EP0483560A1 - Two-channel forked light barrier in Failsafe-design - Google Patents

Two-channel forked light barrier in Failsafe-design Download PDF

Info

Publication number
EP0483560A1
EP0483560A1 EP91117175A EP91117175A EP0483560A1 EP 0483560 A1 EP0483560 A1 EP 0483560A1 EP 91117175 A EP91117175 A EP 91117175A EP 91117175 A EP91117175 A EP 91117175A EP 0483560 A1 EP0483560 A1 EP 0483560A1
Authority
EP
European Patent Office
Prior art keywords
light barrier
time
failsafe
circuit
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91117175A
Other languages
German (de)
French (fr)
Other versions
EP0483560B1 (en
Inventor
Rainer Schön
Martin Kirchner
Bernhard Sprecher
Daniel Wildisen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Publication of EP0483560A1 publication Critical patent/EP0483560A1/en
Application granted granted Critical
Publication of EP0483560B1 publication Critical patent/EP0483560B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B13/00Doors, gates, or other apparatus controlling access to, or exit from, cages or lift well landings
    • B66B13/24Safety devices in passenger lifts, not otherwise provided for, for preventing trapping of passengers
    • B66B13/26Safety devices in passenger lifts, not otherwise provided for, for preventing trapping of passengers between closing doors

Definitions

  • the present invention relates to a two-channel fork light barrier in failsafe design for generating shaft information when a switch flag is immersed in the shaft in the area of the door zones in elevators for the purpose of prematurely initiating the opening of the door when the elevator car is retracted into a target floor.
  • European patent application No. 0 357 888 describes a method and a device for generating shaft information for elevators by means of a safety light barrier. Circuit-internal test circuits monitor statically in the idle position and dynamically while the elevator is moving when the light barrier is inserted and removed from the from the actuating lugs in the shaft their correct function and emit appropriate error signals in the event of an error.
  • U.S. Patent No. 3,743,056 describes a failsafe detector which has a fail-safe circuit and is in particular protected against extraneous light and reflections.
  • the present invention has for its object to provide a failsafe light barrier whose operational safety and readiness is known before each trip of the elevator. This object is achieved by the invention characterized in the claims.
  • Fig.1 all parts of the device and their relationships to each other are shown in a block diagram.
  • the slot of the fork light barrier is designated, in which the switching flags, not shown, dip in and out when the elevator is traveling and thereby interrupt a light beam 11.
  • the switching flags denotes an oscillator which controls an IR transmitter diode SDA operated in terms of pulses. This sends its light through an exit window 1.2 via the space in slot 1 into an entry window 1.3, behind which a phototransistor T1 converts the light pulses into current pulses, which are then in a receiver and signal amplifier 3 be processed into a strong signal.
  • a measuring point is designated P1A.
  • the signal pulses, clocked with the oscillator signal, are subsequently integrated in an integrator 4 to form a continuous signal, which can then be tapped at a measuring point P2A. In this way, non-conforming to the oscillator frequency and any other interference signals are blanked out and eliminated.
  • a subsequent Schmitt trigger 5 is known for a clean switching edge, which can be tracked at a measuring point P3A.
  • the next switching stage with a transistor T2 controls a relay switching stage with a transistor T3 via a cyclically dynamic self-monitoring 6 (hereinafter referred to as ZDU 6).
  • a measuring point P4A is also located on the connection between the transistor and a relay coil A.
  • the relay coil A is connected in the usual way with a back diode and actuates four normally open contacts and two normally closed contacts a1 to a6.
  • the relay coil A On the positive side, the relay coil A is connected via a resistor R1A and a normally closed contact b2 to a supply voltage which comes from a voltage converter and interference filter 9.
  • the relay contacts b1 to b2 are part of the relay B in the analogue channel B of the failsafe light barrier.
  • the contact combinations a4 / b4, a5 / b5 and a3 / b3 partly present status information and partly parts of the contact safety circuit in the elevator control. With the contact a6, an LED 10 is activated as a visual status control via a resistor R3A.
  • a connection leads back to ZDU 6.
  • an output with a periodic test signal TSA leads to a bridging storey flag 8, which in turn has an input blocking signal SPS and a further input with the oscillator sequence coming from a photodiode HDA.
  • an auxiliary transmitter HSA is operated from the bridging floor flag 8.
  • the light pulses emitted by the transmitter diode SDA also act on the photodiode HDA, the pulse signals of which are continuously applied to the corresponding input of the bridging storey flag 8 and from this when a test pulse TSA arrives or a blocking signal PLC can be passed on to the auxiliary transmitter HSA. Its light pulses then act on the phototransistor T1 (FIG. 1), which completes the process referred to as an optical short circuit.
  • FIG. 2 shows the mutual arrangement of the transmitters SA and SB and the receivers EA and EB in the fork legs 12 and 13 of a fork sensor housing 14.
  • the light beams 11 of the two transmitters SA and SB are directed in opposite directions to one another, so that no stray light from a transmitter in can reach a receiver of the neighboring channel.
  • the signal diagram in FIG. 3 shows the normal function of the failsafe light barrier (hereinafter referred to as the FS light barrier).
  • the first vertical line marked with “in” represents the point in time at which a switching flag in the shaft just interrupts the light beam 11 in the FS light barrier.
  • the second vertical line marked with “off” represents the point in time at which the switching flag in the shaft just emerges from the FS light barrier and releases the light beam 11.
  • P3A After falling below the lower trigger threshold value, P3A becomes zero and subsequently also P4A, whereby relay A is energized and relay A can pick up after a time t.
  • the principle of simultaneity checking when the relays are activated is described in the application document mentioned in the prior art. The relays A and B remain energized as long as the elevator is on one floor and the light beam 11 through one Switch flag remains interrupted.
  • the effect of PLC can be seen in the signal diagram in Fig. 5.
  • the auxiliary transmitter HSA is switched on by bridging the floor flag 8 and the photo transistor T1 is fired with it. Since the light pulses originate from the SDA transmitter diode and are returned via the HDA photodiode to bridge floor flag 8, it means no difference to the original signal for the subsequent switching and the relays A and B remain dropped or do not respond to a switch flag as long as the blocking signal PLC is active.
  • These additional opto-elements are the basis for the implementation of the ZDU (cyclical dynamic self-monitoring) for error detection.
  • the term dynamic is used to address the functioning of the monitoring, which proceeds in the same way as an operating function, and the term cyclical is an indication of the periodic repetition of the monitoring function every second. It is about recognizing faulty elements and errors in function at any time.
  • the diagram of FIG. 4 shows the test signals TSA of channel A and TSB of channel B coming from the ZDU 6.
  • the test signals TSA and TSB have a pulse length tp which is, for example, half shorter than the relay dropout time t (FIG. 3).
  • the test signals TSA and TSB are offset in time from one another at a time tpv (Fig. 8). The time shift serves to ensure that the monitoring functions run completely separately for each channel in order to avoid mutual interference.
  • test signals TSA and TSB simulate a brief escape from the switch flag during which the elevator is at rest on the floor.
  • the functions correspond in principle to those as shown in the diagram in FIG. 3, with the difference that they run inversely and are much shorter in time.
  • the ZDU 6 all elements involved in the operational function are checked during the respective function cycle. In the event of a fault, the monitoring cycle is interrupted, whereupon at least one relay A or B drops out and the safety circuit of the elevator thus responds.
  • the ZDU 6 essentially consists of a number of interdependent time signal circuits.
  • the time signals and circuits are called t1A, t2A, t3A and t4A for channel A and t1B, t2B, t3B, t4B and tVB for channel B (FIG. 7).
  • 6 shows the details of the relay switching stage with the switching transistor T3 and its control with an OR gate. The inputs of the OR gate form the time signals t1A and t3A.
  • Relay A is therefore live if one or both inputs are equal to one or is not live if both inputs are equal to zero.
  • the ZDU 6 now causes both inputs t1A and t3A to periodically become zero for a short time without relay A dropping out.
  • FIG. 7 shows the time signals t1A to t4A or tVB and t1B to t4B, as well as the two OR gates and a flip-flop QFF as blocks with the corresponding connections to one another.
  • the blocks shown are the essential content of block ZDU 6 in the block diagram of FIG.
  • the upper part of the block diagram shows the elements of the A channel and the lower part those of the B channel.
  • QFF is a common element and has a synchronization task.
  • An additional time signal circuit tVB is present in the B channel and is responsible for causing a pulse shift in order to form a QFF start signal.
  • the timing of the signals mentioned is shown in the diagram in FIG.
  • the Test signals TSA and TSB, the measuring points P4A / B, the relays A / B, and a JK flip-flop output QFF are listed.
  • the time signal t1A is a bridging signal and is approximately twice as long as t1B.
  • the time signals t2A and t2B are short control signals for QFF and the time signals t3A and t3B are the actual cycle-determining signals.
  • t3A and t3B are started together with the falling edge of QFF, but have a length different by tPV, with t3A ⁇ t3B.
  • the time zero of the diagram is given when the switch flag is dipped in and defined with the vertical line marked above with "in”.
  • t1A which is identical to P3A, becomes one, generates the switching pulse t2A, which in turn makes QFF one.
  • relay A is switched on via P4A, which picks up after a time t.
  • the time signal tVB is started first and only switched through to relay B after it has expired, as a result of which it receives voltage, for example, 2 ms later.
  • the end of the time signal tVB generates the switching pulse t2B which then makes QFF zero again.
  • the falling edge of QFF is now the start signal synchronizing the two channels for the time signals t3A and t3B.
  • the time signals t3A and t3B are of different lengths, t3A being shorter than t3B.
  • the time difference corresponds to the test signal delay time tPV in the diagram in FIG. 4.
  • the first test in channel A begins by generating a test signal TSA via t4A and which makes measuring point P4A one during its duration, thus creating a time gap of the same duration for the relay.
  • the time gap in the channel B relay system is therefore composed of the duration of TSB and tVB.
  • the switching pulse t2B QFF becomes zero and the time signals t3A and t3B start again, which starts a new cycle.
  • t1A can run out without effect and is ready for the next same function.
  • the response must be on the safe side, i.e. a relay must drop out and its contacts report the fault to the safety circuits.
  • the periodic inspection of all components records interruptions, short circuits, intermittent failures and drifts. As a first example, assume that the measurement point P3A remains at zero.
  • relay B also picks up. For the time difference in which the two relays pick up one after the other, the antivalence of the outgoing relay contacts is disturbed, with which the error is reported to the control. After a cycle time tz, both relays drop out again because the faulty channel does not carry out the signal change controlled by the ZDU 6.
  • the time signal circuits are implemented by means of RC-connected, generally known, monostable CMOS multivibrators, and a likewise known dual J-K flip-flop was used for the flip-flop circuit.
  • the measuring points mentioned in the description only serve to explain the function and in the practical version are not designed as electrical connections.
  • the circuit and mode of operation of the FS light barrier shown can also be used in other areas of technology where fail-safe devices are required, such as for machine tools, trains, alarm and security systems.
  • a corresponding sensor can also be designed as a proximity sensor based on the reflex principle.

Abstract

A two-channel forked fail-safe light barrier generates shaft position information in the region of the floors for the premature opening of the doors on arrival of an elevator car and includes a cyclical dynamic self-monitoring circuit by means of which a prophylactic fault recognition is possible. The self-monitoring circuit is responsive to the arrival and standstill of the car at a floor and periodically simulates genuine operational sequences as a brief emergence of the switching vane by an optical short-circuit of the fail-safe light barrier. The simulation effects interruption of the light barrier relay power which is, however, shorter than the release time of the relays so that the relays do not release when the circuit is intact. A sequence of timing signals controls the sequence of the self-monitoring functions and, in the case of any kind of component faults, this sequence is disturbed and a corresponding reaction in the safety circuits of the elevator control takes place by way of the relay contacts. A cyclically appearing test signal is generated as the primary control signal for the simulated interruptions.

Description

Die vorliegende Erfindung betrifft eine zweikanalige Gabellichtschranke in Failsafe-Ausführung für die Erzeugung einer Schachtinformation beim Eintauchen einer Schaltfahne im Schacht im Bereich der Türzonen bei Aufzügen zwecks vorzeitigem Einleiten des Türöffnens beim Einfahren der Aufzugskabine in ein Zielstockwerk.The present invention relates to a two-channel fork light barrier in failsafe design for generating shaft information when a switch flag is immersed in the shaft in the area of the door zones in elevators for the purpose of prematurely initiating the opening of the door when the elevator car is retracted into a target floor.

Das vorzeitige Einleiten des Türöffnens beim Einfahren einer Aufzugskabine in ein Zielstockwerk stellt hohe Anforderungen an Einrichtungen und Schaltungen, welche innerhalb einer Türzone bei den Haltestellen die Tür- und Schlosskontakte in der Endphase der einfahrenden Aufzugskabine überbrücken. Es gibt Vorschriften und Normen, welche die Funktion und teilweise die Ausführung solcher Vorrichtungen vorschreiben, bezw. empfehlen. Baugruppen, welche diesen einschlägigen Sicherheitsbestimmungen entsprechen sind unter dem Begriff Failsafe-Baugruppe bekannt. Generell werden solche Apparateschaltungen als ausfallsicher ausgeführt, indem ein Fehler oder eine Kombination von Fehlern für die zu steuernde Einrichtung, in diesem Falle ein Aufzug, keinen gefährlichen Zustand verursachen kann.The premature initiation of the door opening when entering an elevator car into a target floor places high demands on devices and circuits that bridge the door and lock contacts within the door phase at the stops in the final phase of the entering elevator car. There are regulations and norms which prescribe the function and partly the execution of such devices, respectively. recommend. Assemblies that meet these relevant safety regulations are known as failsafe assemblies. In general, such apparatus circuits are designed to be fail-safe in that an error or a combination of errors for the device to be controlled, in this case an elevator, cannot cause a dangerous state.

Die europäische Patentanmeldung No. 0 357 888 beschreibt ein Verfahren und eine Vorrichtung für die Erzeugung einer Schachtinformation bei Aufzügen mittels einer Sicherheitslichtschranke. Schaltungsinterne Testkreise überwachen statisch in der Ruhelage und dynamisch während der Fahrt des Aufzuges beim Ein- und Austauchen der Lichtschranke in die bezw. aus den Betätigungsfahnen im Schacht deren korrekte Funktion und geben im Fehlerfalle entsprechende Fehlersignale ab.European patent application No. 0 357 888 describes a method and a device for generating shaft information for elevators by means of a safety light barrier. Circuit-internal test circuits monitor statically in the idle position and dynamically while the elevator is moving when the light barrier is inserted and removed from the from the actuating lugs in the shaft their correct function and emit appropriate error signals in the event of an error.

Das US-Patent No. 3 743 056 beschreibt einen Failsafe-Detektor, der eine ausfallsichere Schaltung aufweist und insbesondere gegen Fremdlicht und -Reflexe abgesichert ist.U.S. Patent No. 3,743,056 describes a failsafe detector which has a fail-safe circuit and is in particular protected against extraneous light and reflections.

Beide Schaltungen weisen den Nachteil auf, dass ein Fehler erst entdeckt wird, wenn die entsprechende Funktion gebraucht wird, und zudem ist letztere nicht redundant ausgeführt.Both circuits have the disadvantage that an error is only discovered when the corresponding function is needed, and the latter is also not redundant.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Failsafe-Lichtschranke zu schaffen, deren Funktionssicherheit und -Bereitschaft vor jeder Fahrt des Aufzuges bekannt ist. Diese Aufgabe wird durch die in den Ansprüchen gekennzeichnete Erfindung gelöst.The present invention has for its object to provide a failsafe light barrier whose operational safety and readiness is known before each trip of the elevator. This object is achieved by the invention characterized in the claims.

Die durch die Erfindung erreichten Vorteile sind im wesentlichen darin zu sehen, dass ein allfälliger Fehler in der Lichtschranke vor Abfahrt des Aufzuges erkannt, die Fahrt und somit ein Notstop wegen offenem Sicherheitskreis zwischen zwei Stockwerken aus diesem Grunde verhindert wird.The advantages achieved by the invention are essentially to be seen in the fact that a possible fault in the light barrier is recognized before the elevator leaves, and for this reason the journey and thus an emergency stop due to an open safety circuit between two floors is prevented.

In den Zeicnungen ist ein Ausführungsbeispiel der Erfindung dargestellt, und es zeigen

Fig.1
ein Blockschaltbild der Einrichtung,
Fig.2
die Anordnung der Sender und Empfänger in der Gabel-Lichtschranke,
Fig.3
ein Signaldiagramm bei ein- und austauchender Schaltfahne,
Fig.4
ein Signaldiagramm der zyklisch dynamischen Selbstüberwachung,
Fig.5
ein Signaldiagramm der Ueberbrückung Stockwerkfahne,
Fig.6
eine Relaisschaltstufe mit Ansteuerung,
Fig.7
ein Blockschaltbild der zyklisch dynamischen Selbstüberwachung und
Fig.8
ein Signaldiagramm mit Einzelheiten der zyklisch dynamischen Selbstüberwachung.
An exemplary embodiment of the invention is shown in the drawings and shows it
Fig. 1
a block diagram of the device,
Fig. 2
the arrangement of the transmitters and receivers in the fork light barrier,
Fig. 3
a signal diagram with switching flag in and out,
Fig. 4
a signal diagram of the cyclically dynamic self-monitoring,
Fig. 5
a signal diagram of the bridging storey flag,
Fig. 6
a relay switching stage with control,
Fig. 7
a block diagram of the cyclically dynamic self-monitoring and
Fig. 8
a signal diagram with details of the cyclically dynamic self-monitoring.

In der Fig.1 sind inform eines Blockschaltbildes alle Teile der Einrichtung und ihre Beziehungen zueinander dargestellt. Mit 1 ist der Schlitz der Gabellichtschranke bezeichnet, in welchen bei der Fahrt des Aufzuges die nicht dargestellten Schaltfahnen ein- und austauchen und dabei einen Lichtstrahl 11 unterbrechen. Beim Anhalten des Aufzuges auf einem Stockwerk ist der Lichtstrahl 11 durch die dort vorhandene Schaltfahne fortwährend unterbrochen. Mit 7 ist ein Oszillator bezeichnet, der eine impulsmässig betriebene IR-Sendediode SDA steuert. Diese sendet ihr Licht durch ein Austrittsfenster 1.2 via den Zwischenraum im Schlitz 1 in ein Eintrittsfenster 1.3, hinter welchem ein Fototransistor T1 die Lichtpulse in Strompulse umwandelt, die dann in einem Empfänger und Signalverstärker 3 zu einem starken Signal aufbereitet werden. Am Ausgang des Empfängers und Verstärkers ist ein Messpunkt mit P1A bezeichnet. In einem Integrator 4 werden in der Folge die Signalpulse, getaktet mit dem Oszillatorsignal, zu einem Dauersignal aufintegriert, welches dann an einem Messpunkt P2A abgreifbar ist. Nicht mit der Oszillatorfrequenz konforme und andere allfällige Störsignale werden auf diese Art ausgetastet und eliminiert. Ein nachfolgender Schmitt-Trigger 5 ist auf bekannte Art für eine saubere Schaltflanke besorgt, welche an einem Messpunkt P3A verfolgt werden kann. Die nächste Schaltstufe mit einem Transistor T2 steuert via eine zyklisch dynamische Selbstüberwachung 6 (in der Folge ZDU 6 genannt) eine Relaisschaltstufe mit einem Transistor T3. Auf der Verbindung zwischen dem Transistor und einer Relaisspule A befindet sich noch ein Messpunkt P4A. Die Relaisspule A ist auf übliche Art mit einer Back-Diode beschaltet und betätigt vier Arbeits- und zwei Ruhekontakte a1 bis a6. Auf der positiven Seite ist die Relaisspule A via einen Widerstand R1A und einen Ruhekontakt b2 mit einer Speisespannung verbunden, welche von einem Spannungswandler und Störfilter 9 stammt. Die Relaiskontakte b1 bis b2 sind Bestandteil des Relais B im analog aufgebauten Kanal B der Failsafe-Lichtschranke. Die Kontaktkombinationen a4/b4, a5/b5 und a3/b3 präsentieren einenteils Statusinformationen und anderenteils Teile des Kontakt-Sicherheitskreises in der Aufzugssteuerung. Mit dem Kontakt a6 wird via einen Widerstand R3A eine LED 10 als optische Zustandskontrolle angesteuert. Vom Messpunkt P4A führt eine Verbindung zurück zur ZDU 6. Von ZDU 6 selbst führt ein Ausgang mit einem periodischen Testsignal TSA zu einer Ueberbrückung Stockwerkfahne 8, die ihrerseits einen Eingang Sperrsignal SPS und einen weiteren Eingang mit der von einer Fotodiode HDA stammenden Oszillatorfequenz aufweist. Von der Ueberbrückung Stockwerkfahne 8 wird, abhängig von den Eingangssignalen, ein Hilfssender HSA betrieben. Die von der Sendediode SDA ausgesendeten Lichtpulse beaufschlagen auch die Fotodiode HDA, deren Pulssignale fortwährend an dem entsprechenden Eingang der Ueberbrückung Stockwerkfahne 8 anliegen und von dieser beim Eintreffen eines Testpulses TSA oder eines Sperrsignales SPS an den Hilfssender HSA weitergegeben werden. Dessen Lichtpulse beaufschlagen dann den Fototransistor T1 (Fig.1), womit der als optischer Kurzschluss genannte Vorgang abgeschlossen ist.In Fig.1 all parts of the device and their relationships to each other are shown in a block diagram. With 1 the slot of the fork light barrier is designated, in which the switching flags, not shown, dip in and out when the elevator is traveling and thereby interrupt a light beam 11. When the elevator stops on a floor, the light beam 11 is continuously interrupted by the switching flag there. 7 denotes an oscillator which controls an IR transmitter diode SDA operated in terms of pulses. This sends its light through an exit window 1.2 via the space in slot 1 into an entry window 1.3, behind which a phototransistor T1 converts the light pulses into current pulses, which are then in a receiver and signal amplifier 3 be processed into a strong signal. At the output of the receiver and amplifier, a measuring point is designated P1A. The signal pulses, clocked with the oscillator signal, are subsequently integrated in an integrator 4 to form a continuous signal, which can then be tapped at a measuring point P2A. In this way, non-conforming to the oscillator frequency and any other interference signals are blanked out and eliminated. A subsequent Schmitt trigger 5 is known for a clean switching edge, which can be tracked at a measuring point P3A. The next switching stage with a transistor T2 controls a relay switching stage with a transistor T3 via a cyclically dynamic self-monitoring 6 (hereinafter referred to as ZDU 6). A measuring point P4A is also located on the connection between the transistor and a relay coil A. The relay coil A is connected in the usual way with a back diode and actuates four normally open contacts and two normally closed contacts a1 to a6. On the positive side, the relay coil A is connected via a resistor R1A and a normally closed contact b2 to a supply voltage which comes from a voltage converter and interference filter 9. The relay contacts b1 to b2 are part of the relay B in the analogue channel B of the failsafe light barrier. The contact combinations a4 / b4, a5 / b5 and a3 / b3 partly present status information and partly parts of the contact safety circuit in the elevator control. With the contact a6, an LED 10 is activated as a visual status control via a resistor R3A. From measuring point P4A, a connection leads back to ZDU 6. From ZDU 6 itself, an output with a periodic test signal TSA leads to a bridging storey flag 8, which in turn has an input blocking signal SPS and a further input with the oscillator sequence coming from a photodiode HDA. Depending on the input signals, an auxiliary transmitter HSA is operated from the bridging floor flag 8. The light pulses emitted by the transmitter diode SDA also act on the photodiode HDA, the pulse signals of which are continuously applied to the corresponding input of the bridging storey flag 8 and from this when a test pulse TSA arrives or a blocking signal PLC can be passed on to the auxiliary transmitter HSA. Its light pulses then act on the phototransistor T1 (FIG. 1), which completes the process referred to as an optical short circuit.

Die Fig.2 zeigt die gegenseitige Anordnung der Sender SA und SB und der Empfänger EA und EB in den Gabelschenkeln 12 und 13 eines Gabelsensorgehäuses 14. Die Lichtstrahlen 11 der beiden Sender SA und SB sind zueinander entgegengesetzt gerichtet, so dass kein Streulicht eines Senders in einen Empfänger des benachbarten Kanals gelangen kann.2 shows the mutual arrangement of the transmitters SA and SB and the receivers EA and EB in the fork legs 12 and 13 of a fork sensor housing 14. The light beams 11 of the two transmitters SA and SB are directed in opposite directions to one another, so that no stray light from a transmitter in can reach a receiver of the neighboring channel.

Anhand der Fig.3 bis 7 werden in der Folge die Funktionen der Failsafe-Lichtschranke mit ihrer ZDU 6 beschrieben.The functions of the failsafe light barrier with its ZDU 6 are described below with reference to FIGS. 3 to 7.

Mit dem Signaldiagramm in der Fig.3 wird die normale Funktion der Failsafe-Lichtschranke (in der Folge FS-Lichtschranke genannt) dargestellt. Die erste vertikale, mit "in" markierte Linie stellt den Zeitpunkt dar, wo soeben eine Schaltfahne im Schacht den Lichtstrahl 11 in der FS-Lichtschranke unterbricht. Die zweite vertikale, mit "aus" markierte Linie stellt den Zeitpunkt dar, wo die Schaltfahne im Schacht soeben aus der FS-Lichtschranke austritt und den Lichtstrahl 11 freigibt. Vor dem Eintauchen der Schaltfahne links von der "in"-Linie ist am Messpunkt P1A das pulsierende, von der Sendediode SDA stammende Signal vorhanden. Beim Eintauchen der Schaltfahne verschwindet das Signal plötzlich und der Integrator 4 (Fig.1) entlädt sich, was am Messpunkt P2A ersichtlich ist. Nach dem Unterschreiten des unteren Triggerschwellwertes wird P3A zu Null und in der Folge auch P4A, womit das Relais A an Spannung gelegt wird und das Relais A nach einer Zeit t an anziehen kann. Das Gleiche passiert natürlich auch im Kanal B mit dem Relais B. Wenn die beiden Relais A und B innerhalb einer vorgegebenen Zeit angezogen haben, ist die Funktion ordnungsgemäss abgelaufen, und es können, wenn der Aufzug beim Einfahren in eine Zielhaltestelle ist, die Steuerbefehle für das vorzeitige Türöffnen gegeben werden. Das Prinzip der Gleichzeitigkeitsprüfung beim Anziehen der Relais wird in der zum Stand der Technik erwähnten Anmeldeschrift beschrieben. Die Relais A und B bleiben so lange angezogen wie der Aufzug auf einem Stockwerk weilt und der Lichtstrahl 11 durch eine Schaltfahne unterbrochen bleibt. Beim Wegfahren des Aufzuges aus einem Stockwerk und dem damit verbundenen Austauchen der Schaltfahne aus der FS-Lichtschranke erscheint das pulsierende Signal an P1A sofort wieder, der Integrator 4 lädt sich auf, P3A schaltet beim Schwellwert auf Eins, P4A ebenfalls und das Relais A (und B) fällt ab nach einer Zeit t ab. Bei der Vorbeifahrt des Aufzuges an den Stockwerken ohne Halt ist es aus verschiedenen Gründen nicht erwünscht, dass dann jedesmal die Relais A und B anziehen und abfallen beim Ein- und Austauchen der Schaltfahnen in der FS-Lichtschranke. Aus diesem Grunde wird, beispielsweise vom Steuerungsrechner, ein Sperrsignal SPS gebildet, welches den bereits beschriebenen (Fig.1) optischen Kurzschluss herbeiführt und so die für eine Steuerfunktion noch nicht gebrauchten Schaltfahnen für die FS-Lichtschranke quasi unsichtbar macht. Im Signaldiagramm der Fig.5 ist der Effekt von SPS ersichtlich. Im Moment wo SPS aktiv wird, wird von der Ueberbrückung Stockwerkfahne 8 der Hilfssender HSA eingeschaltet und mit diesem der Fototransistor T1 befeuert. Da die Lichtpulse ihren Ursprung bei der Sendediode SDA haben und via Fotodiode HDA zur Ueberbrückung Stockwerkfahne 8 rückgeführt werden, bedeutet es für die nachfolgende Schaltung kein Unterschied zum Originalsignal und die Relais A und B bleiben abgefallen, beziehungsweise reagieren auf keine Schaltfahne, solange das Sperrsignal SPS aktiv ist. Diese zusätzlichen Optoelemente sind die Basis für die Durchführung der ZDU (zyklisch dynamische Selbstüberwachung) für die Fehlererkennung. Mit dem Begriff dynamisch wird die Funktionsweise der Ueberwachung angesprochen, welche analog wie eine Betriebsfunktion abläuft, und der Begriff zyklisch ist der Hinweis auf die periodische Wiederholung der Ueberwachungsfunktion im Sekundenrythmus. Es geht dabei darum, fehlerhafte Elemente und Fehler in der Funktion jederzeit sorfort zu erkennen. Im Diagramm der Fig.4 werden die von der ZDU 6 komenden Testsignale TSA des Kanals A und TSB des Kanals B dargestellt. Die Testsignale TSA und TSB weisen eine Pulslänge tp auf, welche beispielsweise um die Hälfte kürzer ist als die Relaisabfallzeit t ab (Fig.3). Ferner sind die Testsignale TSA und TSB zueinander zeitlich versetzt um eine Zeit tpv (Fig.8). Die Zeitversetzung dient dazu, dass die Ueberwachungsfunktionen kanalweise völlig separat ablaufen zwecks Vermeidung gegenseitiger Störbeeinflussung. Mit den Testsignalen TSA und TSB wird ein kurzzeitiges Austauchen aus der Schaltfahne simuliert, während dem der Aufzug in Ruhe auf dem Stockwerk steht. Die Funktionen entsprechen im Prinzip jenen wie sie im Diagramm der Figur 3 dargestellt sind mit dem Unterschied, dass sie invers ablaufen und zeitlich viel kürzer sind. Mit der ZDU 6 werden beim jeweiligen Funktionsdurchlauf alle an der Betriebsfunktion beteiligten Elemente geprüft. Im Fehlerfall wird der Ueberwachungszyklus unterbrochen, worauf mindestens ein Relais A oder B abfällt und damit die Sicherheitsschaltung des Aufzuges anspricht. Die ZDU 6 besteht im wesentlichen aus einer Anzahl voneinander abhängigen Zeitsignalschaltungen. Die Zeitsignale und -Schaltungen heissen t1A, t2A, t3A und t4A für den Kanal A und t1B, t2B, t3B, t4B und tVB für den Kanal B (Fig.7). In der Fig.6 sind die Einzelheiten der Relaisschaltstufe mit dem Schalttransistor T3 und dessen Ansteuerung mit einem Oder-Gatter dargestellt. Die Eingänge des Oder-Gatters bilden die Zeitsignale t1A und t3A.The signal diagram in FIG. 3 shows the normal function of the failsafe light barrier (hereinafter referred to as the FS light barrier). The first vertical line marked with "in" represents the point in time at which a switching flag in the shaft just interrupts the light beam 11 in the FS light barrier. The second vertical line marked with "off" represents the point in time at which the switching flag in the shaft just emerges from the FS light barrier and releases the light beam 11. Before the switch flag is dipped to the left of the "in" line, the pulsating signal from the SDA transmitter diode is present at the measuring point P1A. When the switch flag is immersed, the signal suddenly disappears and the integrator 4 (FIG. 1) discharges, which can be seen at the measuring point P2A. After falling below the lower trigger threshold value, P3A becomes zero and subsequently also P4A, whereby relay A is energized and relay A can pick up after a time t. The same naturally also happens in channel B with relay B. If the two relays A and B have picked up within a predetermined time, the function has run correctly and, if the elevator is entering a destination, the control commands for the premature door opening will be given. The principle of simultaneity checking when the relays are activated is described in the application document mentioned in the prior art. The relays A and B remain energized as long as the elevator is on one floor and the light beam 11 through one Switch flag remains interrupted. When the elevator moves away from a floor and the associated switch flag emerges from the FS light barrier, the pulsating signal at P1A reappears immediately, the integrator 4 charges up, P3A switches to one at the threshold value, P4A likewise and relay A (and B) falls off after a time t. When the elevator drives past the floors without a stop, it is not desirable for various reasons that relays A and B then pull each time and drop out when the switching lugs in and out of the FS light barrier. For this reason, a blocking signal PLC is generated, for example by the control computer, which causes the optical short-circuit already described (FIG. 1) and thus makes the switching flags for the FS light barrier, which have not yet been used for a control function, virtually invisible. The effect of PLC can be seen in the signal diagram in Fig. 5. At the moment when the PLC becomes active, the auxiliary transmitter HSA is switched on by bridging the floor flag 8 and the photo transistor T1 is fired with it. Since the light pulses originate from the SDA transmitter diode and are returned via the HDA photodiode to bridge floor flag 8, it means no difference to the original signal for the subsequent switching and the relays A and B remain dropped or do not respond to a switch flag as long as the blocking signal PLC is active. These additional opto-elements are the basis for the implementation of the ZDU (cyclical dynamic self-monitoring) for error detection. The term dynamic is used to address the functioning of the monitoring, which proceeds in the same way as an operating function, and the term cyclical is an indication of the periodic repetition of the monitoring function every second. It is about recognizing faulty elements and errors in function at any time. The diagram of FIG. 4 shows the test signals TSA of channel A and TSB of channel B coming from the ZDU 6. The test signals TSA and TSB have a pulse length tp which is, for example, half shorter than the relay dropout time t (FIG. 3). Furthermore, the test signals TSA and TSB are offset in time from one another at a time tpv (Fig. 8). The time shift serves to ensure that the monitoring functions run completely separately for each channel in order to avoid mutual interference. The test signals TSA and TSB simulate a brief escape from the switch flag during which the elevator is at rest on the floor. The functions correspond in principle to those as shown in the diagram in FIG. 3, with the difference that they run inversely and are much shorter in time. With the ZDU 6, all elements involved in the operational function are checked during the respective function cycle. In the event of a fault, the monitoring cycle is interrupted, whereupon at least one relay A or B drops out and the safety circuit of the elevator thus responds. The ZDU 6 essentially consists of a number of interdependent time signal circuits. The time signals and circuits are called t1A, t2A, t3A and t4A for channel A and t1B, t2B, t3B, t4B and tVB for channel B (FIG. 7). 6 shows the details of the relay switching stage with the switching transistor T3 and its control with an OR gate. The inputs of the OR gate form the time signals t1A and t3A.

Das Relais A liegt also an Spannung, wenn einer oder beide Eingänge gleich Eins sind beziehungsweise liegt nicht an Spannung, wenn beide Eingänge gleich Null sind. Die ZDU 6 bewirkt nun, dass periodisch beide Eingänge t1A und t3A kurzzeitig Null werden, ohne dass dabei das Relais A abfällt.Relay A is therefore live if one or both inputs are equal to one or is not live if both inputs are equal to zero. The ZDU 6 now causes both inputs t1A and t3A to periodically become zero for a short time without relay A dropping out.

In Fig.7 sind die Zeitsignale t1A bis t4A beziehungsweise tVB und t1B bis t4B, sowie die beiden ODER-Tore und ein Flip-Flop QFF als Blöcke mit den entsprechenden Verbindungen untereinander dargestellt. Die dargestellten Blöcke sind der wesentliche Inhalt des Blockes ZDU 6 im Blockschaltbild der Fig.1. Der obere Teil des Blockschaltbildes zeigt die Elemente des A-Kanals und der untere Teil jene des B-Kanals. QFF ist ein gemeinsames Element und hat eine Synchronisationsaufgabe. Im B-Kanal ist eine zusätzliche Zeitsignalschaltung tVB vorhanden und mit der Aufgabe betraut, eine Pulsverschiebung zwecks Bildung eines QFF-Anfangssignal zu verursachen.7 shows the time signals t1A to t4A or tVB and t1B to t4B, as well as the two OR gates and a flip-flop QFF as blocks with the corresponding connections to one another. The blocks shown are the essential content of block ZDU 6 in the block diagram of FIG. The upper part of the block diagram shows the elements of the A channel and the lower part those of the B channel. QFF is a common element and has a synchronization task. An additional time signal circuit tVB is present in the B channel and is responsible for causing a pulse shift in order to form a QFF start signal.

Der zeitliche Ablauf der genannten Signale ist im Diagramm der Fig.8 dargestellt. Zusätzlich zu den Zeitsignalen sind die Testsignale TSA und TSB, die Messpunkte P4A/B, die Relais A/B, sowie ein JK-Flip-Flop-Ausgang QFF aufgeführt. Das Zeitsignal t1A ist ein Ueberbrückungssignal und ist etwa doppelt so lang wie t1B. Die Zeitsignale t2A und t2B sind kurze Steuersignale für QFF und die Zeitsignale t3A und t3B sind die eigentlichen zyklusbestimmenden Signale. t3A und t3B werden gemeinsam mit der fallenden Flanke von QFF gestartet, weisen aber eine um tPV unterschiedliche Länge auf, wobei t3A < t3B ist. Der Zeitpunkt Null des Diagramms ist mit dem Eintauchen der Schaltfahne gegeben und mit der oben mit "in" markierten vertikalen Linie definiert. Als erstes wird t1A, welches identisch ist mit P3A, zu Eins, erzeugt den Schaltpuls t2A, welcher seinerseits QFF zu Eins macht. Gleichzeitig wird auch via P4A das Relais A eingeschaltet, welches nach einer Zeit t an anzieht. Im Kanal B wird zuerst das Zeitsignal tVB gestartet und erst nach dessen Ablauf zum Relais B durchgeschaltet, wodurch dieses beispielsweise 2ms später Spannung erhält. Das Ende des Zeitsignals tVB erzeugt den Schaltpuls t2B welcher dann QFF wieder zu Null macht. Die fallende Flanke von QFF ist nun das, beide Kanäle synchronisierende Startsignal für die Zeitsignale t3A und t3B. Die Zeitsignale t3A und t3B sind unterschiedlich lang, wobei t3A kürzer ist als t3B. Die Zeitdifferenz entspricht der Testsignalverzögerungszeit tPV im Diagramm der Fig.4. Nach Ablauf von t3A beginnt der erste Test im Kanal A, indem via t4A ein Testsignal TSA gebildet wird und das während seiner Dauer den Messpunkt P4A zu Eins macht und so für die Relaishaltung ein zeitliches Loch gleicher Dauer entsteht.The timing of the signals mentioned is shown in the diagram in FIG. In addition to the time signals, the Test signals TSA and TSB, the measuring points P4A / B, the relays A / B, and a JK flip-flop output QFF are listed. The time signal t1A is a bridging signal and is approximately twice as long as t1B. The time signals t2A and t2B are short control signals for QFF and the time signals t3A and t3B are the actual cycle-determining signals. t3A and t3B are started together with the falling edge of QFF, but have a length different by tPV, with t3A <t3B. The time zero of the diagram is given when the switch flag is dipped in and defined with the vertical line marked above with "in". First, t1A, which is identical to P3A, becomes one, generates the switching pulse t2A, which in turn makes QFF one. At the same time, relay A is switched on via P4A, which picks up after a time t. In channel B, the time signal tVB is started first and only switched through to relay B after it has expired, as a result of which it receives voltage, for example, 2 ms later. The end of the time signal tVB generates the switching pulse t2B which then makes QFF zero again. The falling edge of QFF is now the start signal synchronizing the two channels for the time signals t3A and t3B. The time signals t3A and t3B are of different lengths, t3A being shorter than t3B. The time difference corresponds to the test signal delay time tPV in the diagram in FIG. 4. After t3A has elapsed, the first test in channel A begins by generating a test signal TSA via t4A and which makes measuring point P4A one during its duration, thus creating a time gap of the same duration for the relay.

Dessen Dauer ist aber, wie bereits erwähnt nur etwa halb so lang wie die Abfallzeit des Relais A, so dass dieses nicht abfallen kann. Nach Ablauf von TSA wird wieder ein Schaltpuls t2A erzeugt, der nun t1A zu Eins macht. t1A hat eine Länge, welche die Funktion des nachfolgenden Testes im Kanal B zeitlich überdeckt. Der zeitliche Unterbruch in der Relaishaltung ist also im Effekt eine zeitliche Lücke der beiden Zeitsignale t1A und t3A (Fig.6). Nach einer Zeit tPV wird nun auch t3B zu Null und der gleiche Ablauf erzeugt nun den gleich langen Unterbruch in der Relaishaltung von Kanal B. Da nun aber im Kanal B das Zeitsignal tBV vorhanden ist, muss TSB um dessen Betrag kürzer sein, um den gleichlangen Unterbruch zu bewirken. Das zeitliche Loch in der Relaishaltung von Kanal B setzt sich also aus der Dauer von TSB und tVB zusammen. Am Ende von tVB wird via den Schaltpuls t2B QFF zu Null und startet von neuem die Zeitsignale t3A und t3B, womit ein neuer Zyklus beginnt. t1A kann nun, nachdem der Test im Kanal B vorüber ist, ohne Wirkung auslaufen und ist bereit für die nächste gleiche Funktion. Tritt nun irgend ein Fehler auf in der Schaltung, so muss die Reaktion auf die sichere Seite gehen, das heisst, ein Relais muss abfallen und dessen Kontakte die Störung an die Sicherheitskreise melden. Die periodische Untersuchung aller Komponenten erfasst Unterbrüche, Kurzschlüsse, intermittierende Ausfälle und Driften. Als erstes Beispiel sei angenommen, dass der Messpunkt P3A auf Null bleibt. Das könnte ein Kurzschluss im Transistor T2 sein oder ein diesen Effekt erzeugender Fehler in den vorangehenden Schaltkreisen. Wenn jetzt t3A abgelaufen ist, wird kein neues t1A gestartet, der Messpunkt P4A wird Eins und das Relais A fällt ab, weil weder t1A noch t3A am ODER-Eingang in der Schaltstufe vorhanden ist. Genau das gleiche passiert wenn, aus den gleichen Gründen, beispielsweise der Messpunkt P3A permanent auf Eins bleibt. Dann wird ebenfalls kein t1A und kein nachfolgendes Zeitsignal mehr gestartet, womit der gleiche Effekt erreicht wird. Zusammengefasst kann gesagt werden dass irgend eine Störung der Zeitsignalabläufe zwangsläufig zum Abfallen eines Relais A und/oder B führen. Die ZDU 6 produziert beim Stillstand des Aufzuges auf einem Stockwerk Schaltabläufe, wie sie auch betriebsmässig ablaufen. Deshalb handelt es sich hier um eine prophylaktische Fehlererkennung, weil Fehler in der Schaltung vor ihrer Auswirkung erkannt und so die Folgen gemildert werden. Denn ein Oeffnen des Sicherheitskreises während der Fahrt hat Notstops und eingeschlossene Fahrgäste zur Folge. Wird eine Störung erkannt, so wird ein Start des Aufzuges blockiert und eingestiegene Fahrgäste können die Kabine wieder verlassen. Fallen während der Fahrt des Aufzuges bei freien Lichtstrecken in der FS-Lichtschranke Komponenten derart aus, dass beispielsweise die Lichtstrecke des Kanals A trotz vorhandenem Sperrsignal SPS als unterbrochen simuliert wird, dann zieht Relais A an und aktiviert sofort die ZDU 6.However, as already mentioned, its duration is only about half as long as the fall time of relay A, so that it cannot fall off. After TSA has elapsed, a switching pulse t2A is again generated, which now makes t1A one. t1A has a length that overlaps the function of the subsequent test in channel B. The interruption in time in the relay system is therefore in effect a time gap between the two time signals t1A and t3A (FIG. 6). After a time tPV, t3B now also becomes zero and the same sequence now generates the interruption of the same length in the relay holding of channel B. However, since the time signal tBV is present in channel B, must TSB be shorter by the amount to effect the interruption of the same length. The time gap in the channel B relay system is therefore composed of the duration of TSB and tVB. At the end of tVB, the switching pulse t2B QFF becomes zero and the time signals t3A and t3B start again, which starts a new cycle. Now that the test in channel B is over, t1A can run out without effect and is ready for the next same function. If there is any fault in the circuit, the response must be on the safe side, i.e. a relay must drop out and its contacts report the fault to the safety circuits. The periodic inspection of all components records interruptions, short circuits, intermittent failures and drifts. As a first example, assume that the measurement point P3A remains at zero. This could be a short circuit in transistor T2 or an error producing this effect in the preceding circuits. If t3A has now expired, no new t1A is started, measuring point P4A becomes one and relay A drops out because neither t1A nor t3A is present at the OR input in the switching stage. Exactly the same happens if, for the same reasons, for example the measuring point P3A remains permanently at one. Then no t1A and no subsequent time signal is started either, which achieves the same effect. In summary, it can be said that any disturbance in the time signal sequences inevitably leads to a relay A and / or B dropping out. When the elevator is at a standstill, the ZDU 6 produces switching sequences as they occur during operation. Therefore, this is a prophylactic fault detection, because faults in the circuit are recognized before they have an effect and the consequences are thus mitigated. Because opening the safety circuit while driving results in emergency stops and trapped passengers. If a fault is detected, the start of the elevator is blocked and boarded passengers can leave the cabin again. If the light path in the FS light barrier causes components to fail during the travel of the elevator, the light path of channel A, for example, simulates PLC as interrupted despite the presence of a blocking signal relay A picks up and immediately activates the ZDU 6.

Dann zieht auch Relais B an. Für die Zeitdifferenz, in der die beiden Relais nacheinander anziehen wird die Antivalenz der abgehenden Relaiskontakte gestört, womit der Fehler an die Steuerung gemeldet ist. Nach einer Zykluszeit tz fallen beide Relais wieder ab, weil der gestörte Kanal den vom ZDU 6 gesteuerten Signalwechsel nicht vollzieht. In dem gezeigten und beschriebenen Ausführungsbeispiel sind die Zeitsignalschaltungen mittels RC-beschalteten allgemein bekannten monostabilen CMOS-Multivibratoren ausgeführt, und für die Flip-Flop-Schaltung wurde ein ebenso bekanntes Dual J-K Flip-Flop verwendet. Die in der Beschreibung erwähnten Messpunkte dienen nur der Funktionserklärung und werden in der praktischen Ausführung nicht als herausgeführte elektrische Anschlüsse ausgeführt. Die dargestellte Schaltung und Arbeitsweise der FS-Lichtschranke kann auch in anderen Bereichen der Technik Anwedung finden wo ausfallsichere Apparate vorgeschrieben sind wie beispielsweise bei Werkzeugmaschienen, Eisenbahnen, Alarm- und Sicherungsanlagen.Then relay B also picks up. For the time difference in which the two relays pick up one after the other, the antivalence of the outgoing relay contacts is disturbed, with which the error is reported to the control. After a cycle time tz, both relays drop out again because the faulty channel does not carry out the signal change controlled by the ZDU 6. In the exemplary embodiment shown and described, the time signal circuits are implemented by means of RC-connected, generally known, monostable CMOS multivibrators, and a likewise known dual J-K flip-flop was used for the flip-flop circuit. The measuring points mentioned in the description only serve to explain the function and in the practical version are not designed as electrical connections. The circuit and mode of operation of the FS light barrier shown can also be used in other areas of technology where fail-safe devices are required, such as for machine tools, trains, alarm and security systems.

Die Bauart muss sich nicht auf die Gabelform beschränken; es kann ein entsprechender Sensor auch als Näherungssensor nach dem Reflexprinzip ausgeführt sein.The design does not have to be limited to the fork shape; a corresponding sensor can also be designed as a proximity sensor based on the reflex principle.

Claims (9)

Zweikanalige Gabellichtschranke in Failsafe-Ausführung für die Erzeugung einer Schachtinformation beim Eintauchen einer Schaltfahne im Schacht im Bereich der Türzonen bei Aufzügen zwecks vorzeitigem Einleiten des Türöffnens beim Einfahren der Aufzugskabine in ein Zielstockwerk,
dadurch gekennzeichnet,
dass die Failsafe-Lichtschranke mindestens eine,
den echten Betriebsablauf durch simuliertes Austauchen der Schaltfahne aus dem Schlitz (1) der Failsafe-Lichtschranke auslösende, Komponentenfehler detektierende, zyklisch dynamische Selbstüberwachungsschaltung ZDU (6) aufweist.
Two-channel fork light barrier in failsafe design for the generation of shaft information when a switch flag is immersed in the shaft in the area of the door zones for elevators for the purpose of prematurely initiating the opening of the door when the elevator car enters a target floor,
characterized,
that the failsafe light barrier has at least one,
the cyclical dynamic self-monitoring circuit ZDU (6), which triggers component failures and detects component failures, which triggers the real operational sequence by simulated removal of the switching flag from the slot (1) of the failsafe light barrier.
Failsafe-Lichtschranke nach Anspruch 1
dadurch gekennzeichnet,
dass die Selbstüberwachungsschaltung ZDU (6) untereinander verbundene, Zeitsignale erzeugende, sequentiell arbeitende, den simulierten Betriebsablauf steuernde Zeitsignalschaltungen (t1A..t4A, tVB, t1B..t4B) aufweist.
Failsafe light barrier according to claim 1
characterized,
that the self-monitoring circuit ZDU (6) has time signal circuits (t1A..t4A, tVB, t1B..t4B) which are connected to one another and generate time signals, operate sequentially and control the simulated operating sequence.
Failsafe-Lichtschranke nach Ansprüche 1 und 2
dadurch gekennzeichnet,
dass die Selbstüberwachungsschaltung ZDU (6) eine, für beide Kanäle gemeinsame, eine Zykluszeit (tz) via Zeitsignalschaltungen (t3A, t3B) startende Flip-Flop-Schaltung (QFF) aufweist.
Failsafe light barrier according to claims 1 and 2
characterized,
that the self-monitoring circuit ZDU (6) has a flip-flop circuit (QFF), which is common to both channels and has a cycle time (tz) via time signal circuits (t3A, t3B).
Failsafe-Lichtschranke nach Anspruch 1 und 2
dadurch gekennzeichnet,
dass die Selbstüberwachungsschaltung ZDU (6) einen, die Speisung der Relais (A, B) für eine Zeit, welche kürzer als deren Abfallzeit (t ab) ist, via betriebsmässige Funktionsblöcke (3, 4, 5) unterbrechendes, periodisches Testsignal (TSA, TSB) abgebenden Ausgang aufweist.
Failsafe light barrier according to claim 1 and 2
characterized,
that the self-monitoring circuit ZDU (6) interrupts the periodic test signal (TSA,) which interrupts the supply of the relays (A, B) for a time which is shorter than their fall time (t ab) via operational function blocks (3, 4, 5) TSB) has output.
Failsafe-Lichtschranke nach Anspruch 1 und 2
dadurch gekennzeichnet,
dass die Zeitsignalschaltung (tVB) in der Selbstüberwachungsschaltung ZDU (6) im Kanal B der Failsafe-Lichtschranke als eine, eine Pulsverschiebezeit (tPV) erzeugende Zeitschaltung ausgebildet ist.
Failsafe light barrier according to claim 1 and 2
characterized,
that the time signal circuit (tVB) in the self-monitoring circuit ZDU (6) in channel B of the failsafe light barrier is designed as a time circuit that generates a pulse shift time (tPV).
Failsafe-Lichtschranke nach Anspruch 1 und 2
dadurch gekennzeichnet,
dass die Zeitsignalschaltungen (t3A, t3B) als voneinander um die Pulsverschiebezeit (tPV) sich unterscheidende Zeitsignale erzeugende Zeitschaltungen ausgebildet sind.
Failsafe light barrier according to claim 1 and 2
characterized,
that the time signal circuits (t3A, t3B) are designed as time circuits generating time signals which differ from one another by the pulse shift time (tPV).
Failsafe-Lichtschranke nach Anspruch 1 und 2
dadurch gekennzeichnet,
dass die Zeitsignalschaltung (t1A) als eine, ein das Testsignal (TSB) zeitlich überdeckendes Zeitsignal erzeugende Zeitschaltung ausgebildet ist.
Failsafe light barrier according to claim 1 and 2
characterized,
that the time signal circuit (t1A) is designed as a time circuit which generates a time signal which overlaps the test signal (TSB).
Failsafe-Lichtschranke nach Anspruch 1
dadurch gekennzeichnet,
dass Lichtstrahlen (11) durch gegenüberliegende Plazierung von Sendedioden (SA, SB) zueinander entgegengesetzte Richtungen aufweisen.
Failsafe light barrier according to claim 1
characterized,
that light rays (11) have opposite directions to one another due to the placement of transmitter diodes (SA, SB).
Failsafe-Lichtschranke nach Anspruch 1
dadurch gekennzeichnet,
dass mindestens eine von Signalen SPS und TSA/TSB und einer Fotodiode HDA/HDB gesteuerte, einen Hilfssender HSA/HSB steuernde, einen optischen Kurzschluss bewirkende Schaltung Ueberbrückung Stockwerkfahne (8) vorhanden ist.
Failsafe light barrier according to claim 1
characterized,
that at least one circuit bridging the floor flag (8), which is controlled by signals SPS and TSA / TSB and a photodiode HDA / HDB and controls an auxiliary transmitter HSA / HSB and effects an optical short circuit, is present.
EP91117175A 1990-10-31 1991-10-09 Two-channel forked light barrier in Failsafe-design Expired - Lifetime EP0483560B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH345790 1990-10-31
CH3457/90 1990-10-31

Publications (2)

Publication Number Publication Date
EP0483560A1 true EP0483560A1 (en) 1992-05-06
EP0483560B1 EP0483560B1 (en) 1995-08-09

Family

ID=4256364

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91117175A Expired - Lifetime EP0483560B1 (en) 1990-10-31 1991-10-09 Two-channel forked light barrier in Failsafe-design

Country Status (8)

Country Link
US (1) US5247139A (en)
EP (1) EP0483560B1 (en)
JP (1) JP3043867B2 (en)
AT (1) ATE126172T1 (en)
CA (1) CA2054676C (en)
DE (1) DE59106212D1 (en)
ES (1) ES2077759T3 (en)
HK (1) HK204596A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5487448A (en) * 1991-04-18 1996-01-30 Thyssen Aufzuge Gmbh Device for monitoring a control unit
CN101500923B (en) * 2006-06-21 2012-12-05 通力股份公司 Method and system for detecting and stopping uncontrolled movement of an elevator car in an elevator
CN111295350A (en) * 2017-10-31 2020-06-16 因温特奥股份公司 Safety monitoring device for monitoring safety-critical states in a people conveyor and method for operating such a safety monitoring device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05338949A (en) * 1992-06-04 1993-12-21 Mitsubishi Electric Corp Car position detecting device
US5567931A (en) * 1994-10-25 1996-10-22 Otis Elevator Company Variable beam detection using a dynamic detection threshold
CA2161291C (en) * 1994-11-18 2006-01-10 Christian Arpagaus Excess speed detector with multiple light barrier
KR970059069A (en) * 1996-01-30 1997-08-12 이종수 Elevator position sensor failure detection circuit and control method
US5889239A (en) * 1996-11-04 1999-03-30 Otis Elevator Company Method for monitoring elevator leveling performance with improved accuracy
JP4177076B2 (en) * 2002-10-24 2008-11-05 三菱電機株式会社 Elevator car position detector
JP4634188B2 (en) * 2005-02-28 2011-02-16 パナソニック電工Sunx株式会社 Short circuit detection circuit, detection sensor
ES2378553T3 (en) * 2005-08-08 2012-04-13 Otis Elevator Company Method and system to communicate with an elevator controller
US7770595B2 (en) 2006-04-27 2010-08-10 Sko Flo Industries, Inc. Flow control valve
US7395708B2 (en) * 2006-04-28 2008-07-08 Skoflo Industries, Inc. Flow measuring apparatus including a piston movable in the flow barrel
KR100769673B1 (en) * 2006-06-14 2007-10-24 삼성전자주식회사 Position recognition method and position recognition system
CN105764826B (en) * 2013-11-21 2018-09-14 因温特奥股份公司 Method for making elevator control gear run
EP3233694B1 (en) 2014-12-17 2019-01-23 Inventio AG Safety circuit for a lift facility
CN107215738B (en) * 2017-08-07 2022-09-13 陕西省特种设备质量安全监督检测中心 Elevator door lock short circuit detection device and detection method
CN112093606A (en) * 2019-06-17 2020-12-18 上海技防电子技术有限公司 Elevator running state monitoring system and method based on sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019606A (en) * 1975-03-21 1977-04-26 Westinghouse Electric Corporation Elevator system
US4362224A (en) * 1977-11-13 1982-12-07 Otis Elevator Company Discrete position location sensor
US4785914A (en) * 1987-06-19 1988-11-22 Westinghouse Electric Corp. Elevator system leveling safeguard control and method
US4898263A (en) * 1988-09-12 1990-02-06 Montgomery Elevator Company Elevator self-diagnostic control system
EP0357888A1 (en) * 1988-08-23 1990-03-14 Inventio Ag Method and device for generating lift shaft information

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3743056A (en) * 1971-05-19 1973-07-03 Westinghouse Electric Corp Fail-safe detector
US3743058A (en) * 1971-10-14 1973-07-03 Otis Elevator Co Self-adjusting proximity detecting apparatus
CH594322A5 (en) * 1975-05-21 1978-01-13 Inventio Ag

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019606A (en) * 1975-03-21 1977-04-26 Westinghouse Electric Corporation Elevator system
US4362224A (en) * 1977-11-13 1982-12-07 Otis Elevator Company Discrete position location sensor
US4785914A (en) * 1987-06-19 1988-11-22 Westinghouse Electric Corp. Elevator system leveling safeguard control and method
EP0357888A1 (en) * 1988-08-23 1990-03-14 Inventio Ag Method and device for generating lift shaft information
US4898263A (en) * 1988-09-12 1990-02-06 Montgomery Elevator Company Elevator self-diagnostic control system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5487448A (en) * 1991-04-18 1996-01-30 Thyssen Aufzuge Gmbh Device for monitoring a control unit
EP0535205B1 (en) * 1991-04-18 1996-02-28 Thyssen Aufzüge Gmbh Device for monitoring a control unit
CN101500923B (en) * 2006-06-21 2012-12-05 通力股份公司 Method and system for detecting and stopping uncontrolled movement of an elevator car in an elevator
CN111295350A (en) * 2017-10-31 2020-06-16 因温特奥股份公司 Safety monitoring device for monitoring safety-critical states in a people conveyor and method for operating such a safety monitoring device
US11618648B2 (en) 2017-10-31 2023-04-04 Inventio Ag Safety monitoring device for monitoring safety-related states in a passenger conveyor system and method for operating same

Also Published As

Publication number Publication date
JPH04292383A (en) 1992-10-16
ATE126172T1 (en) 1995-08-15
EP0483560B1 (en) 1995-08-09
CA2054676A1 (en) 1992-05-01
US5247139A (en) 1993-09-21
CA2054676C (en) 2003-06-17
DE59106212D1 (en) 1995-09-14
ES2077759T3 (en) 1995-12-01
HK204596A (en) 1996-11-15
JP3043867B2 (en) 2000-05-22

Similar Documents

Publication Publication Date Title
EP0483560B1 (en) Two-channel forked light barrier in Failsafe-design
EP2516305B1 (en) Method and device for determining the movement and/or position of a lift cabin
EP3356273B1 (en) Method and device for operating a lift system
EP3233694B1 (en) Safety circuit for a lift facility
DE102011054590B4 (en) Device for detecting the position of an elevator car and method for operating an elevator system
EP2720051B1 (en) Safety system
EP0357888B1 (en) Method and device for generating lift shaft information
EP3083478B1 (en) Safety circuit for a lift system
DE3522418A1 (en) DEVICE FOR REPORTING THE OCCUPANCY CONDITION OF TRACK SECTIONS IN THE AREA OF AN ACTUATOR
DE2833761A1 (en) CIRCUIT ARRANGEMENT FOR MONITORING THE STATE OF SIGNALING SYSTEMS, IN PARTICULAR ROAD TRAFFIC LIGHTING SIGNALING SYSTEMS
DE102008023347B4 (en) Method for detecting and allocating stops and stop detection device for a train protection system
EP3075625B1 (en) Method and system for dynamic path securing in a multi-track track system
DE19601660C2 (en) Safety circuit arrangement
DE3131534A1 (en) Light barrier having an optotransmitter and an optoreceiver
DE2621397C2 (en) Safety circuit, in particular for elevator systems
WO2022089689A1 (en) Proximity switch, method for operating such a switch, and arrangement and method for monitoring a track section
DE3512063A1 (en) Process for testing the serviceability of a device for monitoring travelling yarn, device for executing the process and use thereof
DE3637037C2 (en)
EP0005568B1 (en) Monitoring apparatus for vehicle antiskid system
DE3312768C2 (en)
DE1924461C3 (en) Circuit arrangement for monitoring the contact play of relay contacts
DE717899C (en) Automatic or semi-automatic interlocking circuits
EP0149097A2 (en) Method and arrangement for the failsafe alarm evaluation of a signal line of a hazard signal arrangement
WO2021197811A1 (en) Safety monitoring device, and method for monitoring the safety of an elevator system
AT414116B (en) METHOD FOR MONITORING COUNTING POINTS AND COUNTING POINT FOR TRACK FIELD SYSTEMS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB LI

17P Request for examination filed

Effective date: 19921017

17Q First examination report despatched

Effective date: 19940325

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB LI

REF Corresponds to:

Ref document number: 126172

Country of ref document: AT

Date of ref document: 19950815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59106212

Country of ref document: DE

Date of ref document: 19950914

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950829

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2077759

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20091015

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20091130

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20101104

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101022

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101021

Year of fee payment: 20

BERE Be: lapsed

Owner name: *INVENTIO A.G.

Effective date: 20101031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110114

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20101025

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101009

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59106212

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59106212

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20111008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20111008

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20111010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20111010