 group, m a number ranging from 10 at 12, n is 2, p is 3 and q is 1.
  • the amount of fluorinated surfactant compound according to the invention to be added to the electrolyte can vary within wide limits depending on the nature and the concentration of metallic impurities present in the electrolyte. Without this affecting the course of the electroextraction process, this amount can generally range from 0.01 to 5 millimoles of fluorinated additive per liter of electrolyte; it is preferably between approximately 0.1 and 2 mmol / l.
  • This time is greater than 48 hours when the test is repeated by adding 0.33 millimole / liter of the compound C6F13CH2CH2O (CH2CH2O) 11H to the electrolyte.
  • the electrolysis is carried out under the same conditions as in Example 1, with an electrolyte containing 120 g / l of H2SO4, 55 g / l of Zn2+ and variable concentrations of germanium.
  • the optimal yield In the presence of the polyfluorinated compound, the optimal yield always corresponds to fine-grained zinc deposits, without the imprint left by the hydrogen bubbles.
  • the electrolysis is carried out under the same conditions as in Example 1, with an electrolyte containing 120 g / l of H2SO4, 55 g / l of Zn2+ and 1.18 mg / l of germanium.
  • the zinc deposits are formed by sets of parallel lamellae and arranged perpendicular to the aluminum substrate.
  • An electrolyte containing 120 g / l of H2SO4, 55 g / l of Zn2+ and 4.16 (or 8.32) mg / l of nickel is used and the electrolysis is carried out under the same conditions as in the example. 1.
  • the potential of the electrode is stabilized for more than 8 hours by adding 0.094 millimole / liter of the compound C6F13CH2CH2O (CH2CH2O) 11H to the electrolyte.
  • the faradic yield is approximately 86%.

Description

La présente invention concerne l'électroextraction du zinc en milieu acide, notamment en milieu sulfurique.The present invention relates to the electroextraction of zinc in an acid medium, in particular in a sulfuric medium.

Dans l'électroextraction du zinc effectuée en milieu sulfate acide, la présence de petites quantités d'impuretés métalliques (Ge, Sb, Ni, Co, As,...) induit des difficultés sur le processus d'électrocristallisation du zinc : baisse du rendement faradique de l'électrocristallisation, stimulation du dégagement d'hydrogène et redissolution du dépôt de zinc. Ainsi, par exemple, pour des concentrations de Ni ou Co supérieures à 5 mg/l, le rendement diminue rapidement après une période stable d'incubation dont la durée dépend de la concentration de l'impureté. Les éléments Ge et Sb ont un effet particulièrement néfaste sur le rendement, même à des concentrations très faibles (environ 0,1 ppm) et pratiquement sans période d'incubation. D'une manière générale, la baisse de rendement provoquée par une impureté va de pair avec une dépolarisation de l'électrode de zinc, après incubation dans le cas du nickel ou du cobalt, mais quasi-immédiate dans le cas du germanium.In the electroextraction of zinc carried out in acid sulfate medium, the presence of small amounts of metallic impurities (Ge, Sb, Ni, Co, As, ...) induces difficulties on the electrocrystallization process of zinc: decrease in Faradaic yield of electrocrystallization, stimulation of hydrogen evolution and redissolution of the zinc deposit. Thus, for example, for Ni or Co concentrations greater than 5 mg / l, the yield decreases rapidly after a stable incubation period the duration of which depends on the concentration of the impurity. The elements Ge and Sb have a particularly harmful effect on the yield, even at very low concentrations (approximately 0.1 ppm) and practically without an incubation period. In general, the drop in yield caused by an impurity goes hand in hand with a depolarization of the zinc electrode, after incubation in the case of nickel or cobalt, but almost immediate in the case of germanium.

Les travaux visant à remédier à ces difficultés sont basés sur l'emploi d'additifs dans l'électrolyte. Ont notamment été étudiés les additifs suivants :

  • le plomb (E.J. FRAZER, J. Electrochem. Soc., 135, 1988, p. 2465)
  • la gomme arabique (M. MAJA et al, Oberflache-Surface, 24, 1983, p. 234)
  • la glu (D.J. MACKINNON et al, J. Appl. Electrochem., 17, 1987, p. 1129)
  • la réglisse "liquorice" (T.J. O'KEEFEE et al, J. Appl. Electrochem., 16, 1986, p. 913)
  • le 2-butyne-1,4-diol (M. SIDER et al, J. Appl. Electrochem, 18, 1988, p. 54)
  • un molybdate (M.M. JAKSIC, Surf. Coat. Technol., 28, 1986, p. 113)
  • le chlorure de tétrabutyl ou tétraéthyl ammonium (D.J. MACKINNON et al, J. Appl. Electrochem., 9, 1979, p. 603)
  • un mélange d'alcool éthoxyacétylénique (HOCH₂C ≡ CCH₂OCH₂CH₂OH), de chlorure de triéthyl benzyl ammonium et de polyéthylèneglycol (Chr. BOZHKOV et al, Proceedings of the 7th European Symposium on Corrosion Inhibitors, Ferrare, Suppl. n° 9, 1990, p. 1211).
Work to remedy these difficulties is based on the use of additives in the electrolyte. In particular, the following additives have been studied:
  • lead (EJ FRAZER, J. Electrochem. Soc., 135, 1988, p. 2465)
  • gum arabic (M. MAJA et al, Oberflache-Surface, 24, 1983, p. 234)
  • glue (DJ MACKINNON et al, J. Appl. Electrochem., 17, 1987, p. 1129)
  • liquorice liquorice (TJ O'KEEFEE et al, J. Appl. Electrochem., 16, 1986, p. 913)
  • 2-butyne-1,4-diol (M. SIDER et al, J. Appl. Electrochem, 18, 1988, p. 54)
  • a molybdate (MM JAKSIC, Surf. Coat. Technol., 28, 1986, p. 113)
  • tetrabutyl chloride or tetraethyl ammonium (DJ MACKINNON et al, J. Appl. Electrochem., 9, 1979, p. 603)
  • a mixture of ethoxyacetylene alcohol (HOCH₂C ≡ CCH₂OCH₂CH₂OH), triethyl benzyl ammonium chloride and polyethylene glycol (Chr. BOZHKOV et al, Proceedings of the 7th European Symposium on Corrosion Inhibitors, Ferrara, Suppl. No. 9, 1990, p. 1211).

L'alcool éthoxyacétylénique qui doit être présent à une concentration élevée, n'est pas un produit commercial. Il présente en outre l'inconvénient de se consommer durant l'électrolyse.Ethoxyacetylene alcohol, which must be present in a high concentration, is not a commercial product. It also has the disadvantage of being consumed during electrolysis.

Il a maintenant été trouvé que les conditions d'électrocristallisation du zinc en présence d'impuretés métalliques (en particulier de germanium) peuvent être stabilisées en utilisant comme additif un composé tensio-actif comprenant un groupement perfluoroalkyle relié à un groupement hydrophile polyoxyéthylène, amine-oxyde ou bétaïne.It has now been found that the conditions for electrocrystallization of zinc in the presence of metallic impurities (in particular germanium) can be stabilized by using as surfactant a compound comprising a perfluoroalkyl group linked to a hydrophilic polyoxyethylene group, amine- oxide or betaine.

Le composé tensio-actif selon l'invention peut être choisi parmi les composés connus de formule :

R F -CH₂CH₂O(CH₂CH₂O) m H   (I)

Figure imgb0001
Figure imgb0002

dans lesquelles RF représente un radical perfluoroalkyle contenant de 4 à 20 atomes de carbone, m est un nombre allant de 6 à 18, n est égal à 0 ou 2, p est égal à 2 ou 3, q est égal à 1 ou 2, X représente un groupe CO ou SO₂, R représente un atome d'hydrogène ou un radical alkyle contenant de 1 à 4 atomes de carbone, et R' et R'', identiques ou différents, représentent chacun un groupe alkyle contenant de 1 à 4 atomes de carbone.The surfactant compound according to the invention can be chosen from the known compounds of formula:

R F -CH₂CH₂O (CH₂CH₂O) m H (I)
Figure imgb0001
Figure imgb0002

in which R F represents a perfluoroalkyl radical containing from 4 to 20 carbon atoms, m is a number ranging from 6 to 18, n is equal to 0 or 2, p is equal to 2 or 3, q is equal to 1 or 2 , X represents a CO or SO₂ group, R represents a hydrogen atom or an alkyl radical containing from 1 to 4 carbon atoms, and R 'and R'', identical or different, each represent an alkyl group containing from 1 to 4 carbon atoms.

Un groupe particulièrement préféré d'additifs selon l'invention est constitué par les composés dans lesquels RF contient de 6 à 10 atomes de carbone, R est un atome d'hydrogène, R' et R'' des groupes méthyle, X un groupe SO₂, m un nombre allant de 10 à 12, n est égal à 2, p égal à 3 et q égal à 1.A particularly preferred group of additives according to the invention consists of the compounds in which R F contains from 6 to 10 carbon atoms, R is a hydrogen atom, R 'and R''methyl groups, X a SO₂ group, m a number ranging from 10 at 12, n is 2, p is 3 and q is 1.

La quantité de composé tensio-actif fluoré selon l'invention à ajouter à l'électrolyte peut varier dans de larges limites en fonction de la nature et de la concentration des impuretés métalliques présentes dans l'électrolyte. Sans que cela nuise au déroulement du processus d'électroextraction, cette quantité peut généralement aller de 0,01 à 5 millimoles d'additif fluoré par litre d'électrolyte ; elle est de préférence comprise entre environ 0,1 et 2 mmol/l.The amount of fluorinated surfactant compound according to the invention to be added to the electrolyte can vary within wide limits depending on the nature and the concentration of metallic impurities present in the electrolyte. Without this affecting the course of the electroextraction process, this amount can generally range from 0.01 to 5 millimoles of fluorinated additive per liter of electrolyte; it is preferably between approximately 0.1 and 2 mmol / l.

Pour une impureté métallique donnée, il existe généralement une concentration optimale d'additif fluoré permettant d'obtenir le meilleur rendement. Cette concentration optimale, variable selon l'additif considéré et la concentration de l'impureté métallique, peut être facilement déterminée par l'homme du métier.For a given metallic impurity, there is generally an optimal concentration of fluorinated additive allowing the best yield to be obtained. This optimum concentration, which varies according to the additive under consideration and the concentration of the metallic impurity, can be easily determined by a person skilled in the art.

Les exemples suivants illustrent l'invention sans la limiter.

Figure imgb0003
The following examples illustrate the invention without limiting it.
Figure imgb0003

On utilise un électrolyte contenant 120 g/l de H₂SO₄, 55 g/l de Zn²⁺ et 90 mg/l de nickel. On effectue l'électrolyse dans les conditions suivantes :

  • densité de courant : 50 mA/cm²
  • température : 36°C
  • électrode verticale en aluminium
  • sans agitation
   En suivant le potentiel de l'électrode au cours du temps, on constate que la période d'incubation (c'est-à-dire le temps de déstabilisation du système) est de 15 minutes.An electrolyte containing 120 g / l of H₂SO₄, 55 g / l of Zn²⁺ and 90 mg / l of nickel is used. Electrolysis is carried out under the following conditions:
  • current density: 50 mA / cm²
  • temperature: 36 ° C
  • vertical aluminum electrode
  • without agitation
By following the potential of the electrode over time, it can be seen that the incubation period (that is to say the time of destabilization of the system) is 15 minutes.

Ce temps est supérieur à 48 heures lorsqu'on reproduit l'essai en ajoutant à l'électrolyte 0,33 millimole/litre du composé C₆F₁₃CH₂CH₂O(CH₂CH₂O)₁₁H.This time is greater than 48 hours when the test is repeated by adding 0.33 millimole / liter of the compound C₆F₁₃CH₂CH₂O (CH₂CH₂O) ₁₁H to the electrolyte.

En présence de manganèse (15,4 g/l) dans l'électrolyte, la période d'incubation retombe à 4 heures, le manganèse stimulant le dégagement d'hydrogène. Cette période remonte à 72 heures en ajustant à 2 millimoles/litre la concentration de l'électrolyte en composé C₆F₁₃CH₂CH₂O(CH₂CH₂O)₁₁H.

Figure imgb0004
In the presence of manganese (15.4 g / l) in the electrolyte, the incubation period drops to 4 hours, the manganese stimulating the evolution of hydrogen. This period goes back to 72 hours by adjusting the concentration of the electrolyte in compound C₆F₁₃CH₂CH₂O (CH₂CH₂O) ₁₁H to 2 millimoles / liter.
Figure imgb0004

L'électrolyse est effectuée dans les mêmes conditions qu'à l'exemple 1, avec un électrolyte contenant 120 g/l de H₂SO₄, 55 g/l de Zn²⁺ et des concentrations variables en germanium.The electrolysis is carried out under the same conditions as in Example 1, with an electrolyte containing 120 g / l of H₂SO₄, 55 g / l of Zn²⁺ and variable concentrations of germanium.

En l'absence d'additif, on observe une déstabilisation quasi-immédiate des conditions d'électrolyse avec redissolution du dépôt de zinc.In the absence of an additive, an almost immediate destabilization of the electrolysis conditions is observed with redissolution of the zinc deposit.

L'addition du composé C₆F₁₃CH₂CH₂O(CH₂CH₂O)₁₁H permet de stabiliser le potentiel de l'électrode pendant au moins 8 heures. Le rendement faradique de l'électrocristallisation varie alors en fonction des concentrations en germanium et en composé polyfluoré (voir le tableau suivant). Concentration de l'électrolyte en : Rendement faradique (%) Germanium (mg/litre) C₆F₁₃C₂H₄O(C₂H₄O)₁₁H (millimole/litre) 0,127 0 0 0,127 0,094 88,9 0,254 0,094 88,3 0,381 0,094 55,7 0,508 0,094 49,2 0,508 0,190 79,6 0,508 0,280 73,8 0,635 0,280 75,4 0,889 0,280 84,5 1,180 0,280 71,7 1,180 0,380 74,0 1,180 0,470 76,2 1,180 0,570 61,0 1,700 0,570 63,0 2,100 0,570 75,7 2,300 0,570 73,4 The addition of the compound C₆F₁₃CH₂CH₂O (CH₂CH₂O) ₁₁H makes it possible to stabilize the potential of the electrode for at least 8 hours. The faradaic yield of electrocrystallization then varies as a function of the concentrations of germanium and of polyfluorinated compound (see the following table). Concentration of the electrolyte in: Faradic yield (%) Germanium (mg / liter) C₆F₁₃C₂H₄O (C₂H₄O) ₁₁H (millimole / liter) 0.127 0 0 0.127 0.094 88.9 0.254 0.094 88.3 0.381 0.094 55.7 0.508 0.094 49.2 0.508 0.190 79.6 0.508 0.280 73.8 0.635 0.280 75.4 0.889 0.280 84.5 1.180 0.280 71.7 1.180 0.380 74.0 1.180 0.470 76.2 1.180 0.570 61.0 1,700 0.570 63.0 2,100 0.570 75.7 2,300 0.570 73.4

En présence du composé polyfluoré, le rendement optimal correspond toujours à des dépôts de zinc à grains fins, sans empreinte laissée par les bulles d'hydrogène.

Figure imgb0005
In the presence of the polyfluorinated compound, the optimal yield always corresponds to fine-grained zinc deposits, without the imprint left by the hydrogen bubbles.
Figure imgb0005

L'électrolyse est effectuée dans les mêmes conditions qu'à l'exemple 1, avec un électrolyte contenant 120 g/l de H₂SO₄, 55 g/l de Zn²⁺ et 1,18 mg/l de germanium.The electrolysis is carried out under the same conditions as in Example 1, with an electrolyte containing 120 g / l of H₂SO₄, 55 g / l of Zn²⁺ and 1.18 mg / l of germanium.

L'addition du composé (A) ou (B) ci-dessous permet de stabiliser le potentiel de l'électrode pendant au moins 8 heures.



        (A) = C₆F₁₃C₂H₄SO₂NHC₃H₆NO(CH₃)₂


(B) = C₆F₁₃C₂H₄SO₂NHC₃H₆N⁺(CH₃)₂CH₂CO - 2

Figure imgb0006


   Le tableau suivant montre l'évolution du rendement faradique de l'électrocristallisation en fonction de la concentration en composé A ou B.
Figure imgb0007
The addition of the compound (A) or (B) below makes it possible to stabilize the potential of the electrode for at least 8 hours.



(A) = C₆F₁₃C₂H₄SO₂NHC₃H₆NO (CH₃) ₂


(B) = C₆F₁₃C₂H₄SO₂NHC₃H₆N⁺ (CH₃) ₂CH₂CO - 2
Figure imgb0006


The following table shows the evolution of the faradic yield of electrocrystallization as a function of the concentration of compound A or B.
Figure imgb0007

Avec ces composés A et a, on obtient une bonne homogénéité des rendements. Les dépôts de zinc sont formés d'ensembles de lamelles parallèles et disposées perpendiculairement au substrat d'aluminium.

Figure imgb0008
With these compounds A and a, good homogeneity of the yields is obtained. The zinc deposits are formed by sets of parallel lamellae and arranged perpendicular to the aluminum substrate.
Figure imgb0008

On utilise un électrolyte contenant 120 g/l de H₂SO₄, 55 g/l de Zn²⁺ et 4,16 (ou 8,32) mg/l de nickel et on effectue l'électrolyse dans les mêmes conditions qu'à l'exemple 1.An electrolyte containing 120 g / l of H₂SO₄, 55 g / l of Zn²⁺ and 4.16 (or 8.32) mg / l of nickel is used and the electrolysis is carried out under the same conditions as in the example. 1.

En l'absence de tensio-actif, le potentiel est destabilisé et le rendement faradique tombe à zéro avant huit heures.In the absence of surfactant, the potential is destabilized and the faradaic yield drops to zero before eight hours.

Le potentiel de l'électrode est stabilisé pendant plus de 8 heures en ajoutant à l'électrolyte 0,094 millimole/litre du composé C₆F₁₃CH₂CH₂O(CH₂CH₂O)₁₁H. Le rendement faradique est égal à environ 86 %.The potential of the electrode is stabilized for more than 8 hours by adding 0.094 millimole / liter of the compound C₆F₁₃CH₂CH₂O (CH₂CH₂O) ₁₁H to the electrolyte. The faradic yield is approximately 86%.

Claims (8)

  1. Process for the electroextraction of zinc in an acidic medium, characterised in that there is added to the electrolyte a fluorinated surface-active compound selected among the compounds of formulae :



            RF-CH₂CH₂O(CH₂CH₂O)mH   (I)

    Figure imgb0010
    wherein RF denotes a perfluoroalkyl radical containing from 4 to 20 carbon atoms, m is a number ranging from 6 to 18, n is equal to 0 or 2, p is equal to 2 or 3, q is equal to 1 or 2, X denotes a CO or SO₂ group, R denotes a hydrogen atom or an alkyl radical containing from 1 to 4 carbon atoms, and R' and R'', which may be identical or different, each represents an alkyl radical containing from 1 to 4 carbon atoms.
  2. Process according to Claim 1, in which RF contains from 6 to 10 carbon atoms, R is a hydrogen atom, R' and R'' are methyl groups, X is SO₂, m is a number ranging from 10 to 12, n is equal to 2, p is equal to 3, and q is equal to 1.
  3. Process according to Claim 1, in which the compound C₆F₁₃CH₂CH₂O(CH₂CH₂O)₁₁H is employed as additive.
  4. Process according to Claim 1, in which the compound C₆F₁₃CH₂CH₂SO₂NHC₃H₆NO(CH₃)₂ is employed as additive.
  5. Process according to Claim 1, in which the compound C₆F₁₃C₂H₄SO₂NHC₃H₆N⁺(CH₃)₂CH₂CO - 2
    Figure imgb0011
    is employed as additive.
  6. Process according to one of Claims 1 to 5, in which the electrolyte contains from 0.01 to 5 millimoles of fluorinated additive per litre.
  7. Process according to Claim 6, in which the electrolyte contains between 0.1 and 2 millimoles/litre.
  8. Process according to one of Claims 1 to 7, in which the operation is carried out in a sulphuric acid medium.
EP91403495A 1991-01-07 1991-12-20 Process for electrowinning of zinc Expired - Lifetime EP0494563B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9100110 1991-01-07
FR9100110 1991-01-07

Publications (2)

Publication Number Publication Date
EP0494563A1 EP0494563A1 (en) 1992-07-15
EP0494563B1 true EP0494563B1 (en) 1995-06-21

Family

ID=9408486

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91403495A Expired - Lifetime EP0494563B1 (en) 1991-01-07 1991-12-20 Process for electrowinning of zinc

Country Status (8)

Country Link
US (1) US5194125A (en)
EP (1) EP0494563B1 (en)
JP (1) JPH0757918B2 (en)
KR (1) KR950002054B1 (en)
AU (1) AU635872B2 (en)
CA (1) CA2058829A1 (en)
DE (1) DE69110652T2 (en)
FI (1) FI920044A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL1969160T3 (en) * 2006-01-06 2011-09-30 Enthone Incorporated Electrolyte and process for depositing a matt metal layer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4040916A (en) * 1975-11-28 1977-08-09 General Electric Company Zinc plating bath and method of forming a non-dendritic zinc layer
US4384930A (en) * 1981-08-21 1983-05-24 Mcgean-Rohco, Inc. Electroplating baths, additives therefor and methods for the electrodeposition of metals

Also Published As

Publication number Publication date
EP0494563A1 (en) 1992-07-15
DE69110652D1 (en) 1995-07-27
KR920014945A (en) 1992-08-26
AU1006892A (en) 1992-07-09
JPH0757918B2 (en) 1995-06-21
US5194125A (en) 1993-03-16
KR950002054B1 (en) 1995-03-10
CA2058829A1 (en) 1992-07-08
FI920044A0 (en) 1992-01-03
JPH04333586A (en) 1992-11-20
DE69110652T2 (en) 1996-02-01
FI920044A (en) 1992-07-08
AU635872B2 (en) 1993-04-01

Similar Documents

Publication Publication Date Title
EP0071512B1 (en) Process for the preparation of an additive for an acid bath for the electrodeposition of copper and use thereof
DE2343054C2 (en) Process for the electrochemical production of pinacols
EP0236354B1 (en) Method for the acid etching of stainless steel products
EP0193848A1 (en) Galvanic bath for the electrodeposition of gold alloys
EP3159435B1 (en) Additive for silver palladium alloy electrolytes
FR2479275A1 (en) PROCESS FOR THE ELECTRODEPOSITION OF COPPER
EP1272691A1 (en) Electrolytic solution for electrochemical deposit of palladium or its alloys
EP0494563B1 (en) Process for electrowinning of zinc
EP0180523A1 (en) Process for zinc phosphate coating, activation and grain refining bath used in this process and concentrate therefor
DE2300748C3 (en) Aqueous, alkaline bath for electroless copper plating and its use
US4316779A (en) Process for electroplating palladium on articles comprising copper
EP0274776B1 (en) Baths and process for chemically polishing stainless steel surfaces
DE60203301T2 (en) ADDITIVES FOR PREVENTING HYDROGEN FORMATION IN THE ELECTROLYTIC OBTAINING OF ZINC
EP0121492B1 (en) Galvanic bath for the electroplating of a gold-copper-cadmium alloy, process for using it and article resulting from the process
FR2551080A1 (en) IMPROVEMENTS TO COMPOSITIONS FOR METAL DISSOLUTION AND DISSOLUTION PROCESS
SU1516929A1 (en) Method of producing semiconductor sensitive elements for gas analysis
FR2492849A1 (en) ELECTROLYTIC COATING BATHS FOR SEMI-GLOSSY NICKEL DEPOSITION, CONTAINING BENZENESULFONIC ACID AS A BRILLIANT AND A PERFLUOROALKYLSULFONATE WETTING AGENT
EP0140832B1 (en) Bath for the electrolytic deposition of a gold alloy and galvanic process using this bath
EP0179676B1 (en) Process for producing glyoxylic acid by electrochemical anodic oxidation of glyoxal
RU2133306C1 (en) Electrolyte for deposition of coatings from copper-tin alloy
DE1903656C3 (en) Electrolytic process for the electrolysis of an aqueous sulfate solution
DE2800817C2 (en) Aldehyde-free aqueous bath for the electrodeposition of gold and its alloys and a process for the production of gold and gold alloy deposits using this bath
SU775187A1 (en) Electrolyte for precipitating silver-antimony alloy plating
EP0149830B2 (en) Electrolytic bath for the deposition of thin layers of pure gold
JP3428607B2 (en) Copper electrorefining method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19911227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL

17Q First examination report despatched

Effective date: 19941018

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950621

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950621

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19950621

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950621

REF Corresponds to:

Ref document number: 69110652

Country of ref document: DE

Date of ref document: 19950727

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19951212

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951222

Year of fee payment: 5

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19950621

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960130

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19961231

BERE Be: lapsed

Owner name: S.A. ELF ATOCHEM

Effective date: 19961231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970902

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST