EP0484241A1 - Antenne imprimée pour réseau à double polarisation - Google Patents

Antenne imprimée pour réseau à double polarisation Download PDF

Info

Publication number
EP0484241A1
EP0484241A1 EP91402915A EP91402915A EP0484241A1 EP 0484241 A1 EP0484241 A1 EP 0484241A1 EP 91402915 A EP91402915 A EP 91402915A EP 91402915 A EP91402915 A EP 91402915A EP 0484241 A1 EP0484241 A1 EP 0484241A1
Authority
EP
European Patent Office
Prior art keywords
antennas
antenna
substrate
slot
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91402915A
Other languages
German (de)
English (en)
Other versions
EP0484241B1 (fr
Inventor
Roger Behe
Patrice Brachat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange SA
Original Assignee
France Telecom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom SA filed Critical France Telecom SA
Publication of EP0484241A1 publication Critical patent/EP0484241A1/fr
Application granted granted Critical
Publication of EP0484241B1 publication Critical patent/EP0484241B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/001Crossed polarisation dual antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line

Definitions

  • the present invention relates to an elementary printed antenna in plated technology for a network for receiving and / or transmitting telecommunications signals, having a small footprint for boarding purposes in a machine, such as satellite.
  • the antenna comprises, in a known manner, a dielectric substrate, a ground conductor plane of a microwave power supply line disposed on one face of the substrate, and a radiating element disposed on another face of the substrate, said conductive plane having a coupling slot for coupling the supply line to the radiating element.
  • the radiating element is constituted by a metal plate printed on the face of the substrate opposite the slot made in the ground plane.
  • the supply line is for example a microstrip line.
  • the radiating plate is similar to an open resonator which is the seat of waves essentially polarized along the width of the underlying coupling slot.
  • the resonances mainly depend on the dimensions of the slot and of the plate.
  • the bandwidth is a function of the overvoltage coefficient of the resonator, which itself depends on the thickness and the electrical characteristics of the substrate.
  • the latter comprises a first sub-network comprising antennas subject to a first polarization, for example Ex, and a second sub-network comprising antennas subject to a second polarization Ey orthogonal to the first.
  • the antennas in the first and second subarrays are interleaved and are therefore relatively close to one another.
  • the two polarizations are obtained by perpendicular coupling slots.
  • the measurements show that the electromagnetic field is not perfectly polarized in the vicinity of an elementary antenna. Indeed, for example, the electric field lines curve in proportion to the distance from the center of the coupling slot, along the longitudinal axis of the latter. This curvature of the field line thus makes polarization imperfect, and consequently generates harmful couplings between elementary antennas in the same sub-array, but also between elementary antennas in the two sub-arrays. These couplings are all the more pronounced the closer the antennas are to each other.
  • the gain of such a network is therefore low.
  • the surface occupied by this one is all the greater as the gain is improved, to the detriment of the congestion of the network and therefore unlike the search for compactness for the materials on board in vehicles.
  • the present invention aims to provide an elementary printed antenna which generates an almost perfect polarization, that is to say almost rectilinear, which makes it possible to bring together such antennas having crossed polarizations and therefore to reduce the size of a network. antennas.
  • a printed antenna according to the invention and as defined in the introduction is characterized in that the radiating element consists of several narrow conductive strips extending perpendicular to the coupling slot.
  • the narrow bands maintain a polarization along their longitudinal direction and thus prevent excitation of the mode orthogonal to the polarization thus defined.
  • two elementary antennas having coplanar and perpendicular conductive bands between them offer an almost zero coupling, which makes it possible to bring them together, and therefore to increase the antenna density and the compactness in a dual polarization array.
  • the antenna 1a is supplied by a microwave microstrip line supported by a first dielectric substrate 2a of thickness d2 and of relative permittivity ⁇ r2 predetermined.
  • the substrate 2a is printed on both sides.
  • the underside of the substrate comprises a conductive strip 3a of predetermined width W3.
  • the upper face of the substrate 2a is covered with a ground conducting plane 4a.
  • a rectangular portion of the upper face of the substrate 2a is devoid of conductive material to form a coupling slot 5a.
  • the longitudinal axis of the slot 5a is perpendicular to the microstrip 3a, while the transverse axis of the slot 5a is parallel to and vertically aligned with the axis of the microstrip.
  • the length and width of the slot 5a are denoted by L5 and W5 in FIG. 1.
  • the elementary antenna 1a also comprises a conductive plate 6a ("patch" in English terminology) constituting the radiating element of the antenna.
  • the plate 6a is superimposed above the ground plane 4a, opposite the underside of the substrate 2a supporting the microstrip 3a, by means of a second dielectric substrate 7a.
  • the substrate 7a offers a thickness d7 and a relative permittivity ⁇ r7 generally different from d2 and ⁇ r2 respectively, the constant ⁇ r7 often being less than ⁇ r2 and close to unity to increase the bandwidth of the antenna.
  • the substrate 7a is fixed to the conducting plane 4a of the first substrate, for example with epoxy cement.
  • the plate 6a is full, unlike the openwork character of the ground plane 4a imparted by the presence of the slot 5a.
  • the plate 6a is rectangular and has predetermined width W6 and length L6 much larger than the dimensions of the slot 5a, as shown in FIG. 3.
  • the radiating plate can be square, circular, trapezoidal, polygonal or else elliptical as shown in FIG. 4.
  • the centers of the slot 5a and of the plate 6a are superimposed vertically, that is to say aligned perpendicular to the longitudinal axis of the microstrip 3a.
  • the transverse and longitudinal axes of the slot 5a are here parallel to the transverse and longitudinal axes of the plate 6a, respectively.
  • a thin dielectric plate (not shown) serving as a protective cover can be glued to the upper face of the second substrate 7a supporting the printed plate 6a.
  • the two substrates possibly with the protective cover thus form a monolithic elementary antenna.
  • Fig. 2 illustrates electric field lines E in the antenna 1a which are seen in the vertical plane comprising the longitudinal axis of the microstrip 3a and the transverse axis of the slot 5a, and therefore which extend perpendicular to the slot 5a.
  • Fig. 3 shows surface current lines on the radiating plate 6a. These figures show, as already said, current lines which are curvilinear on either side of the transverse axis of the slit 5a and therefore field lines not perpendicular to the slit which disturbs any field polarization in the environment close to the antenna 1a, and in particular causes this antenna 1a to couple with any other neighboring elementary antenna in a flat antenna array.
  • FIG. 5 An elementary printed antenna 1b with coupling slot and microstrip microwave power supply line according to the invention is illustrated in FIG. 5.
  • This antenna 1b is therefore of the same type as the known antenna 1a described above and comprises elements 2b, 3b, 4b, 5b and 7b, identified with the index b, respectively analogous to those 2a, 3a, 4a , 5a and 7a of antenna 1a.
  • the antenna 1b comprises, in place of the metal plate 6a, several narrow parallel metal strips 8b forming the radiating element of the antenna 1b.
  • the strips 8b are printed on the upper face of the second substrate 7b.
  • the strips 8 thus extend parallel to the microstrip 3b and perpendicular to the slot 5b, and are distributed symmetrically on either side of the transverse axis of the slot 5b.
  • the contour formed by the ends of the strips 8b can be similar to that of the plate 6a, and is for example rectangular as shown in FIGS. 5 and 6, or elliptical as shown in fig. 7, or even circular or polygonal.
  • FIG. 8 a double polarization array comprising two sub-arrays each having sixteen elementary antennas according to the invention is shown in FIG. 8.
  • the first sub-array includes sixteen 1X1 to 1X16 antennas with Ex polarization which are uniformly distributed in four parallel rows 1X1 to 1X4, 1X5 to 1X8, 1X9 to 1X12 and 1X13 to 1X16, forming linear networks.
  • the first antenna sub-network is supplied by a 9X microstrip line which ends in a tree line in the network by means of power dividers by two 10X in order to supply the four rows, then pairs of antennas and finally each of the elementary antennas of a pair.
  • the 1X1 to 1X16 antennas are thus regularly distributed in a square matrix.
  • the second sub-network also includes four linear antenna sub-networks 1Y1 to 1Y4, 1Y5 to 1Y8, 1Y9 to 1Y12 and 1Y13 to 1Y16 forming lines of a square matrix interleaved two by two with the lines of the first sub-network .
  • a microstrip line 9Y also arborescent through power dividers by two 10Y supplies the second sub-network.
  • Line 9Y is analogous to line 9X and originates on a side opposite line 9Y with respect to the array, and the antennas in the first subarray are staggered relative to the antennas in the second subarray, the subnetwork columns are also interleaved two by two.
  • the two sub-arrays have in common the two dielectric substrates 2b and 7b between which extends the ground plane 4b with slots 5X and 5Y associated with the antennas 1X1 to 1X16 and 1Y1 to 1Y16, and under the first 2b of which are printed the 3X and 3Y line microstrips associated with said antennas, respectively.
  • the radiating bands 8X and 8Y of the two sub-arrays are thus coplanar on the upper face of the substrate 7b.
  • the antennas 1X1 to 1X16 have their radiating bands 8X, extending in a direction Ex, while the antennas 1Y1 to 1Y16 have their radiating bands 8Y extend in a direction Ey perpendicular to the direction Ex.
  • the antennas according to the invention thus associated with orthogonal pure polarizations can be very close to one another, unlike networks according to the prior art, since the Ex and Ey polarizations are perfectly rectilinear and orthogonal, and therefore do not disturb each other.
  • a 1X, 1Y antenna is "framed" by four other 1Y, 1X antennas according to fig.8. This results in greater compactness which is particularly advantageous when the antenna network is embedded for example in a satellite, a missile or other device.
  • microstrip supply lines microstrip
  • triplate lines stripline
  • coaxial lines For a three-ply line, a third dielectric substrate is fixed under the underside of the first substrate 2b; a reflective ground conductor plane is printed under the underside of the third substrate.
  • the distribution of antennas in a network can be different from that shown in fig. 8.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

L'antenne comprend, comme dans une antenne plaque, un substrat diélectrique (7b), un plan de masse (4b) de ligne d'alimentation (3b) disposé sur une face du substrat, et un élément rayonnant disposé sur une autre face du substrat et couplé à la ligne par une fente de couplage (5b) dans le plan de masse. L'élément rayonnant consiste en plusieurs bandes étroites conductrices (8b) s'étendant perpendiculairement à la fente de couplage (5b), afin d'obtenir une polarisation quasiment parfaite. De telles antennes ayant des polarisations orthogonales ne se pertubent pas mutuellement et peuvent être proches les unes des autres afin de constituer un réseau à double polarisation compact. <IMAGE>

Description

  • La présente invention concerne une antenne imprimée élémentaire en technologie plaquée pour réseau de réception et/ou d'émission de signaux de télécommunications, présentant un faible encombrement à des fins d'embarquement dans un engin, tel que satellite.
  • Plus précisément, l'antenne comprend, d'une manière connue, un substrat diélectrique, un plan conducteur de masse d'une ligne d'alimentation hyperfréquence disposé sur une face du substrat, et un élément rayonnant disposé sur une autre face du substrat, ledit plan conducteur ayant une fente de couplage pour coupler la ligne d'alimentation à l'élément rayonnant.
  • Dans une telle antenne, comme illustrée à la figure 14.6, page 824, du livre "MICROSTRIP ANTENNAS", Vol. 2, édité par J.R. James & P.S. Hall, 19.., l'élément rayonnant est constitué par une plaque métallique imprimée sur la face du substrat opposée à la fente pratiquée dans le plan de masse. La ligne d'alimentation est par exemple une ligne microruban.
  • La plaque rayonnante est assimilable à un résonateur ouvert qui est le siège d'ondes essentiellement polarisées suivant la largeur de la fente de couplage sous-jacente. Les résonances dépendent principalement des dimensions de la fente et de la plaque. La largeur de bande est fonction du coefficient de surtension du résonateur, lui-même dépendant de l'épaisseur et des caractéristiques électriques du substrat.
  • Pour constituer un réseau à double polarisation, celui-ci comprend un premier sous-réseau comprenant des antennes assujetties à une première polarisation, par exemple Ex, et un second sous-réseau comprenant des antennes assujetties à une seconde polarisation Ey orthogonale à la première. Les antennes dans les premier et second sous-réseaux sont entrelacées et sont donc à une relative proximité les unes des autres.
  • Les deux polarisations sont obtenues par des fentes de couplages perpendiculaires. Les mesures montrent que le champ électromagnétique n'est pas parfaitement polarisé dans le voisinage d'une antenne élémentaire. En effet, par exemple, les lignes de champ électrique s'incurvent en proportion de la distance au centre de la fente de couplage, le long de l'axe longitudinal de celle-ci. Cette incurvation de ligne de champ rend ainsi imparfaite la polarisation, et par suite engendre des couplages néfastes entre antennes élémentaires dans un même sous-réseau, mais également entre antennes élémentaires dans les deux sous-réseaux. Ces couplages sont d'autant plus prononcés que les antennes sont proches les unes des autres.
  • Le gain d'un tel réseau est donc faible. La surface occupée par celui-ci est d'autant plus grande que le gain est amélioré, au détriment de l'encombrement du réseau et donc contrairement à la recherche de compacité pour les matériels embarqués dans des engins.
  • La présente invention vise à fournir une antenne imprimée élémentaire qui engendre une polarisation quasiment parfaite, c'est-à-dire quasiment rectiligne, ce qui permet de rapprocher de telles antennes ayant des polarisations croisées et donc de diminuer l'encombrement d'un réseau d'antennes.
  • A cette fin, une antenne imprimée selon l'invention et telle que définie dans l'entrée en matière, est caractérisée en ce que l'élément rayonnant consiste en plusieurs bandes étroites conductrices s'étendant perpendiculairement à la fente de couplage.
  • Les bandes étroites maintiennent une polarisation suivant leur direction longitudinale et empêche ainsi une excitation du mode orthogonal à la polarisation ainsi définie. Dans ces conditions deux antennes élémentaires ayant des bandes conductrices coplanaires et perpendiculaires entre elles offrent un couplage quasiment nul, ce qui permet de les rapprocher, et donc d'augmenter la densité d'antenne et la compacité dans un réseau à double polarisation.
  • D'autres avantages et caractéristiques de l'invention apparaîtront plus clairement à la lecture de la description qui suit de plusieurs réalisations préférées de l'invention en référence aux dessins annexés correspondants dans lesquels:
    • la fig. 1 est une vue éclatée en perspective d'une antenne imprimée à fente de couplage et plaque rayonnante selon la technique antérieure ;
    • les figs. 2 et 3 sont respectivement une vue en coupe transversale à la fente de couplage et une vue de dessus de la plaque rayonnante, montrant des répartitions de lignes de champ électrique et du courant surfacique dans l'antenne de la fig. 1 ;
    • la fig. 4 est analogue à la fig. 3 et montre une plaque rayonnante elliptique ;
    • la fig. 5 est une vue éclatée en perspective d'une antenne imprimée à bandes rayonnantes selon l'invention ;
    • les figs. 6 et 7 sont des vues de dessus de bandes rayonnantes inscrites globalement dans un rectangle et une ellipse, respectivement ; et
    • la fig. 8 est une vue schématique de dessus d'un réseau d'antennes à deux polarisations orthogonales selon l'invention.
  • Afin de mieux discerner les caractéristiques de l'invention, la structure d'une antenne imprimée élémentaire 1a à fente de couplage selon la technique antérieure est rappelée en référence à la fig. 1.
  • Selon cet exemple, l'antenne 1a est alimentée par une ligne microruban hyperfréquence supporté par un premier substrat diélectrique 2a d'épaisseur d₂ et de permittivité relative εr₂ prédéterminées. Le substrat 2a est imprimé sur les deux faces. La face inférieure du substrat comporte un ruban conducteur 3a de largeur prédéterminée W₃. La face supérieure du substrat 2a est recouverte d'un plan conducteur de masse 4a. Une portion rectangulaire de la face supérieure du substrat 2a est dépourvue de matériau conducteur pour former une fente de couplage 5a. L'axe longitudinal de la fente 5a est perpendiculaire au microruban 3a, tandis que l'axe transversal de la fente 5a est parallèle à et aligné verticalement avec l'axe du microruban. Les longueur et largeur de la fente 5a sont dénotées par L₅ et W₅ dans la fig. 1.
  • L'antenne élémentaire 1a comprend également une plaque conductrice 6a ("patch" en terminologie anglo-saxonne) constituant l'élément rayonnant de l'antenne. La plaque 6a est superposée au-dessus du plan de masse 4a, à l'opposé de la face inférieure du substrat 2a supportant le microruban 3a, du moyen d'un second substrat diélectrique 7a. Le substrat 7a offre une épaisseur d₇ et une permittivité relative εr₇ généralement différentes de d₂ et εr₂ respectivement, la constante εr₇ étant souvent inférieure à εr2 et voisine de l'unité pour augmenter la bande passante de l'antenne. Le substrat 7a est fixé sur le plan conducteur 4a du premier substrat, par exemple avec du ciment époxydique.
  • La plaque 6a est pleine, contrairement au caractère ajouré du plan de masse 4a conféré par la présence de la fente 5a.
  • La plaque 6a est rectangulaire et a des largeur W₆ et longueur L₆ prédéterminées beaucoup plus grandes que les dimensions de la fente 5a, comme montré à la fig. 3. Selon d'autres variantes, la plaque rayonnante peut être carrée, circulaire, trapèzoïdale, polygonale ou bien elliptique comme montré à la fig. 4. Les centres de la fente 5a et de la plaque 6a sont superposés verticalement, c'est-à-dire alignés perpendiculairement à l'axe longitudinal du microruban 3a. Les axes transversal et longitudinal de la fente 5a sont ici parallèles aux axes transversal et longitudinal de la plaque 6a, respectivement.
  • Une plaque diélectrique mince (non représentée) servant de couverture de protection peut être collée sur la face supérieure du second substrat 7a supportant la plaque imprimée 6a.
  • Les deux substrats éventuellement avec la couverture de protection forment ainsi une antenne élémentaire monolithique.
  • La fig. 2 illustre des lignes de champ électrique E dans l'antenne 1a qui sont vues dans le plan vertical comprenant l'axe longitudinal du microruban 3a et l'axe transversal de la fente 5a, et donc qui s'étendent perpendiculairement à la fente 5a. La fig. 3 montre des lignes de courant surfacique sur la plaque rayonnante 6a. Ces figures font apparaître, comme déjà dit, des lignes de courant qui sont curvilignes de part et d'autre de l'axe transversal de la fente 5a et donc des lignes de champ non perpendiculaires à la fente ce qui perturbe toute polarisation de champ dans l'environnement proche de l'antenne 1a, et particulièrement provoque un couplage de cette antenne 1a avec tout autre antenne élémentaire voisine dans un réseau plat d'antenne.
  • Une antenne imprimée élémentaire 1b à fente de couplage et ligne microruban d'alimentation hyperfréquence selon l'invention est illustrée à la fig. 5. Cette antenne 1b est donc du même type que l'antenne connue 1a décrite ci-dessus et comprend des éléments 2b, 3b, 4b, 5b et 7b, repérés avec l'indice b, respectivement analogues à ceux 2a, 3a, 4a, 5a et 7a de l'antenne 1a.
  • L'antenne 1b comprend, à la place de la plaque métallique 6a, plusieurs bandes étroites métalliques parallèles 8b formant l'élément rayonnant de l'antenne 1b. Les bandes 8b sont imprimées sur la face supérieure du second substrat 7b. Par exemple, selon la fig. 5, les bandes 8b sont au nombre de sept, ont chacune une longueur L₈ = W₆ et une largeur W₈ environ égale à L₆/14, et sont équidistantes par intervalles de largeur I = W₈ le long de l'axe longitudinal de la fente 5b. Les bandes 8 s'étendent ainsi parallèlement au microruban 3b et perpendiculairement à la fente 5b, et sont réparties symétriquement de part et d'autre de l'axe transversal de la fente 5b.
  • Le contour formé par les extrémités des bandes 8b peut être analogue à celui de la plaque 6a, et est par exemple rectangulaire comme montré aux fig. 5 et 6, ou elliptique comme montré à la fig. 7, ou bien encore circulaire ou polygonale.
  • Dans les figs. 6 et 7 sont indiquées par des flèches des lignes de courant surfacique qui sont confinées dans les bandes conductrices 8b. Comparativement aux figs. 3 et 4, ces lignes de courant sont parfaitement rectilignes et parallèles, eu égard à la faible largeur W₈ des bandes conductrices 8b par rapport à la longueur L₆ de la plaque 6a. Grâce à la rectitude des bandes 8b, la polarisation de champ électrique E est parfaitement perpendiculaire à la fente de couplage 5b, et ne peut être perturbée par et ne peut perturber un champ électrique polarisé orthogonal émis par une antenne élémentaire selon l'invention située au voisinage de l'antenne 1b, comme on le verra ci-après dans un réseau d'antennes.
  • A titre d'exemple, un réseau à double polarisation comprenant deux sous-réseaux ayant chacun seize antennes élémentaires selon l'invention est montré à la fig. 8.
  • Le premier sous-réseau comprend seize antennes 1X₁ à 1X₁₆ à polarisation Ex qui sont réparties uniformément en quatre rangées parallèles 1X₁ à 1X₄, 1X₅ à 1X₈, 1X₉ à 1X₁₂ et 1X₁₃ à 1X₁₆, formant des réseaux linéaires. Le premier sous-réseau d'antenne est alimenté par une ligne microruban 9X qui se termine en une ligne arborescente dans le réseau au moyen de diviseurs de puissance par deux 10X afin d'alimenter les quatre rangées, puis des paires d'antennes et enfin chacune des antennes élémentaires d'une paire. Les antennes 1X₁ à 1X₁₆ sont ainsi régulièrement réparties en une matrice carrée.
  • Le second sous-réseau comprend également quatre sous-réseaux linéaires d'antenne 1Y₁ à 1Y₄, 1Y₅ à 1Y₈, 1Y₉ à 1Y₁₂ et 1Y₁₃ à 1Y₁₆ formant des lignes d'une matrice carrée entrelacées deux à deux avec les lignes du premier sous-réseau. Une ligne microruban 9Y également arborescente à travers des diviseurs de puissance par deux 10Y alimente le second sous-réseau. La ligne 9Y est analogue à la ligne 9X et provient d'un côté opposé à la ligne 9Y par rapport au réseau, et les antennes dans le premier sous-réseau sont disposées en quinconce par rapport aux antennes dans le second sous-réseaux, les colonnes des sous-réseaux étant également entrelacées deux à deux.
  • Les deux sous-réseaux ont en commun les deux substrats diélectriques 2b et 7b entre lesquels s'étend le plan de masse 4b avec des fentes 5X et 5Y associées aux antennes 1X₁ à 1X₁₆ et 1Y₁ à 1Y₁₆, et sous le premier 2b desquels sont imprimés les microrubans de ligne 3X et 3Y associées auxdites antennes, respectivement. Les bandes rayonnantes 8X et 8Y des deux sous-réseaux sont ainsi coplanaires sur la face supérieure du substrat 7b.
  • Les antennes 1X₁ à 1X₁₆ ont leur bandes rayonnantes 8X, s'étendant suivant une direction Ex, tandis que les antennes 1Y₁ à 1Y₁₆ ont leurs bandes rayonnantes 8Y s'étendent suivant une direction Ey perpendiculaire à la direction Ex. Les antennes selon l'invention ainsi associées à des polarisations pures orthogonales peuvent être très proches les unes des autres, contrairement aux réseaux selon la technique antérieure, puisque les polarisations Ex et Ey sont parfaitement rectilignes et orthogonales, et donc ne se perturbent pas mutuellement. Par exemple une antenne 1X, 1Y est "encadrée" par quatre autres antennes 1Y, 1X selon la fig.8. Il en résulte une plus grande compacité qui est particulièrement avantageuse lorsque le réseau d'antenne est embarqué par exemple dans un satellite, un missile ou autre engin.
  • Bien que l'invention ait été décrite en référence à des lignes d'alimentation microruban (microstrip), l'homme du métier saura remplacer celles-ci par des lignes triplaques (stripline) ou des lignes coaxiales. Pour une ligne triplaque, un troisième substrat diélectrique est fixé sous la face inférieure du premier substrat 2b; un plan conducteur de masse réflecteur est imprimé sous la face inférieure du troisième substrat.
  • D'autre part, la répartition des antennes dans un réseau peut être différente de celle montrée à la fig. 8.

Claims (6)

  1. Antenne imprimée (1b) comprenant un substrat diélectrique (7b), un plan conducteur de masse (5b) d'une ligne d'alimentation hyperfréquence (3b) disposé sur une face du substrat, et un élément rayonnant disposé sur une autre face du substrat, ledit plan conducteur ayant une fente de couplage (5b) pour coupler la ligne d'alimentation à l'élément rayonnant, caractérisée en ce que l'élément rayonnant consiste en plusieurs bandes étroites conductrices (8b) s'étendant perpendiculairement à la fente de couplage (5b).
  2. Antenne conforme à la revendication 1, caractérisée en ce que les bandes (8b) sont réparties symétriquement de part et d'autre de l'axe transversal de la fente (5b).
  3. Réseau d'antennes comprenant plusieurs premières antennes (1X₁ à 1X₁₆) qui sont conformes à la revendication 1 ou 2 et dont les bandes (8X) sont parallèles entre elles.
  4. Réseau d'antennes conforme à la revendication 3, caractérisé en ce qu'il comprend plusieurs secondes antennes (1Y₁ à 1Y₁₆) qui sont conformes à la revendication 1 ou 2 et dont les bandes (8Y) sont parallèles entre elles et s'étendent coplanairement et perpendiculairement aux bandes (8X) des premières antennes (1X₁ à 1X₁₆).
  5. Réseau d'antennes conforme à la revendication 4, caractérisé en ce que les antennes les plus proches d'une première, respectivement seconde antenne (1X, 1Y) sont des secondes, respectivement premières antennes (1Y, 1X).
  6. Réseau d'antennes conforme à la revendication 4 ou 5, caractérisé en ce que les premières antennes (1X₁ à 1X₁₆) sont réparties suivant des rangées d'une première matrice qui sont entrelacées deux à deux avec des rangées d'une seconde matrice le long desquelles sont réparties les secondes antennes (1Y₁ à 1Y₁₆).
EP19910402915 1990-10-31 1991-10-30 Antenne imprimée pour réseau à double polarisation Expired - Lifetime EP0484241B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9013563A FR2668655B1 (fr) 1990-10-31 1990-10-31 Antenne imprimee pour reseau a double polarisation.
FR9013563 1990-10-31

Publications (2)

Publication Number Publication Date
EP0484241A1 true EP0484241A1 (fr) 1992-05-06
EP0484241B1 EP0484241B1 (fr) 1995-04-12

Family

ID=9401764

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19910402915 Expired - Lifetime EP0484241B1 (fr) 1990-10-31 1991-10-30 Antenne imprimée pour réseau à double polarisation

Country Status (3)

Country Link
EP (1) EP0484241B1 (fr)
DE (1) DE69108849T2 (fr)
FR (1) FR2668655B1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2266192A (en) * 1992-04-13 1993-10-20 Andrew Corp Slotted patch antenna array arrangement for selected polarisation
US5309164A (en) * 1992-04-13 1994-05-03 Andrew Corporation Patch-type microwave antenna having wide bandwidth and low cross-pol
EP0617480A1 (fr) * 1993-03-26 1994-09-28 Alcatel Espace Structure rayonnante à directivité variable
WO1999017403A1 (fr) * 1997-09-26 1999-04-08 Raytheon Company Antenne reseau a plaques en micro-ruban a double polarisation pour stations de base de systemes de communication personnelle
US5923296A (en) * 1996-09-06 1999-07-13 Raytheon Company Dual polarized microstrip patch antenna array for PCS base stations
WO2001035491A1 (fr) * 1999-11-12 2001-05-17 France Telecom Antenne imprimee bi-bande
GB2549858A (en) * 2016-04-29 2017-11-01 Laird Technologies Inc Multiband WIFI directional antennas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3155975A (en) * 1962-05-07 1964-11-03 Ryan Aeronautical Co Circular polarization antenna composed of an elongated microstrip with a plurality of space staggered radiating elements
US4403221A (en) * 1981-08-10 1983-09-06 Honeywell Inc. Millimeter wave microstrip antenna
EP0342175A2 (fr) * 1988-05-10 1989-11-15 COMSAT Corporation Antenne circuit imprimé à double polarisation dont les éléments, incluant des éléments circuit imprimé en grille, sont couplés capacitivement aux lignes d'alimentation
GB2219143A (en) * 1988-05-26 1989-11-29 Matsushita Electric Works Ltd Planar antenna

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3155975A (en) * 1962-05-07 1964-11-03 Ryan Aeronautical Co Circular polarization antenna composed of an elongated microstrip with a plurality of space staggered radiating elements
US4403221A (en) * 1981-08-10 1983-09-06 Honeywell Inc. Millimeter wave microstrip antenna
EP0342175A2 (fr) * 1988-05-10 1989-11-15 COMSAT Corporation Antenne circuit imprimé à double polarisation dont les éléments, incluant des éléments circuit imprimé en grille, sont couplés capacitivement aux lignes d'alimentation
GB2219143A (en) * 1988-05-26 1989-11-29 Matsushita Electric Works Ltd Planar antenna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES vol. MTT-28, no. 7, juillet 1980, pages 685-689, New York, US; R. WATANABE: "A novel polarization-independent beam splitter" *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2266192A (en) * 1992-04-13 1993-10-20 Andrew Corp Slotted patch antenna array arrangement for selected polarisation
US5309164A (en) * 1992-04-13 1994-05-03 Andrew Corporation Patch-type microwave antenna having wide bandwidth and low cross-pol
GB2266192B (en) * 1992-04-13 1996-04-03 Andrew Corp Patch-type microwave antenna having wide bandwith and low cross-pol
EP0617480A1 (fr) * 1993-03-26 1994-09-28 Alcatel Espace Structure rayonnante à directivité variable
FR2703190A1 (fr) * 1993-03-26 1994-09-30 Alcatel Espace Structure rayonnante à directivité variable.
US5923296A (en) * 1996-09-06 1999-07-13 Raytheon Company Dual polarized microstrip patch antenna array for PCS base stations
WO1999017403A1 (fr) * 1997-09-26 1999-04-08 Raytheon Company Antenne reseau a plaques en micro-ruban a double polarisation pour stations de base de systemes de communication personnelle
WO2001035491A1 (fr) * 1999-11-12 2001-05-17 France Telecom Antenne imprimee bi-bande
FR2801139A1 (fr) * 1999-11-12 2001-05-18 France Telecom Antenne imprimee bi-bande
US6741210B2 (en) 1999-11-12 2004-05-25 France Telecom Dual band printed antenna
GB2549858A (en) * 2016-04-29 2017-11-01 Laird Technologies Inc Multiband WIFI directional antennas
US10056701B2 (en) 2016-04-29 2018-08-21 Laird Technologies, Inc. Multiband WiFi directional antennas
GB2549858B (en) * 2016-04-29 2019-01-09 Laird Technologies Inc Multiband WIFI directional antennas

Also Published As

Publication number Publication date
FR2668655B1 (fr) 1993-07-30
DE69108849D1 (de) 1995-05-18
FR2668655A1 (fr) 1992-04-30
EP0484241B1 (fr) 1995-04-12
DE69108849T2 (de) 1995-12-07

Similar Documents

Publication Publication Date Title
EP0123350B1 (fr) Antenne plane hyperfréquences à réseau de lignes microruban complètement suspendues
EP0089084B1 (fr) Structure d&#39;antenne plane hyperfréquences
EP0527417B1 (fr) Antenne radioélectrique élémentaire miniaturisée
EP0145597B1 (fr) Antenne périodique plane
EP1849213B1 (fr) Antenne dipole imprimee multibande
EP0044779B1 (fr) Doublets repliés en plaques pour très haute fréquence et réseaux de tels doublets
CA1338792C (fr) Dephaseur hyperfrequence a microruban et dielectrique suspendu, et application a des reseaux d&#39;antennes a balayage de lobe
FR2752646A1 (fr) Antenne imprimee plane a elements superposes court-circuites
EP0493190B1 (fr) Antenne hyperfréquence de type pavé
CA2310125C (fr) Antenne
EP0134611B1 (fr) Antenne plane hyperfréquence à réseau d&#39;éléments rayonnants ou récepteurs et système d&#39;émission ou de réception de signaux hyperfréquences comprenant une telle antenne plane
EP1589608A1 (fr) Antenne compacte RF
FR2645353A1 (fr) Antenne plane
EP0082751B1 (fr) Radiateur d&#39;ondes électromagnétiques et son utilisation dans une antenne à balayage électronique
EP0484241B1 (fr) Antenne imprimée pour réseau à double polarisation
EP1181744B1 (fr) Antenne a polarisation verticale
FR2664749A1 (fr) Antenne microonde.
EP1949496B1 (fr) Systeme d&#39;antenne plate a acces direct en guide d&#39;ondes
WO1991018428A1 (fr) Antenne orientable plane, fonctionnant en micro-ondes
FR2587547A1 (fr) Element multi-antennes
EP2432072B1 (fr) Symétriseur large bande sur circuit multicouche pour antenne réseau
WO2012041979A1 (fr) Antenne compacte a fort gain
EP0831550B1 (fr) Antenne-réseau polyvalente
EP0156684A1 (fr) Elément rayonnant des ondes électromagnétiques, et son application à une antenne à balayage électronique
FR2599899A1 (fr) Antenne plane a reseau avec conducteurs d&#39;alimentation imprimes a faible perte et paires incorporees de fentes superposees rayonnantes a large bande

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19911209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

17Q First examination report despatched

Effective date: 19940801

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REF Corresponds to:

Ref document number: 69108849

Country of ref document: DE

Date of ref document: 19950518

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950724

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060926

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060928

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20071030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071030