EP0485892A1 - Striped material, process for its production and use - Google Patents

Striped material, process for its production and use Download PDF

Info

Publication number
EP0485892A1
EP0485892A1 EP19910119004 EP91119004A EP0485892A1 EP 0485892 A1 EP0485892 A1 EP 0485892A1 EP 19910119004 EP19910119004 EP 19910119004 EP 91119004 A EP91119004 A EP 91119004A EP 0485892 A1 EP0485892 A1 EP 0485892A1
Authority
EP
European Patent Office
Prior art keywords
fibers
yarns
points
belt
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19910119004
Other languages
German (de)
French (fr)
Other versions
EP0485892B1 (en
Inventor
Hans-Joachim Brüning
Ingolf Dr. Jacob
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0485892A1 publication Critical patent/EP0485892A1/en
Application granted granted Critical
Publication of EP0485892B1 publication Critical patent/EP0485892B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/12Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with filaments or yarns secured together by chemical or thermo-activatable bonding agents, e.g. adhesives, applied or incorporated in liquid or solid form
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5418Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H5/00Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
    • D04H5/06Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length strengthened or consolidated by welding-together thermoplastic fibres, filaments, or yarns
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5412Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5414Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres side-by-side
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1007Running or continuous length work
    • Y10T156/1023Surface deformation only [e.g., embossing]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24826Spot bonds connect components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/697Containing at least two chemically different strand or fiber materials

Definitions

  • the present invention relates to strip-shaped semifinished products which are suitable for producing composite materials, in particular fiber-reinforced thermoplastics.
  • thermoplastics For the production of fiber-reinforced thermoplastics. These generally consist of reinforcing fibers arranged in a band, which are melt-impregnated with thermoplastic material. Such semi-finished products are stiff and do not have the drapability of textile fabrics.
  • DE-C-23 20 133 nonwovens made of unidirectionally arranged carbon fibers are known, which are impregnated with adhesive and which are held together by threads of thermoplastic material arranged perpendicular to the carbon fibers by melting these threads.
  • DE-GBM 85 21 108 describes textile reinforcements for the production of layer structures from longitudinal and transverse thread layers. The number of crossing points between warp and weft threads is kept as low as possible. This is achieved there by an arrangement of superimposed longitudinal and transverse thread layers, which are interconnected by additional longitudinal threads made of thermoplastic material. Further configurations of textile reinforcements are described in EP-B-193 478, EP-B-193 479 and EP-B-198 776.
  • DE-A-18 08 286 discloses nonwovens which consist of statistically stored threads or fibers and which have at least one thermoplastic polymer material. These nonwovens are characterized in that a consolidation has been carried out in part of the nonwoven, a certain number of binding points per unit area having a specific cross-sectional area of the binding point tips being generated in this part.
  • the consolidation is e.g. by treating the fleece with a heated press that has a textured surface.
  • DE-A-34 08 769 discloses a process for the production of fiber-reinforced molded articles made of thermoplastic material, in which flexible textile structures are used which consist of reinforcing fibers that are largely unidirectional or parallel and a matrix composed of thermoplastic yarns or fibers . Essentially knitted fabrics made of these fibers are described, or strands or ribbons. These semi-finished products are then only deformed by heatable profile nozzles when they are finally shaped, with practically all thermoplastic fibers being melted.
  • the semi-finished products according to the invention have an essentially homogeneous distribution between the different types of fibers and the orientation of the reinforcing fibers is largely unidirectional.
  • the drapability of the semifinished product according to the invention corresponds approximately to that of a woven or knitted fabric of the same basis weight made of these fibers and has the advantage over a woven or knitted fabric that the fibers are unidirectionally oriented and thus alignment of the fibers by stretching in the subsequent thermal shaping process can be omitted.
  • the invention relates to a band of essentially unidirectionally oriented reinforcing fibers and thermoplastic matrix fibers. It is characteristic of the tape according to the invention that it is essentially composed of yarns containing reinforcing fibers and / or matrix fibers, the yarn density of the tape is about 5 to 20 yarns / cm width, the titer of the yarns is about 1000 to 3000 dtex and the matrix fibers are locally melted or melted on at least one strip surface, forming solidification points.
  • the term “yarn” is to be understood as meaning multifilament yarns, staple fiber yarns, mixed yarns made of multifilaments and staple fibers and also monofilaments.
  • the term “fiber” is understood to mean both staple fibers and endless filaments.
  • the yarn density of the tape is chosen so that the distance between the yarns making up the tape is not too great, so that it is still possible to form consolidation points between adjacent yarns.
  • the distance between the yarns in the band should be less than about three times the diameter of a monofilament from the titer of the yarns.
  • the titer of the yarns made of reinforcing and / or matrix fibers is generally 1000 to 3000 dtex, preferably 1500 to 2500 dtex.
  • Reinforcing fibers and matrix fibers can be in the form of separate yarns as well as mixed yarns. Bicomponent fibers made of reinforcement and matrix components can also be used. The reinforcing fibers in the yarns are preferably in the form of multifilaments. Mixed yarns made of reinforcing and matrix fibers are very particularly preferably used.
  • Blended yarns can be made using any of the conventional blending techniques such as Ring or 3-cylinder spinning, commingeling techniques, mixed twisting or DREF techniques.
  • multifilament blended yarns made from reinforcing and matrix fibers in which at least part of the yarn consists of high-modulus individual filaments of an initial modulus of more than 50 GPa, in particular more than 80 GPa, which are mixed by means of a mixing medium, preferably air, are available, wherein the high modulus individual filaments have been preheated to a temperature of 0.25 Ts to 0.9 Ts prior to mixing and the mixing takes place at a temperature at which the matrix fibers are essentially retained; in particular, the mixing is carried out in the non-heated mixing medium.
  • Ts means the melting or decomposition temperature of the high modulus single filaments in ° C.
  • These particularly preferred multifilament blended yarns are characterized in that the average mixing distance of the yarn, measured in the needle test, is less than 150 mm and that the number of breaks in the individual filaments, measured in the light barrier method on one side of the yarn, is less than 20 / m .
  • non-meltable or high-meltable, high-modulus and / or high-strength fibers can be considered as reinforcing fibers. These fibers are selected so that they do not yet melt under the processing conditions suitable for the thermoplastic fiber fractions or practically do not deform thermoplastic and are present as reinforcing fibers in the resulting composite material.
  • Such fibers are glass fibers, carbon fibers, fibers of various metals and Metal alloys, from a wide variety of metal nitrides or carbides, metal oxide fibers or fibers from organic polymers, such as from polyacrylonitrile, polyester, aliphatic and aromatic polyamide or polyimide.
  • Glass, carbon, metal or aramid fibers are preferably used.
  • thermoplastic material All materials that can be reversibly processed thermoplastically are suitable as the thermoplastic material. Examples of this are metals and metal alloys, glasses and in particular organic materials.
  • the organic materials are primarily known, optionally solvent-containing, but preferably solvent-free, known organic thermoplastic molding compositions.
  • thermoplastics are polymers, such as vinyl polymers, for example polyolefins, polyvinyl esters, polyvinyl ethers, polyacrylic and methacrylates, polyvinyl aromatics, polyvinyl halides, and a wide variety of copolymers, block, graft, liquid crystal, mixed polymers or polymer mixtures. Special representatives are: polyethylenes, polypropylenes, polybutenes, polypentenes, polyvinylchloride types, polymethyl methacrylates, poly (meth) acrylonitrile types, optionally modified polystyrenes or multiphase plastics such as ABS.
  • vinyl polymers for example polyolefins, polyvinyl esters, polyvinyl ethers, polyacrylic and methacrylates, polyvinyl aromatics, polyvinyl halides, and a wide variety of copolymers, block, graft, liquid crystal, mixed polymers or polymer mixtures. Special representatives are: polyethylenes, polyprop
  • polyaddition, polycondensation, polyoxidation or cyclization polymers, LC polymers such as polyamides, polyurethanes, polyureas, polyimides, polyesters, polyethers, polyhydantoins, polyphenylene oxides, polyphenylene sulfides, polysulfones, polycarbonates, as well as their mixed forms, their mixtures and combinations with other polymers or polymer precursors, for example polyamide-6; Polyamide-6.6; Polyethylene terephthalate or bisphenol-A polycarbonate.
  • LC polymers such as polyamides, polyurethanes, polyureas, polyimides, polyesters, polyethers, polyhydantoins, polyphenylene oxides, polyphenylene sulfides, polysulfones, polycarbonates, as well as their mixed forms, their mixtures and combinations with other polymers or polymer precursors, for example polyamide-6; Polyamide-6.6; Polyethylene terephthalate or bisphenol-A poly
  • the polymers mentioned can also serve as reinforcing fiber material if they are processed with lower-melting fibers, which according to the invention act as thermoplastic components.
  • the filaments or staple fibers building up the yarns can have a practically round cross-section or can also have other shapes, for example a dumbbell-shaped, kidney-shaped, triangular or tri-or. have multilobal cross-section. Hollow fibers can also be used.
  • Bicomponent or multicomponent fibers can also be used in particular as thermoplastic fibers, for example of the core / jacket type or of the side / side type or of the matrix / fibril type.
  • the semi-finished product according to the invention is so solidified by local melting of the matrix fibers that it can be handled without problems without losing its tape shape, but at the same time has good drapability, rollability and transportability.
  • the semi-finished product according to the invention can be stored almost indefinitely and indefinitely, since there are practically no curing components.
  • the consolidation points are located at least along one surface of the belt, but can also be along both surfaces. It may be sufficient in individual cases that only a surface fixation of the tape has taken place.
  • the local consolidation points run practically through the cross section of the entire band. It is essential in all of these embodiments that the melting of the matrix fibers takes place locally and that the individual matrix fibers and / or reinforcing fibers can each move practically freely between two solidification points.
  • the mean free distance between two fastening points is preferably about 1 to 5 cm.
  • the density of the solidification points along the surface will depend, among other things, on the type and amount of the thermoplastic fibers and on the ratio of thermoplastic and reinforcing fibers. It is also possible to apply a pattern of solidification points to the tape, i.e. to provide only parts of the surface of the belt with consolidation points.
  • Usual values for the density of consolidation points are in the range from 40 to 500,000 points / m2 surface, preferably 100 to 40,000 points / m2 surface (with one-sided application of consolidation points to the surface; with two-sided Applying usually half the density per surface is sufficient).
  • a consolidation point preferably connects several reinforcing yarns.
  • the volume ratio of the reinforcement to the matrix fibers in the semifinished product according to the invention can be chosen as desired within wide limits.
  • the volume fraction of the reinforcing fibers can e.g. Amount to 10 to 90% and the volume fraction of the matrix fibers accordingly 90 to 10%.
  • the volume fraction of the reinforcing fibers is preferably 20-80%, in particular 40-70%.
  • Local elevated temperatures can be generated by treating the band-shaped arrangement with heated embossing rollers.
  • the yarn strip can be passed between two embossing rollers or in particular between a roller with a smooth surface and a roller with a structured surface or partially structured surface.
  • locally elevated temperatures can also be generated in any other way, for example by the action of hot gas streams or heated stamps or by ultrasound or high-frequency electromagnetic radiation (high-frequency welding).
  • FIGS. 1a, 1b, 2a and 2b show two exemplary embodiments of the method according to the invention.
  • FIG. 3 shows an example of an embodiment of the semi-finished product according to the invention.
  • Figure 1a relates to an embodiment in supervision, while this embodiment is shown in Figure 1b in side view.
  • the unidirectional yarn sheet (2) running from a warp beam (1) (shown in FIG. 1a only over part of the entire warp beam length) consists of at least one type of thermoplastic fiber, such as polyester, polyethylene, polyamide, polyphenylene sulfide, polypropylene, polyetherimide -, Polyetherketone, polysulfone or partially halogenated polyolefin fiber, and at least one type of reinforcing fiber, such as glass, carbon, metal, ceramic or aramid fiber.
  • thermoplastic fiber such as polyester, polyethylene, polyamide, polyphenylene sulfide, polypropylene, polyetherimide -, Polyetherketone, polysulfone or partially halogenated polyolefin fiber
  • reinforcing fiber such as glass, carbon, metal, ceramic or aramid fiber.
  • the unidirectional yarn group (2) is passed between the heated embossing rollers (3) and (4).
  • One of these rollers can also have a smooth surface. Under the influence of pressure and heat at the locations of the raised parts of the embossing roller, local melting of the thermoplastic fiber occurs and thus melting points between two or more warp yarns lying next to one another. After leaving the area of the embossing rollers (3) and (4), the melting zones solidify and result in a positive connection between these warp yarns.
  • Figure 2a relates to a further embodiment in supervision, while this embodiment is shown in Figure 2b in side view.
  • the unidirectional yarn sheet (2) running from a warp beam (1) (shown in FIG. 2a only over part of the entire warp beam length) consists of at least one type of thermoplastic fiber, e.g. such fibers as mentioned by way of example in the description of FIG. 1a.
  • the unidirectional group of yarn (2) is carried out between a suitable base (8) and the selective melting unit (9).
  • a selective melting unit can be, for example, an ultrasound probe, a hot gas supply, a heated stamp or an electromagnetic energy source.
  • the melting unit can be moved parallel to the warp beam axis and in the vertical direction, a computer can control this process as well as switch the energy supply on and off.
  • a computer can control this process as well as switch the energy supply on and off.
  • the use of several melting units on a base as well as the use of several combinations consisting of melting unit (s) and base (s) one after the other. As a result, a higher throughput of the plant can be achieved.
  • the support (s) can be moved vertically (8a) in order to adjust the changes in diameter of the warp beam winding and roller (7).
  • thermoplastic fiber Under the influence of heat at the locations of the reflow unit (9), the thermoplastic fiber melted locally and thus to fusion points between two or more warp yarns lying next to each other. After leaving the area of the melting unit (9), the melting zones solidify and result in a positive connection between these warp yarns.
  • These solidified local melting zones (5) are shown in FIG. 2a in the form of a striped pattern. After solidification, the band (6) can be wound onto a roll (7).
  • FIG. 3 shows an embodiment of the semi-finished product according to the invention.
  • the band (6) is made up of a group of yarn (2).
  • mixed yarns (10) made of reinforcing and matrix fibers are used as yarns.
  • the band (6) has solidified local melting zones (5), on each of which two adjacent yarns are connected to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Reinforced Plastic Materials (AREA)
  • Nonwoven Fabrics (AREA)
  • Multicomponent Fibers (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Woven Fabrics (AREA)
  • Package Frames And Binding Bands (AREA)
  • Press Drives And Press Lines (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Laminated Bodies (AREA)

Abstract

A tape of unidirectionally aligned reinforcing and thermoplastic fibres which is built up of threads of reinforcing and/or thermoplastic fibres is described, the thread density being about 5 to 20 threads/cm width and the threads having a titre of about 1000 to 3000 dtex, and the matrix fibres being locally fused-on or fused-in with the formation of strengthening points, on at least one of the tape surfaces. The tape is suitable, for example, as a semi-finished product for the production of laminated materials. <IMAGE>

Description

Die vorliegende Erfindung betrifft bandförmige Halbzeuge, die sich zur Herstellung von Verbundwerkstoffen, insbesondere von faserverstärkten Thermoplasten eignen.The present invention relates to strip-shaped semifinished products which are suitable for producing composite materials, in particular fiber-reinforced thermoplastics.

Es ist bereits bekannt, zur Herstellung faserverstärkter Thermoplaste sogenannte "organische Bleche" einzusetzen. Diese bestehen im allgemeinen aus bandförmig angeordneten Verstärkungsfasern, die mit thermoplastischem Material schmelzimprägniert sind. Derartige Halbzeuge sind steif und besitzen nicht die Drapierbarkeit textiler Flächengebilde.It is already known to use so-called "organic sheets" for the production of fiber-reinforced thermoplastics. These generally consist of reinforcing fibers arranged in a band, which are melt-impregnated with thermoplastic material. Such semi-finished products are stiff and do not have the drapability of textile fabrics.

Aus der DE-C-23 20 133 sind Vliese aus unidirektional angeordneten Kohlenstoffasern bekannt, die mit Klebstoff imprägniert sind und die durch senkrecht zu den Kohlenstoffasern angeordnete Fäden aus thermoplastischem Material durch Aufschmelzen dieser Fäden zusammengehalten werden. Das DE-GBM 85 21 108 beschreibt Textilbewehrungen zur Herstellung von Schichtgebilden aus Längs- und Querfadenlagen. Dabei wird die Zahl der Kreuzungsstellen zwischen Kett- und Schußfäden möglichst gering gehalten. Dies wird dort durch eine Anordnung übereinander liegender Längs- und Querfadenlagen erreicht, die durch zusätzliche Längsfäden aus thermoplastischem Material untereinander verbunden sind. Weitere Ausgestaltungen von Textilbewehrungen sind in der EP-B-193 478, der EP-B-193 479 und der EP-B-198 776 beschrieben. Aus der EP-A-144 939 ist ein Verbundmaterial aus Kett- und Schußfäden aus Verstärkungsfasern bekannt, worin die Kett- und/oder Schußfäden mit Fäden aus thermoplastischem Material umwickelt sind, das durch Erhitzen ein Verschweißen der Verstärkungsfasern bewirkt.From DE-C-23 20 133 nonwovens made of unidirectionally arranged carbon fibers are known, which are impregnated with adhesive and which are held together by threads of thermoplastic material arranged perpendicular to the carbon fibers by melting these threads. DE-GBM 85 21 108 describes textile reinforcements for the production of layer structures from longitudinal and transverse thread layers. The number of crossing points between warp and weft threads is kept as low as possible. This is achieved there by an arrangement of superimposed longitudinal and transverse thread layers, which are interconnected by additional longitudinal threads made of thermoplastic material. Further configurations of textile reinforcements are described in EP-B-193 478, EP-B-193 479 and EP-B-198 776. From EP-A-144 939 a composite material of warp and weft threads made of reinforcing fibers is known, in which the warp and / or weft threads are wrapped with threads made of thermoplastic material, which causes the reinforcing fibers to be welded together by heating.

Allen diesen Ausführungsformen ist gemeinsam, daß sie Fäden mit unterschiedlichen Ausrichtungen aufweisen.All these embodiments have in common that they have threads with different orientations.

Ferner werden in der DE-A- 18 08 286 Vliesstoffe offenbart, die aus statistisch abgelegten Fäden oder Fasern bestehen und die mindestens ein thermoplastisches Polymermaterial aufweisen. Diese Vliesstoffe sind dadurch gekennzeichnet, daß in einem Teil des Vliesstoffes eine Verfestigung vorgenommen wurde, wobei in diesem Teil eine bestimmte Anzahl von Bindepunkten je Flächeneinheit mit einer bestimmten Querschnittsfläche der Bindepunktspitzen erzeugt wurde. Die Verfestigung wird z.B. durch Behandlung des Vlieses mit einer beheizten Presse, die eine strukturierte Oberfläche aufweist, erzielt.Furthermore, DE-A-18 08 286 discloses nonwovens which consist of statistically stored threads or fibers and which have at least one thermoplastic polymer material. These nonwovens are characterized in that a consolidation has been carried out in part of the nonwoven, a certain number of binding points per unit area having a specific cross-sectional area of the binding point tips being generated in this part. The consolidation is e.g. by treating the fleece with a heated press that has a textured surface.

Schließlich ist aus der DE-A-34 08 769 ein Verfahren zur Herstellung von faserverstärkten Formkörpern aus thermoplastischem Material bekannt, bei dem flexible textile Gebilde eingesetzt werden, die aus weitgehend unidirektional oder parallel ausgerichteten Verstärkungsfasern und aus einer aus thermoplastischen Garnen oder Fasern aufgebauten Matrix bestehen. Es werden im wesentlichen Gestricke aus diesen Fasern beschrieben oder Stränge oder Bänder. Diese Halbzeuge werden dann erst bei ihrer endgültigen Formgebung durch heizbare Profildüsen verformt, wobei praktisch alle thermoplastischen Fasern aufgeschmolzen werden.Finally, DE-A-34 08 769 discloses a process for the production of fiber-reinforced molded articles made of thermoplastic material, in which flexible textile structures are used which consist of reinforcing fibers that are largely unidirectional or parallel and a matrix composed of thermoplastic yarns or fibers . Essentially knitted fabrics made of these fibers are described, or strands or ribbons. These semi-finished products are then only deformed by heatable profile nozzles when they are finally shaped, with practically all thermoplastic fibers being melted.

Es wurden jetzt neue textile Halbzeuge gefunden, die eine gute Drapierbarkeit aufweisen und sich insbesondere in strukturierten Preßformen verarbeiten lassen. Die erfindungsgemäßen Halbzeuge weisen eine im wesentlichen homogene Verteilung zwischen den verschiedenen Fasersorten auf und die Orientierung der Verstärkungsfasern ist weitgehend unidirektional. Die Drapierbarkeit des erfindungsgemäßen Halbzeugs entspricht etwa der eines Gewebes oder Gewirkes gleichen Flächengewichtes aus diesen Fasern und besitzt gegenüber einem Gewebe oder Gewirke den Vorteil, daß die Fasern unidirektional ausgerichtet sind und somit ein Ausrichten der Fasern durch Recken beim nachgeschalteten thermischen Formgebungsprozeß entfallen kann.New textile semi-finished products have now been found which have good drapability and can be processed in particular in structured press molds. The semi-finished products according to the invention have an essentially homogeneous distribution between the different types of fibers and the orientation of the reinforcing fibers is largely unidirectional. The drapability of the semifinished product according to the invention corresponds approximately to that of a woven or knitted fabric of the same basis weight made of these fibers and has the advantage over a woven or knitted fabric that the fibers are unidirectionally oriented and thus alignment of the fibers by stretching in the subsequent thermal shaping process can be omitted.

Die Erfindung betrifft ein Band aus im wesentlichen unidirektional ausgerichteten Verstärkungsfasern und thermoplastischen Matrixfasern. Kennzeichnend für das erfindungsgemäße Band ist, daß dieses im wesentlichen aus Garnen, die Verstärkungsfasern und/oder Matrixfasern enthalten, aufgebaut ist, die Garndichte des Bandes etwa 5 bis 20 Garne/cm Breite beträgt, der Titer der Garne etwa 1000 bis 3000 dtex beträgt und die Matrixfasern zumindest an einer Bandoberfläche unter Ausbildung von Verfestigungspunkten lokal an- oder aufgeschmolzen sind.The invention relates to a band of essentially unidirectionally oriented reinforcing fibers and thermoplastic matrix fibers. It is characteristic of the tape according to the invention that it is essentially composed of yarns containing reinforcing fibers and / or matrix fibers, the yarn density of the tape is about 5 to 20 yarns / cm width, the titer of the yarns is about 1000 to 3000 dtex and the matrix fibers are locally melted or melted on at least one strip surface, forming solidification points.

Unter dem Begriff "Garn" sind im Sinne dieser Anmeldung Multifilamentgarne, Stapelfasergarne, Mischgarne aus Multifilamenten und Stapelfasern und auch Monofilamente Zu verstehen. Unter dem Begriff "Faser" sind im Sinne dieser Anmeldung sowohl Stapelfasern als auch endlose Filamente zu verstehen.For the purposes of this application, the term "yarn" is to be understood as meaning multifilament yarns, staple fiber yarns, mixed yarns made of multifilaments and staple fibers and also monofilaments. For the purposes of this application, the term “fiber” is understood to mean both staple fibers and endless filaments.

Die Garndichte des Bandes wird so gewählt, daß der Abstand der das Band aufbauenden Garne nicht zu groß wird, so daß das Ausbilden von Verfestigungspunkten zwischen benachbarten Garnen noch möglich ist. Üblicherweise sollte der Abstand der Garne im Band geringer sein als etwa der dreifache Durchmesser eines Monofils vom Titer der Garne. Der Titer der eingesetzten Garne aus Verstärkungs- und/oder Matrixfasern beträgt in der Regel 1000 bis 3000 dtex, vorzugsweise 1500 bis 2500 dtex.The yarn density of the tape is chosen so that the distance between the yarns making up the tape is not too great, so that it is still possible to form consolidation points between adjacent yarns. Usually the distance between the yarns in the band should be less than about three times the diameter of a monofilament from the titer of the yarns. The titer of the yarns made of reinforcing and / or matrix fibers is generally 1000 to 3000 dtex, preferably 1500 to 2500 dtex.

Verstärkungsfasern und Matrixfasern können sowohl in Form getrennter Garne vorliegen als auch als Mischgarne. Ferner können auch Bikomponentenfasern aus Verstärkungs- und Matrixkomponenten eingesetzt werden. In den Garnen liegen die Verstärkungsfasern vorzugsweise in Form von Multifilamenten vor. Ganz besonders bevorzugt verwendet man Mischgarne aus Verstärkungs- und Matrixfasern.Reinforcing fibers and matrix fibers can be in the form of separate yarns as well as mixed yarns. Bicomponent fibers made of reinforcement and matrix components can also be used. The reinforcing fibers in the yarns are preferably in the form of multifilaments. Mixed yarns made of reinforcing and matrix fibers are very particularly preferably used.

Mischgarne können auf jede der an sich üblichen Mischtechniken hergestellt werden, wie z.B. Ring- oder 3-Zylinderspinnen, Commingeling-Techniken, Mischzwirnherstellung oder DREF-Techniken.Blended yarns can be made using any of the conventional blending techniques such as Ring or 3-cylinder spinning, commingeling techniques, mixed twisting or DREF techniques.

Besonders bevorzugt verwendet man Multifilament-Mischgarne aus Verstärkungs- und Matrixfasern, bei denen zumindest ein Teil des Garnes aus Hochmodul-Einzelfilamenten eines Anfangsmoduls von mehr als 50 GPa, insbesondere mehr als 80 GPa, besteht, die durch Vermischen mittels eines Vermischungsmediums, vorzugsweise Luft, erhältlich sind, wobei die Hochmodul-Einzelfilamente vor dem Vermischen auf eine Temperatur von 0,25 Ts bis 0,9 Ts vorerwärmt worden sind und die Vermischung bei einer Temperatur stattfindet, bei der die Matrixfasern im wesentlichen erhalten bleiben; insbesondere wird die Vermischung im nicht erwärmten Vermischungsmedium durchgeführt. Dabei bedeutet Ts die Schmelz- oder Zersetzungstemperatur der Hochmodul-Einzelfilamente in °C.It is particularly preferred to use multifilament blended yarns made from reinforcing and matrix fibers, in which at least part of the yarn consists of high-modulus individual filaments of an initial modulus of more than 50 GPa, in particular more than 80 GPa, which are mixed by means of a mixing medium, preferably air, are available, wherein the high modulus individual filaments have been preheated to a temperature of 0.25 Ts to 0.9 Ts prior to mixing and the mixing takes place at a temperature at which the matrix fibers are essentially retained; in particular, the mixing is carried out in the non-heated mixing medium. Here, Ts means the melting or decomposition temperature of the high modulus single filaments in ° C.

Diese besonders bevorzugten Multifilament-Mischgarne sind dadurch gekennzeichnet, daß der durchschnittliche Vermischungsabstand des Garns, gemessen im Nadeltest, kleiner als 150 mm ist und daß die Anzahl von Brüchen der Einzelfilamente, gemessen im Lichtschrankenverfahren auf einer Seite des Garns, kleiner als 20/m ist.These particularly preferred multifilament blended yarns are characterized in that the average mixing distance of the yarn, measured in the needle test, is less than 150 mm and that the number of breaks in the individual filaments, measured in the light barrier method on one side of the yarn, is less than 20 / m .

Als Verstärkungsfasern kommen praktisch alle nicht schmelzbaren oder hochschmelzbaren, hochmoduligen und/oder hochfesten Fasern in Frage. Diese Fasern werden so ausgewählt, daß sie unter den für die thermoplastischen Faseranteile geeigneten Verarbeitungsbedingungen noch nicht schmelzen bzw. sich praktisch nicht thermoplastisch verformen und im entstehenden Verbundwerkstoff als Verstärkungsfasern vorliegen.Practically all non-meltable or high-meltable, high-modulus and / or high-strength fibers can be considered as reinforcing fibers. These fibers are selected so that they do not yet melt under the processing conditions suitable for the thermoplastic fiber fractions or practically do not deform thermoplastic and are present as reinforcing fibers in the resulting composite material.

Beispiele für solche Fasern sind Glasfasern, Kohlenstoffasern, Fasern aus verschiedensten Metallen und Metall-Legierungen, aus verschiedensten Metallnitriden oder -carbiden, Metalloxidfasern oder Fasern aus organischen Polymeren, wie aus Polyacrylnitril, Polyester, aliphatischem und aromatischem Polyamid oder Polyimid.Examples of such fibers are glass fibers, carbon fibers, fibers of various metals and Metal alloys, from a wide variety of metal nitrides or carbides, metal oxide fibers or fibers from organic polymers, such as from polyacrylonitrile, polyester, aliphatic and aromatic polyamide or polyimide.

Vorzugsweise verwendet man Glas-, Kohlenstoff-, Metall- oder Aramidfasern.Glass, carbon, metal or aramid fibers are preferably used.

Als thermoplastisches Material eignen sich alle Werkstoffe, die sich reversibel thermoplastisch verarbeiten lassen. Beispiele dafür sind Metalle und Metall-Legierungen, Gläser und insbesondere organische Werkstoffe. Bei den organischen Werkstoffen handelt es sich vor allem um gegebenenfalls Lösungsmittel enthaltende, vorzugsweise aber lösungsmittelfreie bekannte organische thermoplastische Formmassen.All materials that can be reversibly processed thermoplastically are suitable as the thermoplastic material. Examples of this are metals and metal alloys, glasses and in particular organic materials. The organic materials are primarily known, optionally solvent-containing, but preferably solvent-free, known organic thermoplastic molding compositions.

Beispiele für Thermoplaste sind Polymerisate, wie Vinylpolymerisate, z.B. Polyolefine, Polyvinylester, Polyvinylether, Polyacryl- und -methacrylate, Polyvinylaromaten, Polyvinylhalogenide, sowie die verschiedensten Copolymeren, Block-, Pfropf-, Liquid-crystal-, Mischpolymere oder Polymergemische. Spezielle Vertreter sind: Polyethylene, Polypropylene, Polybutene, Polypentene, Polyvinylchlorridtypen, Polymethylmethacrylate, Poly(meth)acrylnitriltypen, gegebenenfalls modifizierte Polystyrole oder Mehrphasenkunststoffe wie ABS. Ferner Polyadditions-, Polykondensations -, Polyoxidations- oder Cyclisierungspolymere, LC-Polymere, wie Polyamide, Polyurethane, Polyharnstoffe, Polyimide, Polyester, Polyether, Polyhydantoine, Polyphenylenoxide, Polyphenylensulfide, Polysulfone, Polycarbonate, sowie deren Mischformen, deren Mischungen und Kombinationen mit anderen Polymeren oder Polymervorstufen, beispielsweise Polyamid-6; Polyamid-6,6; Polyethylenterephthalate oder Bisphenol-A-Polycarbonat.Examples of thermoplastics are polymers, such as vinyl polymers, for example polyolefins, polyvinyl esters, polyvinyl ethers, polyacrylic and methacrylates, polyvinyl aromatics, polyvinyl halides, and a wide variety of copolymers, block, graft, liquid crystal, mixed polymers or polymer mixtures. Special representatives are: polyethylenes, polypropylenes, polybutenes, polypentenes, polyvinylchloride types, polymethyl methacrylates, poly (meth) acrylonitrile types, optionally modified polystyrenes or multiphase plastics such as ABS. Furthermore, polyaddition, polycondensation, polyoxidation or cyclization polymers, LC polymers, such as polyamides, polyurethanes, polyureas, polyimides, polyesters, polyethers, polyhydantoins, polyphenylene oxides, polyphenylene sulfides, polysulfones, polycarbonates, as well as their mixed forms, their mixtures and combinations with other polymers or polymer precursors, for example polyamide-6; Polyamide-6.6; Polyethylene terephthalate or bisphenol-A polycarbonate.

Es können die genannten Polymeren jedoch auch als Verstärkungsfasermaterial dienen, wenn sie mit tiefer schmelzenden Fasern verarbeitet werden, die erfindungsgemäß als thermoplastische Anteile fungieren.However, the polymers mentioned can also serve as reinforcing fiber material if they are processed with lower-melting fibers, which according to the invention act as thermoplastic components.

Die die Garne aufbauenden Filamente oder Stapelfasern können einen praktisch runden Querschnitt aufweisen oder auch andere Formen besitzen, beispielsweise einen hantelförmigen, nierenförmigen, dreieckigen oder tri-bzw. multilobalen Querschnitt aufweisen. Es lassen sich auch Hohlfasern einsetzen.The filaments or staple fibers building up the yarns can have a practically round cross-section or can also have other shapes, for example a dumbbell-shaped, kidney-shaped, triangular or tri-or. have multilobal cross-section. Hollow fibers can also be used.

Insbesondere als Thermoplastfasern lassen sich auch Bi- oder Mehrkomponentenfasern einsetzen, beispielsweise vom Kern/Mantel- oder vom Seite/Seite-Typ oder vom Matrix/Fibrillen-Typ.Bicomponent or multicomponent fibers can also be used in particular as thermoplastic fibers, for example of the core / jacket type or of the side / side type or of the matrix / fibril type.

Das erfindungsgemäße Halbzeug ist durch lokales Aufschmelzen der Matrixfasern so weit verfestigt, daß es problemlos gehandhabt werden kann ohne seine Bandform zu verlieren, gleichzeitig aber eine gute Drapierfähigkeit, Rollbarkeit und Transportfähigkeit besitzt. Das erfindungsgemäße Halbzeug ist nahezu unbegrenzt und unbeschränkt lagerfähig, da praktisch keine aushärtenden Komponenten vorhanden sind. Die Verfestigungspunkte befinden sich zumindest entlang einer Oberfläche des Bandes, können sich aber auch entlang beider Oberflächen befinden. Dabei kann es im Einzelfall ausreichend sein, daß nur eine Oberflächenfixierung des Bandes stattgefunden hat.The semi-finished product according to the invention is so solidified by local melting of the matrix fibers that it can be handled without problems without losing its tape shape, but at the same time has good drapability, rollability and transportability. The semi-finished product according to the invention can be stored almost indefinitely and indefinitely, since there are practically no curing components. The consolidation points are located at least along one surface of the belt, but can also be along both surfaces. It may be sufficient in individual cases that only a surface fixation of the tape has taken place.

Es ist aber auch möglich, daß die lokalen Verfestigungspunkte praktisch durch den Querschnitt des gesamten Bandes verlaufen. Wesentlich bei allen diesen Ausführungsformen ist, daß das Aufschmelzen der Matrixfasern lokal erfolgt und daß die einzelnen Matrixfasern und/oder Verstärkungsfasern sich jeweils zwischen zwei Verfestigungspunkten praktisch frei bewegen können. Der mittlere freie Abstand zweier Befestigungspunkte beträgt vorzugsweise etwa 1 bis 5 cm.However, it is also possible that the local consolidation points run practically through the cross section of the entire band. It is essential in all of these embodiments that the melting of the matrix fibers takes place locally and that the individual matrix fibers and / or reinforcing fibers can each move practically freely between two solidification points. The mean free distance between two fastening points is preferably about 1 to 5 cm.

Die Dichte der Verfestigungspunkte entlang der Oberfläche wird unter anderem von der Art und Menge der Thermoplastfasern und vom Mengenverhältnis von Thermoplast- und Verstärkungsfasern abhängen. Es ist auch möglich, ein Muster von Verfestigungspunkten auf das Band aufzubringen, d.h. nur Teile der Oberfläche des Bandes mit Verfestigungspunkten zu versehen.The density of the solidification points along the surface will depend, among other things, on the type and amount of the thermoplastic fibers and on the ratio of thermoplastic and reinforcing fibers. It is also possible to apply a pattern of solidification points to the tape, i.e. to provide only parts of the surface of the belt with consolidation points.

Übliche Werte für die Dichte von Verfestigungspunkten, bezogen auf die Flächeneinheit der Bandoberfläche, bewegen sich im Bereich von 40 bis 500 000 Punkte/m² Oberfläche, vorzugsweise 100 bis 40 000 Punkte/m² Oberfläche (bei einseitigem Aufbringen von Verfestigungspunkten auf die Oberfläche; bei zweiseitigem Aufbringen genügt in der Regel eine halb so hohe Dichte pro Oberfläche). Vorzugsweise verbindet ein Verfestigungspunkt mehrere Verstärkungsgarne.Usual values for the density of consolidation points, based on the unit area of the belt surface, are in the range from 40 to 500,000 points / m² surface, preferably 100 to 40,000 points / m² surface (with one-sided application of consolidation points to the surface; with two-sided Applying usually half the density per surface is sufficient). A consolidation point preferably connects several reinforcing yarns.

Das Volumenverhältnis der Verstärkungs- zu den Matrixfasern im erfindungsgemäßen Halbzeug kann innerhalb weiter Grenzen beliebig gewählt werden. So kann der Volumenanteil der Verstärkungsfasern z.B. 10 bis 90 % betragen und der Volumenanteil der Matrixfasern dementsprechend 90 bis 10 %. Vorzugsweise beträgt der Volumenanteil der Verstärkungsfasern 20 - 80 %, insbesondere 40 - 70 %.The volume ratio of the reinforcement to the matrix fibers in the semifinished product according to the invention can be chosen as desired within wide limits. The volume fraction of the reinforcing fibers can e.g. Amount to 10 to 90% and the volume fraction of the matrix fibers accordingly 90 to 10%. The volume fraction of the reinforcing fibers is preferably 20-80%, in particular 40-70%.

Bevorzugte Ausführungsformen des erfindungsgemäßen Halbzeugs sind in den Ansprüchen 2 bis 7 dargestellt.Preferred embodiments of the semi-finished product according to the invention are presented in claims 2 to 7.

Das erfindungsgemäße Halbzeug kann hergestellt werden, indem man

  • a) eine bandförmige Anordnung aus im wesentlichen unidirektional ausgerichteten Verstärkungsfasern und aus thermoplastischen Matrixfasern in Form von als Fadenkette angeordneten Garnen bereitstellt, und
  • b) lokal begrenzt zumindest auf einer der Oberflächen dieser Anordnung erhöhte Temperaturen erzeugt, gegebenenfalls in Kombination mit erhöhten Drucken, so daß die Matrixfasern an diesen Stellen an- oder aufschmelzen und sich lokale Verfestigungspunkte ausbilden.
The semifinished product according to the invention can be produced by
  • a) a band-shaped arrangement of essentially unidirectionally oriented reinforcing fibers and of thermoplastic matrix fibers in the form of yarns arranged as a thread chain, and
  • b) locally, at least on one of the surfaces of this arrangement, produces elevated temperatures, possibly in combination with increased pressures, so that the matrix fibers melt or melt at these points and local solidification points form.

Das Verfahren ist ebenfalls Gegenstand der vorliegenden Erfindung. Das Erzeugen von lokal erhöhten Temperaturen kann durch Behandlung der bandförmigen Anordnung mit beheizten Prägewalzen erfolgen. Dabei kann das Garnband zwischen zwei Prägewalzen oder insbesondere zwischen einer Walze mit glatter Oberfläche und einer Walze mit strukturierter Oberfläche oder teilweise strukturierter Oberfläche hindurchgeführt werden. Das Erzeugen von lokal erhöhten Temperaturen kann aber auch auf jede beliebige andere Art und Weise erfolgen, beispielsweise durch Einwirkung von Heißgasströmen oder von beheizten Stempeln oder von Ultraschall oder hochfreguenter elektromagnetischer Strahlung (Hochfrequenzschweißen).The method is also the subject of the present invention. Local elevated temperatures can be generated by treating the band-shaped arrangement with heated embossing rollers. The yarn strip can be passed between two embossing rollers or in particular between a roller with a smooth surface and a roller with a structured surface or partially structured surface. However, locally elevated temperatures can also be generated in any other way, for example by the action of hot gas streams or heated stamps or by ultrasound or high-frequency electromagnetic radiation (high-frequency welding).

Diese letzteren beiden Ausführungsformen sind besonders bevorzugt, da sich mit ihnen eine praktisch unbegrenzte Anzahl von Mustern an Verfestigungspunkten erzielen läßt, beispielsweise durch Führen der Heizquellen auf vorgegebenen Wegen über die Bandoberfläche und durch gezieltes An- und Abschalten der Heizquelle. Diese Steuerung kann z.B. unter Kontrolle eines Computers stehen.These latter two embodiments are particularly preferred since they can be used to achieve a practically unlimited number of patterns at consolidation points, for example by guiding the heat sources in predetermined ways over the belt surface and by specifically switching the heat source on and off. This control can e.g. to be under the control of a computer.

In Figuren 1a, 1b, 2a und 2b sind zwei Ausführungsformen des erfindungsgemäßen Verfahrens beispielhaft dargestellt.FIGS. 1a, 1b, 2a and 2b show two exemplary embodiments of the method according to the invention.

In Figur 3 ist eine Ausführungsform des erfindungsgemäßen Halbzeugs beispielhaft dargestellt.FIG. 3 shows an example of an embodiment of the semi-finished product according to the invention.

Figur 1a betrifft eine Ausführungsform in Aufsicht, während diese Ausführungsform in Figur 1b in Seitenansicht dargestellt ist.Figure 1a relates to an embodiment in supervision, while this embodiment is shown in Figure 1b in side view.

Die von einem Kettbaum (1) ablaufende unidirektionale Garnschar (2) (in Figur 1a nur auf einem Teil der gesamten Kettbaumlänge dargestellt) besteht aus mindestens einem Typ Thermoplastfaser, wie Polyester-, Polyethylen-, Polyamid-, Polyphenylensulfid-, Polypropylen-, Polyetherimid-, Polyetherketon-, Polysulfon- oder teilhalogenierte Polyolefinfaser, und mindestens einem Typ Verstärkungsfaser, wie Glas-, Kohlenstoff-, Metall-, Keramik- oder Aramidfaser.The unidirectional yarn sheet (2) running from a warp beam (1) (shown in FIG. 1a only over part of the entire warp beam length) consists of at least one type of thermoplastic fiber, such as polyester, polyethylene, polyamide, polyphenylene sulfide, polypropylene, polyetherimide -, Polyetherketone, polysulfone or partially halogenated polyolefin fiber, and at least one type of reinforcing fiber, such as glass, carbon, metal, ceramic or aramid fiber.

Die unidirektionale Garnschar (2) wird zwischen den beheizten Prägewalzen (3) und (4) hindurchgeführt. Eine dieser Walzen kann auch eine glatte Oberfläche besitzen. Unter dem Einfluß von Druck und Wärme an den Stellen der erhabenen Teile der Prägewalze kommt es zu lokalen Aufschmelzungen der Thermoplastfaser und damit zu Verschmelzungspunkten zwischen zwei oder mehr nebeneinanderliegenden Kettgarnen. Nach dem Verlassen des Bereichs der Prägewalzen (3) und (4) erstarren die Schmelzzonen und ergeben eine formschlüssige Verbindung zwischen diesen Kettgarnen.The unidirectional yarn group (2) is passed between the heated embossing rollers (3) and (4). One of these rollers can also have a smooth surface. Under the influence of pressure and heat at the locations of the raised parts of the embossing roller, local melting of the thermoplastic fiber occurs and thus melting points between two or more warp yarns lying next to one another. After leaving the area of the embossing rollers (3) and (4), the melting zones solidify and result in a positive connection between these warp yarns.

In Figur 1a sind diese erstarrten lokalen Schmelzzonen (5) in Form eines Streifenmusters dargestellt. Nach dem Verfestigen kann das Band (6) auf eine Rolle (7) aufgewickelt werden.In Figure 1a, these solidified local melting zones (5) are shown in the form of a stripe pattern. After solidification, the band (6) can be wound onto a roll (7).

Figur 2a betrifft eine weitere Ausführungsform in Aufsicht, während diese Ausführungsform in Figur 2b in Seitenansicht dargestellt ist.Figure 2a relates to a further embodiment in supervision, while this embodiment is shown in Figure 2b in side view.

Die von einem Kettbaum (1) ablaufende unidirektionale Garnschar (2) (in Figur 2a nur auf einem Teil der gesamten Kettbaumlänge dargestellt) besteht aus mindestens einem Typ Thermoplastfaser, z.B. solchen Fasern wie beispielhaft in der Beschreibung von Figur 1a erwähnt.The unidirectional yarn sheet (2) running from a warp beam (1) (shown in FIG. 2a only over part of the entire warp beam length) consists of at least one type of thermoplastic fiber, e.g. such fibers as mentioned by way of example in the description of FIG. 1a.

Die unidirektionale Garnschar (2) wird zwischen einer geeigneten Unterlage (8) und dem punktuell wirkenden Aufschmelzaggregat (9) durchgeführt. Ein solche punktuell wirkendes Aufschmelzaggregat kann z.B. eine Ultraschallsonde, eine Heißgaszuführung, ein beheizter Stempel oder eine elektromagnetische Energiequelle sein. Das Aufschmelzaggregat ist parallel zur Kettbaumachse und in vertikaler Richtung verfahrbar, die Steuerung dieses Vorganges wie auch das Ein- und Ausschalten der Energiezufuhr kann ein Computer übernehmen. Ebenso ist die Verwendung mehrerer Aufschmelzaggregate auf einer Unterlage wie auch die Verwendung mehrerer Kombinationen bestehend aus Aufschmelzaggregat(en) und Unterlage(n) hintereinander möglich. Hierdurch kann ein größerer Durchsatz der Anlage erreicht werden.The unidirectional group of yarn (2) is carried out between a suitable base (8) and the selective melting unit (9). Such a selective melting unit can be, for example, an ultrasound probe, a hot gas supply, a heated stamp or an electromagnetic energy source. The melting unit can be moved parallel to the warp beam axis and in the vertical direction, a computer can control this process as well as switch the energy supply on and off. Likewise, the use of several melting units on a base as well as the use of several combinations consisting of melting unit (s) and base (s) one after the other. As a result, a higher throughput of the plant can be achieved.

Die Auflage(n) können vertikal verfahrbar (8a) sein um die Durchmesseränderungen von Kettbaumbewicklung und Rolle (7) anzugleichen.The support (s) can be moved vertically (8a) in order to adjust the changes in diameter of the warp beam winding and roller (7).

Unter dem Einfluß von Wärme an den Stellen des Aufschmelzaggregates (9) kommte es zu lokalen Aufschmelzungen der Thermoplastfaser und damit zu Verschmelzungspunkten zwischen zwei oder mehr nebeneinanderliegenden Kettgarnen. Nach dem Verlassen des Bereichs des Aufschmelzaggregats (9) erstarren die Schmelzzonen und ergeben eine formschlüssige Verbindung zwischen diesen Kettgarnen.Under the influence of heat at the locations of the reflow unit (9), the thermoplastic fiber melted locally and thus to fusion points between two or more warp yarns lying next to each other. After leaving the area of the melting unit (9), the melting zones solidify and result in a positive connection between these warp yarns.

In Figur 2a sind diese erstarrten lokalen Schmelzzonen (5) in Form eines Streifenmusters dargestellt. Nach dem Verfestigen kann das Band (6) auf eine Rolle (7) aufgewickelt werden.These solidified local melting zones (5) are shown in FIG. 2a in the form of a striped pattern. After solidification, the band (6) can be wound onto a roll (7).

In Figur 3 ist eine Ausführungsform des erfindungsgemäßen Halbzeugs dargestellt. Das Band (6) ist aus einer Garnschar (2) aufgebaut. Als Garne werden in dieser Ausführungsform Mischgarne (10) aus Verstärkungs und Matrixfasern eingesetzt. Das Band (6) weist erstarrte lokale Schmelzzonen (5) auf, an denen je zwei nebeneinanderliegende Garne miteinander verbunden sind.FIG. 3 shows an embodiment of the semi-finished product according to the invention. The band (6) is made up of a group of yarn (2). In this embodiment, mixed yarns (10) made of reinforcing and matrix fibers are used as yarns. The band (6) has solidified local melting zones (5), on each of which two adjacent yarns are connected to each other.

Claims (11)

Band aus im wesentlichen unidirektional ausgerichteten Verstärkungsfasern und thermoplastischen Matrixfasern, dadurch gekennzeichnet, daß dieses im wesentlichen aus Garnen aufgebaut ist, die Verstärkungsfasern und/oder Matrixfasern enthalten, die Garndichte des Bandes etwa 5 bis 20 Garne/cm Breite beträgt, der Garntiter etwa 1000 bis 3000 dtex beträgt und die Matrixfasern zumindest an einer Bandoberfläche unter Ausbildung von Verfestigungspunkten lokal an- oder aufgeschmolzen sind.Ribbon of essentially unidirectionally oriented reinforcing fibers and thermoplastic matrix fibers, characterized in that it is essentially composed of yarns which contain reinforcing fibers and / or matrix fibers, the yarn density of the ribbon is about 5 to 20 yarns / cm width, the yarn titer is about 1000 to 3000 dtex and the matrix fibers are locally melted or melted on at least one belt surface, forming solidification points. Band nach Anspruch 1, dadurch gekennzeichnet, daß es aus einer Mischung aus Garnen aus Verstärkungsfasern und Garnen aus Matrixfasern aufgebaut ist.Belt according to claim 1, characterized in that it is made up of a mixture of yarns made from reinforcing fibers and yarns made from matrix fibers. Band nach Anspruch 1, dadurch gekennzeichnet, daß es als Mischgarn aus Verstärkungs- und Matrixfasern aufgebaut ist.Belt according to claim 1, characterized in that it is constructed as a mixed yarn from reinforcing and matrix fibers. Band nach Anspruch 1, dadurch gekennzeichnet, daß es aus Bikomponentenfasern mit einer Verstärkungs- und einer Matrixkomponente aufgebaut ist.Band according to claim 1, characterized in that it is made up of bicomponent fibers with a reinforcement and a matrix component. Band nach Anspruch 1, dadurch gekennzeichnet, daß die Verfestigungspunkte in einem sich regelmäßig wiederholenden Muster angeordnet sind.Belt according to claim 1, characterized in that the consolidation points are arranged in a regularly repeating pattern. Band nach Anspruch 1, dadurch gekennzeichnet, daß die Verfestigungspunkte statistisch über die Bandoberfläche verteilt sind.Belt according to claim 1, characterized in that the consolidation points are statistically distributed over the belt surface. Band nach Anspruch 1, dadurch gekennzeichnet, daß die Verfestigungspunkte etwa 5 bis 50 % der Oberfläche des Bandes ausmachen.Belt according to claim 1, characterized in that the consolidation points make up about 5 to 50% of the surface of the belt. Verfahren zur Herstellung des Bandes gemäß Anspruch 1 umfassend die Schritte: a) Herstellen einer Anordnung aus im wesentlichen unidirektional ausgerichteten Verstärkungsfasern und aus thermoplastischen Matrixfasern in Form von als Fadenkette angeordneten Garnen, und b) Erzeugung von lokal begrenzten erhöhten Temperaturen und gegebenenfalls erhöhten Drucken auf zumindest einer der Bandoberflächen, so daß die Matrixfasern an diesen Stellen an- oder aufschmelzen und sich lokale Verfestigungspunkte ausbilden. A method of making the tape according to claim 1 comprising the steps of: a) producing an arrangement of essentially unidirectionally oriented reinforcing fibers and of thermoplastic matrix fibers in the form of yarns arranged as a thread chain, and b) Generation of locally limited elevated temperatures and possibly increased pressures on at least one of the belt surfaces, so that the matrix fibers melt or melt at these points and local consolidation points form. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die Ausbildung von lokalen Verfestigungspunkten mittels beheizter Prägewalze erfolgt.A method according to claim 8, characterized in that the formation of local solidification points is carried out by means of a heated embossing roller. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die Ausbildung von lokalen Verfestigungspunkten mittels Ultraschall oder hochfrequenter elektromagnetischer Strahlung erfolgt.Method according to claim 9, characterized in that the formation of local solidification points takes place by means of ultrasound or high-frequency electromagnetic radiation. Verwendung des Bandes nach einem der Ansprüche 1 bis 7 zur Herstellung von Verbundwerkstoffen, insbesondere von faserverstärkten Thermoplasten.Use of the tape according to one of claims 1 to 7 for the production of composite materials, in particular fiber-reinforced thermoplastics.
EP19910119004 1990-11-14 1991-11-07 Striped material, process for its production and use Expired - Lifetime EP0485892B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19904036265 DE4036265A1 (en) 1990-11-14 1990-11-14 Strip material for shaping - has unidirectional reinforcement and matrix fibres to give local bonding on at least one surface
DE4036265 1990-11-14

Publications (2)

Publication Number Publication Date
EP0485892A1 true EP0485892A1 (en) 1992-05-20
EP0485892B1 EP0485892B1 (en) 1995-10-11

Family

ID=6418255

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19910119004 Expired - Lifetime EP0485892B1 (en) 1990-11-14 1991-11-07 Striped material, process for its production and use

Country Status (7)

Country Link
US (1) US5425981A (en)
EP (1) EP0485892B1 (en)
AT (1) ATE129034T1 (en)
DE (2) DE4036265A1 (en)
ES (1) ES2080220T3 (en)
IE (1) IE913954A1 (en)
PT (1) PT99504A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0672775A2 (en) * 1994-02-25 1995-09-20 Kimberly-Clark Corporation Point bonded nonwoven fabrics
EP0687756A3 (en) * 1994-06-16 1998-06-10 Akzo Nobel N.V. Nonwoven reinforced with filaments
NL1026809C2 (en) * 2004-08-09 2006-02-13 Beiler Beheer Bv Method and device for forming a longitudinal fiber web and for forming a transverse fiber web and for forming a cross-fiber web and for forming an airbag.
CN110831758A (en) * 2017-04-03 2020-02-21 帝人碳纤维欧洲有限公司 Method for producing textile unidirectional fabric

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4316015A1 (en) * 1993-05-13 1994-11-17 Akzo Nobel Nv Stretched, weldable strips of plastic and structures made from them
SE507804C2 (en) * 1996-11-11 1998-07-13 Bindomatic Ab Methods of stacking for the manufacture of booklets intended for such booklets, such a booklet and method of making such booklets
US6066221A (en) * 1997-06-17 2000-05-23 Kimberly-Clark Worldwide, Inc. Method of using zoned hot air knife
GB9902758D0 (en) * 1999-02-08 1999-03-31 H B Fuller Coatings Ltd Heat transfer element
JP3927748B2 (en) 2000-01-19 2007-06-13 ユニ・チャーム株式会社 Fiber sheet heat sealing method and heat sealing apparatus
DE102007028373B4 (en) * 2007-06-11 2012-12-20 Technische Universität Dresden Fiber composite material and method for producing fiber composite materials
ITTO20080412A1 (en) * 2008-05-29 2009-11-30 Loro Piana S P A FABRIC OBTAINED FROM THE PROCESSING OF YARNS RESULTING FROM THE TORSION OF ANIMAL FIBERS RETURNED WITH A FILM OF SILK.
KR101234494B1 (en) * 2008-10-22 2013-02-18 (주)엘지하우시스 Method For Manufacturing Hybrid-composite With Thermoplastics And Continuous Fiber
WO2013071448A1 (en) 2011-11-16 2013-05-23 Flexpipe Systems Inc. Connection for a thermoplastic pipe, assembly and method
AU2012339553B2 (en) 2011-11-16 2016-05-12 Flexpipe Systems Inc. Flexible reinforced pipe and reinforcement tape
US9857003B2 (en) 2012-02-17 2018-01-02 Core Linepipe Inc. Pipe, pipe connection and pipeline system
CN103132247A (en) * 2013-03-26 2013-06-05 苏州科技学院 Non-woven bandlet
CN114134613A (en) * 2021-11-23 2022-03-04 烟台泰普龙先进制造技术有限公司 Multi-frame woven aramid fiber unidirectional cloth, aramid fiber unidirectional cloth and processing system and method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3816231A (en) * 1972-05-25 1974-06-11 Kendall & Co Reinforced nonwoven fabrics
DE2424877A1 (en) * 1974-05-22 1975-11-27 Freudenberg Carl Fa TEXTILE COMPOSITE
WO1986006115A1 (en) * 1985-04-15 1986-10-23 Minnesota Mining And Manufacturing Company Decorative ribbon and sheet material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3816231A (en) * 1972-05-25 1974-06-11 Kendall & Co Reinforced nonwoven fabrics
DE2424877A1 (en) * 1974-05-22 1975-11-27 Freudenberg Carl Fa TEXTILE COMPOSITE
WO1986006115A1 (en) * 1985-04-15 1986-10-23 Minnesota Mining And Manufacturing Company Decorative ribbon and sheet material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0672775A2 (en) * 1994-02-25 1995-09-20 Kimberly-Clark Corporation Point bonded nonwoven fabrics
EP0672775A3 (en) * 1994-02-25 1999-04-14 Kimberly-Clark Worldwide, Inc. Point bonded nonwoven fabrics
EP0687756A3 (en) * 1994-06-16 1998-06-10 Akzo Nobel N.V. Nonwoven reinforced with filaments
NL1026809C2 (en) * 2004-08-09 2006-02-13 Beiler Beheer Bv Method and device for forming a longitudinal fiber web and for forming a transverse fiber web and for forming a cross-fiber web and for forming an airbag.
WO2006016801A1 (en) * 2004-08-09 2006-02-16 Beiler Beheer B.V. Method and device for forming a longitudinal fibre web and for forming a transverse fibre web and for forming a cross fibre web and for forming an airbag
EP1908575A3 (en) * 2004-08-09 2008-05-28 Beiler Beheer B.V. Inflatable body, and method and device for manufacturing same
US7763554B2 (en) 2004-08-09 2010-07-27 Beiler Beheer B.V. Method and device for forming a longitudinal fiber web and for forming a transverse fiber web and for forming a cross fiber web and for forming an airbag
US7927444B2 (en) 2004-08-09 2011-04-19 Beiler Beheer B.V. Method and device for forming a longitudinal fiber web
CN110831758A (en) * 2017-04-03 2020-02-21 帝人碳纤维欧洲有限公司 Method for producing textile unidirectional fabric

Also Published As

Publication number Publication date
DE4036265A1 (en) 1992-05-21
EP0485892B1 (en) 1995-10-11
ATE129034T1 (en) 1995-10-15
PT99504A (en) 1993-12-31
ES2080220T3 (en) 1996-02-01
IE913954A1 (en) 1992-05-20
US5425981A (en) 1995-06-20
DE59106673D1 (en) 1995-11-16

Similar Documents

Publication Publication Date Title
EP0485892B1 (en) Striped material, process for its production and use
DE3877794T2 (en) FLEECE AND METHOD FOR PRODUCING THE SAME.
DE68919436T2 (en) Stabilized nonwoven made of threads.
DE68920133T2 (en) Cross-laid, stretched nonwoven fabric and process for making the same.
EP3103906B1 (en) Sewed multiaxial fabric
DE60012330T2 (en) COMPOSITE NONWOVEN MATERIAL
DE69109713T2 (en) Three-dimensional non-woven fabric.
DE3688791T2 (en) WATER ABSORBING MATERIAL AND THEIR PRODUCTION.
DE10016182B4 (en) Transport system for blister package of medicaments, has distributor device transporting articles in suspending manner, and delivering articles to transport belts, where delivery position of articles is defined by inlet-side end sections
EP0133893A2 (en) Method of making fibre-reinforced moulded objects
DE2639466B2 (en) Method and apparatus for making a non-woven textile material
DE3586931T2 (en) NON-WOVEN BRAIDED FABRIC WITH SURFACE-CONTAINING THERMOPLASTIC FIBERS AND METHOD FOR THE PRODUCTION THEREOF.
DE102008063545C5 (en) Multiaxial fabric, process for producing a fiber composite plastic and fiber composite plastic
DE10111218A1 (en) Continuous fiber spreading, impregnation and extrusion bath for production of thermoplastic composite sections has a die with a specified conical section to reduce fiber breakage
DE19531001A1 (en) Textile composite, process for its production, its use and scrims containing mixed yarns
DE3634139C2 (en) Multi-layer nonwoven
DE1142987B (en) Process for the production of thread-like or fiber-like structures
DE69108312T2 (en) Method and device for manufacturing fiberglass reinforcing mats.
DE3935264A1 (en) Moulding material for thermoplastic composites - mfd. from mixed yarn of uniaxially-oriented continuous thermoplastic fibres with low heat shrinkable and continuous reinforcing fibres
DE4326232A1 (en) Plastic composites made of incompatible plastics
DE3408769A1 (en) Process for producing fibre-reinforced mouldings and profiles
AT412096B (en) Knitted fabrics in the form of a mesh made of plastic ribbons
DE69827697T2 (en) Fabric prepreg and wet process for making same
AT395978B (en) METHOD FOR THE CONTINUOUS PRODUCTION OF FIBER REINFORCED THERMOPLASTIC LEVELS, FIBER REINFORCED THERMOPLASTIC LEVELS AND THEIR USE
DE1964060B2 (en) Process for the production of tangled nonwovens from high polymers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920318

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19940330

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 129034

Country of ref document: AT

Date of ref document: 19951015

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19951102

Year of fee payment: 5

REF Corresponds to:

Ref document number: 59106673

Country of ref document: DE

Date of ref document: 19951116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19951201

Year of fee payment: 5

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951216

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2080220

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19961107

Ref country code: AT

Effective date: 19961107

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980202

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19981016

Year of fee payment: 8

Ref country code: FR

Payment date: 19981016

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19981019

Year of fee payment: 8

Ref country code: GB

Payment date: 19981019

Year of fee payment: 8

Ref country code: CH

Payment date: 19981019

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19981109

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19981120

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991108

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991130

BERE Be: lapsed

Owner name: HOECHST A.G.

Effective date: 19991130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19991107

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 91119004.9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000731

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20001214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051107