EP0484339B1 - Digital speech coder with vector excitation source having improved speech quality - Google Patents
Digital speech coder with vector excitation source having improved speech quality Download PDFInfo
- Publication number
- EP0484339B1 EP0484339B1 EP90908908A EP90908908A EP0484339B1 EP 0484339 B1 EP0484339 B1 EP 0484339B1 EP 90908908 A EP90908908 A EP 90908908A EP 90908908 A EP90908908 A EP 90908908A EP 0484339 B1 EP0484339 B1 EP 0484339B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- excitation
- excitation signal
- signal
- candidate
- pitch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005284 excitation Effects 0.000 title claims abstract description 84
- 239000013598 vector Substances 0.000 title abstract description 29
- 238000000034 method Methods 0.000 claims description 19
- 230000006870 function Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000010420 art technique Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L13/00—Speech synthesis; Text to speech systems
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/04—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
- G10L19/08—Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
- G10L19/12—Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters the excitation function being a code excitation, e.g. in code excited linear prediction [CELP] vocoders
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L2019/0001—Codebooks
- G10L2019/0004—Design or structure of the codebook
- G10L2019/0005—Multi-stage vector quantisation
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L2019/0001—Codebooks
- G10L2019/0011—Long term prediction filters, i.e. pitch estimation
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L2019/0001—Codebooks
- G10L2019/0013—Codebook search algorithms
Definitions
- This invention relates generally to speech coders, and more particularly to digital speech coders that use vector excitation sources.
- Speech coders are known in the art. Some speech coders convert analog voice samples into digitized representations, and subsequently represent the spectral speech information through use of linear predictive coding. Other speech coders improve upon ordinary linear predictive coding techniques by providing an excitation signal that is related to the original voice signal.
- Previously issued U.S. Patent No. 4,817,157 describes a digital speech coder having an improved vector excitation source wherein a codebook of excitation vectors is accessed to select an excitation signal that best fits the available information, and hence provides a recovered speech signal that closely represents the original.
- the resultant decoded speech signal will more closely represent the original unencoded speech signal if there is a significant number of candidate excitation vectors available for consideration as the excitation source.
- Increasing performance in this way generally results in enlargement of the codebook size, and this will usually increase processing complexity and data rates.
- This methodology allows candidate excitation signals to be considered without requiring a commensurate increase in processing complexity or data rates.
- the coded excitation signal is determined substantially independent from any pitch information.
- candidate excitation signals as provided by a codebook are processed to substantially remove components that are representable, at least in part, by a reference component that is related, at least in part, to the intermediate pitch vector. More particularly, the vector component related to the intermediate pitch vector is removed from the candidate excitation signal (a process known as orthogonalizing).
- the orthogonalized candidate excitation signals are then compared with the unencoded speech sample to identify the candidate excitation signal that best represents this particular speech sample.
- the pitch information including a pitch filter coefficient parameter, can be optimized later to best suit the selected excitation signal to thereby yield an overall optimized coded representation of the speech signal.
- a second codebook of candidate excitation signals wherein two excitation signals are used to represent the speech sample.
- the first excitation signal can be selected as described above, and the second excitation signal can be selected in a similar manner, wherein candidate second excitation signals are first orthogonalized with respect to both the intermediate pitch vector and the previously selected first excitation signal.
- This invention can be embodied in a speech coder that makes use of an appropriate digital signal processor such as a Motorola DSP 56000 family device.
- an appropriate digital signal processor such as a Motorola DSP 56000 family device.
- the computational functions of such a DSP embodiment are represented in Fig. 1 as a block diagram equivalent circuit.
- a pitch period parameter (101) (determined in accordance with prior art technique) is provided to a pitch filter state (102) that comprises part of a pitch filter.
- the resultant signal (103) comprises an intermediate pitch vector that is provided to both a first multiplier (104) and two orthogonalizing processes (106 and 107) as described below in more detail.
- This first multiplier (104) functions to multiply the resultant signal by a pitch filter coefficient (108) to yield a pitch filter output (109). Selection of the pitch filter coefficient (108) will be described below in more detail.
- a first codebook (111) includes a set of basis vectors that can be linearly combined to form a plurality of resultant excitation signals.
- the number of possible resultant excitation signals can be, for example, between 64 and 2,048, with more of course being possible when appropriate to a particular application.
- the problem, when encoding a particular speech sample, is to select whichever of these excitation sources best represents the corresponding component of the original speech information.
- the excitation signals formulated by the first codebook (111) will be presented in seriatim fashion as candidate excitation sources.
- Each candidate excitation source will first be orthogonalized (106) with respect to the resultant signal.
- the vector dimension space is a function of the number of samples comprising the vectors, which may be upwards of 40 samples or more.
- the candidate excitation vectors may be readily orthogonalized by orthogonalizing the basis vectors, wherein linear combinations of the orthogonadized basis vectors with one another will result in orthogonalized excitation vectors.
- the resulting candidate excitation source can be compared (112) with the unencoded signal (113) (or an appropriate representative signal based thereon) to determine the relative similarity or disparity between the two.
- the process is then repeated for each of the excitation sources of the first codebook (111). A determination can then be made as to which candidate excitation source most closely aligns with the unencoded signal (113).
- a gain factor (114) can also be used to modify each candidate excitation source signal, as well understood in the art.
- the excitation source selection and gain compensation can both be accomplished in a substantially simultaneous manner, as also well understood in the art.
- the orthogonalizing process (106) can thereafter be dispensed with and the exact excitation source signal selected (116) through an appropriate control mechanism (117). Thereafter, presuming a single codebook coder, the pitch information can be gated (117) and summed (118) together with the selected excitation source with the pitch filter coefficient (108) and excitation gain (114) optimized such that the combined excitation most closely aligns with the encoded signal (113).
- the pitch period parameter, pitch filter coefficient, and particular excitation source and gain are known, and appropriate representations thereof may be utilized thereafter as representative of the original speech sample.
- an additional codebook (121) can be utilized, which second codebook (121) again includes a plurality of basis vector derived candidate excitation sources.
- the use of such multiple codebooks is understood in the art.
- the candidate excitation sources from the second codebook (121) are orthogonalized (107) with respect to both the resultant signal (103) and the selected excitation source signal from the first codebook (111).
- the selection process can then continue as described above, with the orthogonalized candidate excitation source signals from the second codebook (121) being compared against a representative unencoded signal (113) to identify the closest fit.
- the pitch filter coefficient (108) and excitation gains (114 and 120) can then be optimized as described above.
Landscapes
- Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Analogue/Digital Conversion (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US37054189A | 1989-06-23 | 1989-06-23 | |
US370541 | 1989-07-23 | ||
PCT/US1990/002469 WO1991001545A1 (en) | 1989-06-23 | 1990-05-02 | Digital speech coder with vector excitation source having improved speech quality |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0484339A1 EP0484339A1 (en) | 1992-05-13 |
EP0484339A4 EP0484339A4 (en) | 1993-05-05 |
EP0484339B1 true EP0484339B1 (en) | 1998-02-04 |
Family
ID=23460115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90908908A Expired - Lifetime EP0484339B1 (en) | 1989-06-23 | 1990-05-02 | Digital speech coder with vector excitation source having improved speech quality |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP0484339B1 (he) |
KR (1) | KR950003557B1 (he) |
CN (1) | CN1023160C (he) |
AU (1) | AU638462B2 (he) |
BR (1) | BR9007467A (he) |
CA (1) | CA2060310C (he) |
DE (1) | DE69032026T2 (he) |
IL (1) | IL94119A (he) |
NZ (1) | NZ234180A (he) |
WO (1) | WO1991001545A1 (he) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0451199A (ja) * | 1990-06-18 | 1992-02-19 | Fujitsu Ltd | 音声符号化・復号化方式 |
JPH0451200A (ja) * | 1990-06-18 | 1992-02-19 | Fujitsu Ltd | 音声符号化方式 |
IT1241358B (it) * | 1990-12-20 | 1994-01-10 | Sip | Sistema di codifica del segnale vocale con sottocodice annidato |
JP2776050B2 (ja) * | 1991-02-26 | 1998-07-16 | 日本電気株式会社 | 音声符号化方式 |
DE4315315A1 (de) * | 1993-05-07 | 1994-11-10 | Ant Nachrichtentech | Verfahren zur Vektorquantisierung insbesondere von Sprachsignalen |
US5727122A (en) * | 1993-06-10 | 1998-03-10 | Oki Electric Industry Co., Ltd. | Code excitation linear predictive (CELP) encoder and decoder and code excitation linear predictive coding method |
JP3224955B2 (ja) * | 1994-05-27 | 2001-11-05 | 株式会社東芝 | ベクトル量子化装置およびベクトル量子化方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1252568A (en) * | 1984-12-24 | 1989-04-11 | Kazunori Ozawa | Low bit-rate pattern encoding and decoding capable of reducing an information transmission rate |
US4868867A (en) * | 1987-04-06 | 1989-09-19 | Voicecraft Inc. | Vector excitation speech or audio coder for transmission or storage |
US4899385A (en) * | 1987-06-26 | 1990-02-06 | American Telephone And Telegraph Company | Code excited linear predictive vocoder |
-
1990
- 1990-04-18 IL IL9411990A patent/IL94119A/he not_active IP Right Cessation
- 1990-05-02 KR KR1019910701947A patent/KR950003557B1/ko not_active IP Right Cessation
- 1990-05-02 WO PCT/US1990/002469 patent/WO1991001545A1/en active IP Right Grant
- 1990-05-02 CA CA002060310A patent/CA2060310C/en not_active Expired - Lifetime
- 1990-05-02 DE DE69032026T patent/DE69032026T2/de not_active Expired - Lifetime
- 1990-05-02 EP EP90908908A patent/EP0484339B1/en not_active Expired - Lifetime
- 1990-05-02 BR BR909007467A patent/BR9007467A/pt not_active IP Right Cessation
- 1990-05-02 AU AU57359/90A patent/AU638462B2/en not_active Expired
- 1990-06-19 CN CN90103020A patent/CN1023160C/zh not_active Expired - Lifetime
- 1990-06-21 NZ NZ234180A patent/NZ234180A/en unknown
Also Published As
Publication number | Publication date |
---|---|
DE69032026T2 (de) | 1998-09-17 |
KR950003557B1 (ko) | 1995-04-14 |
CA2060310C (en) | 2001-07-17 |
NZ234180A (en) | 1993-11-25 |
IL94119A (he) | 1996-06-18 |
DE69032026D1 (de) | 1998-03-12 |
CN1023160C (zh) | 1993-12-15 |
EP0484339A4 (en) | 1993-05-05 |
CA2060310A1 (en) | 1990-12-24 |
BR9007467A (pt) | 1992-06-16 |
AU5735990A (en) | 1991-02-22 |
IL94119A0 (en) | 1991-01-31 |
EP0484339A1 (en) | 1992-05-13 |
KR920702787A (ko) | 1992-10-06 |
CN1048278A (zh) | 1991-01-02 |
AU638462B2 (en) | 1993-07-01 |
WO1991001545A1 (en) | 1991-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0409239B1 (en) | Speech coding/decoding method | |
CA2023167C (en) | Speech coding system and a method of encoding speech | |
EP0443548A2 (en) | Speech coder | |
US5633980A (en) | Voice cover and a method for searching codebooks | |
US5694426A (en) | Signal quantizer with reduced output fluctuation | |
EP0415163B1 (en) | Digital speech coder having improved long term lag parameter determination | |
JPH04270398A (ja) | 音声符号化方式 | |
JPH04134400A (ja) | 音声符号化装置 | |
EP0484339B1 (en) | Digital speech coder with vector excitation source having improved speech quality | |
CA2147394C (en) | Quantization of input vectors with and without rearrangement of vector elements of a candidate vector | |
EP0578436A1 (en) | Selective application of speech coding techniques | |
US6330531B1 (en) | Comb codebook structure | |
JP2002268686A (ja) | 音声符号化装置及び音声復号化装置 | |
US5924063A (en) | Celp-type speech encoder having an improved long-term predictor | |
US5822721A (en) | Method and apparatus for fractal-excited linear predictive coding of digital signals | |
KR100416363B1 (ko) | 선형 예측 분석 대 합성 엔코딩 방법 및 엔코더 | |
JP2658816B2 (ja) | 音声のピッチ符号化装置 | |
JP3183944B2 (ja) | 音声符号化装置 | |
JP3249144B2 (ja) | 音声符号化装置 | |
EP0483882A2 (en) | Speech parameter encoding method capable of transmitting a spectrum parameter with a reduced number of bits | |
JP3471889B2 (ja) | 音声符号化方法及び装置 | |
JP3228389B2 (ja) | 利得形状ベクトル量子化装置 | |
JP3192051B2 (ja) | 音声符号化装置 | |
JP2876785B2 (ja) | 改善された音声品質を有するベクトル励起源を具備するデジタル音声符号器 | |
US5761633A (en) | Method of encoding and decoding speech signals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19920109 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 19930319 |
|
AK | Designated contracting states |
Kind code of ref document: A4 Designated state(s): DE FR GB |
|
17Q | First examination report despatched |
Effective date: 19951030 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 69032026 Country of ref document: DE Date of ref document: 19980312 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20090507 Year of fee payment: 20 Ref country code: DE Payment date: 20090529 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090407 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20100501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20100501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20100502 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230520 |